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Abstract: This paper gives a mathematical formulation for the transverse resonance of thermoelastic 

nanobeams that are simply supported and compressed with an initial axial force. The nonlocal elasticity 

concept is used to analyze the influence of length scale with the dual-phase-lag (DPL) heat transfer 

theory. The nanobeam is due to a changing thermal load and moves in one direction at a constant speed. 

The governing motion equation for the nonlocal Euler-Bernoulli (EB) beam hypothesis can also be 

derived with the help of Hamilton’s principle and then solved by means of the Laplace transform 

technique. The impacts of nonlocal nanoscale and axial velocity on the different responses of the 

moving beam are investigated. The results reveal that phase delays, as well as the nonlocal parameter 

and external excitation load, have a substantial impact on the system’s behavior. 
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1. Introduction 

In recent decades, nano-electromechanical systems (NEMS) technology has significantly 

progressed [1]. Nanoscale structural materials used in NEMS, like nanobeams, nanoplates, and 

nanoshells, have better properties, so researchers in this field pay a lot of attention to studying their 
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mechanical and physical properties [2]. Vibration at nanoscales, which is highly size-dependent, is still 

a mystery despite the existence of well-established classical theories of linear and nonlinear vibration 

of strings and beams. The resonance of a nanobeam is examined here using nonlocal elastic stress 

theories in an effort to expand the classical theory of size-dependent nanomechanics [3]. 

Microstructural engineering problems can be addressed using the standard local theories of 

continuum mechanics and flexibility from civil, mechanical, and bioengineering engineering fields. 

The classical-local continuum framework is predicated on the idea that stress and strain are correlated 

at every point in space and time. Elastic wave spreading, crack propagation, and dislocations are 

extensively studied in the traditional theory of elasticity. Conventional elastic models, on the other 

hand, are useless for studying these processes in real-time at the atomic and subatomic scales [4]. 

The distance between atoms has little effect on classical continuum theory; nonetheless, it 

becomes significant when the model size is reduced. Several investigators have thus constructed 

classical continuum mechanics to represent the size effect. These advancements have been dubbed 

non-classical (higher-order) elasticity theories. So-called nonlocal beams are a subcategory of beam 

structures that are distinguished by applying the nonlocal elasticity constitutive equation to take into 

account the small-scale effects. Because of the nanoscale dimensions of their formations, nonlocal 

beams of this kind are typically referred to as nanobeams in the scientific literature [5]. Several theories 

that emphasize small-scale influences have been created, including the strain gradient concept [6,7], 

modified couple stress theory [8,9], couple stress elasticity model [10,11], and nonlocal elasticity 

theory [12–14]. 

The nonlocal theories are often based on Eringen’s nonlocal elasticity theory [12–14], which is 

the most widely used. Based on Eringen’s hypothesis of nonlocal elasticity, stress at any situation point 

affects the entire body. It depends not only on strains at this point but also on strains throughout the 

body. The formulation of nonlocal Eringen elasticity focuses on the atomic theory of lattice dynamics 

and some experimental evidence for phonon scattering. As a result, the object’s size affects the results 

of the nonlocal theory, which considers long-range interactions between atoms [12–14]. 

The nonlocal elasticity model has been used to investigate many applications in nano-

mechanics, such as lattice propagation of transverse waves, vibration in nanomaterials, deformation 

mechanics, fracture mechanics, compressive fluids, and others [15]. Due to their mechanical 

properties, the greatest attention has been paid to nanotubes and nanobeams. Peddiesion et al. [16] 

initially constructed the nonlocal Euler-Bernoulli (EB) beam equations in order to analyze the static 

behavior of MEMS cantilever actuators utilizing Eringen’s nonlocal differential form. 

Simultaneously, Wang [17] outlined the conditions under which a Carbon nanotube (CNT) may be 

described as a beam based on its dimensions. These studies prompted nonlocal differential beam 

theories on CNTs and nanobeams to analyze their stationary, dynamic, and buckled attitudes and 

behaviors. Abouelregal and Marin [18] presented a nonlocal thermal model that shows how the 

nanobeams move and change shape. Eringen’s theory of nonlocal elasticity as well as generalized 

thermoelastic theory is used to derive the equations governing the nonlocal nanobeams. In this paper, 

the structure of the nanobeam is affected by external harmonic forces and temperature changes 

caused by the heating of a modified sine wave. A generalized kernel function for memory-based 

derivatives with two-time lags was proposed by Abouelregal et al. [19,20] as a theoretical model for 

analyzing the nonlocal heat conduction model. The thermomechanical reaction of spinning size-

dependent nanobeams is the focus of the new model. The nonlocal elasticity theories and the 

extended heat transfer model with phase lags are used in the mathematical formulation. Bian and 
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Qing [21] have created a new framework for the Finite Element Method (FEM) in order to simulate 

the mechanical interactions of an Euler-Bernoulli beam using a nonlocal and nonlocal two-phase 

mixed model at the same time. In this work, a fifth-degree polynomial was used for the model 

function, and the constitutive boundary conditions (CBCs) were treated the same way as the external 

loads. Scorza et al. [22] introduced a study that aims to extend the two-phase local/nonlocal stress-

driven integral system (SDM) to the situation of nanobeams with internal discontinuities. In point 

of fact, the initial formulation attempts to avoid the existence of any discontinuities in the structure. 

The thermal buckling of an anisotropic flexible composite beam with a dielectric core and two thin 

semiconducting surface layers was recently modeled by Zhang et al. [23]. From the kinematic 

relations for a Timoshenko beam and the concepts of piezoelectricity, flexoelectricity, strain gradient 

elasticity, and semiconductors, we derive the system of equations and boundary conditions for the 

beam. 

Many researchers have come up with the term “axially moving nanostructures” to describe how 

axially moving continuums work in many structural applications, such as band saws, printing 

mechanisms, tubes carrying fluids, etc. [24,25] Since the 1950s, scientists have been studying how 

materials vibrate when they move in one direction. Through many efforts, the first papers were 

presented on the vibration of the thread moving along it [26,27]. In recent decades, many research 

articles have been published about beams, plates, and shells that move in one direction [28–30]. 

