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1. Introduction

LetMn be the algebra of all n × n complex matrices. For X ∈ Mn, the notation X ≥ 0 (resp. X > 0)
will be used to mean that X is positive semidefinite (resp. positive definite). If X,Y ∈ Mn are two
Hermitian matrices inMn, we write X ≤ Y to mean Y − X ≥ 0. The unitarily invariant norm of X ∈ Mn

is denoted by ∥X∥. Recall that a norm ∥ · ∥ on Mn is said to be unitarily invariant if it satisfies the
property ∥UXV∥ = ∥X∥ for all X ∈ Mn and all unitaries U,V ∈ Mn.

Let A, B, X ∈ Mn. Throughout this note, we consider the 2 × 2 block matrix H in the form

H =
(

A X
X∗ B

)
.

It is well known that H is positive if and only if the Schur complement of A in H is positive semidefinite
provided that A is strictly positive. That is, H ≥ 0 if and only if

H/A = B − X∗A−1X ≥ 0. (1.1)

The 2 × 2 blocks play an important role in studying matrices and positive matrices in particular.
Bhatia book [5] provides a comprehensive survey about block matrices. Furthermore, a positive 2 × 2
block can be a very useful tool in studying sectorial matrices, see for example [1–3].
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The partial transpose of the block H is defined by

Hτ =
(

A X∗

X B

)
.

It is quite clear that the positivity of H does not generally imply the positivity of Hτ. The block H
is said to be positive partial transpose (PPT) if both H and Hτ are positive semidefinite. The Schure
criterion for positivity implies that H is PPT if and only if

B − X∗A−1X ≥ 0 and B − XA−1X∗ ≥ 0,

provided that A is strictly positive.
The Peres–Horodecki criterion ( PPT criterion) plays an important roll in the quantum information

theory. For example, PPT condition is a necessary condition for a mixed quantum state to be separable.
Moreover, in low dimensional composite spaces ( two and three) this condition (PPT) is also sufficient.
See [8, 11]. It is noteworthy that 2 × 2 blocks, positive blocks and the PPT blocks serve as key tools in
fast inversion and fast multiplications of triangular matrices. For further details, refer to [12] and the
cited references.

The class of PPT matrices possess many interesting properties. Therefore, it has attracted a huge

interest. See [7, 9, 10]. Given a PPT block H =
(

A X
X∗ B

)
.

Recently, many interesting inequalities connecting the main and the off-diagonal of the PPT Block
H have been established. For example, in [10] Lin proved that if H is PPT then

tr (X∗X) ≤ tr (AB) . (1.2)

In the sense of Loewner, it has been proved in [9] that for some unitary U ∈ Mn

|X| ≤
A#B + U∗(A#B)U

2
. (1.3)

An improvement of the inequality (1.3) was given in [7]. The authors proved that if H is PPT then

|X| ≤ (A#B) #U∗(A#B)U (1.4)

for some unitary U ∈ Mn.
In this paper, we show that if H is PPT and t ∈ [0, 1] then

|X| ≤ (A#tB) #U∗(A#1−tB)U

≤
A#tB + U∗(A#1−tB)U

2
(1.5)

for some unitary U ∈ Mn. Then we present several consequences of (1.5) including inequalities such
as (1.2)–(1.4). Finally, we present some inequalities that connect the diagonal components to the real
part of the off-diagonal components of H. Note that in this context, A#B and A#tB denote the geometric
mean and the weighted geometric mean of the two positive matrices A and B, respectively. The detailed
definition will be provided at the final paragraph of the preliminary section.
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2. Preliminaries

In this section we present some basic properties of positive and PPT blocks. These properties are
summarized in Proportions 2.1–2.3. To make this note self-contained, we outline the proofs of these
propositions. We also recall some important facts about weighted geometric mean of two positive
matrices.

Proposition 2.1. If H =
(

A X
X∗ B

)
≥ 0 then

(1).
(

A −X
−X∗ B

)
≥ 0 and

(
B X∗

X A

)
≥ 0.

(2).
(

0 X
X∗ 0

)
≤ 1

2 H.

Proof. To see the first part, observe that(
A −X
−X∗ B

)
=

(
−I 0
0 I

) (
A X
X∗ B

) (
−I 0
0 I

)
≥ 0

and (
B X∗

X A

)
=

(
0 I
I 0

) (
A X∗

X B

) (
0 I
I 0

)
≥ 0.

For the second part, notice that

1
2

H −
(

0 X
X∗ 0

)
=

1
2

(
A −X
−X∗ B

)
≥ 0.

□

Proposition 2.2. If
(

A X
X∗ B

)
is PPT then the following blocks are positive semidefinite.(

A ∓X
∓X∗ B

)
,

(
A ∓X∗

∓X B

)
,

(
B ∓X∗

∓X A

)
,

(
B ∓X
∓X∗ A

)
.

Proof. The semi positivity of the first two blocks follows from the definition of PPT and the first part
of Proposition 2.1. The semi positivity of the second two blocks results from conjugating the first two

blocks by the unitary
(

0 I
I 0

)
. □

Proposition 2.3. Let H =
(

A X
X∗ B

)
be PPT. Then,(

A eiθX
e−iθX∗ B

)
and

( A+B
2 X

X∗ A+B
2

)
are PPT.

