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1. Introduction 

The Riemann-Stieltjes integral, which bears the names of Thomas Joannes Stieltjes and 

Bernhard Riemann in mathematics, is an extension of the Riemann integral. Stieltjes published the 

definition of this integral for the first time in 1894 [1‒4]. It functions as a helpful and educational 

predecessor to the Lebesgue integral and as a crucial tool for combining comparable versions of 

statistical theorems that apply to discrete and continuous probability. Numerous areas of 

mathematics and statistics have found a use for this generalization. The dual space of the Banach 

space 𝐶[𝑎, 𝑏] of continuous functions in the interval [𝑎, 𝑏] is, for instance, represented as Riemann-

Stieltjes integrals against functions with limited variation in the original formulation of F. Riesz's 

theorem [2–4]. Later, a measure-based version of that theorem was developed. Additionally, it is 

mentioned in the definition of the spectral theorem for (non-compact) self-adjoint operators in a 

Hilbert space [2‒4]. This theorem examines the integral in relation to a family of spectral 

projections. However, there is no recognised differential operator related to this integral. When the 

idea of fractal derivatives was first proposed, an attempt was made, but it did not receive the 

attention it deserved, possibly because such a derivative did not satisfy some fundamental 

characteristics of the classical derivative, such as the index law, and because its geometrical 

interpretation was not well understood [5]. However, a fractal integral was produced and discovered 

to be a specific class of the Riemann-Stieltjes integral utilizing the basic theorem of calculus and 

assuming the differentiability of the function. Keep in mind that one of the essential requirements is 

that the function must be classically differentiable [2‒4]. The idea of fractal-fractional differentiation 

and integration was developed, and it has been applied to numerous problems with some success, 

using the fact that an integral operator is differential [6]. The lack of analytical and numerical 

methods that may be utilized to solve these problems may be the fundamental reason why their 

application to partial differential equations has received little attention. In this study, an attempt will 

be made to apply this notion to the framework of partial differential equations and present some 

numerical techniques. 

2. General partial differential equation with fractal-fractional derivative with power- law 

kernel 

Due to their ability to recreate occurrences as a function of time and place, partial differential 

equations have found use in every branch of science, technology and engineering. Here are a few 

noteworthy instances of partial differential equation applications. In scientific disciplines that are 

heavily reliant on mathematics, including physics and engineering, partial differential equations are 

commonplace. In the contemporary scientific knowledge of, for example, sound, heat, diffusion, 

electrostatics, electrodynamics, thermodynamics, fluid dynamics, elasticity, general relativity and 

quantum mechanics, they serve as the cornerstone. They also result from other purely mathematical 

issues, such as differential geometry and the calculus of variations. Among other famous uses, they 

serve as the main means of proving the geometric topological Poincaré conjecture. In this work, we 

will consider two general types of fractal-fractional partial differential equations, the first class with 

the fractal-fractional derivative with the power-law kernel, and the second with the generalized 

Mittag-Leffler kernel. First, we present some important definitions. Let a function 𝑦(𝑡)  be 

continuous in the entire positive real numbers or even in some closed interval [𝑎, 𝑏]. A fractal-

fractional derivative of the function 𝑦(𝑡) with the power-law kernel is given as [6] 
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𝑑𝑓(𝑡)

𝑑𝑡𝛽
= lim

𝑙→𝑡

𝑓 𝑙 − 𝑓(𝑡)

𝑙𝛽 − 𝑡𝛽
, 

𝐷0
𝐹𝐹𝑃

𝑡
𝛼 ,𝛽
𝑦 𝑡 =

𝑑

𝑑𝑡𝛽
 𝑦(𝜏)

 𝑡 − 𝜏 −𝛼

𝛤(1 − 𝛼)
𝑑𝜏

𝑡

0

. 
 

A fractal-fractional derivative of the function 𝑦(𝑡) with the generalized-Mittag-Leffler kernel is 

given as [6]: 

𝐷0
𝐹𝐹𝑀

𝑡
𝛼 ,𝛽
𝑦 𝑡 =

1

1 − 𝛼

𝑑

𝑑𝑡𝛽
 𝑦 𝜏 𝐸𝛼  −

𝛼

1 − 𝛼
 𝑡 − 𝜏 𝛼 𝑑𝜏.

𝑡

0

 
 

Let a function 𝑓(𝑡) be continuous in the entire positive real number or even in some closed interval 

[𝑎, 𝑏]: A fractal-fractional integral of the function 𝑓(𝑡) with the power-law kernel is given as: 

𝐽0
𝐹𝐹𝑃

𝑡
𝛼 ,𝛽
𝑓 𝑡 =

𝛽

𝛤(𝛼)
 𝑓 𝜏  𝑡 − 𝜏 𝛼−1𝜏𝛽−1𝑑𝜏.
𝑡

0

 

 

A fractal-fractional integral of the function 𝑓(𝑡) with the power-law kernel is given as [6]: 

𝐽0
𝐹𝐹𝑀

𝑡
𝛼 ,𝛽
𝑓 𝑡 = 𝛽 1 − 𝛼 𝜏𝛽−1𝑓 𝑡 +

𝛼𝛽

𝛤(𝛼)
 𝑓 𝜏  𝑡 − 𝜏 𝛼−1𝜏𝛽−1𝑑𝜏.
𝑡

0

 

2.1. Fractal-fractional partial differential equation with power-law kernel 

The ease with which some general classes of systems create power-law interactions is a 

contributing factor in the scientific interest in them. A few notable examples of power laws are 

Pareto’s law of income distribution, the structural self-similarity of fractals and scaling laws in 

biological systems [7‒11]. The demonstration of a power-law relation in some data can point to 

specific kinds of mechanisms that might underlie the natural phenomenon in question and can 

indicate a deep connection with other, seemingly unrelated systems [13,15]. Numerous scientific 

disciplines, including physics, computer science, linguistics, geophysics, neurology, systematics, 

sociology and economics, are actively researching the origins of power-law interactions as well as 

ways to detect and validate them in the actual world [7‒11]. In order to incorporate long-tailed 

behaviors caused by the power-law into the mathematical model, a differential operator with a 

power-law kernel is essential [14,15]. We consider first the following general fractal-fractional 

partial differential equations: 