The temperature of the body changes as a result of the body’s deformation. The temperature of 

the body changes, and the body deforms when a heat source is applied from outside. Consequently, 

deformation and temperature affect the body’s inner energy. Thermoelasticity looks at how stress, 

stain, and deformation are linked to heat source and time. The goal is to find a formula that describes 

how stress, stain, and deformation change over time. According to research, this theory can be applied 

to various engineering fields and advanced technologies, from acoustics to aeronautical engineering 

to chemical engineering. It can also be used to check the strength, stiffness, and stability of a structure 

or system parts and the elastic limit of a structure or machine [31]. 

The linear theory of linked thermoelasticity was first satisfactorily derived by Biot [32]. Later, 

Chadwick [33] published both linear and nonlinear formulations of the concept and solved several 

significant linear dynamic system issues. Coupled thermoelasticity has been expanded to include more 

types of materials, such as micro elastic materials, electromechanical solids, and viscoelastic solid 

particles, among others. The conventional uncorrelated thermoelasticity hypothesis predicts two events 

that are incompatible with physical phenomena. First, this heat transfer theory equation does not include 

any elastic factors, even though elastic changes create thermal effects. Second, the equation for thermal 

conductivity is of the parabolic type, which indicates that heat waves will propagate at an infinite rate 

within the medium. To address this dilemma, several efforts have been made to change the coupled 

concept of thermal elasticity in order to obtain a wave-type heat transfer formula. Some of the most well-

known generalized thermoelastic concepts and theories include the Lord and Shulman (LS) model [34], 

the Green and Lindsey theory (G-L) [35], as well as the Green and Naghdi (GN) [36,37] theories, which 

were developed with the help of the energy equation. Also, the dual-phase lag (DPL) model [38,39] was 

introduced by Tzou. 

Non-Fourier transient heat transport in a two-dimensional sub-100 nm metal-oxide-

semiconductor field-effect transistor was the subject of research by Ghazanfarian and Shomali [40], 

who used numerical simulation to examine the phenomenon (MOSFET). Zhou et al. [41] constructed 

one/two-dimensional (1D/2D) TED models of rings by using the nonlocal dual-phase-lag (DPL) 



2275 

AIMS Mathematics  Volume 8, Issue 1, 2272–2295. 

framework and the modified-couple-stress (MCS) concept. In order to represent heat transfer on the 

nanoscale, the dual-phase-lag (DPL) model is presented together with a tailored normalizing approach. 

Zhang and He [42] studied the dynamic behavior of a limited thermoelastic rod fixed at both ends and 

exposed to a moving heat source within the context of the extended thermoelasticity with nonlocal 

influence and memory-dependent derivative. Laplace transformation and numerical inversion are used 

to develop and solve the associated governing equations. In [43], Zhang et al. used a two-phase 

local/nonlocal mixture theory of strain- and stress-driven types to propose predictive models of the 

free vibration of Euler-Bernoulli beams in a uniformly heated environment. With the help of 

Hamilton’s principle, we are able to derive the equation of motion and the conventional boundary 

conditions, and the constitutive equation is written in local/nonlocal mixed integral form using a bi-

Helmholtz kernel. 

Considering the effects of size and heat variations on softening hardness and elastic strengthening 

patterns in moving nano and nanostructures, the investigation into continuous size-dependent concepts, 

generalized heat conduction, and mass mechanisms of thermoelastic responses is still lacking, 

according to the aforementioned overview. To the author’s knowledge, no one has ever investigated 

the thermoelastic resonances in nanobeams under external transversal excitation, non-localization, and 

thermomechanical influences using the generalized theory of thermoelasticity. The research aims to 

investigate how the nanoscale and longitudinal speed influence the various beam behaviors. 

This work aims to present a governing system of equations that describe nonlocal thermoelastic 

moving Euler-Bernoulli beams that are excited from the outside in a transverse direction. When 

considering the nonlocal scale implications in the nanobeam resonances, the novel size-dependent 

thermoelastic model is based on Eringen’s hypothesis of nonlocal elasticity and the DPL heat transfer 

model. Differential motion equations were also derived from the Euler-Bernoulli nanobeam theory, 

based on the generalized Hamiltonian concept. The Laplace transform and its inversion are used in the 

deductive process. The effects of nonlocal phase lags, moving speed, and external excitation will be 

studied and graphically depicted. 

2. Formulation of the problem 

Consider an Euler-Bernoulli nanobeam of length 𝐿 that has an initial axial tension 𝑃 at either end. 

In Figure 1, we have a schematic diagram of a nanobeam moving at a constant horizontal velocity 𝜐. 

Initially, the body is in equilibrium such that the beam is not restricted in any way, is not subject to 

any pressure, and maintains the same temperature 𝑇0. When the beam is bent around the 𝑥-axis, small-

amplitude vibrations occur, which allow the deflection to be described using the linear Euler-Bernoulli 

hypothesis of mechanics. During bending, any plane cross-section initially parallel to the beam axis 

stays parallel to the reference plane and perpendicular to the plane. This means that the displacements 

can be expressed as 

𝑢 = −𝑧
𝜕𝑤

𝜕𝑥
,    v = 0,   𝑤(𝑥, 𝑦, 𝑧, 𝑡) = 𝑤(𝑥, 𝑡),      (2.1) 

where 𝑤 denotes the transverse displacement. 
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Figure 1. Schematic of an axially forced moving Euler-Bernoulli nanobeam. 

It is possible to establish the governing equation for nanobeam transverse vibration by employing 

Hamilton’s principle. By applying Newton’s second law of motion and the condition of moment 

equilibrium, one can derive the dynamic equation of motion for the element that is subject to an axial 

dynamic load 𝑃. This equation of motion may be written as [44,45] 

𝜕2𝑀

𝜕𝑥2
+𝑚(

𝜕2𝑤

𝜕𝑡2
+ 2𝜐

𝜕2𝑤

𝜕𝑥𝜕𝑡
+ 𝜐2

𝜕2𝑤

𝜕𝑥2
) + 𝑃

𝜕2𝑤

𝜕𝑥2
= 0,     (2.2) 

𝑀(𝑥, 𝑡) represents the bending moment, 𝑚 = 𝜌𝐴  is mass per unit length, 𝜌  is the density, and 𝐴 

represents the cross-sectional area. 