Proof. Let W =
(

eiθI 0
0 I

)
. Notice that(

A eiθX
e−iθX∗ B

)
= W

(
A X
X∗ B

)
W∗ ≥ 0
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and (
A e−iθX∗

eiθX B

)
= W∗

(
A X∗

X B

)
W ≥ 0.

This implies that the first block is PPT.

Since
(

A X
X∗ B

)
is PPT, Proposition 2.2 implies that

(
B −X
−X∗ A

)
≥ 0. Therefore,

H =
(

A X
X∗ B

)
≤

(
A X
X∗ B

)
+

(
B −X
−X∗ A

)
=

(
A + B 0

0 A + B

)
.

So,
1
2

H ≤
( A+B

2 0
0 A+B

2

)
. (2.1)

The second part of Proposition 2.1 implies that(
0 X
X∗ 0

)
≤

1
2

H. (2.2)

Hence, combining (2.1) and (2.2) gives(
0 X
X∗ 0

)
≤

( A+B
2 0
0 A+B

2

)
.

Consequently,
( A+B

2 −X
−X∗ A+B

2

)
≥ 0 and then by Proposition 2.1, we have

( A+B
2 X

X∗ A+B
2

)
≥ 0. A similar

argument implies that
( A+B

2 X∗

X A+B
2

)
≥ 0. This proves that

( A+B
2 X

X∗ A+B
2

)
is PPT. □

In the following paragraph, we present the definition of the weighted geometric mean of two positive
matrices and we state some of its properties.

For positive definite X,Y ∈ Mn and t ∈ [0, 1], the weighted geometric mean of X and Y is defined
as follows

X#tY = X1/2(X−1/2YX−1/2)tX1/2.

When t = 1
2 , we drop t from the above definition and we simply write X#Y and call it the geometric

mean of X and Y . It is well-known that

X#tY ≤ (1 − t)X + tY. (2.3)

See [5, Chapter 4].
When t = 1

2 , an extremal property of the geometric mean of positive definite X,Y ∈ Mn is given as
follows

X#Y = max
{

Z : Z = Z∗,
(

X Z
Z Y

)
≥ 0

}
. (2.4)

See [5, Theorem 4.1.3].
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For every unitarily invariant norm, we have

||X#tY || ≤ ||X1−tY t||

≤ ||(1 − t)X + tY ||. (2.5)

See [4, Theorem 3].

3. Main results

We start this section by the following two lemmas.

Lemma 3.1. If
(

A j X
X∗ B j

)
≥ 0 ( j = 1, 2) then

(
A1#tA2 X

X∗ B1#tB2

)
≥ 0,∀t ∈ [0, 1].

Proof. Without loss of generality we may assume that for j = 1, 2 the block
(

A j X
X∗ B j

)
is positive

definite, otherwise we use the well know continuous argument. Therefore, by Schure criterion (1.1),
we have

X∗A−1
1 X ≤ B1 and X∗A−1

2 X ≤ B2.

Observe,

X∗(A1#tA2)−1)X = X∗(A−1
1 #tA−1

2 )X
= (X∗A−1

1 X)#t(X∗A−1
2 X)

≤ B1#tB2 (by the increasing property of means).

And so, B1#tB2 ≥ X∗(A1#tA2)−1)X. This implies the result. □

Lemma 3.2. If
(

A X
X∗ B

)
is PPT then for every t ∈ [0, 1] the block

(
A#tB X
X∗ A#1−tB

)
is PPT.

Proof. The result follows directly from Lemma 3.1, Proposition 2.2 and the fact that B#tA = A#1−tB.
□

Recall that the absolute value of X ∈ Mn is defined as |X| = (X∗X)1/2.
The main result can be stated as follows.

Theorem 3.1. Let
(

A X
X∗ B

)
be PPT and let X = U |X| be the polar decomposition of X. Then,

|X| ≤ (A#tB) #U∗(A#1−tB)U, ∀t ∈ [0, 1].
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Proof. Let X = U |X| be the polar decomposition of X. Let W be the unitary defined as W =
(

U 0
0 I

)
.

Since
(

A X
X∗ B

)
is PPT, Lemma 3.2 implies that

(
A#tB X
X∗ A#1−tB

)
≥ 0 for every t ∈ [0, 1]. Therefore,

W∗

(
A#tB X
X∗ A#1−tB

)
W =

(
U∗(A#tB)U |X|
|X| A#1−tB

)
≥ 0.

By the extremal property of the geometric mean (2.4) we get

|X| ≤ (A#tB) #U∗(A#1−tB)U.

This proves the result. □

Corollary 3.1. Let
(

A X
X∗ B

)
be PPT and let X = U |X| be the polar decomposition of X. Then, for

some unitary U ∈ Mn

|X| ≤
(A#tB) + U∗(A#1−tB)U

2
, ∀t ∈ [0, 1].

