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1. Introduction

Switched systems consist of switched signals and subsystems. Over the past decades, much
research has been carried out on switched systems because of the widespread existence of such
systems, such as power systems and control systems, in real life [1, 2]. This form also allows these
systems to represent more realistic situations when modelling systems. In some publications, singular
systems are sometimes known as systems with generalized variables, systems of general state
spaces [3], etc. A system with multiple subsystems, where at least one of the subsystems is singular,
is called a switched singular system [4]. When studying singular switched systems, the distinction
between dealing with standard switched systems and dealing with singular switched systems is the
importance of paying attention to the compatibility of the system states before and after the switching
moment. If the conditions that a switched system has only one solution are to be satisfied, they must
be regular and impulse-free and should be met for each subsystem [5, 6].
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The study of stability is always an important topic. Current research has more often studied the
Lyapunov asymptotic stability of systems, that is, the dynamic behavior of systems in an infinite time
interval [7]. For the study of stability, scholars have used the Lyapunov function to solve the
exponential stability problem of some continuous systems [8, 9], the state decomposition method to
solve the stability problem of some discrete systems [10–12] and multiple Lyapunov functions to give
sufficient criteria for the exponential stability of some stochastic systems [6, 13, 14]. In nonlinear
systems, finite-time stability (FTS) is possible with an arbitrary switched law, and conditions for
availability of dynamic characteristics like stability, attraction, invariance, and boundedness were
formulated in terms of the common Lyapunov functions or multiple homomorphisms [15].

In practice, however, it is often important to investigate a system’s transient performance across
short time intervals. In general, if the overshoot is too large, then this control system is not applicable
in many practical engineering applications, so it becomes necessary to study the FTS of the system.
When the starting value of a system deviates by a certain margin from the equilibrium point, the FTS
may be understood as the state of systems during a specified time interval. In recent years, FTS has
received increasing attention from scholars at home and abroad, and many research results have been
achieved [16]. To ensure the FTS of a system, different control methods have been proposed by
domestic and foreign scholars for different systems, among which the method of average residence
time is widely utilized [17–19]. Furthermore, Ma et al. studied the finite-time feedback control issue
of linear systems controlled by the switched law that has a time-varying delay and parametrically
limited external perturbations using an event-triggered mechanism [20], but they did not address
singular systems. However, the method of averaging the residence time also has some limitations, so
there is a need to find other methods in the study of FTS. For example, using finite-time escape
functions [21], the average impulse interval (AII) method [22], state space partitioning to construct
switched laws [23, 24] and an event-triggered mechanism [25], the system studied in this paper does
not contain a time-delay term.

Recently, the advantages of event-triggered mechanisms have been gradually recognized by
scholars [26–28]. Furthermore, the idea of constructing switched laws using a division of the state
space was applied for the first time to singular switched systems with time-varying delays, which
makes the determination of state switched easy [23, 24]. Real-time feedback adds considerable
computational burden to a system. In an event-triggered control structure, a new control mission can
only be completed when an external event is satisfied. Given an external event, a defined
event-triggered mechanism is generated, and data collection is not performed at a fixed time, as in
traditional periodic collection methods. At the moment of sampling, the control input to the system
changes instantaneously. As a consequence, the time required for control mission runs and
sensor-controller communication frequency may be greatly lowered while still providing good
closed-loop performance.

In the literature, event-triggered mechanisms have not been applied to time-varying delay singular
switched systems. In this process, the construction of the V-function directly affects the ease of
judging the system’s admissibility conditions and is a necessary consideration when considering
singular systems, and therefore the construction of the V-function has some degree of limitation. In
summary, the previous studies [20, 23, 25] had issues that have not been considered, including
variable time lag terms and singular systems. In the literature [29], singular systems with time-delay
terms are considered, but there is no switched and no perturbation in the system. This motivates us to
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carry out the present work, and this paper considers both of these issues. Therefore, our contributions
are given as follows: (1) The control method for the FTS of singular switched systems with
time-varying delay and perturbations is investigated. (2) Sufficient requirements are also presented for
meeting the finite-time stable H∞-performance index γ.

In this paper, finite-time stabilization of continuously singular switched systems that have a time-
varying delay and an issue of state feedback control are explored. First, the conditions for the existence
of unique solutions of continuously singular switched systems are discussed, and the definitions of
compatible switched and finite-time stabilization of normal delay singular switched systems are given.
Second, sufficient conditions for FTS with perturbation cases are given using the L-K function and
state-space decomposition methods. Finally, sufficient conditions for satisfying the finite-time stable
H∞ performance index γ are given. Ultimately, the applicability of the theory is verified by numerical
arithmetic examples.

2. Preliminary

N and R+ stand for the set of all natural numbers and the set of positive real numbers, Rn

represents the set of all column vectors with n real components, where ∥x∥ =
√

x⊤x. Rn×n is the set of
all real n × n matrices, Ir is a unit matrix of order r, A⊤ is the transpose of A, ∥A∥ =

√
λmax(A⊤A) and

λmax(A⊤A) denotes the maximum eigenvalue of the matrix A⊤A. C([a, b],Rn) denotes all of the
continuous functions satisfying [a, b] → Rn, A ≥ 0 means A is a semipositive definite matrix, and > 0
means a matrix is a positive definite matrix. In the same way, A ≥ B means A − B ≥ 0. r (E) stands for
rank (E).

On the basis of the literature [20, 23, 25, 29], we have added time-delay terms and perturbation
terms and have written the system as a more general switched singular system; then, the following
class of delay continuously singular switched systems is considered:

Eẋ(t) = Aσx(t) + Dσx(t − τ(t)) + Bσw(t) + Fσuσ(t),
z(t) = Vσx(t) + Nσw(t),
x(t) = ϕ(t), t ∈ [−τ2, 0],

(2.1)

where system state x(t) ∈ Rn, control input u(t) ∈ Rq is a piecewise constant vector, and control
output z(t) ∈ Rp. The disturbance w(t) ∈ Rm, t ∈ [0,+∞), is a continuous function caused by external
circumstances. τ(t) is the time-varying delay. The complexity of studying singular systems is largely
a consequence of the fact that not every initial state ϕ(t) has a solution [3]. Here, ϕ(t) ∈ C([a, b],Rn) is
a compatible initial condition. The switched signal σ(x(t)) : R+ → M = {1, 2, . . . , p} is a segmented
constant value function, which is dependent on the system’s state and takes values in the finite set M =
{1, ..., p}. Define σ(x(t)) = l. Al ∈ R

n×n, Bl ∈ R
n×m,Dl ∈ R

n×n, Fl ∈ R
n×q,Vl ∈ R

p×n,Nl ∈ R
p×p(l ∈ M)

are constant matrices.
Some assumptions are given.
(A1) E ∈ Rn×n is a singular matrix E satisfying r(E) < n.
(A2) For all t ∈ [0,T ] satisfying

w⊤(t)w(t) ≤ d,

where d ≥ 0,T > 0.
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(A3) τ(t) satisfies 0 < τ1 ≤ τ(t) ≤ τ2 and τ̇(t) ≤ ρ < 1, where τ1, τ2 and ρ are constants, and τ̇(t)
represents the derivative of τ(t).

To design a proper controller, some necessary definitions, lemmas and assumptions are given as
follows.

Definition 1. [30] For any two matrices E, A ∈ Rn×n, if we can find a constant scalar α ∈ C such that
det(αE+A) , 0 or for s ∈ C polynomials det(sE−A) . 0, we say that the matrix pair (E, A) is regular.

Definition 2. [29, 31] For any two matrices E, A ∈ Rn×n, the matrix pair (E, A) is impulse-free if
deg(det(sE − A)) = r(E).

Remark 1. Sometimes the term “quite regular” is used instead of “impulse-free”. The regularity is
satisfied for any general system described by differential equations. However, for singular systems,
regularity is not necessarily satisfied. If a singular system is irregular, it means that the system may not
be unique; and if a singular system is regular, as shown in reference [32], it means that the solution
of the system is either unique or infinite, which is caused by impulses. In this case, a nonimpulsive
singular system does not have an infinite solution. Therefore, a regular and impulse-free system is the
basic requirement to ensure the existence and uniqueness of the solution.