The components of the local stress and strain tensors are given by 

𝜏𝑘𝑙 = 𝜆휀𝑚𝑚𝛿𝑘𝑙 + 𝜇휀𝑘𝑙 − 𝛾𝛿𝑘𝑙𝜃,       (2.3) 

2휀𝑘𝑙 =
𝜕𝑢𝑘

𝜕𝑥𝑙
+

𝜕𝑢𝑙

𝜕𝑥𝑘
,          (2.4) 

where 𝑢𝑘 are the displacement vector components, 𝜏𝑘𝑙 are the local stress tensor components. Also, 

𝜃 = 𝑇 − 𝑇0 is the of temperature change, 𝑇 is the temperature distribution, 𝑇0 is the environmental 

temperature, 휀𝑘𝑙 are the classical Cauchy relations, 𝜆 and 𝜇 are Lamé’s constants, 𝛾 = 𝛼𝑡(3𝜆 + 2𝜇) =

𝐸𝛼𝑡/(1 − 2𝜈), 𝛼𝑡 is the coefficient of thermal expansion, 𝐸 denotes Young modulus, 𝜈 is Poisson’s 

ratio and 𝛿𝑘𝑙  is Kronecker delta function. The Lamé constants 𝜆  and 𝜇  can be expressed as 𝜆 =

𝐸𝜈/(1 + 𝜈)(1 − 2𝜈) and 𝜇 = 𝐸/2(1 + 𝜈). 

The dynamic study of the nanostructure is done using a nonlocal stress model. The basic equations 

of Eringen’s nonlocal elasticity theory [12–14] incorporate spatial integrals that reflect the weighted 

averages of the contributions of associated strain tensors at the corresponding location in the body. As 

a result, the theory employs a spatial integral constitutive correlation to incorporate the small-size scale 

effect. The integral form of the nonlocal constitutive relation can be represented as follows in nonlocal 

elasticity theory: 

𝜎𝑘𝑙(𝑥) = ∫ 𝜏𝑘𝑙(𝑥
′)K𝜉(|𝑥 − 𝑥′|, 𝜉)d𝑉(𝑥′), ∀ 𝑥 ∈ 𝑉,    (2.5) 

where 𝜎𝑘𝑙  are the nonlocal stress tensor components at any point 𝑥 , K𝜉(|𝑥 − 𝑥′|, 𝜉) represents the 

attenuation function (kernel) which includes nonlocal influences into the constitutive relations, 

|𝑥 − 𝑥′| is a distance in Euclidean norm and 𝜉 = (𝑒0𝑎)
2 is the nonlocal parameter where 𝑎 is the 

intrinsic property length (characteristic internal length) and 𝑒0  is a material constant that can be 
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determined from molecular dynamics simulations or by using the dispersive curve of the Born-Karman 

model of lattice dynamics. Eringen [12–14] provided a differential form of constitutive equations by 

using an appropriate kernel function K𝜉 in the preceding integral form of the equation can be derived 

as [46] 

𝜎𝑘𝑙 − 𝜉
𝜕2𝜎𝑘𝑙

𝜕𝑥2
= 𝜏𝑘𝑙 .         (2.6) 

According to Eringen’s nonlocal elasticity theory, the one-dimensional  nonlocal constitutive 

relation can be written as [47,48] 

𝜎𝑥 − 𝜉
𝜕2𝜎𝑥

𝜕𝑥2
= −𝐸 (𝑧

𝜕2𝑤

𝜕𝑥2
+ 𝛼𝑇𝜃),       (2.7) 

where 𝜎𝑥 represents the nonlocal axial stress, 𝐸 is Young’s modulus, 𝛼𝑇 = 𝛼𝑡/(1 − 2𝜈) and 𝜃 = 𝑇 −

𝑇0 indicates the over-temperature distribution. 

The bending moment may be calculated using the Euler-Bernoulli beam theory as follows: 

𝑀(𝑥, 𝑡) =  ∫ 𝜎𝑥𝑧 𝑑 𝑧
ℎ/2

−ℎ/2
.        (2.8) 

When the of the axial stress 𝜎𝑥 is multiplied by 𝑧 and integrated across the cross-section area of 

the nanobeam, the flexure moment satisfies the following equation: 

𝑀(𝑥, 𝑡) − 𝜉
𝜕2𝑀

𝜕𝑥2
= −𝐸𝐼 (

𝜕2𝑤

𝜕𝑥2
+ 𝛼𝑇𝑀𝑇),     (2.9) 

where 𝐼 =   3/12  is the moment of inertia and 𝑀𝑇  denotes the thermal moment which is 

obtained  by 

𝑀𝑇 =
12

ℎ3
∫ 𝜃(𝑥, 𝑧, 𝑡)𝑧 𝑑 𝑧
ℎ/2

−ℎ/2
.       (2.10) 

Equation (2.2) may be substituted into Eq (2.9), yielding the following equation of the flexure 

moment: 

𝑀(𝑥, 𝑡) = −𝜉𝑚 (
𝜕2𝑤

𝜕𝑡2
+ 2𝜐

𝜕2𝑤

𝜕𝑥𝜕𝑡
+ 𝜐2

𝜕2𝑤

𝜕𝑥2
+

𝑃

𝑚

𝜕2𝑤

𝜕𝑥2
) − 𝐸𝐼 (

𝜕2𝑤

𝜕𝑥2
+ 𝛼𝑇𝑀𝑇). (2.11) 

Equation (2.2) can be represented as a nonlocal partial differential equation with a constant 

coefficient of the lateral displacement 𝑤(𝑥, 𝑡) by substituting Eq (2.11) into Eq (2.2): 

(1 +
𝜉𝑚𝜐2

𝐸𝐼
)
𝜕4𝑤

𝜕𝑥4
+ [(

𝑚

𝐸𝐼

𝜕2

𝜕𝑡2
+

2𝜐𝑚

𝐸𝐼

𝜕2

𝜕𝑥𝜕𝑡
+

𝑃

𝐸𝐼

𝜕2

𝜕𝑥2
) (𝜉

𝜕2

𝜕𝑥2
− 1)]𝑤 −

𝑚𝜐2

𝐸𝐼

𝜕2𝑤

𝜕𝑥2
+𝛼𝑇

𝜕2𝑀𝑇

𝜕𝑥2
= 0. (2.12) 

When 𝜉 = 0 is used in the preceding equations, the relevant local equation of motion for moving 

the Euler-Bernoulli beam is restored. 

Tzou [38,39] suggested a dual-phase-lag (DPL) model that ignores the instantaneous interaction 

of temperature and energy. The DPL model, in particular, provides a straightforward and realistic 

representation of heat transmission in skin tissues. The DPL model has also been applied to describethe 

thermal response to laser transmission, thermal shock, and photothermal excitement. Also, this theory 
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is built logically to generate a coherent theory that can logically contain thermal pulse excitation. 