In particular,

|X| ≤
(A#B) + U∗(A#B)U

2
.

We remark that the particular case t = 1/2 of Theorem 3.1 and Corollary 3.1 can be found in [7]
and [9], respectively.

Corollary 3.2. If
(

A X
X∗ B

)
is PPT then for every unitarily invariant norm || · || and for t ∈ [0, 1]

||X|| ≤ ||(A#tB)#U∗(A#1−tB)U ||

≤

∥∥∥∥∥ (A#tB) + U∗(A#1−tB)U
2

∥∥∥∥∥
≤
∥A#tB∥ + ∥A#1−tB∥

2

≤
||A1−tBt|| + ||AtB1−t||

2

≤
||(1 − t)A + tB|| + ||tA + (1 − t)B||

2
,

for some unitary U ∈ Mn.

Proof. The first inequality follows directly from Theorem 3.1. The third is the triangle inequality. The
other inequalities follow from (2.5). □

In particular, when t = 1/2 we have the following result.

Corollary 3.3. If
(

A X
X∗ B

)
is PPT then for every unitarily invariant norm || · || and for t ∈ [0, 1]
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||X|| ≤ ||(A#B)#U∗(A#B)U ||

≤

∥∥∥∥∥ (A#B) + U∗(A#B)U
2

∥∥∥∥∥
≤ ∥A#B∥

≤ ||A1/2B1/2||

≤

∥∥∥∥∥A + B
2

∥∥∥∥∥ ,
for some unitary U ∈ Mn.

If we square the inequalities in Corollary 3.3 and choose the Hilbert-Schmidt norm, || · ||2, we get the
following result, which is an improvement of the trace inequality (1.2). Recall that the Hilbert-Schmidt
norm is defined as ||X||22 = tr(X∗X).

Corollary 3.4. If
(

A X
X∗ B

)
is PPT then

tr(X∗X) ≤ tr(A#B)2

≤ tr(AB).

≤ tr
(A + B

2

)2

.

For any X ∈ Mn, let s j(X), j = 1, 2, ..., n denote the singular values of X arranged in decreasing
order. It is known that for any X,Y ∈ Mn and any indices i, j such that i + j ≤ n + 1, we have
si+ j−1(XY) ≤ si(X)s j(Y). (see [6, Page 75]). By utilizing this fact and Theorem 3.1 we can derive the
following result.

Corollary 3.5. Let
(

A X
X∗ B

)
be PPT. Then, for all t ∈ [0, 1], we have

si+ j−1 (X) ≤ si (A#tB) s j (A#1−tB) .

Consequently,
s2 j−1 (X) ≤ s j (A#tB) s j (A#1−tB) ,∀t ∈ [0, 1].

Proof. Let t ∈ [0, 1]. By Theorem 3.1, there exists a unitary matrix U ∈ Mn such that
|X| ≤ (A#tB) #U∗(A#1−tB)U. Moreover, there exists a unitary V ∈ Mn such that
(A#tB) #U∗(A#1−tB)U = (A#tB) VU∗(A#1−tB)U. See [5, Page 108]. Now, observe that

si+ j−1 (X) ≤ si+ j−1 ((A#tB)U∗(A#1−tB)U) (3.1)
≤ si ((A#tB)) s j ((A#1−tB)U) ,

which completes the proof. □
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Finally, we study the connection between the diagonal components and the real part of the off-
diagonal components of the PPT block H. Before doing so, we recall that every X ∈ Mn admits what is
called the cartesian decomposition

X = Re(X) + iIm(X),

where Re(X) and Im(X) are the Hermitian matrices defined as Re(X) = X+X∗
2 , Im(X) = X−X∗

2i and are
known, respectively, as the real and the imaginary parts of X.

Theorem 3.2. Let
(

A X
X∗ B

)
be PPT. Then, ∀t ∈ [0, 1]

Re(X) ≤ (A#tB)#(A#1−tB) ≤
(A#tB) + (A#1−tB)

2

and

Im(X) ≤ (A#tB)#(A#1−tB) ≤
(A#tB) + (A#1−tB)

2
.

Proof. In first part, the second inequality follows from (2.5). For the second inequality, notice that by
Lemma 3.2, we have (

A#tB X
X∗ A#1−tB

)
≥ 0 and

(
A#tB X∗

X A#1−tB

)
≥ 0

for t ∈ [0, 1]. Therefore,(
A#tB Re(X)
Re(X) A#1−tB

)
=

1
2

(
A#tB X
X∗ A#1−tB

)
+

1
2

(
A#tB X∗

X A#1−tB

)
≥ 0.

Therefore, by the extremal property of the geometric mean we have

Re(X) ≤ (A#tB)#(A#1−tB).

This implies the first inequality. To prove the second inequality just applying the first inequality to the

block G =
(

A −iX
iX∗ B

)
. Note that G is PPT by Proposition 2.3. □

Corollary 3.6. Let
(

A X
X B

)
≥ 0. If X is Hermitian,

X ≤ (A#tB)#(A#1−tB) ≤
(A#tB) + (A#1−tB)

2
,∀t ∈ [0, 1].
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