Definition 3. [29] If the requirement of matrix pair (E, Al) is regular, we say the singular system (2.1)
that has a time delay is regular.

Definition 4. [33] The system is impulse-free if the requirement that there is no discontinuous solution
of the system when the external input u(t) = 0 for any initial value is satisfied.

Lemma 1. [4] For the matrices E, A in System (2.1), there always exist reversible matrices M,G such

that MEG =
(
Ir 0
0 0

)
, MAG =

(
A11 A12

A21 A22

)
, where A11 ∈ R

r×r, r = rank(E). At this point, the matrix pair

(E, A) can be regarded as regular and impulse-free when and only when A22 is a nonsingular matrix.

Definition 5. [18] In a switched singular system, a switch is said to be compatible if the subsystem’s
state at the moment of a new subsystem to be engaged is compatible.

Definition 6. [18] For singular switched systems, a system is regarded as regular and impulse-free if
all subsystems are regular and impulse-free under compatible switching.

Here, an event-triggered mechanism is introduced.

∥e(t)∥2 ≥ η ∥x(t)∥2 (2.2)

where e(t) = x(ti) − x(t) and η > 0 is a constant. If event (2.2) is triggered, data collection occurs
immediately, and the state information is then fed back to the controller. Denote the sequence of event
triggering moments as {ti}

∞
0 , where ti < ti+1. Let the moment of the first collection of information be

t = 0. From this, the moment of the next collection of information after moment ti can be defined as
ti+1 = int

{
t > ti : ∥e(t)∥2 ≥ η ∥x(t)∥2

}
. Suppose that the event is triggered m times within [tk, tk+1). Based

on such a collection mechanism, it is possible to design a state feedback controller shaped like

ul(t) =


Klx(tk), t ∈ [tk, t j+1),
Klx(t j+1), t ∈ [t j+1, t j+2),
...

Klx(t j+m), t ∈ [t j+m, tk+1),

(2.3)
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where Kl is the controller gain matrix. At acquisition time ti, the controller receives state information
x(ti) and holds it until the next acquisition time ti+1 so that the controller input is updated at the sampling
moment. The control input u(t) exists in the interval [0,T ].

Assumption 1. It is assumed that no Zeno behavior occurs during event-triggered data collection.

Assumption 2. It is assumed that all switches in the system are compatible switches.

System (2.1) combined with feedback controller (2.3) forms a closed loop system as follows.

Eẋ(t) = (Al + FlKl)x(t) + Dlx(t − τ(t)) + FlKle(t) + Blw(t). (2.4)

For switched singular system (2.4), some definitions of the system are shown.

Definition 7. [23, 34] For the given positive numbers T , c1 and c2, symmetric matrix Q ∈ Rn×n is
positive definite, and System (2.4) is finite-time stable under σ(x(t)) for the corresponding (c1, c2,T,Q)
if System (2.4) is regular and impulse-free and for every xσ(t, ϕ),

sup
−τ2≤θ≤0

{
xT (θ)Qx(θ)

}
≤ c1 =⇒ xT (t)Qx(t) < c2,∀t ∈ [0,T ]

is satisfied.

Definition 8. [19] A singular switched system based on an event-triggered mechanism is said to satisfy
a finite-time H∞ performance index γ about a given (0, c2, d, l,Q,T, σ), where c2 > 0,T > 0, γ > 0, Q
is positive definite, and σ(t) is a switched signal, if

(1) System (2.4) is finite-time stable, and
(2) under the initial condition Φ(t) = 0,∀t ∈ [−τ2, 0), control output z(t) satisfies∫ T

0
zT (t)z(t)dt < γ2

∫ T

0
wT (t)w(t)dt.

The goal of this research is to select a set of switched laws σ(x(t)) that enable a system to remain
finite-time stable under the actions of σ(x(t)). The switched law for System (2.4) is built by partitioning
the state space on a convex cone in such a way that each system mode is engaged in a specific cone
area with a certain negative quadratic function in each subregion.

Definition 9. [23] We can say that the matrix {Li}
p
i=1 is strictly complete if there exists i such that

xT Lix < 0, ∀x ∈ Rn/ {0}.

It is easy to see that the matrix {Li}
p
i=1 is strictly complete if and only if

Ωi =
{
x ∈ Rn : xT Lix < 0

}
, i = 1, . . . , p, satisfies

⋃p
i=1Ωi = R

n/ {0}.

Lemma 2. [23] The matrix {Li}
p
i=1 is strictly complete if we can find a scalar

ξi ≥ 0, i = 1, . . . , p,
∑p

i=1 ξi > 0 satisfying
∑p

i=1 ξiLi > 0.

Lemma 3. (Schur complementary lemma) For a given constant matrix A, B,C, B = B⊤, we have

A +C⊤B⊤C < 0⇔
(
A C⊤

C −B

)
< 0.
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Lemma 4. (Cauchy matrix inequality) For any positive define matrix N ∈ Rn×n, we have 2y⊤x ≤
x⊤Nx + y⊤N−1y.

Lemma 5. [30] The matrix pair (E, A) is regular iff there exist reversible matrices M1 and G1 satisfying

M1EG1 = diag(In1 ,N),M1AG1 = diag(J, In2),

where n1 + n2 = n, J ∈ Rn1×n1 , N ∈ Rn2×n2 , and N is the nilpotent matrix.

3. Main results

This section first gives conditions for determining that a system is regular and impulse-free using the
coefficient matrix of the system. Next, we explore sufficient criteria for the FTS of a singular switched
system with time-varying delays based on the state space decomposition approach.

Theorem 1 is obtained by a similar method to that used in [35, 36].

Theorem 1. Under Assumption 2, for any switched law σ(x(t)), System (2.1) is regular and impulse-
free, and the solution exists uniquely if matrix pair (E, Al) is regular and impulse-free for any l ∈ M
under compatible initial conditions.

Proof. All we have to do now is show that any subsystem is impulse-free.
Without loss of generality, we next consider the system{

Eẋ(t) = Ax(t) + Dx(t − τ(t)) + Bw(t),
x(t) = ϕ(t), t ∈ [−τ(t), 0],

where A ∈ Rn×n, B ∈ Rn×m and D ∈ Rn×n are constant matrices.
Here, x = G1 x̃, x is replaced with G1 x̃, and M1 is multiplied on the left-hand side of the first equation

to obtain
M1EG1 ˙̃x(t) = M1AG1 x̃(t) + M1DG1 x̃(t − τ(t)) + M1Bw(t). (3.1)

For simplicity, x̃ is still written as x, M1DG1 =

(
D11 D12

D21 D22

)
, M1B =

(
B1

B2

)
, and the above equation can

be written as two equations:

ẋ1 = Jx1(t) + D11x1(t − τ(t)) + D12x2(t − τ(t)) + B1w(t),

Nẋ2 = x2(t) + D21x1(t − τ(t)) + D22x2(t − τ(t)) + B2w(t).

Let x1 ∈ R
n1 , x2 ∈ R

n2 . By Lemma 5, N is a nilpotent matrix. Since M1(sE−A)G1 = diag(sI−J, sN−I),
deg(det(sE − A)) = deg(det(sI − J)) = n1.

If deg(det(sE − A)) = r(E) is satisfied, then the value of deg(det(sI − J)) is equal to r(E) and equal
to r(I) + r(N). Therefore, r(N) = 0 is obtained, i.e., N = 0.