Tzou’s theory is a modified version of the conventional thermoelasticity model in which the Fourier 

law is substituted with an approximation of the following equation [38]: 

�⃗�(𝑥, 𝑡 + 𝜏𝑞) = −𝐾∇𝜃(𝑥, 𝑡 + 𝜏𝜃),       (2.13) 

where �⃗� denotes the heat flux vector, and 𝐾 symbolizes the thermal conductivity. The phase lag of the 

heat flow is 𝜏𝑞, while the temperature gradient’s phase lag is 𝜏𝜃. 

The modified heat conduction equation for the DPL model may be expressed by using the first-

order approximation of the previous equation as 

(1 + 𝜏𝑞
𝜕

𝜕𝑡
) �⃗� = −𝐾∇ (1 + 𝜏𝜃

𝜕

𝜕𝑡
) 𝜃.      (2.14) 

The equation for the conservation of energy is written as follows: 

𝐶𝐸
𝜕𝜃

𝜕𝑡
+ 𝛾𝑇0

𝜕𝑒

𝜕𝑡
= −∇ ∙ �⃗� + 𝑄,        (2.15) 

where 𝐶𝐸  denotes the specific heat per unit mass at constant strain, 𝑒 = ∇ ∙ �⃗⃗� represent the cubical 

dilatation, �⃗⃗� is the displacement vector, and 𝑄 signifies the internal energy generation (heat source). 

When Eqs (2.14) and (2.15) are combined, we get the DPL heat conduction model as 

(1 + 𝜏𝑞
𝜕

𝜕𝑡
) (𝜌𝐶𝐸

𝜕𝜃

𝜕𝑡
+ 𝛾𝑇0

𝜕𝑒

𝜕𝑡
− 𝑄) = 𝐾 (1 + 𝜏𝜃

𝜕

𝜕𝑡
)∇2𝜃.   (2.16) 

One can use Eq (2.1) to get the DPL heat equation for the current situation in the absence of a 

heat generation (𝑄 = 0) as 

(1 + 𝜏𝜃
𝜕

𝜕𝑡
)
𝜕2𝜃

𝜕𝑥2
+ (1 + 𝜏𝜃

𝜕

𝜕𝑡
)
𝜕2𝜃

𝜕𝑧2
= (1 + 𝜏𝑞

𝜕

𝜕𝑡
) [

𝜌𝐶𝐸

𝐾

𝜕𝜃

𝜕𝑡
−

𝛾𝑇0

𝐾
𝑧

𝜕

𝜕𝑡
(
𝜕2𝑤

𝜕𝑥2
)].  (2.17) 

The DPL model simplifies the traditional Fourier’s law when 𝜏𝑞 = 0 = 𝜏𝜃. Also, the Lord and 

Shulman thermoelastic model can be obtained when 𝜏𝜃 and 𝜏𝑞 > 0. 

Assume that the temperature increment 𝜃(𝑥, 𝑧, 𝑡) increases sinusoidally (sin(𝜋𝑧/ )) along the 

thickness direction for an extremely nanobeam. Furthermore, there is no heat movement along the 

upper and bottom surfaces of the nanobeam, resulting in 
𝜕𝜃

𝜕𝑧
= 0 at 𝑧 = ±

ℎ

2
. In this case, 

𝑀𝑇 =
12

ℎ3
∫ 𝜃𝑧 𝑑 𝑧
ℎ/2

−ℎ/2
=

12ℎ

𝜋2
[𝜃|−ℎ/2

ℎ/2
− 𝑧

𝜕𝜃

𝜕𝑧
|
−ℎ/2

ℎ/2
] = −

12ℎ

𝜋2
∫

𝜕2𝜃

𝜕𝑧2
𝑧 𝑑 𝑧

ℎ

2

−
ℎ

2

.  (2.18) 

Substituting Eq (2.18) into (2.17) leads to 

(1 + 𝜏𝜃
𝜕

𝜕𝑡
) [

𝜕2𝑀𝑇

𝜕𝑥2
−

𝜋2

ℎ2
𝑀𝑇] = (1 + 𝜏𝑞

𝜕

𝜕𝑡
) [

𝜌𝐶𝐸

𝐾

𝜕𝑀𝑇

𝜕𝑡
−

𝛽𝑇0𝜋
2ℎ

24𝐾

𝜕

𝜕𝑡
(
𝜕2𝑤

𝜕𝑥2
)].  (2.19) 

To help with the solution, the dimensionless variables listed below are used: 



2279 

AIMS Mathematics  Volume 8, Issue 1, 2272–2295. 

(𝑥′, 𝐿′, 𝑢′, 𝑤′, 𝑧′) = 𝜂𝑐(𝑥, 𝐿, 𝑢, 𝑤, 𝑧), 𝛩′ =
𝛩

𝑇0
, 𝜎𝑥

′ =
𝜎𝑥

𝐸
, 𝑀𝑇

′ =
𝑀𝑇

𝐸𝐴ℎ
, 𝜐′ =

𝜐

𝑐
,

𝑀′ = −
𝑀

𝜂𝑐𝐸𝐼
, (𝑡′, 𝑡0

′ , 𝜏𝑞
′ , 𝜏𝜃

′ ) = 𝜂𝑐2(𝑡, 𝑡0, 𝜏𝑞, 𝜏𝜃), 𝜂 =
𝜌𝐶𝐸

𝐾
, 𝑐 = √

𝐸

𝜌
.