 
𝐷𝑡
𝛼 ,𝛽

0
𝐹𝐹𝑃 𝑢 𝑥, 𝑡 = 𝑓 𝑥, 𝑡,𝑢 𝑥, 𝑡  , 𝑡 > 0,

𝑢 0, 𝑡 = 𝑔 𝑡 ,                                             

𝑢 𝑥, 0 = 𝑙 𝑥  ,                                              

  

 1  

where the function 𝑓  is a generic function that can be linear or nonlinear, containing partial 

derivatives with respect to the parameter 𝑥, as for example 
𝜕

𝜕𝑥
,  

𝜕2

𝜕𝑥2 ,……
𝜕𝑛

𝜕𝑥𝑛
 under the condition that 

the function 𝑢 𝑥, 𝑡  is n-times differentiable with respect to the variable 𝑥. 

Assumptions 

 𝑔 𝑡  and 𝑙 𝑥  are continuous bounded functions. 

 The function 𝑓  is twice differentiable with respect to time and bounded ∀ 𝑥, 𝑡 ∈ 𝑋 × 𝜋 

where 𝑋 is the space domain and 𝜋 is the time domain. 
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 𝑢 𝑥, 𝑡  is bounded ∀ 𝑥, 𝑡 ∈ 𝑋 × 𝜋  and differentiable with respect to time and 𝑛 ≥ 2 

differentiable with respect to space. 

 0 < 𝛼 ≤ 1, 𝛽 > 0, but preferably less than 1. 𝑥𝑖 − 𝑥𝑖−1 = 𝑙, 𝑡𝑗 − 𝑡𝑗−1 = . 

Existence and uniqueness will not be subjects of this paper. In this paper, we shall present a 

numerical method that could be used to derive a numerical solution to the above type of partial 

derivative. To proceed, we first convert the above equation into an integral equation by applying the 

corresponding integral to obtain 

 
 
 

 
 𝑢 𝑥, 𝑡 =

𝛽

𝛤 𝛼 
 𝜏𝛽−1𝑓 𝑥, 𝜏,𝑢 𝑥, 𝜏   𝑡 − 𝜏 𝛼−1𝑑𝜏,
𝑡

0

𝑢 𝑥, 0 = 𝑙 𝑥 ,                                                                     
𝑢 0, 𝑡 = 𝑔 𝑡 .                                                                    

  

 2  

In order to create new data points within the range of a discrete set of known data points, a 

curve fitting technique known as linear interpolation uses linear polynomials. Using two known 

values of the function 𝑓 at different positions, linear interpolation is frequently used to approximate 

the value of a function. Since the beginning of time, tables have been filled in by linear interpolation. 

In this section, we derive a numerical method for partial differential equations with fractal fractional 

derivatives, where the space is approximated using the forward, backward, central, or Crank-

Nicolson approximations, and the temporal discretization is approximated using linear interpolation. 

At  𝑥𝑖 , 𝑡𝑛+1  we have 

 
 
 

 
 𝑢 𝑥𝑖 , 𝑡𝑛+1 =

𝛽

𝛤 𝛼 
 𝜏𝛽−1𝑓 𝑥𝑖 , 𝜏,𝑢 𝑥𝑖 , 𝜏   𝑡𝑛+1 − 𝜏 𝛼−1𝑑𝜏,
𝑡𝑛+1

0

𝑢 𝑥𝑖 , 0 = 𝑙 𝑥𝑖 ,                                                                           

𝑢 0, 𝑡𝑛+1 = 𝑔 𝑡𝑛+1 ,                                                                          

  

 3  

 

 
 
 

 
 𝑢 𝑥𝑖 , 𝑡𝑛+1 =

𝛽

𝛤 𝛼 
  𝜏𝛽−1𝑓 𝑥𝑖 , 𝜏,𝑢 𝑥𝑖 , 𝜏   𝑡𝑛+1 − 𝜏 𝛼−1𝑑𝜏,

𝑡𝑗+1

𝑡𝑗

𝑛

𝑗=0

𝑢 𝑥𝑖 , 0 = 𝑙 𝑥𝑖 ,                                                                                    

𝑢 0, 𝑡𝑛+1 = 𝑔 𝑡𝑛+1  .                                                                                  

  

 4  

Within  𝑡𝑗 , 𝑡𝑗+1 , we approximate 𝑓 𝑥𝑖 , 𝜏,𝑢 𝑥𝑖 , 𝜏  ≈ 𝑃𝑗  𝜏  

where 𝑃𝑗  𝜏  is a linear interpolation. 

𝑃𝑗  𝜏 = 𝑓  𝑥𝑖 , 𝑡𝑗 ,𝑢 𝑥𝑖 , 𝑡𝑗   +
𝑓  𝑥𝑖 , 𝑡𝑗+1,𝑢 𝑥𝑖 , 𝑡𝑗+1  − 𝑓  𝑥𝑖 , 𝑡𝑗 ,𝑢 𝑥𝑖 , 𝑡𝑗   


 𝜏 − 𝑡𝑗  . 