Since 0 = x2(t)+D21x1(t−τ(t))+D22x2(t−τ(t))+B2w(t), x2(t) is a continuous function on [−τ2,∞).
By substituting x2(t) into the first equation and Definition 4, it is easy to see that a solution of Eq (3.1)
is impulse-free and unique, considering that the first equation is a generalized differential equation with
respect to t, x1. □
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In the following proof process, the constructed L-K function V(x(t)) is shortened to V(t) for brevity.
By Lemma 1, let Al + FlKl = Āl and FlKl = F̄l; then, we have

MEG =
(
Ir 0
0 0

)
, MĀlG =

(
Al

11 Al
12

Al
21 Al

22

)
, MDlG =

(
Dl

11 Dl
12

Dl
21 Dl

22

)
,

MBl =

(
Bl

1
Bl

2

)
, MF̄l(·) =

(
F̄ l

1

F̄ l
2

)
.

Under the state transformations y(t) = G−1x(t), new state y(t)⊤ can be written as
(
y1(t)⊤, y2(t)⊤

)
, where

y1(t) has r dimensions, y2(t) has n−r dimensions, and σ(x(t)) = l; hence, System (2.4) can be written as
ẏ1(t) = Al

11y1(t) + Al
12y2(t) + Dl

11y1(t − τ(t)) + Dl
12y2(t − τ(t)) + Bl

1w(t) + F̄ l
1e(t),

0 = Al
21y1(t) + Al

22y2(t) + Dl
21y1(t − τ(t)) + Dl

22y2(t − τ(t)) + Bl
2w(t) + F̄ l

2e(t),
y(t) = G−1ϕ(t), t ∈ [−τ2, 0].

(3.2)

Remark 2. From the above equations, it can be seen that the initial conditions for such systems need to
satisfy the following requirements: Let the initial condition be x(t) = ϕ(t); then, we have y(t) = G−1ϕ(t),
for t ∈ [−τ2, 0]. y(0) needs to satisfy 0 = Al

21y1(0) + Al
22y2(0) + Dl

21y1(−τ(0)) + Dl
22y2(−τ(0)) + Bl

2w(0).
Due to incompatible initial conditions, switched singular time-delay system (2.4) may exhibit

discontinuities at switched points. To ensure the continuity of states, the requirements of
0 = Al

21y1(0) + Al
22y2(0) + Dl

21y1(−τ(0)) + Dl
22y2(−τ(0)) + Bl

2w(0) and Assumption 2 must be met at
switched points. Under Assumption 2, switched points in these systems happen when the trajectories
cross the compatibility space of the new subsystems and then the switched case system’s trajectories
are continuous everywhere [37].

Some notations are given for the sake of simplicity.

Hl
11 = 0.5PĀl + 0.5Āl

⊤P⊤ − βPE + (1 − ρ)−1(Q1 + Q3)
Hl

12 = PDl , Hl
13 = PBl , Hl

14 = PF̄l ,

Hl
22 = −Q1 , Hl

33 = −Q2 , Hl
44 = −Q4 , Hl

i j = (Hl
ji)

T , i, j = 1, . . . , 4;

hl
11 = 0.5PAl + 0.5A⊤l P⊤ + I − βPE + (1 − ρ)−1(Q1 + Q3)

hl
12 = PDl , hl

13 = PBl , hl
14 = PF̄l ,

hl
22 = −Q1 , hl

33 = −Q2 , hl
44 = −Q4 , hl

i j = (hl
ji)

T , i, j = 1, . . . , 4;

L∗l = 0.5PAl + 0.5A⊤l P⊤ + I + ηQ4;
Ī = (0, In−r), Ī1 = (Ir, 0);

γ = max
1≤l≤p

(
∥∥∥(Al

22)−1Al
21

∥∥∥ + ∥∥∥(Al
22)−1Dl

21

∥∥∥ + √η ∥∥∥∥(Al
22)−1F̄ l

2

∥∥∥∥),

γ∗ = max
1≤l≤p

(
∥∥∥(ĪM(Al + P−1)GĪ⊤)−1 ĪM(Al + P−1)GĪ⊤1

∥∥∥
+

∥∥∥(ĪM(Al + P−1)GĪ⊤)−1Dl
21

∥∥∥ + √η ∥∥∥ĪM(Al + P−1)GĪ⊤)−1P−1
2

∥∥∥);

γ0 = 1 −
√
ηmax

1≤l≤p
(
∥∥∥(ĪMAlGĪ⊤)−1F̄ l

2

∥∥∥) ∥G∥ ,

γ∗0 = 1 −
√
ηmax

1≤l≤p
(
∥∥∥(ĪM(Al + P−1)GĪ⊤)−1P−1

2

∥∥∥) ∥G∥ ;
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γ1 =
γ

γ0
, γ∗1 =

γ∗

γ∗0
;

γ2 = max
1≤l≤p

(

∥∥∥(ĪMAlGĪ⊤)−1Dl
22

∥∥∥
γ0

), γ∗2 = max
1≤l≤p

(

∥∥∥(ĪM(Al + P−1)GĪ⊤)−1Dl
22

∥∥∥
γ∗0

);

γ3 = max
1≤l≤p

(

∥∥∥(ĪMAlGĪ⊤)−1Bl
2

∥∥∥
γ0

), γ∗3 = max
1≤l≤p

(

∥∥∥(ĪM(Al + P−1)GĪ⊤)−1Bl
2

∥∥∥
γ∗0

);

α1 =
λmin(P11)
λmaxQ11

;α2 =
λmax(P11)
λmin(G⊤QG)

+
τ2

1 − ρ
λmax(Q1 + Q3)
λmin(Q)

;

α3 =
α2c1 + λmax(Q2)Td

α1
;α4 =

[T/τ1]∑
i=0

(γ2)i, α∗4 =

[T/τ1]∑
i=0

(γ∗2)i;

α5 = α4γ3

√
d + ( max

i=1,...,[ T
τ2

]+1
γi

2)
∥∥∥G−1

∥∥∥ √
c1

λmin(Q)
,

α∗5 = α
∗
4γ
∗
3

√
d + ( max

i=1,...,[ T
τ2

]+1
(γ∗2)i)

∥∥∥G−1
∥∥∥ √

c1

λmin(Q)
;

Ωl =
{
x ∈ Rn : xT Llx < 0

}
, l = 1, . . . , p,

Ω̄1 = Ω1 ∪ {0}, Ω̄l = Ωl\

l−1⋃
k=1

Ω̄k, l = 2, 3, . . . , p.

Theorem 2. Assume that (A1–A3) hold. For (c1, c2,T,Q), c1, c2,T are given constants, and symmetric
matrix Q ∈ Rn×n is positive definite. For any l, l = 1, ..., p, if a nonsingular matrix P, positive definite
matrices Q1 > 0, Q2 > 0, Q4 > 0, and Q3 ≥ 0; scalars ξl ≥ 0, l = 1, ..., p,

∑p
l=1 = ξl > 0; and the

constant β > 0 can be found such that the conditions

E⊤P⊤ = PE ≥ 0, (3.3)

γ0 > 0, (3.4)

[Hl
i j]i, j=1,...,4 < 0, l = 1, . . . , p, (3.5)

p∑
l=1

ξlLl < 0, (3.6)

eβTα3

λmin(Q11)
+ (α5 + γ1α4

√
eβTα3

λmin(Q11)
)2 ≤

c2

λmax(G⊤QG)
, (3.7)

are satisfied then switched singular system (4) has FTS with respect to (c1, c2,T,Q) under the action
of the controller ul(t), l = 1, ..., p.

Proof. First, we prove the regular and impulse-free nature of the System (2.4).

Write G⊥PM−1 =

(
P11 P12

P21 P22

)
, where P11 is an r(E)-order matrix. Note that
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G⊤PEG = G⊤PM−1MEG =
(
P11 P12

P21 P22

) (
Ir 0
0 0

)
=

(
P11 0
P21 0

)
≥ 0,

G⊤E⊤P⊤G = G⊤E⊤M⊤M−⊤P⊤G =
(
P⊤11 P⊤21
0 0

)
≥ 0.