 (2.20) 

Applying the dimensionless values from (2.20) to Eqs (2.11)–(2.12) and (2.19), and then 

suppressing the primes for convenience, we obtain 

𝑀(𝑥, 𝑡) = 𝜉 (
𝜕2𝑤

𝜕𝑡2
+ 2𝜐

𝜕2𝑤

𝜕𝑥𝜕𝑡
+ 𝜐2

𝜕2𝑤

𝜕𝑥2
+ 𝑃

𝜕2𝑤

𝜕𝑥2
) +

𝜕2𝑤

𝜕𝑥2
+

24𝑇0𝛼𝑇

ℎ𝜋2
𝑀𝑇 .  (2.21) 

(1 + 𝜉𝜐2)
𝜕4𝑤

𝜕𝑥4
+

12

ℎ2
[(

𝜕2

𝜕𝑡2
+ 2𝜐

𝜕2

𝜕𝑥𝜕𝑡
+ 𝑃

𝜕2

𝜕𝑥2
) (𝜉

𝜕2

𝜕𝑥2
− 1)]𝑤 −

12𝜐2

ℎ2
𝜕2𝑤

𝜕𝑥2
+

24𝑇0𝛼𝑇

ℎ𝜋2
𝜕2𝑀𝑇

𝜕𝑥2
= 0. (2.22) 

(1 + 𝜏𝜃
𝜕

𝜕𝑡
) [

𝜕2𝑀𝑇

𝜕𝑥2
−

𝜋2

ℎ2
𝑀𝑇] = (1 + 𝜏𝑞

𝜕

𝜕𝑡
) [

𝜕𝑀𝑇

𝜕𝑡
−

𝐸𝛼𝑇𝜋
2ℎ

24𝜂𝐾

𝜕3𝑤

𝜕𝑡𝜕𝑥2
].   (2.23) 

When the two ends of the microbeams are simply supported and kept at a sinusoidal temperature 

with a pulse width 𝑡0 at the first end (𝑥 = 0) while the second end (𝑥 = 𝐿) is insulated, the boundary 

conditions are given by the expression: 

𝑤(𝑥, 𝑡) = 0, 𝑀(𝑥, 𝑡) = 0 at 𝑥 = 0, 𝐿,       (2.24) 

𝜃 = 𝜃(𝑧, 𝑡) = 𝜃0 z sin (
𝜋

𝑡0
𝑡) ,  0 ≤ 𝑡 ≤ 𝑡0  on 𝑥 = 0,   (2.25) 

𝜕𝜃

𝜕𝑥
= 0    at 𝑥 = 0, 𝐿           (2.26) 

Inserting Eqs (2.25) and (2.26) into Eq (2.10) leads to 

𝑀𝑇 = 𝑀0  sin (
𝜋

𝑡0
𝑡) ,   0 ≤ 𝑡 ≤ 𝑡0 on 𝑥 = 0,     (2.27) 

𝜕𝑀𝑇

𝜕𝑥
= 0    at 𝑥 = 0, 𝐿           (2.28) 

Most earlier investigations assumed that the transverse excitation axial force was either non-

existent or fixed. Actually, the axial force can change over time. It is supposed that the dimensionless 

transverse excitation axial tension is a time-dependent function as [1] 

𝑃 = 𝑃𝑠 + 𝑃𝐷 cos(𝜔𝑡).        (2.29) 

This equation uses 𝜔 to represent the frequency of the load and the terms "𝑃𝑠" and "𝑃𝐷"to express 

the static and dynamic components of axial force.  

3. Solution procedure 

Nonlinear differential equations are notoriously difficult to solve analytically, especially in their 

closed-form form. Many different numerical and approximation methods have been used in the 

literature to solve this problem. One can consider the following as initial conditions: 

𝑤(𝑥, 𝑡)|𝑡=0 = 0 =
𝜕𝑤(𝑥,𝑡)

𝜕𝑡
|
𝑡=0

,   𝑀𝑇(𝑥, 𝑡)|𝑡=0 = 0 =
𝜕𝑀𝑇(𝑥,𝑡)

𝜕𝑡
|
𝑡=0

.  (3.1) 
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When the Laplace transform technique is applied to Eqs (2.7)–(2.13), one obtains the transformed 

differential equations that are shown below: 

�̅� = (1 + 𝜉𝜐2 + 𝜉�̅�)
d2�̅�

d𝑥2
+ 2𝜐𝑠𝜉

𝑑�̅�

𝑑𝑥
+ 𝜉𝑠2�̅� +

24𝑇0𝛼𝑇

ℎ𝜋2
�̅�𝑇 ,    (3.2) 

d4�̅�

d𝑥4
+ 𝐴3

d3�̅�

d𝑥3
+ 𝐴2

d2�̅�

d𝑥2
+ 𝐴1

𝑑�̅�

𝑑𝑥
+ 𝐴0�̅� = −𝐵1

d2�̅�𝑇

d𝑥2
,    (3.3) 

−𝐴4
d2�̅�

d𝑥2
= (

d2

d𝑥2
− 𝐵2) �̅�𝑇 ,        (3.4) 

where 

𝐴0 =
12𝑠2

ℎ2(1+𝜉𝜐2+𝜉�̅�)
, 𝐴1 =

2𝜐𝐴0

𝑠
, 𝐴2 = 𝐴0(𝑠

2𝜉 − 𝜐2 − �̅�), 𝐴3 =
2𝜐𝜉𝐴0

𝑠
,

𝐵1 =
24𝑇0𝛼𝑇

𝜋2ℎ(1+𝜉𝜐2+𝜉�̅�)
, 𝐵2 =

𝜋2

ℎ2
+

𝑠(1+𝜏𝑞𝑠)

1+𝜏𝜃𝑠
, 𝐴4 =

𝑠𝛾𝜋2ℎ(1+𝜏𝑞𝑠)

24𝐾𝜂(1+𝜏𝜃𝑠)
, �̅� =

𝑃𝑠

𝑠
+

𝑠𝑃𝐷

𝑠2+𝜔2 .
 (3.5) 

By eliminating �̅� or Θ̅ from Eqs (3.3) and (3.4), the differential equation governing the functions 

�̅� and Θ̅ may be found. 

[𝑎6
d6

d𝑥6
+ 𝑎5

d5

d𝑥5
+ 𝑎3

d4

d𝑥4
+ 𝑎3

d3

d𝑥3
+ 𝑎2

d2

d𝑥2
+ 𝑎1

𝑑

𝑑𝑥
+ 𝑎0] {�̅�, Θ̅},  (3.6) 

where 

𝑎5 = 𝐴3, 𝑎4 = 𝐴2 − 𝐵1𝐴4,  𝑎3 = 𝐴1 − 𝐵2𝐴3,
𝑎2 = 𝐴0 − 𝐵2𝐴2, 𝑎1 = −𝐵2𝐴1, 𝑎0 = −𝐵2𝐴0.