 5  

Substituting into the original equation, we obtain 

𝑢 𝑥𝑖 , 𝑡𝑛+1 ≈
𝛽

𝛤 𝛼 
  𝜏𝛽−1𝑃𝑗  𝜏  𝑡𝑛+1 − 𝜏 𝛼−1𝑑𝜏,

𝑡𝑗+1

𝑡𝑗

𝑛

𝑗=0

 
 6  
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𝑢𝑖
𝑛+1 =

𝛽

𝛤 𝛼 
  𝜏𝛽−1  𝑓 𝑥𝑖 , 𝑡𝑗 ,𝑢𝑖

𝑗
 

𝑡𝑗+1

𝑡𝑗

𝑛

𝑗=0

+  𝜏 − 𝑡𝑗  
𝑓 𝑥𝑖 , 𝑡𝑗+1,𝑢𝑖

𝑗+1
 − 𝑓 𝑥𝑖 , 𝑡𝑗 ,𝑢𝑖

𝑗
 


 𝑡𝑛+1 − 𝜏 𝛼−1𝑑𝜏 , 

 7  

 

𝑢𝑖
𝑛+1 =

𝛽

𝛤 𝛼 
 𝑓 𝑥𝑖 , 𝑡𝑗 ,𝑢𝑖

𝑗
  𝜏𝛽−1

𝑡𝑗+1

𝑡𝑗

𝑛

𝑗=0

 𝑡𝑛+1 − 𝜏 𝛼−1𝑑𝜏

+
𝛽

𝛤 𝛼 
 

 𝑓𝑖
𝑗+1

− 𝑓𝑖
𝑗
 



𝑛

𝑗=0

 𝜏𝛽−1 𝑡𝑛+1 − 𝜏 𝛼−1 𝜏 − 𝑡𝑗  𝑑𝜏.
𝑡𝑗+1

𝑡𝑗

 

 8  

We have to evaluate the following integral: 

                         𝜏𝛽−1 𝑡𝑛+1 − 𝜏 𝛼−1𝑡𝑗+1

𝑡𝑗
 and  𝜏𝛽−1 𝑡𝑛+1 − 𝜏 𝛼−1 𝜏 − 𝑡𝑗  𝑑𝜏.

𝑡𝑗+1

𝑡𝑗
 

 9  

We should recall that the generalization of the complete beta function is defined as 

𝐵 𝑥,𝑎, 𝑏 =  𝑡𝑎−1 1 − 𝑡 𝑏−1𝑑𝜏.
𝑥

0

 

 10  

Thus, 

 𝜏𝛽−1 𝑡𝑛+1 − 𝜏 𝛼−1
𝑡𝑗+1

𝑡𝑗

𝑑𝜏

=  𝜏𝛽−1 𝑡𝑛+1 − 𝜏 𝛼−1
𝑡𝑗+1

0

𝑑𝜏 −  𝜏𝛽−1 𝑡𝑛+1 − 𝜏 𝛼−1
𝑡𝑗

0

𝑑𝜏. 

 11  

Thus, 

 𝜏𝛽−1 𝑡𝑛+1 − 𝜏 𝛼−1
𝑡𝑗+1

0

𝑑𝜏 = 𝑡𝑛+1
𝛼+𝛽−1

 𝑦𝛽−1 1 − 𝑦 𝛼−1

𝑡𝑗+1

𝑡𝑛+1

0

𝑑𝜏

= 𝑡𝑛+1
𝛼+𝛽−1

𝐵  
𝑡𝑗+1

𝑡𝑛+1
,𝛽,𝛼 . 

 12  

 

 𝜏𝛽−1 𝑡𝑛+1 − 𝜏 𝛼−1
𝑡𝑗+1

0

𝑑𝜏 = 𝑡𝑛+1
𝛼+𝛽−1

𝐵  
𝑡𝑗
𝑡𝑛+1

,𝛽,𝛼 . 
 13  

On the other hand, we have that 
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 𝜏𝛽−1 𝑡𝑛+1 − 𝜏 𝛼−1 𝜏 − 𝑡𝑗  
𝑡𝑗+1

𝑡𝑗

𝑑𝜏

=  𝜏𝛽−1 𝑡𝑛+1 − 𝜏 𝛼−1 𝜏 − 𝑡𝑗  
𝑡𝑗+1

0

𝑑𝜏

−  𝜏𝛽−1 𝑡𝑛+1 − 𝜏 𝛼−1 𝜏 − 𝑡𝑗  
𝑡𝑗

0

𝑑𝜏, 

 14  

 

=  𝜏𝛽 𝑡𝑛+1 − 𝜏 𝛼−1
𝑡𝑗+1

0

𝑑𝜏 − 𝑡𝑗  𝜏𝛽−1 𝑡𝑛+1 − 𝜏 𝛼−1
𝑡𝑗+1

0

𝑑𝜏

−  𝜏𝛽 𝑡𝑛+1 − 𝜏 𝛼−1
𝑡𝑗

0

𝑑𝜏 + 𝑡𝑗  𝜏𝛽−1 𝑡𝑛+1 − 𝜏 𝛼−1
𝑡𝑗

0

𝑑𝜏, 

 15  

 

= 𝑡𝑛+1
𝛽+𝛼

𝐵  
𝑡𝑗+1

𝑡𝑛+1
,𝛽 + 1 + 𝛼 − 𝑡𝑗  𝑡𝑛+1

𝛼+𝛽−1
𝐵  

𝑡𝑗+1

𝑡𝑛+1
,𝛽,𝛼 − 𝑡𝑛+1

𝛼+𝛽
𝐵  

𝑡𝑗
𝑡𝑛+1

,𝛽 + 1,𝛼 

+ 𝑡𝑗  𝑡𝑛+1
𝛼+𝛽−1

𝐵  
𝑡𝑗
𝑡𝑛+1

,𝛽,𝛼 , 

 16  

 

= 𝑡𝑛+1
𝛽+𝛼

 𝐵  
𝑡𝑗+1

𝑡𝑛+1
,𝛽 + 1,𝛼 − 𝐵  

𝑡𝑗
𝑡𝑛+1

,𝛽 + 1,𝛼  

+ 𝑡𝑛+1
𝛽+𝛼−1

 𝐵  
𝑡𝑗+1

𝑡𝑛+1
,𝛽,𝛼 − 𝐵  

𝑡𝑗
𝑡𝑛+1

,𝛽,𝛼  , 

 17  

Substituting into the original formula, we obtain the following: 

