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EP by using the linearization technique. By subsequently partitioning the initial outer space rectangle
and successively solving a series of LRPs, the proposed algorithm globally converges to the optimum
solution of the GAFOP. Finally, comparisons of numerical results are reported to show the superiority
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1. Introduction

The considered generalized affine fractional optimization problem is as follows:

(GAFOP):


min max


n∑

j=1
e1 jy j + f1

n∑
j=1

c1 jy j + h1

,

n∑
j=1

e2 jy j + f2

n∑
j=1

c2 jy j + h2

, . . . ,

n∑
j=1

ep jy j + fp

n∑
j=1

cp jy j + hp


s.t. y ∈ Y = {y ∈ Rn|Ay ≤ b},
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where A ∈ Rm×n, b ∈ Rm, ei, di ∈ R
n, and gi, fi are arbitrary real numbers. p ≥ 2, Y is a nonempty

compact set,
n∑

j=1
ei jy j + fi and

n∑
j=1

ci jy j + hi are all bounded linearity functions defined on Y , and for any

y ∈ Y , the denominator
n∑

j=1
ci jy j + hi , 0, i = 1, 2, . . . , p.

As a class of special fractional optimization problems, the GAFOP has attracted the attention of
many researchers and practitioners for decades. It has a variety of applications in many fields, including
finance and investment [1–3], transportation planning [4, 5], optimal design [6], estimation of iterative
parameters [7], signal processing [8], data envelopment analysis and others [9–17]. Furthermore, since
the GAFOP may be not (quasi)convex, there may exist many local optimal solutions, many of which
fail to be global solutions. Hence, it is still of great significance to propose an effective global algorithm
to solve the GAFOP.

Some algorithms have been presented to globally solve the GAFOP over the past several decades:
for instance, the cutting plane algorithm [18], branch-relaxation-bound methods [19, 20], the
interior-point algorithm [21], the partial linearization algorithm [22], the monotonic optimization
method [23], the method of centers [24] and the prox-regularization method [25]. Recently, based on
the Dinkelbach type algorithm, Ghazi and Roubi [26] presented a difference of convex functions (DC)
method for globally solving the generalized convex fractional optimization problem. By utilizing the
proximal bundle theory, Boualam and Roubi [27] proposed a dual method for the generalized convex
fractional optimization problem. Jiao et al. [28] designed an image space branch-and-bound algorithm
for solving minimax linear fractional programs. Haffari and Roubi [29] described a prox-dual
regularization method for globally solving generalized fractional programs. By utilizing convex hull
and concave hull approximation of a bilinear function, Jiao and Li [30] put forward a novel algorithm
for globally addressing min-max linear fractional programs. However, the previous reviewed methods
can only solve a particular form of the GAFOP, or they are difficult to use to solve large-scale
practical problems. Therefore, there remains the necessity to propose a practical algorithm to solve
the GAFOP.

In addition to the methods reviewed above, some theoretical progress on the generalized fractional
optimization problem (GFOP) has also been made. For example, Ahmad and Husain [31] gave a
duality theory for a non-differentiable GFOP with generalized convexity. Schmitendorf [32] presented
some optimality conditions for the GFOP. By utilizing the optimality condition, Tanimoto [33] gave a
dual problem for a class of non-differentiable GFOP and derived the duality theorems. Yadav and
Mukherjee [34] gave a duality theory for GFOP. When the data in the system are uncertain,
Jeyakumar et al. [35] put forward a strong duality theorem for the robust GFOP. Based on
unconstrained conditions, Lai et al. [36] gave the duality theorem for the GFOP. For a detailed review
of the methods and theories for the GFOP, readers can refer to Stancu-Minasian [37, 38].

In this article, an outer space branching search method is designed for globally solving the GAFOP.
We first convert the GAFOP into the EP. Next, by utilizing the structural characteristics of the EP,
we construct a new linearizing method for establishing the LRP of the EP. Compared with the known
existing algorithms, the branching search of the presented algorithm occurs in the outer space Rp

rather than the variable dimension space Rn, which provides the possibility of mitigating the required
computational efforts of the algorithm. In addition, the numerical computational results are reported,
indicating that the proposed algorithm has higher efficiency and notable superiority compared to the
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known existing algorithms [19, 39, 40].
The remainder of this article is organized as follows. We derive the EP of the GAFOP and establish

the LRP of the EP in Section 2. In Section 3, we give an outer space branching search method for
globally solving the GAFOP, and we also analyze the global convergence of the algorithm. Numerical
results for some test examples from recent studies are presented in Section 4. Finally, Section 5 gives
some conclusions.