     (3.7) 

The solution to the Eq (3.6) may be written as 

{�̅�, �̅�𝑇} = ∑ {𝐶𝑖 , 𝐶𝑖
′} 𝑒𝑚𝑖𝑥,6

𝑖=1        (3.8) 

where 𝐶𝑖 and 𝐶𝑖
′ are the integral constants and the parameters 𝑚𝑖(𝑖 = 1,2, . . . ,6) are the roots of the 

equation 

𝑚6 + 𝑎5𝑚
5 + 𝑎4𝑚

4 + 𝑎3𝑚
3 + 𝑎2𝑚

2 + 𝑎2𝑚+ 𝑎0 = 0.   (3.9) 

The compatibility between Eqs (3.8) and (3.4) gives 

𝐶𝑖
′ = 𝛽𝑖𝐶𝑖 ,   𝛽𝑖 = −

𝐴4𝑚𝑖
2

𝑚𝑖
2−𝐵2

.       (3.10) 

Substituting Eq (3.8) into Eq (2.1) after applying the Laplace transform, we get the displacement 

�̄� as follows: 

�̄� = ∑ 𝑚𝑖𝐶𝑖 𝑒
𝑚𝑖𝑥.6

𝑖=1          (3.11) 

The bending moment �̅� given in Eq (3.2) with the help of Eq (3.8), takes the form 

�̅�(𝑥, 𝑡) = ∑ (𝜐2𝜉𝑚𝑖
2 +𝑚𝑖

2 + 2𝜐𝑠𝜉𝑚𝑖 + 𝜉𝑠2 +
24𝑇0𝛼𝑇

ℎ𝜋2
𝛽𝑖) 𝐶𝑖𝑒

𝑚𝑖𝑥6
𝑖=1 . (3.12) 

The boundary conditions (2.24), (2.27) and (2.28) are as follows when the Laplace transformation 
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�̅�(𝑥, 𝑠)|𝑥=0,𝐿 = 0,                        
𝑑�̅�(𝑥,𝑠)

𝑑𝑥
|
𝑥=0,𝐿

= 0,

Θ̅(𝑥, 𝑠)|𝑥=0 =
𝜋𝑡0

𝜋2+𝑡0
2𝑠2

= �̄�(𝑠),     
𝑑Θ̅(𝑥,𝑠)

𝑑𝑥
|
𝑥=𝐿

= 0.
    (3.13) 

Substituting Eq (3.8) into the boundary mentioned above conditions yields six linear equations in 

matrix form as 

∑ 𝑒𝑚𝑖𝐿 𝐶𝑖
6
𝑖=1 = 0, ∑ 𝑚𝑖𝐶𝑖

6
𝑖=1 = 0,   ∑ 𝑚𝑖 𝑒

𝑚𝑖𝐿 𝐶𝑖
6
𝑖=1 = 0,

∑ 𝐶𝑖
6
𝑖=1 = 0, ∑ 𝛽𝑖𝐶𝑖

6
𝑖=1 = �̄�(𝑠),    ∑ 𝛽𝑖𝑚𝑖 𝑒

𝑚𝑖𝐿 𝐶𝑖
6
𝑖=1 = 0.

   (3.14) 

The unknown parameters 𝐶𝑖(𝑖 = 1,2, . . . ,6)  are obtained from the solution of the preceding 

system of linear equations. This concludes the solution to the issue in the domain of the Laplace 

transform. 

4. Inversion of the Laplace transforms 

To calculate the studied physical domains such as bending moment distributions, temperature, 

displacement, and pressure in the beam, the Laplace domains must be reversed to the time domain. 

However, these solutions are too complex to be directly inverted; therefore, no direct analytic solutions 

can be obtained. Consequently, the Riemann-sum approximation approach is employed to generate 

numerical results. In this approach, any function 𝑓(̅𝑥, 𝑡) in the Laplace domain may be inverted into 

the time domain as [38] 

𝑓(𝑥, 𝑡) =
𝑒𝜔𝑡

𝑡
[
1

2
𝑅𝑒[ �̄�(𝑥, 𝜔)] + 𝑅𝑒 ∑ (�̄� (𝑥, 𝜔 +

𝑖𝜑𝜋

𝑡
) (−1)𝑛)𝑁

𝜑=0 ].  (4.1) 

5. Numerical results and illustrations 

The influence of many elements, including the nanobeam’s flexural stiffness, axial speed, phase 

delays, the static and dynamic parts of its axial force, and its vibration properties, was investigated 

using numerical computations. The non-dimensional investigated variables in the nanobeam are 

obtained by computational Laplace inversion using the Riemann-sum approximation stated in Eq (4.1). 

This study uses a silicon beam to examine the thermoelastic interaction behavior. The following are 

the physical values related to silicon [18,20]: 

𝐸 = 169GPa, 𝜌 = 2330kg/m3, 𝐶𝐸 = 713J/(kgK), 𝑇0 = 293K, 

𝛼𝑇 = 2.59 × 10−6𝐾−1, 𝜈 = 0.22, 𝐾 = 156W/(mK). 

The numerical values of the studied non-dimensional domains were calculated, and graphs were 

generated using the dimensional physical values mentioned above. Based on the dimensionless values 

of the physical quantities, the beam lengths of 𝐿 = 10 = 1,  =  /2, 𝑧 =  /6, and 𝑡 = 0.12 are 

considered. The distributions of the thermal moment 𝑀𝑇, Lateral vibration 𝑤, bending moment 𝑀, and 

axial displacement 𝑢  domains are graphically represented for the 𝑥, and 𝑧  directions by inverting 

Laplace transforms using Eq (4.1). The following three cases are numerically calculated and discussed. 
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Calculations were made to determine the numeric data of the non-dimensional research fields 

under investigation, and graphs were constructed based on the previous physical values. The 

dimensions of the nanobeam are considered to be 𝐿 = 10 = 1 ,  =  /2 , and 𝑡 = 0.12 . By 

transposing the Laplace transforms with the help of Eq (4.1), the patterns of the thermal moment 𝑀𝑇, 

lateral vibration 𝑤 , bending moment 𝑀 , and axial deformation 𝑢  domains have been graphically 

displayed for the 𝑥 axis at 𝑧 =  /6. The following important situations are analyzed using figures and 

then highlighted. 

5.1. Case I: nonlocal parameter effect 

The so-called nonlocal beams are a subcategory of beam structures characterized by applying the 

constitutive equation of nonlocal elasticity in order to account for small-scale influences. In published 

studies, these types of nonlocal beams are often called “nanobeams” because their structures lie on 

nanoscale dimensions. Due to its inherent length-free construction, the conventional continuum 

mechanics technique is not applicable at the nano-length scale. The small-scale effects and long-

distance behavior in nanomechanical systems cannot be ignored the way they can be ignored in 

macroscopic mechanical systems. 