𝑢𝑖
𝑛+1 =

𝛽

𝛤 𝛼 
 

 𝑓𝑖
𝑗+1

− 𝑓𝑖
𝑗
 


 𝑡𝑛+1

𝛼+𝛽
 𝐵  

𝑡𝑗+1

𝑡𝑛+1
,𝛽 + 1,𝛼 − 𝐵  

𝑡𝑗
𝑡𝑛+1

,𝛽 + 1,𝛼  

𝑛

𝑗=0

+ 𝑡𝑛+1
𝛽+𝛼−1

 𝐵  
𝑡𝑗+1

𝑡𝑛+1
,𝛽,𝛼 − 𝐵  

𝑡𝑗
𝑡𝑛+1

,𝛽,𝛼   

+
𝛽

𝛤 𝛼 
 𝑓𝑖

𝑗

𝑛

𝑗=0

𝑡𝑛+1
𝛼+𝛽−1

 𝐵  
𝑡𝑗+1

𝑡𝑛+1
,𝛽,𝛼 − 𝐵  

𝑡𝑗
𝑡𝑛+1

,𝛽,𝛼  . 

 18  

Note that, 

𝑓𝑖
𝑗+1

= 𝑓  𝑥𝑖 , 𝑡𝑗+1,𝑢 𝑥𝑖 , 𝑡𝑗+1  ,  19  

 

𝑓𝑖
𝑗

= 𝑓  𝑥𝑖 , 𝑡𝑗 ,𝑢 𝑥𝑖 , 𝑡𝑗   .  20  

Thus, the general method leads to 
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𝑢𝑖
𝑛+1 =

𝛽

𝛤 𝛼 
  𝑓  𝑥𝑖 , 𝑡𝑗+1 ,𝑢 𝑥𝑖 , 𝑡𝑗+1  

𝑛

𝑗=0

− 𝑓  𝑥𝑖 , 𝑡𝑗 ,𝑢 𝑥𝑖 , 𝑡𝑗     𝑡𝑛+1
𝛼+𝛽

 𝐵  
𝑡𝑗+1

𝑡𝑛+1
,𝛽 + 1,𝛼 − 𝐵  

𝑡𝑗

𝑡𝑛+1
,𝛽 + 1,𝛼  

+ 𝑡𝑛+1
𝛼+𝛽−1

 𝐵  
𝑡𝑗+1

𝑡𝑛+1
,𝛽,𝛼 − 𝐵  

𝑡𝑗
𝑡𝑛+1

,𝛽,𝛼   

+
𝛽

𝛤 𝛼 
 𝑡𝑛+1

𝛼+𝛽−1

𝑛

𝑗=0

𝑓  𝑥𝑖 , 𝑡𝑗 ,𝑢 𝑥𝑖 , 𝑡𝑗    𝐵  
𝑡𝑗+1

𝑡𝑛+1
,𝛽,𝛼 − 𝐵  

𝑡𝑗
𝑡𝑛+1

,𝛽,𝛼  . 

 21  

The equation can be reformulated as 

𝑢𝑖
𝑛+1 =

𝛽

𝛤 𝛼 
  𝑓  𝑥𝑖 , 𝑡𝑗+1 ,𝑢 𝑥𝑖 , 𝑡𝑗+1  

𝑛−1

𝑗=0

− 𝑓  𝑥𝑖 , 𝑡𝑗 ,𝑢 𝑥𝑖 , 𝑡𝑗     𝑡𝑛+1
𝛼+𝛽

 𝐵  
𝑡𝑗+1

𝑡𝑛+1
,𝛽 + 1,𝛼 − 𝐵  

𝑡𝑗
𝑡𝑛+1

,𝛽 + 1,𝛼  

+ 𝑡𝑛+1
𝛼+𝛽−1

 𝐵  
𝑡𝑗+1

𝑡𝑛+1
,𝛽,𝛼 − 𝐵  

𝑡𝑗
𝑡𝑛+1

,𝛽,𝛼   

+
𝛽

𝛤 𝛼 
 𝑓  𝑥𝑖 , 𝑡𝑗 ,𝑢 𝑥𝑖 , 𝑡𝑗    𝑡𝑛+1

𝛼+𝛽−1
𝐵  

𝑡𝑗+1

𝑡𝑛+1
,𝛽,𝛼 

𝑛

𝑗=0

− 𝑡𝑛+1
𝛼+𝛽−1

𝐵  
𝑡𝑗
𝑡𝑛+1

,𝛽,𝛼  

+
𝛽

𝛤 𝛼 
 𝑓 𝑥𝑖 , 𝑡𝑛+1,𝑢𝑝 𝑥𝑖 , 𝑡𝑛+1  

− 𝑓  𝑥𝑖 , 𝑡𝑗 ,𝑢 𝑥𝑖 , 𝑡𝑛     𝐵 1,𝛽 + 1,𝛼 − 𝐵  
𝑡𝑛
𝑡𝑛+1

,𝛽 + 1,𝛼  𝑡𝑛+1
𝛼+𝛽

+ 𝑡𝑛+1
𝛼+𝛽−1

 𝐵 1,𝛽,𝛼 − 𝐵  
𝑡𝑗
𝑡𝑛+1

,𝛽,𝛼   , 

 22  

where the 𝑢𝑝 𝑥𝑖 , 𝑡𝑛+1  is the predictor term that can be obtained like in [12] 

𝑢𝑝 𝑥𝑖 , 𝑡𝑛+1 =
𝛽

𝛤 𝛼 
 𝑓  𝑥𝑖 , 𝑡𝑗 ,𝑢 𝑥𝑖 , 𝑡𝑗   

𝑛

𝑗=0

 𝜏𝛽−1 𝑡𝑛+1 − 𝜏 𝛼−1
𝑡𝑗+1

𝑡𝑗

𝑑𝜏, 

 23  

 

=
𝛽

𝛤 𝛼 
 𝑓  𝑥𝑖 , 𝑡𝑗 ,𝑢 𝑥𝑖 , 𝑡𝑗   𝑡𝑛+1

𝛼+𝛽−1
 𝐵  

𝑡𝑗+1

𝑡𝑛+1
,𝛽,𝛼 − 𝐵  

𝑡𝑗

𝑡𝑛+1
,𝛽,𝛼  .