Because of Eq (3.3), P21 = 0, and P11 = P⊤11 > 0. It follows from Eq (3.5) that 0.5Āl
⊤P⊤ + 0.5PĀl −

βPE < −(1 − ρ)−1(Q1 + Q3) < 0. Therefore, we have

G⊤(Āl
⊤P⊤ + PĀl − 2βPE)G = G⊤Āl

⊤P⊤G +G⊤PĀlG − 2βG⊤PEG

= G⊤Āl
⊤M⊤M−⊤P⊤G +G⊤PM−1MĀlG − 2βG⊤PM−1MEG

=

(
P11 P12

0 P22

) (
A11 A12

A21 A22

)
+

(
A⊤11 A⊤21
A⊤12 A⊤22

) (
P⊤11 0
P⊤21 P⊤22

)
− 2β

(
P11 P12

0 P22

) (
Ir 0
0 0

)
=

(
P11A11 + P12A21 P11A12 + P12A22

P22A21 P22A22

)
+

(
A⊤11P⊤11 + A⊤21P⊤12 A⊤21P⊤22
A⊤12P⊤11 + A⊤22P⊤12 A⊤22P⊤22

)
− 2β

(
P11 0
0 0

)
< 0.

Considering the block matrix in the lower right-hand corner, we can see that P22A22 + P⊤22A⊤22 < 0, so
det(A22) , 0, and matrix pair (E, Al) is regular and impulse-free by [4]. By Theorem 1, System (2.4) is
regular and impulse-free.

Next, System (4) is proven to be finite-time stable.
Finally, it can be seen from references [25, 38, 39] that the L-K function can be a piecewise

function or a continuous function. The construction method in this paper is the same as that in the
literature [34, 38], which also introduces an event-triggered mechanism to the switched system. We
adopt a continuous L-K function to reduce the complexity of the calculation of the method because P
in the following function does not need to change, as the subsystem changes, and the control input
u(t) changes. The L-K function is constructed as

V(xt) = V1(xt) + V2(xt) + V3(xt), t ∈ [0,T ],

where V1(xt) = xT (t)PEx(t), V2(xt) = 1
1−ρ

∫ t

t−τ(t)
xT (s)Q1x(s)ds, and V3(xt) = 1

1−ρ

∫ t

t−τ(t)
xT (s)Q3x(s)ds.

The derivative of V in terms of time t is

V̇(xt) = (1 − ρ)−1xT (t)(Q1 + Q3)x(t) − (1 − ρ)−1xT (t − τ(t))(Q1 + Q3)x(t − τ(t))
+ xT (t)P[Ālx(t) + Dlx(t − τ(t)) + Blw(t) + F̄le(t)]
+ [Ālx(t) + Dlx(t − h) + Blw(t) + F̄le(t)]T PT x(t).

Because of Lemma 4, we have

V̇(xt) ≤ x⊤(Āl
⊤P⊤ + PĀl)x(t) + x⊤PDlQ−1

1 D⊤l P⊤x(t) + x⊤(t − τ(t))Q1x(t − τ(t))

+ x⊤(t)PBlQ−1
2 B⊤l P⊤x(t) + w⊤(t)Q2w(t) + x⊤(t)PF̄lQ−1

4 F̄l
⊤P⊤x(t)

+ e⊤(t)Q4e(t) + (1 − ρ)−1x⊤(t)(Q1 + Q3)x(t)
− (1 − ρ)−1(1 − τ̇(t))x⊤(t − τ(t))(Q1 + Q3)x(t − τ(t)).
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From the condition ∥e(t)∥2 ≤ η ∥x(t)∥2, we have that

V̇(xt) − βV(xt) ≤ V̇(xt) − βx⊤(t)PEx(t)

≤ x⊤(Āl
⊤P⊤ + PĀl)x(t) + e⊤(x)Q4e(t) + x⊤(t)PF̄lQ−1

4 F̄l
⊤P⊤x(t) + x⊤(t)PDlQ−1

1 D⊤l P⊤x(t)
+ x⊤(t − τ(t))Q1x(t − τ(t)) + x⊤(t)PBlQ−1

2 B⊤l P⊤x(t) + w⊤(t)Q2w(t) − βx⊤(t)PEx(t)
+ (1 − ρ)−1x⊤(t)(Q1 + Q3)x(t) − (1 − ρ)−1(1 − τ̇(t))x⊤(t − τ(t))(Q1 + Q3)x(t − τ(t))

≤ ηx⊤(t)Q4x(t) + x⊤(t)(Āl
⊤P⊤ + PĀl − βPE + PF̄lQ−1

4 F̄l
⊤P⊤ + PDlQ−1

1 D⊤l P⊤

+ PBlQ−1
2 B⊤l P⊤)x(t) + w⊤(t)Q2w(t) + x⊤(t − τ(t))Q1x(t − τ(t))

+ (1 − ρ)−1x⊤(t)(Q1 + Q3)x(t) − (1 − ρ)−1(1 − τ̇(t))x⊤(t − τ(t))(Q1 + Q3)x(t − τ(t))

≤ ηx⊤(t)Q4x(t) + x⊤(t)(Āl
⊤P⊤ + PĀl − βPE + PF̄lQ−1

4 F̄l
⊤P⊤ + PDlQ−1

1 D⊤l P⊤

+ PBlQ−1
2 B⊤l P⊤)x(t) + w⊤(t)Q2w(t) + (1 − ρ)−1x⊤(t)(Q1 + Q3)x(t)

= λmax(Q2)d + x⊤(t)Llx(t) + x⊤(t)Clx(t),

where Ll = 0.5PĀl+0.5Āl
⊤P⊤+ηQ4 and Cl = 0.5PĀl+0.5Āl

⊤P⊤−βPE+PF̄lQ−1
4 F̄l

⊤P⊤+PDlQ−1
1 D⊤l P⊤+

PBlQ−1
2 B⊤l P⊤)x(t) + (1 − ρ)−1x⊤(t)(Q1 + Q3)x(t).

It follows from Schur complements that Cl < 0 iff Eq (3.5) holds.
Due to condition Eq (3.6), the matrix {Li}

p
i=1 is strictly complete. Thus, we have

⋃p
i=1Ωi = R

n/ {0}
and

⋃p
l=1 Ω̄l = R

n; for any l1 , l2, we have Ω̄l1 ∩ Ω̄l2 = ∅. Thus, for any x(t), there is only one
l ∈ {1, 2, ..., p}, and there is

x(t) ∈ Ω̄l, xT (t)Llx(t) ≤ 0. (3.8)

Therefore, it follows from Eq (3.5) and Eq (3.6) that

V̇(xt) − βV(xt) < w⊤(t)Q2w(t) < λmax(Q2)d, ∀t > 0. (3.9)

By multiplying both sides by e−βt and integrating both sides simultaneously from 0 to t, we obtain

e−βtV(xt) − V(x0) ≤ λmax(Q2)td.

Thus, V(xt) ≤ eβt[V(x0) + λmax(Q2)dt], ∀t ∈ [0,T ].
It follows from Eq (9), Eq (10) and Eq (15) of reference [34] that

x⊤(t)E⊤QEx(t) < eβT
α2c1 + λmax(Q2)Td

α2
= eβTα3, ∀t ∈ [0,T ],

provided that sup
t∈[−τ2,0]

ϕ⊤(t)Qϕ(t) < c1.

Note that

x⊤(t)E⊤QEx(t) = y⊤(t)G⊤E⊤QEGy(t) = y⊤(t)G⊤E⊤M⊤M−⊤QEGy(t)
= y⊤1 (t)Q11y1(t) < eβTα3,

which implies that

∥y1(t)∥ ≤

√
eβTα3

λmin(Q11)
. (3.10)

AIMS Mathematics Volume 8, Issue 1, 1901–1924.



1911

Next, we estimate ∥y2(t)∥,

y2(t) = −(Al
22)−1(Al

21y1(t) + Dl
21y1(t − τ(t)) + Dl

22y2(t − τ(t)) + Bl
2w(t) + F̄ l

2e(t)).