2. Linear relaxation programming problem

In the following, to solve the GAFOP, we first transform the GAFOP into the EP. Then, we present
a novel linearization technique and construct the LRP of the EP. For this purpose, for each

i = 1, . . . , p, we introduce the additional variables zi =
n∑

j=1
ci jy j + hi. By computing the minimum value

z0
i = min

y∈Y

n∑
j=1

ci jy j + hi and the maximum value z0
i = max

y∈Y

n∑
j=1

ci jy j + hi of the linear function
n∑

j=1
ci jy j + hi

over Y , an initial outer space rectangle Z0 = {z ∈ Rp | z0
i ≤ zi ≤ z0

i , i = 1, . . . , p}, can be constructed.

By introducing the new variable r = max
{ n∑

j=1
e1 jy j+ f1

z1
,

n∑
j=1

e2 jy j+ f2

z2
, . . . ,

n∑
j=1

ep jy j+ fp

zp

}
, we can simplify the

objective function of the original problem GAFOP to r, so that we can get the EP of the GAFOP
as below:

(EP) :



min r

s.t.

n∑
j=1

ei jy j+ fi

zi
≤ r, i = 1, 2, . . . , p

zi =
n∑

j=1
ci jy j + hi

Ay ≤ b, z ∈ Z0.

Theorem 1. y∗ is a global optimum solution of the GAFOP if and only if (y∗, z∗, r∗) is a global optimum
solution of the EP, with

z∗i =
n∑

j=1

ci jy∗ + hi, i = 1, 2, . . . , p,

and

r∗ = max


n∑

j=1
e1 jy∗j + f1

z∗1
,

n∑
j=1

e2 jy∗j + f2

z∗2
, . . . ,

n∑
j=1

ep jy∗j + fp

z∗p

 .
Additionally, the global optimal values of the GAFOP and EP are equal.
Proof. By the above discussion, the conclusions are obvious, and thus we omit the proof. □

By Theorem 1, to globally solve the GAFOP, we can instead solve the EP. In the following, we only
consider solving the EP.
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For globally solving the EP, we need to establish its LRP for providing the lower bound in the
branch-and-bound process. The detailed derivation process of the LRP is as follows.

For any Z = {z ∈ Rp | zi ≤ zi ≤ zi, i = 1, . . . , p} ⊆ Z0, we define

Φi(y, zi) =

n∑
j=1

ei jy j+ fi

zi
,

Φi(y, zi, zi) =


n∑

j=1,ei j>0

ei j

zi
y j +

n∑
j=1,ei j<0

ei j

zi
y j +

fi
zi
, if fi > 0,

n∑
j=1,ei j>0

ei j

zi
y j +

n∑
j=1,ei j<0

ei j

zi
y j +

fi
zi
, if fi < 0.

Obviously, for each i = 1, . . . , p, we can see that

Φi(y, zi) =

n∑
j=1

ei jy j + fi

zi
≥ Φi(y, zi, zi) =


n∑

j=1,ei j>0

ei j

zi
y j +

n∑
j=1,ei j<0

ei j

zi
y j +

fi
zi
, if fi > 0,

n∑
j=1,ei j>0

ei j

zi
y j +

n∑
j=1,ei j<0

ei j

zi
y j +

fi
zi
, if fi < 0.

(1)

Based on (1), for any Z ⊆ Z0, we can construct the LRP of the EP as below.

(LRP) :



min r

s.t. Φi(y, zi, zi) ≤ r, i = 1, 2, . . . , p,

zi =
n∑

j=1
ci jy j + hi

Ay ≤ b, y ≥ 0, z ∈ Z.

From the above discussion, it is known that all feasible points of the EP over the sub-rectangle Z
are also feasible for the LRP. Let v(EP) and v(LRP) be the global optimal values of the LRP and EP,
respectively, and we have v(LRP) ≤ v(EP) over Zk. Thus, the optimal value of the LRP will provide a
valid lower bound for that of the EP over Z.