Experiments on their mechanical characteristics have indicated a size effect that is not observable 

at the macroscale. This impact becomes more pronounced when the dimensions of the nanoscale 

structure approach those of the microstructure. Therefore, studying the size influence on the dynamic 

responses of axially moving nanoscale beams employing suitable models is essential to designing such 

structural systems. 

In this section, a nonlocal continuum model will be used to figure out how nanobeams behave 

differently depending on their size. The effect of the dimensionless nonlocal factor 𝜉 on the lateral 

vibration 𝑤 amplitude, the thermal moment of inertia 𝑀𝑇, displacement 𝑢, and bending moment 𝑀 for 

a range of different values will be examined. These different effects are illustrated by introducing 

Figures (2)–(6). It can be seen that the local thermoelastic model is represented by the value 𝜉 = 0, 

while the other values (𝜉 = 0.001 and 0.003) are represented by the nonlocal thermoelastic theory. In 

this case, it is assumed that the pulse width parameter (𝑡0 = 0.1) and the delay phase coefficients 𝜏𝑞 =

0.2 and 𝜏𝜃 = 0.15 remain constant. Also, the dimensionless transfer velocity of the nanobeam is also 

assumed to be constant (𝜐 = 1.2). 

Figure 2 depicts the variations in thermal deflection 𝑤. The graphic depicts the lateral deflection 

pattern 𝑤, which always begins at zero (i.e., vanishes) and satisfies the problem’s boundary condition 

at the edges 𝑥 = 0 and 𝐿. We also discovered that the deflection 𝑤 reaches its maximum value at a 

specific distance from the nanobeam edge and then decreases as the distance 𝑥 increases. As depicted, 

increasing the value of the nonlocal factor decreases the wave propagation rate of the lateral deflection 

𝑤 and causes it to vanish more rapidly. Compared with the results produced by standard vibration 

theory, the nonlocal effect results in more intense vibration signals. 

In Figure 3, we can see the effect of changing the nonlocal factor 𝜉 on the thermal moment 𝑀𝑇 

of a moving nanobeam while it is subjected to a time-varying external axial force. The thermal moment 

𝑀𝑇  is shown to be relatively insensitive to variations in the nonlocal parameter (see Figure 3). 

Observably, the nonlocal parameter appears to have minimal effect on the nanobeam’s thermal 

moment. Moreover, moving away from the heat source in the direction of the spread of the heat wave 

causes the thermal moment 𝑀𝑇 to drop significantly as the distance 𝑥 grows (see Figure 4). 
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Contrary to the expectations of standard continuum models, actual findings have shown that size 

effects have a major impact on the physical properties and mechanical responses of NEMS at the 

nanoscale [49,50]. The influence of the small scale on lattice dynamics depends on the crystal structure 

and the sort of material science being examined [51]. Unlike discrete microscopic or molecular 

dynamical simulations, which require much computer work, this continuum theory can be used to 

model submicron or nanoscale structures [52]. 

Figure 2. Influence of the parameter 𝜉 on the deflection 𝑤. 

Figure 3. Effect of the nonlocal parameter 𝜉 on the thermal moment 𝑀𝑇. 

Figure 4 shows the variations in axial displacement 𝑢 over the interval 𝑥 ∈ [0, 1] at a very 

short time 𝑡 = 0.12, for nonlocal moduli 𝜉 = 0, 0.001, and 0.003. As can be seen in the graph, the 

displacement 𝑢 begins with negative values and grows in amplitude as the beam length increases. 

It is clear that as the nonlocal factor 𝜉 is increased, the displacement 𝑢 grows in the interval 𝑥 ∈

[0, 0.4] and shrinks in the region 𝑥 ∈ [0.4, 1]. Additionally, the graph clearly shows that the split 

between local and nonlocal thermoelastic concepts persists. 
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Figure 4. Effect of the nonlocal parameter 𝜉 on the displacement 𝑢. 

Figure 5 depicts how the bending moment 𝑀 changes as a function of the nonlocal component, 

which is dimensionless. Figure 5 shows that the nanobeam’s bending moment 𝑀 varies as a function 

of distance from its ends, starting at zero at 𝑥 = 0, and increasing steadily to a maximum some distance 

from the beam’s ends before decreasing back to zero at 𝑥 = 𝐿. As seen in Figure 5, the bending 

moment 𝑀 is highly sensitive to variations in the nonlocal constant. 

Figure 5. Effect of the nonlocal parameter 𝜉 on the bending moment 𝑀. 

Figure 6 depicts how the temperature changes 𝜃 along the longitudinal direction as a function of 

the nonlocal factor 𝜉. As can be seen, the non-dimensional temperature 𝜃 increases to its highest value 

at 𝑥 = 0  fluctuate along the longitudinal axis, then declines to zero at the end of the nanobeam 

resonator. The postulated thermal boundary conditions are consistent with this pattern. The non-

dimensional temperature increases when the nonlocal factor’s value increases. 

Once again, it is clear that Eringen’s nonlocal theory of elasticity predicts a larger bending 

moment than the local theory of elasticity. In other words, the nonlocal effects soften the structures, 
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making them more adaptable. Mechanical qualities at the micro and nanoscale should be considered 

during the construction and design of MEMS and NEMS devices. 

Figure 6. Effect of the nonlocal parameter 𝜉 on the temperature change 𝜃. 

The results shown in Figures 2–6 demonstrate that the elastic field is more significantly affected 

by changes in the small-scale parameter value than the temperature profile. Minor changes in the lateral 

deflection, coupled with temperature field changes in the extended coupled thermoelasticity of the 

DPL theory, cause the temperature field’s small alterations. 

5.2. Case II: axially moving speed effect 

High-velocity cars and trucks, spacecraft antennas, and advanced robotic manipulators can 

benefit from axially-moving nanoscale beams exceptional mechanical and physical features. Recently, 

researchers have explored the subject of studying the resonance of an axially moving beam under the 

influence of an external force. Researchers have examined various practical applications, such as a 

transmission system, medical nanorobots, power cutting tools, tape cutting tools, and magnetic disks. 