From inequality (3.10),

∥y2(t)∥ ≤
∥∥∥(Al

22)−1Al
21

∥∥∥ ∥y1(t)∥ +
∥∥∥(Al

22)−1Dl
21

∥∥∥ ∥y1(t − τ(t))∥

+
∥∥∥(Al

22)−1Dl
22

∥∥∥ ∥y2(t − τ(t))∥ +
∥∥∥(Al

22)−1Bl
2

∥∥∥ ∥w(t)∥ +
∥∥∥∥(Al

22)−1F̄ l
2

∥∥∥∥ ∥e(t)∥

≤
∥∥∥(Al

22)−1Al
21

∥∥∥ √
eβTα3

λmin(Q11)
+

∥∥∥(Al
22)−1Dl

21

∥∥∥ ∥y1(t − τ(t))∥

+
∥∥∥(Al

22)−1Dl
22

∥∥∥ ∥y2(t − τ(t))∥

+
∥∥∥(Al

22)−1Bl
2

∥∥∥ ∥w(t)∥ +
√
η
∥∥∥∥(Al

22)−1F̄ l
2

∥∥∥∥ ∥G∥ (∥y1(t)∥ + ∥y2(t)∥).

(3.11)

When t ∈ [0, τ1], it follows from (A3) that t − τ(t) ∈ [τ2, 0]. This indicates that

∥y2(t)∥ ≤ (
∥∥∥(Al

22)−1Al
21

∥∥∥ + ∥∥∥(Al
22)−1Dl

21

∥∥∥)

√
eβTα3

λmin(Q11)

+
∥∥∥(Al

22)−1Dl
22

∥∥∥ ∥∥∥G−1
∥∥∥ √

c1

λmin(Q)
+

∥∥∥(Al
22)−1Bl

2

∥∥∥ ∥w(t)∥

+
√
η
∥∥∥∥(Al

22)−1F̄ l
2

∥∥∥∥ ∥G∥ (∥y1(t)∥ + ∥y2(t)∥),

i.e., (1 −
√
η
∥∥∥∥(Al

22)−1F̄ l
2

∥∥∥∥ ∥G∥) ∥y2(t)∥ ≤ γ
√

eβTα3
λmin(Q11) +

∥∥∥(Al
22)−1Dl

22

∥∥∥ ∥∥∥G−1
∥∥∥ √

c1
λmin(Q) +

∥∥∥(Al
22)−1Bl

2

∥∥∥ √d.

Therefore, ∥y2(t)∥ ≤ γ1

√
eβTα3
λmin(Q11) + γ2

∥∥∥G−1
∥∥∥ √

c1
λmin(Q) + γ3

√
d.

When t ∈ [τ1, 2τ1], it follows that t − τ(t) ∈ [τ1 − τ2, τ1]. There are two cases. First, when
t − τ(t) ∈ [τ1 − τ2, 0], we have

∥y2(t)∥ ≤ γ1

√
eβTα3

λmin(Q11)
+ γ2

∥∥∥G−1
∥∥∥ √

c1

λmin(Q)
+ γ3

√
d;

when t − τ(t) ∈ [0, τ1], we have

∥y2(t)∥ ≤ (
∥∥∥(Al

22)−1Al
21

∥∥∥ + ∥∥∥(Al
22)−1Dl

21

∥∥∥ + √η ∥∥∥∥(Al
22)−1F̄ l

2

∥∥∥∥ ∥G∥)
√

eβTα3

λmin(Q11)

+
∥∥∥(Al

22)−1Dl
22

∥∥∥ (γ1

√
eβTα3

λmin(Q11)
+ γ2

∥∥∥G−1
∥∥∥ √

c1

λmin(Q)
+ γ3

√
d)

+
∥∥∥(Al

22)−1Bl
2

∥∥∥ √d +
√
η
∥∥∥∥(Al

22)−1F̄ l
2

∥∥∥∥ ∥G∥ ∥y2(t)∥ ,

i.e.,

∥y2(t)∥ ≤ γ1

√
eβTα3

λmin(Q11)
+ γ2(γ1

√
eβTα3

λmin(Q11)
+ γ2

∥∥∥G−1
∥∥∥ √

c1

λmin(Q)
+ γ3

√
d)

+ γ3

√
d = (γ1 + γ1γ2)

√
eβTα3

λmin(Q11)
+ γ2

2

∥∥∥G−1
∥∥∥ √

c1

λmin(Q)
+ (γ2γ3 + γ3)

√
d.
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Thus, we have

∥y2(t)∥ ≤ (γ1 + γ1γ2)
√

c1

λmin(Q)
+max

i=1,2
(γi

2)
∥∥∥G−1

∥∥∥ √
c1

λmin(Q)
+ (γ2γ3 + γ3)

√
d.

By induction, for all t ∈ [(k − 1)τ1, kτ1], k ∈ Z+,

∥y2(t)∥ ≤ γ1

k−1∑
i=0

(γi
2)

√
eβTα3

λmin(Q11)
+ max

i=1,...,k
(γi

2)
∥∥∥G−1

∥∥∥ √
c1

λmin(Q)
+ (

k−1∑
i=0

γi
2)γ3

√
d

holds, which implies that

∥y2(t)∥ ≤ α5 + γ1α4

√
eβTα3

λmin(Q11)
, ∀t ∈ [0,T ]. (3.12)

Finally, by (3.7) and (3.12), for any 0 ≤ t ≤ T , we have

x⊤(t)Qx(t) = y⊤(t)G⊤QGy(t) ≤ λmax(G⊤QG) ∥y(t)∥2

≤ λmax(G⊤QG)[

√
eβTα3

λmin(Q11)
+ (α5 + γ1α4

√
eβTα3

λmin(Q11)
)2]

≤ c2.

The proof has been completed. □

Theorem 3. Assume that (A1−A3) hold. For (c1, c2,T,Q), c1, c2,T are given constants, and symmetric
matrix Q ∈ Rn×n is positive definite. For any l, l = 1, ..., p, if a nonsingular matrix P; positive definite
matrices Q1 > 0, Q2 > 0, Q4 > 0, and Q3 ≥ 0; scalars ξl ≥ 0, l = 1, ..., p,

∑p
l=1 = ξl > 0; and the

constant β > 0 can be found such that the conditions

E⊤P⊤ = PE ≥ 0, (3.13)

γ∗0 > 0, (3.14)

[hl
i j]i, j=1,...,4 < 0, l = 1, . . . , p, (3.15)

p∑
l=1

ξlL∗l < 0, (3.16)

eβTα∗3
λmin(Q11)

+ (α∗5 + γ
∗
1α
∗
4

√
eβTα∗3
λmin(Q11)

)2 ≤
c2

λmax(G⊤QG)
, (3.17)

are satisfied then switched singular system (4) has FTS with respect to (c1, c2,T,Q) under the action
of the controller ul(t), l = 1, ..., p, where Kl = F−1

l P−1.
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Proof. Here, Āl in Theorem 2 is replaced by Al + FlKl, and F̄l in Theorem 2 is replaced by FlKl.
Considering Kl = F−1

l P−1, it follows from Theorem 2 that System (2.4) has FTS. □

Corollary 1. For System (2.4), provided the conditions of Theorem 3 are satisfied, if Vl,Nl is required
to satisfy (

V⊤l Vl V⊤l Nl

N⊤l Vl −(Q1 + Q3) + N⊤l Nl

)
< 0, (3.18)

System (2.4) satisfies the finite-time H∞ performance metric γ, where γ =
√
λmax(Q1 + Q3).

Proof. The following shows that System (2.4) has a finite-time H∞ performance index γ. The L-K
function V(xt) = V1(xt) + V2(xt) + V3(xt) is chosen.

The proof of Theorem 2 and the conditions give V̇(xt) ≤ βV(t) + w⊤(x)(Q1 + Q3)w(t) − z⊤(t)z(t) +
λmax(Q2)d.