Next, we will prove that the optimal solution of the LRP will infinitely approximate the optimal
solution of the EP over Z as ∥z − z∥ → 0, as detailed in Theorem 2.

Theorem 2. For each i = 1, 2, . . . , p, consider the functions Φi(y, zi) and Φi(y, zi, zi). We have the
following:

lim
∥z−z∥→0

(
Φi(y, zi) − Φi(y, zi, zi)

)
= 0.
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Proof. By the definitions of the functions Φi(y, zi) and Φi(y, zi, zi), for any y ∈ Y , zi ∈ [zi, zi], we have

Φi(y, zi) − Φi(y, zi, zi) =



n∑
j=1

ei jy j+ fi

zi
−

 n∑
j=1,ei j>0

ei j

zi
y j +

n∑
j=1,ei j<0

ei j

zi
y j +

fi
zi

 , if fi > 0

n∑
j=1

ei jy j+ fi

zi
−

 n∑
j=1,ei j>0

ei j

zi
y j +

n∑
j=1,ei j<0

ei j

zi
y j +

fi
zi

 , if fi < 0

=


n∑

j=1,ei j>0

[ ei jy j

zi
−

ei jy j

zi

]
+

n∑
j=1,ei j<0

[
ei jy j

zi
−

ei jy j

zi

]
+
[

fi
zi
−

fi
zi

]
, if fi > 0

n∑
j=1,ei j>0

[ ei jy j

zi
−

ei jy j

zi

]
+

n∑
j=1,ei j<0

[
ei jy j

zi
−

ei jy j

zi

]
+

[
fi
zi
−

fi
zi

]
, if fi < 0

=


(zi−zi)

zizi

n∑
j=1,ei j>0

ei jy j +
(zi−zi)

zizi

n∑
j=1,ei j<0

ei jy j +
fi(zi−zi)

zizi
, if fi > 0

(zi−zi)
zizi

n∑
j=1,ei j>0

ei jy j +
(zi−zi)

zizi

n∑
j=1,ei j<0

ei jy j +
fi(zi−zi)

zizi
, if fi < 0

≤
(zi−zi)

z2
i

[
n∑

j=1
|ei j|y j + | fi|

]
.

Since
n∑

j=1
|ei j|y j + | fi| is a bounded linear function, we have

lim
∥z−z∥→0

(
Φi(y, zi) − Φi(y, zi, zi)

)
= 0

and complete the proof of the Theorem. □
The above Theorem ensures that the functionΦi(y, zi) will be infinitely approximated by the function

Φi(y, zi, zi) as ∥z − z∥ → 0, so the global optimal solution of the LRP will infinitely approximate the
global optimal solution of the EP over Z as ∥z − z∥ → 0.

3. Global algorithm and its convergence

In this section, we first put forward an outer space rectangle bisection method. Next, by combining
the previous LRP and the branch-and-bound framework, an outer space branching search method is
designed to globally solve the GAFOP. In addition, we derive the global convergence of the outer
space branching search method.

3.1. Outer space rectangle bisection method

The outer space rectangle bisection method iteratively subdivides the currently investigated
rectangle into two sub-rectangles. Consider any selected sub-rectangle
Z = {z ∈ Rp|zi ≤ zi ≤ zi, i = 1, 2, . . . , p} ⊆ Z0. The outer space rectangle bisection method is given as
follows:

(i) Let q = arg max{zi − zi|i = 1, 2, . . . , p};
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(ii) Let
Z1 = {z ∈ Rp|zi ≤ zi ≤ zi, i = 1, 2, . . . , p, i , q; zq ≤ zq ≤ (zq + zq)/2}

and
Z2 = {z ∈ Rp|zi ≤ zi ≤ zi, i = 1, 2, . . . , p, i , q; (zq + zq)/2 ≤ zq ≤ zq}.

Through utilizing the proposed outer space rectangle bisection method, the selected sub-rectangle
Z can be subdivided into two sub-rectangles Z1 and Z2.

3.2. Outer space branching search method

In this subsection, the basic steps of the proposed outer space branching search method are
formulated as follows.