In the second scenario, the effects of the vibrational heat pulse on the distribution of the 

thermal bending moment of the nanobeam are studied. As well as deformation caused by 

turbulence and bending moment change in addition to stress when changing the axial velocities of 

the beam. In this case, three different velocity values (𝜐 = 1.2, 1.3 and 1.4) will be taken into 

account if the values of the nonlocal index and the values of the phase lag factors 𝜏𝑞 and 𝜏𝜃 are 

held constant. In Figures 7–11, the effect of the axial velocity of the beam on the longitudinal 

vibration response of the fine beams is shown. It is also shown that the different field curves inside 

the beam are very sensitive to the axial velocity. It can be revealed by looking at the field curves 

that the amplitudes of thermal and mechanical waves increase with the increase in the axial speed 

with which the bite is moving. In addition, it is observed in the period 𝑥 ∈ [0, 0.4], the amounts of 

distortion decrease with increasing rate while increasing in the region 𝑥 ∈ [0.4, 1]. With the axial 

speed of the nanobeam impact, the thermal bending moment is less than it would be without it. As 

a result, it is clear that the beam’s axial velocity significantly impacts the safety design of 
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nanobeams. It is found that the velocity parameter does not have a significant effect on the 

temperature change. 

The axially moving continuum types are paper sheets, drive shafts, fiber textile products, oil 

and gas pipelines, and various wire and structural steel processing technologies such as 

straightening lines. Excitations caused by continuously moving materials are what ultimately lead 

to failure and poor quality. As a consequence of this, the investigation of these vibrations is of 

utmost significance in the system design. Additionally, good agreement is found between the 

present results and the documented literature when analyzing the local results of the traveling 

Euler–Bernoulli nanobeam described in references [53,54]. That being said, the validity of the 

present findings can be independently confirmed. Thermomechanical disturbances can arise in the 

nanobeam if it experiences a considerable transverse deformation in the orthogonal direction to 

the rate [55]. In this way, noise that isn't expected might be introduced, which can reduce the 

structure’s usefulness in some contexts, cause wear and tear on the system, and lower quality 

overall. During production, these things must be considered to ensure that the nanostructure is not 

overworked and loses its performance. 

Engineers must ensure that axially moving nano-systems do not become unstable and that 

excessive vibrations are eliminated. System velocity is key in determining axial motion continuation’s 

dynamic response and stability. Different instability mechanisms, such as divergence and flutter, 

manifest at different system velocities. 

Figure 7. The thermal deflection 𝑤 versus the axial velocity. 
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Figure 8. The thermal moment MT versus the axial velocity. 

Figure 9. The displacement 𝑢 versus the axial velocity. 

Figure 10. The bending moment 𝑀 versus the axial velocity. 
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Figure 11. The temperature change 𝜃 versus the axial velocity. 

5.3. Case III: the effect of external excitation 

When studying and making new NEMS or MEMS systems, it is very important to study the 

thermodynamic stability of micro or nanostructures when exposed to time-dependent transverse 

external excitation. In this subsection, we will explore the effect of static (𝑃𝑠), dynamic (𝑃𝐷 cos(𝜔𝑡)), 

and amplitude external transverse excitation (𝑃 = 𝑃𝑠 + 𝑃𝐷 cos(𝜔𝑡)) on the responses of the domains 

considered. The impact of various kinds of external transverse stimulation on all investigated physical  

fields is depicted in Figures 12–16. 

Figure 12. The thermal deflection 𝑤 for various types of external transverse excitation 

In this case, the values of components of axial force, 𝑃𝑠 = 0.8 and 𝑃𝐷 = 0.6 are considered, while 

the angular frequency 𝜔 of the employed transverse excitement remains constant (𝜔 = 0.3). It is assumed 

that the nonlocal factor 𝜉 = 0.001, the speed of axial motion 𝜐 = 1.2, the pulse width 𝑡0 = 0.1 and also 

the parameters 𝜏𝑞 and 𝜏𝜃 stay unchanged in this scenario. The figures show that the behavior of different 

domains inside the nanobeam is very sensitive to the strength of the axial tension. This effect also depends 
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on the type of this external induction, whether it is static, dynamic, or both. In different cases, the curves 

of the studied fields exhibit the same behavior with different amounts. From these curves, it is also clear 

that the static axial external transverse excitation increases the magnitudes of various fields while the 

dynamic transverse excitation decreases the size of these fields. 

Figure 13. The thermal moment 𝑀𝑇 for various types of external transverse excitation. 

Figure 14. The axial displacement 𝑢 for various types of external transverse excitation. 
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Figure 15. The bending moment 𝑀 for various types of external transverse excitation. 

Figure 16. The temperature change 𝜃 for various types of external transverse excitation. 

6. Conclusions 

This work investigated thermoelastic vibrations in a nanobeam moving axially at a constant speed 

and subjected to an axial transverse dynamic force. We obtain the linear motion equations by applying 

Hamilton’s principle to the Euler-Bernoulli beam hypothesis. In addition, the thermal part of the 

problem was addressed by including a two-phase delay in the modified thermoelastic framework (DPL 

model). An effective method for finding solutions was provided, and it involved using the Laplace 

transform and a numerical inversion strategy. The influence of several factors, including phase delays, 

axial translation velocity, nonlocal parameters, statics, and dynamics of the transverse excitation, on 

the system’s response, was examined. The following are the most important conclusions that can be 

drawn from this investigation: 
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1) The nonlocal parameter significantly influences all the minimum and maximum values of the 

different domains. Larger nonlocal parameter values result in an undamped system. In other 

words, nonlocal effects “soften” the structures, making them more adaptable. 

2) Mechanical and thermal vibration studies on such nano-systems are critical to ensuring system 

integrity and stability. It can also be used to simulate the mechanical properties of basic 

elements in AMEMS and ANEMS. 

3) The presence of a constant motion velocity of the nanobeam leads to large phase shifts in the 

transverse dynamic profiles, but the effect of the thermal change is negligible. Also, if the 

velocity increases, the phase gap between the variables of deformation and bending torque 

should decrease. 

4) Unlike conventional models, the two-phase thermoelastic model predicts that waves can only 

move at a specific speed. This means that the theory of thermal expansion proposed in this 

article is more in line with how matter works as well as physical phenomena. 

5) The behavior of different domains inside the nanobeam is very sensitive to the strength of the 

axial tension. This effect also depends on the type of this external induction, whether it is 

static, dynamic, or both. 

The current work with axially moving nanobeams has many uses in many areas of science and 

engineering, such as making and designing some moving structures, civil, structural, and aerospace 

engineering, and systems engineering. Also, the current study covers systems like belt conveyors, 

clinical nanorobots, control saws, tape cutting tools, magnetic media, and many others. 
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