Integrating both sides simultaneously from 0 to τ2 gives

∫ τ2

0
eβ(τ2−s)V̇(s)ds ≤

∫ τ2

0
eβ(τ2−s)βV(s)ds + λmax(Q2)d

∫ τ2

0
eβ(τ2−s)ds

+

∫ τ2

0
(w⊤(s)(Q1 + Q3)w(s) − z⊤(t)z(t))ds,

so we have V(τ2) ≤ λmax(Q2)dτ2eβτ2 +
∫ τ2

0
eβ(τ2−s)Γ(s)ds. By induction, we can obtain that

V(iτ2) ≤ iλmax(Q2)dτ2eiβτ2 +

∫ iτ2

0
eβ(iτ2−s)Γ(s)ds, (3.19)

where Γ(s) = w⊤(s)(Q1 + Q3)w(s) − z⊤(t)z(t).
By letting

∫ t

[ t
τ2

]τ2
V̇(s)ds =

∫ t

jτ2
V̇(s)ds, we have

∫ t

jτ2
eβ(t−s)V̇(s)ds − β

∫ t

jτ2
eβ(t−s)V(s)ds ≤ λmax(Q2)d

∫ t

jτ2
eβ(t−s)ds

+

∫ t

jτ2
eβ(t−s)Γ(s)ds.

By calculation, we obtain

V(t) − V( jτ2)eβ(t− jτ2) ≤ λmax(Q2)d
∫ t

jτ2
eβt(t − s)ds +

∫ t

jτ2
eβ(t−s)Γ(s)ds. (3.20)
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Substituting (3.19) into (3.20) yields

V(t) ≤ jλmax(Q2)dτ2eβt +
∫ jτ2

0
eβ(t−s)Γ(s)ds

+ λmax(Q2)d
∫ t

jτ2
eβ(t−s)ds +

∫ t

iτ2
eβ(t−s)Γ(s)ds

≤ jλmax(Q2)dτ2eβt + λmax(Q2)d(t − jτ2)eβt
∫ t

0
eβ(t−s)Γ(s)ds

= λmax(Q2)dteβt +
∫ t

0
eβ(t−s)Γ(s)ds

≤ λmax(Q2)dteβt +
∫ T

0
eβTΓ(s)ds.

Under the condition that the initial state is 0, since V(t) ≥ 0, when t = 0 we have

0 ≤
∫ T

0
eβ(T−s)Γ(s)ds ≤

∫ T

0
eβTΓ(s)ds.

The theorem is proved. □

4. Numerical simulation

To test the applicability and effectiveness of the proposed strategy, two examples are presented in
this section.

Example 1. Consider system (2.4) with the switched signal σ(t) = 1, 2, where

A1 =

(
−2.3 −1
0.4 −4.3

)
, A2 =

(
−2.7 −1.3

2 −4.3

)
,D1 =

(
−0.6 0.7
0.5 0.5

)
,D2 =

(
−1 0.6
0.4 0.2

)
,

B1 =

(
0.1 0.2
0.01 0.1

)
, B2 =

(
0.25 0.3
0.01 0.2

)
, F1 =

(
0.3 0.3
0.2 0.1

)
, F2 =

(
0.3 0.3
0.1 0.2

)
, E =

(
4 1
0 0

)
.

Then,

M =
(
1 −1
0 1

)
,G =

(
0.3 0.1
−0.2 −0.4

)
which satisfy MEG =

(
Ir 0
0 0

)
are chosen.

The initial value is ϕ(t) = (0 0)⊤ for t ∈ [−0.15, 0]. The continuous external perturbation is

w(t) = (0.01sin(0.1t) 0)⊤. For given c1 = 0.0001, c2 = 2.1, T = 1, Q =
(
6 0
0 0.4

)
, η = 0.02, τ(t) =

0.02sin(t) + 0.13, d = 0.000005, ρ = 0.5, τ1 = 0.11, τ2 = 0.15, we have the following results.

We can obtain β = 1.1 and P̄ =
(
1.3285 0.5500
0.3321 0.8875

)
. In this case, we can obtain by calculation that

L1 =

(
−0.5872 −0.7150
−0.7150 −0.5946

)
, L2 =

(
−0.2387 −0.2707
−0.2707 −0.6943

)
,

L1 + L2 =

(
−0.8259 −0.9858
−0.9858 −1.2889

)
< 0.
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The matrix system L1, L2 is therefore strictly complete.

The division of the state space is performed as follows:

Ω̄1 =
{
x = (x1, x2)⊤ : (x1, x2)L1(x1, x2)⊤ ≥ 0

}
;

Ω̄2 =
{
x = (x1, x2)⊤ : (x1, x2)L2(x1, x2)⊤ ≥ 0

}
.

Then, the switched law is

σ(x(t)) = l =

1, i f x(t) ∈ Ω̄1,

2, i f x(t) ∈ Ω̄2.

In addition, it is possible to verify that P̄E = E⊤P⊤ =
(
5.3140 1.3285
1.3285 0.3321

)
≥ 0.

Figure 1 gives information about state response x⊤Qx for the initial conditions, and Figure 2 shows
the variation in the switched signal with time. The system state of the two-dimensional system can
be seen in Figure 3. From Definition 7, the system has FTS for the corresponding (0.001, 2.1, 5,Q)
under the switched law σ(x(t)) = l. Figure 4 shows the division of the state space corresponding to the
different subsystems.

Figure 1. State response of x⊤Qx.
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Figure 2. Switched signal σ(x(t)).

Figure 3. Division of plane areas.
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Figure 4. Division of plane areas.

Example 2. Consider system (2.4) with the switched signal σ(t) = 1, 2, where

A1 =

(
−0.5 −1

2 −3

)
, A2 =

(
−1 −1.3
2.1 −2

)
,D1 =

(
−1.4 0.6
0.6 0.5

)
,D2 =

(
−1.2 0.6
0.4 0.2

)
,

B1 =

(
0.1 0.2

0.01 0.1

)
, B2 =

(
−0.2 0.3
0.01 0.2

)
, F1 =

(
0.3 0.3
0.2 0.1

)
, F2 =

(
0.3 0.3
0.1 0.2

)
, E =

(
2 1
0 0

)
.

Then,

M =
(
1 −1
0 1

)
,G =

(
0.4 0.1
0.2 −0.2

)
are chosen and satisfy MEG =

(
Ir 0
0 0

)
. The initial value is ϕ(t) = (0.001 0.01)⊤sin(πt) for t ∈

[−0.21, 0]. The continuous external perturbation is w(t) = (0.01sin(0.1t) 0)⊤. For a given c1 =

0.001, c2 = 3.7, T = 3, Q =
(
6 0
0 0.6

)
, η = 0.4, τ(t) = 0.08sin(t) + 0.13, d = 0.0001, ρ = 0.08, τ1 =

0.05, τ2 = 0.21, we have the following results.

We can obtain β = 0.1 and P̄ =
(
247.1713 −54.5035
123.5856 −26.7517

)
. In this case, we can obtain by calculation

that

L1 =

(
−35.1679 −1.4630
−1.4630 6.9204

)
, L2 =

(
−164.2039 −98.0245
−98.0245 −56.9069

)
,

L1 + L2 =

(
−199.3719 −99.4876
−99.4876 −49.9865

)
< 0.
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The matrix system L1, L2 is therefore strictly complete.

The division of the state space is performed as follows:

Ω̄1 =
{
x = (x1, x2)⊤ : (x1, x2)L1(x1, x2)⊤ ≥ 0

}
;

Ω̄2 =
{
x = (x1, x2)⊤ : (x1, x2)L2(x1, x2)⊤ ≥ 0

}
.

Then, the switched law is

σ(x(t)) = l =

1, i f x(t) ∈ Ω̄1,

2, i f x(t) ∈ Ω̄2.

In addition, it is possible to verify that P̄E = E⊤P⊤ =
(
494.3426 247.1713
247.1713 123.5857

)
≥ 0.

Figure 5 gives information about the state response x⊤Qx for the initial conditions, and Figure 6
shows the variation in the switched signal with time. The system state of the two-dimensional system
can be seen in Figure 7. From Definition 7, the system has FTS for the corresponding (0.001, 3.7, 3,Q)
under the switched law σ(x(t)) = l. Figure 8 shows the division of the state space corresponding to the
different subsystems.

Figure 5. State response of x⊤Qx.
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Figure 6. Switched signal σ(x(t)).