Step 0. Let the convergence error ϵ ≥ 0, and let the initial outer space rectangle

Z0 = {z ∈ Rp | z0
i ≤ zi ≤ z0

i , i = 1, 2, . . . , p}.

Denote F = ∅ as the set of the initial feasible points, let k = 0, and let the set of all active nodes
Ω0 = {Z0}.

Step 1. Solve the LRP over Z0, and define (y0, z0, r0) and LB0 as its optimal solution and optimal
value. Let

UB0 = max


n∑

j=1
e1 jy0

j + f1

n∑
j=1

c1 jy0
j + h1

,

n∑
j=1

e2 jy0
j + f2

n∑
j=1

c2 jy0
j + h2

, . . . ,

n∑
j=1

ep jy0
j + fp

n∑
j=1

cp jy0
j + hp

 .
If UB0 − LB0 ≤ ϵ, then the proposed algorithm stops. y0 and (y0, z0, r̂0) are ϵ-optimal solutions of the
GAFOP and EP over (Z0), respectively. Otherwise, proceed with Step 2.

Step 2. Use the proposed rectangle bisection method to subdivide Zk−1 into two sub-rectangles Zk,1

and Zk,2. Let Q = {Zk,1,Zk,2}.
Step 3. For each Zk,t, t = 1, 2, compute the lower bound LB(Zk,t) and (y(Zk,t), z(Zk,t), r(Zk,t)) by

solving the LRP over Zk,t, and let

UB(Zk,t) = max


n∑

j=1
e1 jy0

j(Z
k,t) + f1

n∑
j=1

c1 jy0
j(Zk,t) + h1

,

n∑
j=1

e2 jy0
j(Z

k,t) + f2

n∑
j=1

c2 jy0
j(Zk,t) + h2

, . . . ,

n∑
j=1

ep jy0
j(Z

k,t) + fp

n∑
j=1

cp jy0
j(Zk,t) + hp

 .
If LB(Zk,t) > UBk, then set Q = Q\Zk,t; else, let

F = F
⋃
{(y(Z), z(Z))} and UBk = min{UBk,UB(Zk,t)}.

If UBk = UB(Zk,t), then let yk = y(Zk,t) and (yk, zk, r̂k) = (y(Zk,t), z(Zk,t), r(Zk,t)).
Step 4. Set Ωk = (Ωk−1\Zk−1)

⋃
Q.

Step 5. Set LBk = min{LB(Z)|Z ∈ Ωk}, and let Zk be the sub-rectangle which satisfies LBk = LB(Zk).
If UBk−LBk ≤ ϵ, then the proposed algorithm stops. yk and (yk, zk) are the ϵ-global optimal solutions

of the GAFOP and EP, respectively.
Otherwise, set k = k + 1, and go back to Step 2.
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3.3. Global convergence analysis

In this part, first of all, we define

Λ(y) = max


n∑

j=1
e1 jy j + f1

n∑
j=1

c1 jy j + h1

,

n∑
j=1

e2 jy j + f2

n∑
j=1

c2 jy j + h2

, . . . ,

n∑
j=1

ep jy j + fp

n∑
j=1

cp jy j + hp

 .
Let v be the global optimal value of the EP over Θ0, and define r(yk, zk) as the objective functional
value of the EP corresponding to the feasible solution (yk, zk). The global convergence analysis of the
proposed algorithm can be given by the following theorem.
Theorem 3. Given any ϵ ≥ 0, if the proposed algorithm finitely terminates after k iterations, then yk is
a global ϵ-optimal solution to the GAFOP in the sense that

rk(yk, zk) ≤ v + ϵ.

Otherwise, the proposed algorithm will generate an infinite sequence {yk}, whose accumulation point
will be a global optimum solution to the GAFOP.
Proof . If the presented algorithm finitely terminates after k iterations, according to the termination of
the algorithm, it follows that

UBk − LBk ≤ ϵ.

By Step 3 of the presented algorithm, we can find a feasible solution (yk, zk) to the EP such that

r(yk, zk) − LBk ≤ ϵ and LBk ≤ v.

Since (yk, zk) is feasible for the EP, we have

r(yk, zk) ≥ v.