𝑛

𝑗=0

 
 24  

Therefore, the general scheme is given by 
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𝑢𝑖
𝑛+1 =

𝛽

𝛤 𝛼 
  𝑓  𝑥𝑖 , 𝑡𝑗+1,𝑢 𝑥𝑖 , 𝑡𝑗+1  

𝑛−1

𝑗=0

− 𝑓  𝑥𝑖 , 𝑡𝑗 ,𝑢 𝑥𝑖 , 𝑡𝑗     𝑡𝑛+1
𝛼+𝛽

 𝐵  
𝑡𝑗+1

𝑡𝑛+1
,𝛽 + 1,𝛼 − 𝐵  

𝑡𝑗

𝑡𝑛+1
,𝛽 + 1,𝛼  

− 𝑡𝑛+1
𝛼+𝛽−1

 𝐵  
𝑡𝑗+1

𝑡𝑛+1
,𝛽,𝛼 − 𝐵  

𝑡𝑗
𝑡𝑛+1

,𝛽,𝛼   

+
𝛽

𝛤 𝛼 
 𝑓  𝑥𝑖 , 𝑡𝑗 ,𝑢 𝑥𝑖 , 𝑡𝑗   𝑡𝑛+1

𝛼+𝛽−1
 𝐵  

𝑡𝑗+1

𝑡𝑛+1
,𝛽,𝛼 − 𝐵  

𝑡𝑗
𝑡𝑛+1

,𝛽,𝛼  

𝑛

𝑗=0

+
𝛽

𝛤 𝛼 
 𝑓  𝑥𝑖 , 𝑡𝑛+1,

𝛽

𝛤 𝛼 
 𝑓  𝑥𝑖 , 𝑡𝑗 ,𝑢 𝑥𝑖 , 𝑡𝑗   𝑡𝑛+1

𝛼+𝛽−1
 𝐵  

𝑡𝑗+1

𝑡𝑛+1
,𝛽,𝛼 

𝑛

𝑗=0

− 𝐵  
𝑡𝑗
𝑡𝑛+1

,𝛽,𝛼   

− 𝑓 𝑥𝑖 , 𝑡𝑛 ,𝑢 𝑥𝑖 , 𝑡𝑛    𝑡𝑛+1
𝛼+𝛽

 𝐵 1,𝛽 + 1,𝛼 − 𝐵  
𝑡𝑛
𝑡𝑛+1

,𝛽 + 1,𝛼  

− 𝑡𝑛+1
𝛼+𝛽−1

 𝐵 1,𝛽,𝛼 − 𝐵  
𝑡𝑗

𝑡𝑛+1
,𝛽,𝛼   . 

2.2. Fractal-fractional partial differential equation with Mittag-Leffler kernel 

 25  

Modeling fractional order viscoelastic materials and the decay process of a human corpse are 

two examples of how the Mittag-Leffler function is used. When a human decomposes, blood and 

flesh cause quick degradation at first, followed by bones that decompose more slowly. Experimental 

studies into the time-dependent relaxation behavior of viscoelastic materials show that these 

materials exhibit a very rapid reduction in stress at the start of the process and an incredibly sluggish 

decline for a significant amount of time. 

We now consider a general partial differential equation. 

 
𝐷𝑡
𝛼 ,𝛽

0
𝐹𝐹𝑀 𝑢 𝑥, 𝑡 = 𝑓 𝑥, 𝑡,𝑢 𝑥, 𝑡  ,             

𝑢 𝑥, 0 = 𝑙 𝑥 ,                                                
𝑢 0, 𝑡 = 𝑔 𝑡 .                                               

  

 26  

The conditions presented earlier are still valid here. To proceed, we covert this into 

𝐷𝑡
𝛼

0
𝐴𝐵𝑅 𝑢 𝑥, 𝑡 = 𝛽𝑡𝛽−1𝑓 𝑥, 𝑡,𝑢 𝑥, 𝑡  . 

 27  

Then, 
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𝑢 𝑥, 𝑡 − 𝑢 𝑥, 0 

=  1 − 𝛼 𝛽𝑡𝛽−1𝑓 𝑥, 𝑡,𝑢 𝑥, 𝑡  

+
𝛼𝛽

𝛤 𝛼 
 𝜏𝛽−1
𝑡

0

 𝑡 − 𝜏 𝛼−1𝑓 𝑥, 𝜏,𝑢 𝑥, 𝜏  𝑑𝜏, 

 28  

 

𝑢 𝑥𝑖 , 𝑡𝑛+1 − 𝑢 𝑥𝑖 , 0 

=  1 − 𝛼 𝛽𝑡𝑛+1
𝛽−1

𝑓 𝑥𝑖 , 𝑡𝑛+1,𝑢𝑝 𝑥𝑖 , 𝑡𝑛+1  

+
𝛼𝛽

𝛤 𝛼 
 𝜏𝛽−1
𝑡𝑛+1

0

 𝑡𝑛+1 − 𝜏 𝛼−1𝑓 𝑥𝑖 , 𝜏,𝑢 𝑥𝑖 , 𝜏  𝑑𝜏, 

 29  

 

𝑢 𝑥𝑖 , 𝑡𝑛+1 = 𝑢 𝑥𝑖 , 0 +  1 − 𝛼 𝛽𝑡𝑛+1
𝛽−1

𝑓 𝑥𝑖 , 𝑡𝑛+1,𝑢𝑝 𝑥𝑖 , 𝑡𝑛+1  

+
𝛼𝛽

𝛤 𝛼 
  𝜏𝛽−1

𝑡𝑗+1

𝑡𝑗

 𝑡𝑛+1 − 𝜏 𝛼−1𝑓 𝑥𝑖 , 𝜏,𝑢 𝑥𝑖 , 𝜏  𝑑𝜏

𝑛

𝑗=0

, 

 30  

 