Figure 7. System state.
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Figure 8. Division of plane areas.

From the two examples above, we can see that the numerical example verifies that the system
satisfies that x⊤Qx is in the given interval for a given finite time period under the control scheme
proposed in this paper.

Remark 3. In terms of Eq (3.3) or Eq (3.13), let symmetric matrix P be positive definite, S ∈ Rn×n−r

be a column full rank matrix that satisfies E⊤S = 0, and V be a matrix of any suitable dimension. Let
P̄ = (PE + S V)⊤, and we have P̄E = E⊤P̄⊤ = E⊤PE ≥ 0. Thus, Eq (3.13) is a linear matrix inequality
that replaces P with the notation P̄ = (PE + S V)⊤.

Remark 4. If we let Pl = I, then this paper addresses the question of what kind of singular switched
systems can be finite-time stable with a deterministic control input u = Klx(tq).

This paper focuses on the problem of how a singular switched system with a time-varying delay can
be calibrated in finite time. There are various possible ways to construct L-K functions, but in view of
the ease of computation, this paper does not use double integration to construct the L-K function, and
a more conservative construction method will be considered and discussed in subsequent work.

A robust stability analysis of switched singular positive systems based on event triggering
mechanisms will be a topic of future research.

5. Conclusions

In this paper, unlike some existing research that focused on the Lyapunov stability property of a
switched system with time-varying delays, we focus on finite-time stability. For singular switched
systems with time-varying delays and perturbations, the results are given in relation to the derivatives
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of the time-varying delay. The control law is constructed with the help of an event-triggered
mechanism and with the division of state space. After constructing a suitable Lyapunov-like function,
in combination with a Lyapunov-like function approach, an FTS criterion is developed and proved.
Finally, sufficient requirements are also presented to satisfy the finite-time stable H∞ performance
index γ. An important and challenging future investigation is how to extend the results in this paper to
switched nonlinear systems and how to reduce the conservatism of the method.

Acknowledgments

The paper was supported by the National Natural Science Foundation of China
Nos. 11861013, 11771444; the Fundamental Research Funds for the Central Universities, China
University of Geosciences (Wuhan) No. 2018061; the Fundamental Research Funds for National
University, China University of Geosciences (Wuhan) No.CUGDCJJ202216.

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

References

1. X. P. Xu, P. J. Antsaklis, Optimal control of switched systems based on parameterization
of the switching instants, IEEE Trans. Automat. Control, 49 (2004), 2–16.
https://doi.org/10.1109/TAC.2003.821417

2. Z. Y. Meng, W. G. Xia, K. H. Johansson, S. Hirche, Stability of positive switched linear systems:
Weak excitation and robustness to time-varying delay, IEEE Trans. Automat. Control, 62 (2017),
399–405. https://doi.org/10.1109/TAC.2016.2531044

3. V. E. Khartovskii, Criteria for modal controllability of completely regular
differential-algebraic systems with aftereffect, Differ. Equations, 54 (2018), 509–524.
https://doi.org/10.1134/S0012266118040080

4. S. Y. Xu, J. Lam, Robust control and filtering of singular systems, In: Lecture notes in control and
information sciences, Berlin: Springer, 2006. https://doi.org/10.1007/11375753

5. W. Q. Liu, W. Y. Yan, K. L. Teo, On initial instantaneous jumps of singular systems, IEEE Trans.
Automat. Control, 40 (1995), 1650–1655. https://doi.org/10.1109/9.412639

6. L. Zhou, D. W. C. Ho, G. S. Zhai, Stability analysis of switched linear singular systems,
Automatica, 49 (2013), 1481–1487. https://doi.org/10.1016/j.automatica.2013.02.002

7. Y. Li, Y. He, Dissipativity analysis for singular Markovian jump systems with time-varying
delays via improved state decomposition technique, Inform. Sci., 580 (2021), 643–654.
https://doi.org/10.1016/j.ins.2021.08.092

8. J. X. Lin, X. Wu, J. Ding, Z. E. Lou, Stability of switched singular time delay systems
with switching induced state jumps, IET Control Theory Appl., 14 (2020), 3351–3361.
https://doi.org/10.1049/iet-cta.2019.1338

AIMS Mathematics Volume 8, Issue 1, 1901–1924.

http://dx.doi.org/https://doi.org/10.1109/TAC.2003.821417
http://dx.doi.org/https://doi.org/10.1109/TAC.2016.2531044
http://dx.doi.org/https://doi.org/10.1134/S0012266118040080
http://dx.doi.org/https://doi.org/10.1007/11375753
http://dx.doi.org/https://doi.org/10.1109/9.412639
http://dx.doi.org/https://doi.org/10.1016/j.automatica.2013.02.002
http://dx.doi.org/https://doi.org/10.1016/j.ins.2021.08.092
http://dx.doi.org/https://doi.org/10.1049/iet-cta.2019.1338


1922

9. L. Liu, Q. Zhou, H. J. Liang, L. J. Wang, Stability and stabilization of nonlinear
switched systems under average dwell time, Appl. Math. Comput., 298 (2017), 77–94.
https://doi.org/10.1016/j.amc.2016.11.006

10. P. K. Anh, P. T. Linh, D. D. Thuan, S. Trenn, Stability analysis for
switched discrete-time linear singular systems, Automatica, 119 (2020), 109100.
https://doi.org/10.1049/10.1016/j.automatica.2020.109100

11. Y. Li, Y. He, C. K. Zhang, M. Wu, Discrete-State decomposition technique of dissipativity analysis
for discrete-time singular systems with time-varying delays, IEEE Trans. Cybernetics, 2022.
https://doi.org/10.1109/TCYB.2022.3151414

12. S. Alexandre, G. Frédéric, F. Emilia, Stability of discrete-time systems with time-varying
delays via a novel summation inequality, IEEE Trans. Automat. Control, 60 (2015), 2740–2745.
https://doi.org/10.1109/TAC.2015.2398885

13. B. Wang, Q. X. Zhu, Stability analysis of semi-Markov switched stochastic systems, Automatica,
94 (2018), 72–80. https://doi.org/10.1016/j.automatica.2018.04.016

14. X. T. Wu, Y. Tang, W. B. Zhang, Input-to-state stability of impulsive stochastic
delayed systems under linear assumptions, Automatica, 66 (2016), 195–204.
https://doi.org/10.1016/j.automatica.2016.01.002

15. S. N. Vassilyev, A. A. Kosov, Analysis of hybrid systems’ dynamics using the common
Lyapunov functions and multiple homomorphisms, Autom. Remote Control, 72 (2011), 1163–
1183. https://doi.org/10.1134/S000511791106004X

16. W. M. Haddad, J. Lee, Finite-time stability of discrete autonomous systems, Automatica, 122
(2020), 109282. https://doi.org/10.1016/j.automatica.2020.109282

17. G. S. Wang, Y. Liu, J. Q. Lu, Z. Wang, Stability analysis of totally positive switched linear
systems with average dwell time switching, Nonlinear Anal. Hybrid Syst., 36 (2020), 109282.
https://doi.org/10.1016/j.nahs.2020.100877

18. Y. L. Zhang, B. W. Wu, Y. E. Wang, X. X. Han, Finite-time stability for switched singular systems,
Acta Phys., 63 (2014), 170205. https://doi.org/10.7498/aps.63.170205

19. Y. L. Zhang, B. W. Wu, Y. E. Wang, X. X. Han, Delay-dependent observer-based H∞ finite-time
control for switched systems with time-varying delay, Nonlinear Anal. Hybrid Syst., 6 (2012),
885–898. https://doi.org/10.1016/10.1016/j.nahs.2012.03.001

20. G. Q. Ma, X. H. Liu, L. L. Qin, G. Wu, Finite-time event-triggered H∞ control
for switched systems with time-varying delay, Neurocomputing, 207 (2016), 828–842.
https://doi.org/10.1016/j.neucom.2016.05.070