By using the above conclusions, we have

v ≤ r(yk, zk) ≤ LBk + ϵ ≤ v + ϵ.

So, (yk, zk) is a global ϵ-optimal solution of the EP, with

v ≤ r(yk, zk) ≤ v + ϵ.

Thus, yk is a global ϵ-optimum solution to the GAFOP.
If the presented algorithm does not finitely terminate, then it must produce an infinite feasible

solution sequence {(yk, zk)}, and the sequence {(yk, zk)} has a convergence subsequence. Therefore, we
can let

lim
k→∞

(yk, zk) = (y∗, z∗).

So, we have

lim
k→∞

zk
i = z∗i =

n∑
j=1

ci jy∗j + hi, i = 1, 2, . . . , p.
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From the branch-and-bound structure of the algorithm, we also get

lim
k→∞

LBk ≤ v.

Since y∗ is a feasible solution of the GAFOP over Z0, and due to Theorem 2, we can get

v ≤ Λ(y∗).

Combining the above inequalities, we have

Λ(y∗) ≥ v ≥ lim
k→∞

LBk = lim
k→∞

r(yk, zk) = r(y∗, z∗). (2)

Furthermore, by the equivalence of the GAFOP and EP, and the continuity of the function Λ(y), we
can conclude the following:

lim
k→∞

r(yk, zk) = r(y∗, z∗) = Λ(y∗) = lim
k→∞
Λ(yk). (3)

Based on the above inequalities (2) and (3), we have

v = Λ(y∗) = lim
k→∞
Λ(yk) = r(y∗, z∗) = lim

k→∞
LBk.

Therefore, this implies that any accumulation point y∗ of the sequence {yk} is a globally optimum
solution to the GAFOP. The proof is complete. □

4. Numerical comparisons

For verifying the computational superiority of the algorithm, the presented algorithm is
implemented in the software MATLAB R2014a and solved on the same microcomputer with an
Intel(R) Core(TM) i5-7200U CPU @2.50 GHz processor and 4 GB RAM.

We first tested some randomly generated Problem 1 with small-size variables, numerically
compared them with the known existing algorithms [19,39,40] and listed these numerical comparison
results in Table 1. Next, we tested some randomly generated Problem 1 with large-size variables to
verify our algorithm further and listed the numerical results in Table 2. In Table 2, Avg.Iter represents
the average iteration times and Avg.Time represents the average execution CPU time in seconds.
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Table 1. Numerical comparisons among some algorithms and our algorithm on Problem 1.

(p,m, n) Algorithms
#iter Time(s)

min. ave. max. min. ave. max.

(2,10,2) Feng et al. [19] 39 361 1188 0.45 4.22 13.11
Wang et al. [39] 11 19.5 35 0.13 0.24 0.42
Jiao & Liu [40] 14 24.5 38 0.16 0.31 0.46
Our algorithm 28 275.5 971 0.33 3.30 11.37

(2,10,4) Feng et al. [19] 365 6579.3 18164 3.92 77.36 213.11
Wang et al. [39] 133 340.3 833 1.45 3.79 9.00
Jiao & Liu [40] 38 190.9 498 0.42 2.18 5.55
Our algorithm 14 51 601 0.17 0.79 7.31

(2,10,6) Feng et al. [19] − − − − − −

Wang et al. [39] 79 4165.8 24017 0.92 48.07 285.29
Jiao & Liu [40] 220 661.3 1806 2.41 7.26 19.82
Our algorithm 36 265.3 439 0.43 3.24 5.35

(2,10,8) Feng et al. [19] − − − − − −

Wang et al. [39] 189 9030.5 44047 2.03 118.66 654.93
Jiao & Liu [40] 1205 7875 59143 13.03 115.83 940.51
Our algorithm 31 84 520 0.40 1.04 6.11

(2,10,10) Feng et al. [19] − − − − − −

Wang et al. [39] − − − − − −

Jiao & Liu [40] 613 4679.4 10880 6.72 52.54 124.93
Our algorithm 48 168.9 452 0.56 2.02 5.32

(3,10,10) Feng et al. [19] − − − − − −

Wang et al. [39] − − − − − −

Jiao & Liu [40] 2599 8162.3 12849 28.56 93.13 150.47
Our algorithm 183 1232.8 3860 2.17 15.2 47.8