𝑢 𝑥𝑖 , 𝑡𝑛+1 ≈ 𝑢 𝑥𝑖 , 0 +  1 − 𝛼 𝛽𝑡𝑛+1
𝛽−1

𝑓 𝑥𝑖 , 𝑡𝑛+1,𝑢𝑝 𝑥𝑖 , 𝑡𝑛+1  

+
𝛼𝛽

𝛤 𝛼 
   

𝜏 − 𝑡𝑗−1


𝑓  𝑥𝑖 , 𝑡𝑗 ,𝑢 𝑥𝑖 , 𝑡𝑗   

𝑡𝑗+1

𝑡𝑗

𝑛

𝑗=1

−
𝜏 − 𝑡𝑗


𝑓  𝑥𝑖 , 𝑡𝑗−1,𝑢 𝑥𝑖 , 𝑡𝑗−1    𝑡𝑛+1 − 𝜏 𝛼−1𝜏𝛽−1𝑑𝜏, 

 31  

 

𝑢 𝑥𝑖 , 𝑡𝑛+1 ≈ 𝑢𝑖
𝑛+1

= 𝑢𝑖
0

+
𝛼𝛽

𝛤 𝛼 
 𝑓  𝑥𝑖 , 𝑡𝑗 ,𝑢 𝑥𝑖 , 𝑡𝑗     𝑡𝑛+1 − 𝜏 𝛼−1𝜏𝛽−1 𝜏 − 𝑡𝑗  𝑑𝜏

𝑡𝑗+1

𝑡𝑗

𝑛

𝑗=1

−
𝛼𝛽

𝛤 𝛼 
 𝑓  𝑥𝑖 , 𝑡𝑗−1,𝑢 𝑥𝑖 , 𝑡𝑗−1    𝑡𝑛+1 − 𝜏 𝛼−1𝜏𝛽−1 𝜏

𝑡𝑗+1

𝑡𝑗

𝑛

𝑗=1

− 𝑡𝑗−1 𝑑𝜏 +  1 − 𝛼 𝑓 𝑥𝑖 , 𝑡𝑛+1,𝑢𝑝 𝑥𝑖 , 𝑡𝑛+1  𝛽𝑡𝑛+1
𝛽−1

. 

 32  

However, 

  𝑡𝑛+1 − 𝜏 𝛼−1 𝜏 − 𝑡𝑗  𝜏
𝛽−1𝑑𝜏

𝑡𝑗+1

𝑡𝑗

=  𝑡𝑛+1 − 𝜏 𝛼−1𝜏𝛽𝑑𝜏 − 𝑡𝑗

𝑡𝑗+1

𝑡𝑗

 𝜏𝛽−1 𝑡𝑛+1 − 𝜏 𝛼−1𝑑𝜏
𝑡𝑗+1

𝑡𝑗

, 

 33  
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  𝑡𝑛+1 − 𝜏 𝛼−1 𝜏 − 𝑡𝑗−1 𝜏
𝛽−1𝑑𝜏

𝑡𝑗+1

𝑡𝑗

=   𝑡𝑛+1 − 𝜏 𝛼−1𝜏𝛽𝑑𝜏 −
𝑡𝑗+1

𝑡𝑗

𝑡𝑗−1   𝑡𝑛+1 − 𝜏 𝛼−1𝜏𝛽−1𝑑𝜏.
𝑡𝑗+1

𝑡𝑗

 

 34  

Therefore, 

  𝑡𝑛+1 − 𝜏 𝛼−1 𝜏 − 𝑡𝑗  𝜏
𝛽−1𝑑𝜏 = 𝑡𝑛+1

𝛼+𝛽
 𝐵  

𝑡𝑗+1

𝑡𝑛+1
,𝛽 + 1,𝛼 − 𝐵  

𝑡𝑗
𝑡𝑛+1

,𝛽 + 1,𝛼  
𝑡𝑗+1

𝑡𝑗

− 𝑡𝑗 𝑡𝑛+1
𝛼+𝛽−1

 𝐵  
𝑡𝑗+1

𝑡𝑛+1
,𝛽,𝛼 − 𝐵  

𝑡𝑗
𝑡𝑛+1

,𝛽,𝛼  , 

 35  

 