21. B. Zhou, Finite-time stability analysis and stabilization by bounded linear time-varying feedback,
Automatica, 121 (2020), 109191. https://doi.org/10.1016/j.automatica.2020.109191

AIMS Mathematics Volume 8, Issue 1, 1901–1924.

http://dx.doi.org/https://doi.org/10.1016/j.amc.2016.11.006
http://dx.doi.org/https://doi.org/10.1049/10.1016/j.automatica.2020.109100
http://dx.doi.org/https://doi.org/10.1109/TCYB.2022.3151414
http://dx.doi.org/https://doi.org/10.1109/TAC.2015.2398885
http://dx.doi.org/https://doi.org/10.1016/j.automatica.2018.04.016
http://dx.doi.org/https://doi.org/10.1016/j.automatica.2016.01.002
http://dx.doi.org/https://doi.org/10.1134/S000511791106004X
http://dx.doi.org/https://doi.org/10.1016/j.automatica.2020.109282
http://dx.doi.org/https://doi.org/10.1016/j.nahs.2020.100877
http://dx.doi.org/https://doi.org/10.7498/aps.63.170205
http://dx.doi.org/https://doi.org/10.1016/10.1016/j.nahs.2012.03.001
http://dx.doi.org/https://doi.org/10.1016/j.neucom.2016.05.070
http://dx.doi.org/https://doi.org/10.1016/j.automatica.2020.109191


1923

22. Q. Xi, X. Z. Liu, Finite-time stability and controller design for a class of hybrid
dynamical systems with deviating argument, Nonlinear Anal. Hybrid Syst., 39 (2021), 100952.
https://doi.org/10.1016/j.nahs.2020.100952

23. N. T. Thanh, P. Niamsup, V. N. Phat, Finite-time stability of singular nonlinear switched time-delay
systems: A singular value decomposition approach, J. Franklin Inst., 354 (2017), 3502–3518.
https://doi.org/10.1016/j.jfranklin.2017.02.036

24. N. T. Thanh, V. N. Phat, Switching law design for finite-time stability of singular fractional-order
systems with delay, IET Control Theory Appl., 13 (2019), 1367–1373. https://doi.org/10.1049/iet-
cta.2018.5556

25. Y. H. Liu, H. M. Zhi, J. M. Wei, X. L. Zhu, Q. X. Zhu, Event-triggered control for
linear continuous switched singular systems, Appl. Math. Comput., 374 (2020), 125038.
https://doi.org/10.1016/j.amc.2020.125038

26. L. Q. Wang, J. X. Dong, Adaptive fuzzy consensus tracking control for uncertain fractional-order
multiagent systems with event-triggered input, IEEE Trans. Fuzzy Syst., 30 (2022), 310–320.
https://doi.org/10.1109/TFUZZ.2020.3037957

27. A. Q. Wang, L. Liu, J. B. Qiu, G. Feng, Event-triggered adaptive fuzzy output-feedback control for
nonstrict-feedback nonlinear systems with asymmetric output constraint, IEEE Trans. Cybernetics,
52 (2022), 712–722. https://doi.org/10.1109/TCYB.2020.2974775

28. L. Cao, Q. Zhou, G. W. Dong, H. Y. Li, Observer-based adaptive event-triggered control for
nonstrict-feedback nonlinear systems with output constraint and actuator failures, IEEE T. Syst.
Man Cy.-S., 51 (2021), 1380–1391. https://doi.org/10.1109/TSMC.2019.2895858

29. S. Y. Xu, P. V. Dooren, R. Stefan, J. Lam, Robust stability and stabilization for singular systems
with state delay and parameter uncertainty, IEEE Trans. Automat. Control, 47 (2002), 1122–1128.
https://doi.org/10.1109/TAC.2002.800651

30. L. Dai, Singular control systems, Berlin: Springer, 1989. https://doi.org/10.1007/BFb0002475

31. A. Haidar, E. K. Boukas, Exponential stability of singular systems with multiple time-varying
delays, Automatica, 45 (2009), 539–545. https://doi.org/10.1016/j.automatica.2008.08.019

32. I. Zamani, M. Shafiee, A. Ibeas, Exponential stability of hybrid switched nonlinear
singular systems with time-varying delay, J. Franklin Inst., 350 (2013), 171–193.
https://doi.org/10.1016/j.jfranklin.2012.10.002

33. F. L. Lewis, A survey of linear singular systems, Circ. Syst. Signal Pr., 5 (1986), 3–36.
https://doi.org/10.1007/BF01600184

34. X. Y. Yang, X. D. Li, J. D. Cao, Robust finite-time stability of singular nonlinear
systems with interval time-varying delay, J. Franklin Inst., 3 (2018), 1241–1258.
https://doi.org/10.1016/j.jfranklin.2017.12.018

35. H. Y. Su, X. F. Ji, J. Chu, Delay-dependent robust control for uncertain singular time-delay
systems, Asian J. Control, 8 (2006), 180–189. https://doi.org/10.1109/TAC.2002.800651

AIMS Mathematics Volume 8, Issue 1, 1901–1924.

http://dx.doi.org/https://doi.org/10.1016/j.nahs.2020.100952
http://dx.doi.org/https://doi.org/10.1016/j.jfranklin.2017.02.036
http://dx.doi.org/https://doi.org/10.1049/iet-cta.2018.5556
http://dx.doi.org/https://doi.org/10.1049/iet-cta.2018.5556
http://dx.doi.org/https://doi.org/10.1016/j.amc.2020.125038
http://dx.doi.org/https://doi.org/10.1109/TFUZZ.2020.3037957
http://dx.doi.org/https://doi.org/10.1109/TCYB.2020.2974775
http://dx.doi.org/https://doi.org/10.1109/TSMC.2019.2895858
http://dx.doi.org/https://doi.org/10.1109/TAC.2002.800651
http://dx.doi.org/https://doi.org/10.1007/BFb0002475
http://dx.doi.org/https://doi.org/10.1016/j.automatica.2008.08.019
http://dx.doi.org/https://doi.org/10.1016/j.jfranklin.2012.10.002
http://dx.doi.org/https://doi.org/10.1007/BF01600184
http://dx.doi.org/https://doi.org/10.1016/j.jfranklin.2017.12.018
http://dx.doi.org/https://doi.org/10.1109/TAC.2002.800651


1924

36. F. Zahedi, H. Mohammad, Decomposition and robust non-fragile stabilisation of singular time-
delay systems, IET Control Theory Appl., 12 (2018), 1882–1888. https://doi.org/10.1049/iet-
cta.2017.1150

37. I. Zamani, M. Shafiee, A. Ibeas, Switched nonlinear singular systems with time-
delay: Stability analysis, Int. J. Robust Nonlinear Control, 25 (2015), 1497–1513.
https://doi.org/10.1002/rnc.3154

38. X. Y. Zhao, H. Chen, Z. Z. Zhang, S. Y. Dong, S. M. Zhong, Z. Y. You, Dynamic event-triggered
H-infinity control on nonlinear asynchronous switched system with mixed time-varying delay, J.
Franklin Inst., 359 (2022), 520–555. https://doi.org/10.1016/j.jfranklin.2021.11.006

39. H. Gao, H. B. Zhang, K. B. Shi, K. Zhou, Event-triggered finite-time guaranteed cost control for
networked Takagi-Sugeno (T-S) fuzzy switched systems under denial of service attacks, Int. J.
Robust Nonlinear Control, 32 (2022), 5764–5775. https://doi.org/10.1002/rnc.6112

© 2023 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 8, Issue 1, 1901–1924.

http://dx.doi.org/https://doi.org/10.1049/iet-cta.2017.1150
http://dx.doi.org/https://doi.org/10.1049/iet-cta.2017.1150
http://dx.doi.org/https://doi.org/10.1002/rnc.3154
http://dx.doi.org/https://doi.org/10.1016/j.jfranklin.2021.11.006
http://dx.doi.org/https://doi.org/10.1002/rnc.6112
http://creativecommons.org/licenses/by/4.0

	Introduction
	Preliminary
	Main results
	Numerical simulation
	Conclusions