(4,10,10) Feng et al. [19] − − − − − −

Wang et al. [39] − − − − − −

Jiao & Liu [40] 1629 21785.3 83513 17.83 340.12 1510.87
Our algorithm 1071 8368.7 31234 12.53 120.12 537.53

(5,10,10) Feng et al. [19] − − − − − −

Wang et al. [39] − − − − − −

Jiao & Liu [40] 2894 34659.2 179384 31.37 859.55 6021.98
Our algorithm 1943 27459 59576 22.41 497.90 1259.80
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Table 2. Numerical computational results of our algorithm for Problem 1.
(p,m, n) Avg.N Avg.T

(2,100,1000) 40.2 46.0363
(2,100,2000) 45.4 116.6136
(2,100,3000) 44.4 181.6550
(2,100,4000) 35.7 195.7975
(2,100,5000) 34.1 252.4213
(2,100,6000) 31.2 278.1843
(2,100,7000) 29.1 312.0120
(2,100,8000) 18.6 219.5177
(3,100,1000) 302.1 365.2927
(3,100,2000) 499.2 1424.3399
(3,100,3000) 393.3 1792.6109
(3,100,4000) 200.7 1232.3972

The maximum CPU time limit of all algorithms is set at 3600 s, and the approximation error is set
as ϵ = 10−2. “−” denotes the situation in which the used algorithm failed to terminate in 3600 s. Since
the known existing algorithms [19, 39, 40] failed to solve ten arbitrary randomly generated Problem 1
with large-size variables in 3600 s, we only list the numerical results obtained by our algorithm in
Table 2.

We solved ten arbitrary randomly generated examples for all test problems. First of all, we tested
the randomly generated Problem 1 with small-size variables. Table 1 shows the best results, worst
results and average results among these ten test results, and we highlighted in bold the winners of
these average results in their numerical comparison results in Table 1. Second, we solved the randomly
generated Problem 1 with large-size variables, and numerical results are reported in Table 2.

From the computational results of Table 1, it can be seen that, when p ≥ 2,m ≥ 10, and n ≥ 6, the
algorithm of Feng et al. [19] failed to solve any one of ten randomly generated Problem 1 in 3600 s.
When p ≥ 2,m ≥ 10, and n ≥ 10, the algorithm of Wang et al. [39] failed to solve any one of ten
randomly generated Problem 1 in 3600 s. When p ≥ 3,m ≥ 10, and n ≥ 20, the algorithm of Jiao &
Liu [40] failed to solve any one of ten randomly generated Problem 1 in 3600 s. However, in all cases,
our algorithm can globally solve any one of ten randomly generated Problem 1. In addition, when
p ≥ 2,m ≥ 10, and n ≥ 6, compared with the known existing algorithms [19, 39, 40], our algorithm
takes less running time and iterations. Thus, our algorithm has better computational superiority than
the algorithms of Feng et al. [19], Wang et al. [39] and Jiao & Liu [40].

From the computational results of Table 2, it is obvious that the proposed algorithm can globally
solve Problem 1 with large-size variables, and this demonstrates the strong robustness and the reliable
stability of our algorithm.
Problem 1. 

min max


n∑

j=1
d1 jy j + g1

n∑
j=1

e1 jy j + h1

,

n∑
j=1

d2 jy j + g2

n∑
j=1

e2 jy j + h2

, . . . ,

n∑
j=1

dp jy j + gp

n∑
j=1

ep jy j + hp


s. t.

n∑
j=1

ak jy j ≤ bk, k = 1, 2, . . . ,m,

y j ≥ 0, j = 1, 2, . . . , n,
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where di j, ei j, bk, ak j, i = 1, 2, . . . , p, k = 1, 2, . . . ,m, j = 1, 2, . . . , n, are all randomly generated in the
interval [0, 10]; gi and hi, i = 1, 2, . . . , p, are all randomly generated in the unit interval [0, 1]. The
numerators gi and denominators hi of the linear fraction function in test Problem 1 are small constants.
Problem 2. [20] 

min max
{

2x1 + 2x2 − x3 + 0.9
x1 − x2 + x3

,
3x1 − x2 + x3

8x1 + 4x2 − x3

}
s.t. x1 + x2 − x3 ≤ 1,
−x1 + x2 − x3 ≤ −1,
12x1 + 5x2 + 12x3 ≤ 34.8,
12x1 + 12x2 + 7x3 ≤ 29.1,
−6x1 + x2 + x3 ≤ −4.1,

1.0 ≤ x1 ≤ 1.2,
0.55 ≤ x2 ≤ 0.65,
1.35 ≤ x3 ≤ 1.45.