  𝑡𝑛+1 − 𝜏 𝛼−1𝜏𝛽−1 𝜏 − 𝑡𝑗−1 𝑑𝜏
𝑡𝑗+1

𝑡𝑗

= 𝑡𝑛+1
𝛼+𝛽

 𝐵  
𝑡𝑗+1

𝑡𝑛+1
,𝛽 + 1,𝛼 − 𝐵  

𝑡𝑗
𝑡𝑛+1

,𝛽 + 1,𝛼  

− 𝑡𝑗−1𝑡𝑛+1
𝛼+𝛽−1

 𝐵  
𝑡𝑗+1

𝑡𝑛+1
,𝛽,𝛼 − 𝐵  

𝑡𝑗
𝑡𝑛+1

,𝛽,𝛼  , 

 36  

Substituting the above into the original equation yields 

𝑢𝑖
𝑛+1 = 𝑢𝑖

0 +
𝛼𝛽

𝛤 𝛼 
 𝑓  𝑥𝑖 , 𝑡𝑗 ,𝑢 𝑥𝑖 , 𝑡𝑗    𝑡𝑛+1

𝛼+𝛽
 𝐵  

𝑡𝑗+1

𝑡𝑛+1
,𝛽 + 1,𝛼 

𝑛

𝑗=1

− 𝐵  
𝑡𝑗
𝑡𝑛+1

,𝛽 + 1,𝛼  − 𝑡𝑗 𝑡𝑛+1
𝛼+𝛽−1

 𝐵  
𝑡𝑗+1

𝑡𝑛+1
,𝛽,𝛼 − 𝐵  

𝑡𝑗
𝑡𝑛+1

,𝛽,𝛼   

−
𝛼𝛽

𝛤 𝛼 
 𝑓  𝑥𝑖 , 𝑡𝑗−1,𝑢 𝑥𝑖 , 𝑡𝑗−1   𝑡𝑗 𝑡𝑛+1

𝛼+𝛽−1
 𝐵  

𝑡𝑗+1

𝑡𝑛+1
,𝛽,𝛼 

𝑛

𝑗=1

− 𝐵  
𝑡𝑗
𝑡𝑛+1

,𝛽,𝛼   + 𝛽𝑡𝑛+1
𝛽−1 1 − 𝛼 𝑓 𝑥𝑖 , 𝑡𝑛+1 ,𝑢𝑝 𝑥𝑖 , 𝑡𝑛+1  , 

 37  

where 

𝑢 𝑥𝑖 ,𝑡𝑛+1 
𝑝

=
𝛽

𝛤 𝛼 
 𝑓  𝑥𝑖 , 𝑡𝑗 ,𝑢 𝑥𝑖 , 𝑡𝑗   

𝑛

𝑗=0

𝑡𝑛+1
𝛼+𝛽−1

 𝐵  
𝑡𝑗+1

𝑡𝑛+1
,𝛽,𝛼 − 𝐵  

𝑡𝑗
𝑡𝑛+1

,𝛽,𝛼  . 
 38  

In an application to some partial differential equation, we consider here a fractal-fractional heat 

equation: 

 
 

 𝐷𝑡
𝛼 ,𝛽

0
𝐹𝐹𝑃 𝑢 𝑥, 𝑡 = 𝑎

𝜕2𝑢 𝑥, 𝑡 

𝜕𝑥2
,                                              

𝑢 𝑥, 0 = 𝑓 𝑥 ,                                                                         

𝑢 0, 𝑡 = 0 = 𝑢 𝐿, 𝑡   ∀𝑡 > 0,                                              

  

 39  
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 𝐷𝑡
𝛼 ,𝛽

0
𝐹𝐹𝑀 𝑢 𝑥, 𝑡 = 𝑎

𝜕2𝑢 𝑥, 𝑡 

𝜕𝑥2
,                                                

𝑢 𝑥, 0 = 𝑓 𝑥 ,                                                                          

𝑢 0, 𝑡 = 0 = 𝑢 𝐿, 𝑡   ∀𝑡 > 0,                                              

  

 40  

We start with the first equation. 

 
 

 𝐷𝑡
𝛼

0
𝑅𝐿 𝑢 𝑥, 𝑡 = 𝛽𝑡𝛽−1𝑎

𝜕2𝑢 𝑥, 𝑡 

𝜕𝑥2
,                                              

𝑢 𝑥, 0 = 𝑓 𝑥 ,                                                                              

𝑢 0, 𝑡 = 0 = 𝑢 𝐿, 𝑡   ∀𝑡 > 0,                                                   

  

 41  

 

 
 
 

 
 𝑢 𝑥, 𝑡 = 𝑢 𝑥, 0 −

𝛽

𝛤 𝛼 
𝑎 𝜏𝛽−1

𝑡

0

𝜕2𝑢 𝑥, 𝑡 

𝜕𝑥2
  𝑡 − 𝜏 𝛼−1𝑑𝜏,

𝑢 𝑥, 0 = 𝑓 𝑥 ,                                                                               

𝑢 0, 𝑡 = 0 = 𝑢 𝐿, 𝑡   ∀𝑡 > 0.                                                    

  

 42  

Applying the presented procedure yields 

𝑢𝑖
𝑛+1

=
𝛽

𝛤 𝛼 
 𝑓  𝑥𝑖 , 𝑡𝑗+1,𝑢 𝑥𝑖 , 𝑡𝑗+1  

𝑛−1

𝑗=0

− 𝑓  𝑥𝑖 , 𝑡𝑗 ,𝑢 𝑥𝑖 , 𝑡𝑗    𝑡𝑛+1
𝛼+𝛽

 𝐵  
𝑡𝑗+1

𝑡𝑛+1
,𝛽 + 1,𝛼 − 𝑡𝑛+1

𝛼+𝛽
𝐵  

𝑡𝑗
𝑡𝑛+1

,𝛽 + 1,𝛼  

− 𝑡𝑛+1
𝛼+𝛽−1

𝐵  
𝑡𝑗+1

𝑡𝑛+1
,𝛽,𝛼 +𝑡𝑛+1

𝛼+𝛽−1
𝐵  

𝑡𝑗
𝑡𝑛+1

,𝛽,𝛼  

+
𝛽

𝛤 𝛼 
 𝑓  𝑥𝑖 , 𝑡𝑗 ,𝑢 𝑥𝑖 , 𝑡𝑗   

𝑛

𝑗=0

𝑡𝑛+1
𝛼+𝛽−1

 𝐵  
𝑡𝑗+1

𝑡𝑛+1
,𝛽,𝛼 − 𝐵  

𝑡𝑗
𝑡𝑛+1

,𝛽,𝛼  

+
𝛽

𝛤 𝛼 
 𝑓  𝑥𝑖 , 𝑡𝑛+1 ,

𝛽

𝛤 𝛼 
 𝑓  𝑥𝑖 , 𝑡𝑗 ,𝑢 𝑥𝑖 , 𝑡𝑗   

𝑛

𝑗=0

 𝑡𝑛+1
𝛼+𝛽−1

 𝐵  
𝑡𝑗+1

𝑡𝑛+1
,𝛽,𝛼 

− 𝐵  
𝑡𝑗
𝑡𝑛+1

,𝛽,𝛼  − 𝑡𝑛+1
𝛼+𝛽−1

 𝐵 1,𝛽,𝛼 − 𝐵  
𝑡𝑗
𝑡𝑛+1

,𝛽,𝛼   . 
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where, 

𝑓  𝑥𝑖 , 𝑡𝑗 ,𝑢 𝑥𝑖 , 𝑡𝑗   = 𝛼
𝑢𝑖+1
𝑗

− 2𝑢𝑖
𝑗

+ 𝑢𝑖−1
𝑗

 ∆𝑥 2
. 
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For the second equation, we have 
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 𝐷𝑡
𝛼