Before executing the algorithm, by calculating the upper and lower bounds of z, we can obtain the
initial rectangle Z1 = Z = {z ∈ R2 | 1.7315 ≤ z1 ≤ 1.9292, 8.8500 ≤ z2 ≤ 9.5500}.

We set the approximation error as ϵ = 10−2, and a brief summary of the algorithm’s solution steps
for this problem is as follows.

Initialization. Solving the problem LRP over Z1 yields LB1 = 1.3076 and its optimal solution

(y1, z1, r1) = (1.0167, 0.5500, 1.4500, 1.9167, 8.8833, 1.3076).

Let F1 =
{
(y1, z1, r1)

}
and Ω1 = {Z1}.

According to

UB1 = max


n∑

j=1
e1 jy1

j + f1

n∑
j=1

c1 jy1
j + h1

,

n∑
j=1

e2 jy1
j + f2

n∑
j=1

c2 jy1
j + h2

, . . . ,

n∑
j=1

ep jy1
j + fp

n∑
j=1

cp jy1
j + hp

 .
Following this, the upper bound of the currently known optimal value can be found: UB1 = 1.3478.
Since UB1 − LB1 > ϵ, the algorithm continues with the following iterations.

Iteration 1. Subdivide Z1 into two sub-rectangles, compress the range of each sub-rectangle, and
denote the remaining two sub-rectangles as follows:

Z1,1 =
{
z ∈ R2 | 1.7315 ≤ z1 ≤ 1.9292, 8.8500 ≤ z2 ≤ 9.2000

}
and

Z1,2 = {z ∈ R2 | 1.7315 ≤ z1 ≤ 1.9292, 9.2000 ≤ z2 ≤ 9.5500}.

Solving the problem LRP over Z1,1 yields LBZ1,1 = 1.3076 and its optimal solution

(yZ1,1
, zZ1,1
, rZ1,1

) = (1.0167, 0.5500, 1.4500, 1.9167, 8.8833, 1.3076),

and UBZ1,1 = 1.3478.
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Solving the problem LRP over Z1,2 yields LBZ1,2 = 1.3657 and its optimal solution

(yZ1,2
, zZ1,2
, rZ1,2

) = (1.0515, 0.5500, 1.4118, 1.9132, 9.2000, 1.3657),

and UBZ1,2 = 1.3478.
Let Ω2 =

{
Z1,1,Z1,2}, F2 = F1 ∪ {(yZ1,1

, zZ1,1
, rZ1,1

), (yZ1,2
, zZ1,2
, rZ1,2

)} and the upper bound
UB2 = min{1.3478, 1.3478, 1.3478} = 1.3478. The currently best feasible solution
(y2, z2, r2) = (yZ1,1

, zZ1,1
, rZ1,1

), and the lower bound
LB2 = min{LB(Z)|Z ∈ Ω2} = min{LBZ1,1 , LBZ1,2} = min{1.3076, 1.3657} = 1.3076.

Since LB2 = LBZ1,1 , let Z2 = Z1,1. Since UB2 − LB2 > ϵ, continue to iteration 2.
Iteration 2. Consistent with the above, subdivide Z2 into two sub-rectangles, compress the range of

each sub-rectangle, and denote the remaining two sub-rectangles as follows:

Z2,1 =
{
z ∈ R2 | 1.7315 ≤ z1 ≤ 1.9292, 8.8500 ≤ z2 ≤ 9.0250

}
and

Z2,2 = {z ∈ R2 | 1.7315 ≤ z1 ≤ 1.9292, 9.0250 ≤ z2 ≤ 9.2000}.