0
𝐴𝐵𝑅 𝑢 𝑥, 𝑡 = 𝛽𝑡𝛽−1

𝜕2𝑢 𝑥, 𝑡 

𝜕𝑥2
,                                              

𝑢 𝑥, 0 = 𝑓 𝑥 ,                                                                               

𝑢 0, 𝑡 = 0 = 𝑢 𝐿, 𝑡   ∀𝑡 > 0 ,                                                   

  

 45  

 

 
 
 

 
 𝑢 𝑥, 𝑡 =  1 − 𝛼 𝛽𝑡𝛽−1

𝜕2𝑢 𝑥, 𝑡 

𝜕𝑥2
+

𝛼𝛽

𝛤 𝛼 
 

𝜕2𝑢 𝑥, 𝜏 

𝜕𝑥2
𝜏𝛽−1

𝑡

0

 𝑡 − 𝜏 𝛼−1𝑑𝜏,                     

𝑢 𝑥, 0 = 𝑓 𝑥 ,                                                                               

𝑢 0, 𝑡 = 0 = 𝑢 𝐿, 𝑡 ,∀𝑡 > 0.                                                    

  

 46  

Applying the procedure presented earlier yields 

𝑢𝑖
𝑛+1 =  1 − 𝛼 𝛽𝑡𝑛+1

𝛽−1
 𝑎
𝑢𝑖+1
𝑝𝑛+1 − 𝑢𝑖

𝑝𝑛+1 + 𝑢𝑖−1
𝑝𝑛+1

∆𝑥
 

+
𝛼𝛽

𝛤 𝛼 
 

𝑢𝑖+1
𝑗

− 2𝑢𝑖
𝑗

+ 𝑢𝑖−1
𝑗

 ∆𝑥 2
 𝑡𝑛+1

𝛽+𝛼
 𝐵  

𝑡𝑗+1

𝑡𝑛+1
,𝛽 + 1,𝛼 

𝑛

𝑗=1

− 𝐵  
𝑡𝑗
𝑡𝑛+1

,𝛽 + 1,𝛼  − 𝑡𝑛+1
𝛼+𝛽−1

𝑡𝑗  𝐵  
𝑡𝑗+1

𝑡𝑛+1
,𝛽,𝛼 − 𝐵  

𝑡𝑗
𝑡𝑛+1

,𝛽,𝛼   

−
𝛼𝛽

𝛤 𝛼 
 

𝑢𝑖+1
𝑗−1

− 2𝑢𝑖
𝑗−1

+ 𝑢𝑖−1
𝑗−1

 ∆𝑥 2
 𝑡𝑗 𝑡𝑛+1

𝛼+𝛽−1
 𝐵  

𝑡𝑗+1

𝑡𝑛+1
,𝛽,𝛼 

𝑛

𝑗=1

− 𝐵  
𝑡𝑗
𝑡𝑛+1

,𝛽,𝛼   . 
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The above solution can be used for numerical simulations. 

3. Comparison  

In this section, we compare the power law and the extended Mittag-Leffler function by applying 

them to a given function and evaluating their Bode diagrams to gratify readers who are unfamiliar 

with these concepts and show their impacts on a certain dynamical process. First, it should be noted 

that, as shown in the pictures below, the power law is scale invariant, whereas the generalized 

Mittag-Leffler function exhibits crossover behaviors from stretched exponential to power law. 
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Figure 1. Mittag-Leffler function and power law. 

In the figure below, we show their corresponding magnitude diagrams obtained via their 

respective Laplace transform for different values of fractional order. 

 

Figure 2. Diagrams associated with power law and generalized-Mittag-Leffler functions. 
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Figure 3. Phase diagrams associated with power law and generalized-Mittag-Leffler functions. 

4. Numerical simulations 

We present some numerical simulations of the heat equation using the suggested numerical 

solution. To perform this simulation, the following are considered: 

𝑢 𝑥, 0 = exp −𝑥 , ∆𝑥 = 0.05,∆𝑡 = 0.01 

Numerical simulations are depicted in Figures 4, 5 and 6 below 

  

 

Figure 4. Numerical simulation of the model with the generalized-Mittag-Leffler kernel. 
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Figure 5. Numerical simulation of the model with power law. 
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Figure 6. Numerical simulation for model with power law. 

From the obtained figures one can see that the component of fractal dimension adds some 

features especially to the contour plot mapping.  

5. Conclusions 

Given that the idea was just suggested a few years ago, partial differential equations with 

fractal-fractional derivatives have naturally received little attention in recent years. Particularly, 

unlike in the case of ordinary differential equations with fractal-fractional derivatives, numerical 

approaches for solving these problems have not been thoroughly developed and validated. With the 

help of the generalized Mittag-Leffler kernel and the power law, an attempt was made to provide a 

numerical method for solving generic fractal-fractional partial differential equations in this study. 

The work did not discuss theoretical ideas like convergence and stability. The fractal-fractional heat 

equation, however, was considered and solved using the recommended technique and several 

simulations. It was shown that, for the case of the generalized Mittag-Leffler function, there is a 

trend of crossover behaviors characterizing the passage from stretched exponential to power law, 

with some similarities occurring due to the fractal dimension. This can be seen as the movement of 

the plume from matrix rocks to fracture, where within the matrix rock, we have fading memory 

behaviors, and in fracture we have long-range behaviors. On the other hand, for the power law case, 

one can see a trend of long-range dependency throughout, which is to be interpretated as plume, 

moving along preferential paths known as fractures.  
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