Solving the problem LRP over Z2,1 yields LBZ2,1 = 1.3076 and its optimal solution

(yZ2,1
, zZ2,1
, rZ2,1

) = (1.0167, 0.5500, 1.4500, 1.9167, 8.8833, 1.3076),

and UBZ2,1 = 1.3478.
Solving the problem LRP over Z2,2 yields LBZ1,2 = 1.3293 and its optimal solution

(yZ2,2
, zZ2,2
, rZ2,2

) = (1.0335, 0.5500, 1.4426, 1.9261, 9.0250, 1.3293),

and UBZ2,2 = 1.3625.
Let Ω3 =

{
Z1,1,Z2,1,Z2,2}, F3 = F2 ∪ {(yZ2,1

, zZ2,1
, rZ2,1

), (yZ2,2
, zZ2,2
, rZ2,2

)} and the upper bound
UB3 = min{1.3478, 1.3478, 1.3625} = 1.3478. The currently best feasible solution
(y3, z3, r3) = (yZ2,1

, zZ2,1
, rZ2,1

), and the lower bound
LB3 = min{LB(Z)|Z ∈ Ω3} = min{LBZ2,1 , LBZ2,2} = min{1.3076, 1.3293} = 1.3076.

Since LB3 = LBZ2,1 , let Z3 = Z2,1. Since UB3 − LB3 > ϵ, continue to iteration 3.
Iteration 3. During this iteration, subdivide Z3 into two sub-rectangles, compress the range of each

sub-rectangle, and denote the remaining two sub-rectangles as follows:

Z3,1 =
{
z ∈ R2 | 1.7315 ≤ z1 ≤ 1.8333, 8.8500 ≤ z2 ≤ 9.0250

}
and

Z3,2 = {z ∈ R2 | 1.8333 ≤ z1 ≤ 1.9292, 9.0250 ≤ z2 ≤ 9.2000}.

Solving the problem LRP over Z3,1 yields LBZ3,1 = 1.4207 and its optimal solution

(yZ3,1
, zZ3,1
, rZ3,1

) = (1.0048, 0.5500, 1.3786, 1.8333, 8.8595, 1.4207),

and UBZ3,1 = 1.3478.
Solving the problem LRP over Z3,2 yields LBZ3,2 = 1.3242 and its optimal solution

(yZ3,2
, zZ3,2
, rZ3,2

) = (1.0167, 0.5500, 1.4500, 1.9167, 8.8833, 1.3242),

AIMS Mathematics Volume 8, Issue 1, 1959–1974.



1971

and UBZ3,2 = 1.3478.
Let Ω4 =

{
Z3,1,Z3,2,Z2,1, Z2,2}, F4 = F3 ∪ {(yZ3,1

, zZ3,1
, rZ3,1

), (yZ3,2
, zZ3,2
, rZ3,2

)},
and the upper bound UB3 = min{1.3625, 1.3478, 1.3478} = 1.3478.
The currently best feasible solution (y4, z4, r4) = (yZ3,2

, zZ3,2
, rZ3,2

), and the lower bound
LB4 = min{LB(Z)|Z ∈ Ω4} = min{LBZ3,1 , LBZ3,2} = min{1.4207, 1.3242} = 1.3242.

Since LB4 = LBZ3,2 , let Z4 = Z3,2. Since UB4 − LB4 > ϵ, continue to iteration 4.
Repeat the above iterative process, and the algorithm stops when UB − LB ≤ ϵ is satisfied. The

optimal solution (y1, y2, y3) = (1.0167, 0.5500, 1.4500) and optimal value 1.34783 of the problem can
be obtained after the algorithm executes 14 iterations.

5. Conclusions

We study the GAFOP. By exploiting equivalent conversion and a new linearizing technique, the
initial GAFOP is able to be converted into a series of LRPs. By integrating the outer space branching
search method and the LRP, we put forward an efficient global algorithm for the GAFOP. In contrast
to the known existing algorithms, our algorithm has the following computational superiority: (i) The
branching search occurs in Rp outer space, which provides the possibility of mitigating the required
computational efforts of the algorithm. (ii) Numerical results demonstrate that our algorithm has
superior efficiency compared to the known existing algorithms. Future work is to give a further
improvement of our algorithm and extend our method to deal with the general nonlinear fractional
optimization problem.
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