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Abstract: One of the most effective and impressive approaches to tackle uncertainty is the theory of 

bipolar complex fuzzy set (BCFS). The theory of BCFS modified the theory of fuzzy set (FS), bipolar 

FS (BFS), and complex FS. Further, the Heronian mean (HM) and generalized HM (GHM) give the 

aggregation operators (AOs), which have the benefits of taking into account the interrelatedness among 

the parameters. Up till now, in the prevailing literature, these operators are not introduced in the setting 

of BCFS. Thus, in this article, our goal is to introduce HM and GHM operators under a bipolar complex 

fuzzy setting. Firstly, we initiate the bipolar complex fuzzy generalized Heronian mean (BCFGHM) 

operator. Then, a few of its particular cases by changing the values of the parameter to show its 

supremacy. We also initiate the bipolar complex fuzzy weighted generalized Heronian mean 

(BCFWGHM) operator. Secondly, we interpret a method called the “multiple attribute decision making” 

(MADM) procedure by employing the initiated operators. Next, we provide a descriptive example 

(selection of the finest renewable energy generation project) to portray the applicability and usefulness 

of the initiated MADM procedure. Finally, to demonstrate the usefulness of the propounded operators 

and MADM procedure we compare our initiated work with several present operators and MADM 

techniques. 
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1. Introduction 

The MADM is a procedure that can provide ordering outcomes for the limited alternatives as per 

the values of their attributes and it is a significant part of decision sciences. As of late, the advancement 

of social decision-making (DM) and enterprises in all perspectives are connected with the problem of 

MADM, so it is broadly employed in all sorts of disciplines. In the genuine decision method, a 

significant issue is a way to describe the attribute values competently and precisely. In reality, because 

of the intricacy of DM issues and the fuzziness of DM settings, it isn’t sufficient to describe the 

attribute values of each alternative by precise values. To adapt to such kinds of problems, Zadeh [1] 

explored the conception of the fuzzy set (FS). FS includes the membership grade (MG) with an 

instruction that MG must be restricted to the unit interval. Mardani et al. [2] explored the DM 

techniques based on fuzzy aggregation operators (AOs). Merigo and Casanovas [3] presented fuzzy 

generalized hybrid AOs. The fuzzy AOs in DM with Dempster-Shafer belief were described by 

Casanovas, Merigo and Ngan et al. [4,5] initiated DM by relying on fuzzy AOs for medical diagnosis. 

Since FS merely contains MG, it sometimes becomes problematic to express certain complicated 

circumstances. For instance, for an issue of judgment, if the outcomes established that an expert 

presented his opinion in two different aspects i.e., positive and negative aspects. So, it is clear that the 

FS can’t describe the outcome of this issue. To compound this, bipolar FS (BFS) was developed by 

Zhang [6]. BFS includes the positive MG (PMG) with an instruction that PMG must be restricted to 

the unit interval [0, 1] and negative MG (NMG) with an instruction that NMG must be restricted to 

the closed interval [−1, 0]. Jana et al. [7] presented bipolar fuzzy (BF) Dombi AOs in MADM. Wei 

et al. [8] explored BF Hamacher AOs.  

The BF Dombi prioritized AOs were invented by Jana et al. [9]. Akram [10] proposed the BF 

graphs. Samanta and Pal [11] initiated irregular BF graphs. The BF finite state machine was described 

by Jun and Kavikumar [12]. Alghamdi et al. [13] propounded multi-criteria DM (MCDM) procedures 

in a BF setting. Also Lame and Alshehri [14] initiated the extension of the VIKOR method for MCHM 

based on BFS. The BF relations were expressed by Lee and Hur [15]. A Yin Yang BF cognitive TOPSIS 

method for bipolar disorder diagnosis was explored by Han et al. [16]. Kang and Kang [17] established 

the BFS notion employed to sub-semigroups. Riaz and Tehrim [18] described multi-attribute group 

DM (MAGDM) on cubic BF data. The novel approach of the bipolar soft set (SS) (BSS) was 

introduced by Mahmood [19]. Abdullah et al. [20] initiated BF SS (BFSS). 

As FS merely contains an MG in a single dimension (i.e., only amplitude term) and can’t handle 

the data which includes both amplitude term and phase term. To fill this gap, Ramot et al. [21] modified 

the notion of FS and presented a novel notion of complex FS (CFS) by adding the phase term to the 

MG of FS with an instruction that MG must be restricted to the unit circle of a complex plane. After 

that, Tamir et al. [22] explored the cartesian shape of CFS. Bi et al. [23] established complex fuzzy 

(CF) arithmetic AOs. Akram and Bashir [24] propounded CF ordered weighted quadratic averaging 

operators. The CF geometric AOs were initiated by Bi et al. [25]. Li et al. [26] explored CF AOs with 

complex weights.  

Alkouri and Salleh [27] presented linguistic variables and hedges on CFSs. Moses et al. [28] 

introduced linguistic coordinate transformations for CFSs. Tamir and Kandel [29] explored the 

axiomatic theory of CF logic and CF classes. Various authors presented the conception of graph in the 

setting of CFS such as Luqman et al. [30], Akram et al. [31], Hameed et al. [32]. Mahmood et al. [33] 

invented complex hesitant FSs (CHFSs). Akram and Naz [34] propounded complex Pythagorean FS. 

Their theories mentioned above can’t deal with the structure where PMG and NMG are involved in 
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two dimensions at a time because the structure of FS merely contains the MG in a single dimension. 

The structure of BFS merely contains PMG and NMG in a single dimension, the structure of CFS 

merely contains MG in two dimensions. To fill this gap, Mahmood and Ur Rehman [35] introduced 

the idea of bipolar CFS (BCFS). BCFS includes the PMG with both real and unreal parts with an 

instruction that these parts must be restricted to the unit interval [0, 1] and NMG with both real and 

unreal parts with an instruction that these parts must be restricted to the closed interval [−1, 0]. Later, 

Mahmood and Ur Rehman [36] introduced a MADM procedure on Dombi AOs under bipolar complex 

fuzzy (BCF) data. The BCF Hamacher AOs were developed by Mahmood et al. [37]. The AOs for 

BCFS were established by Mahmood et al. [38]. Mahmood et al. [39] investigated BCF Bonferroni 

mean (BM) operator. 

The HM is a mean sort of aggregation method, which is created to manage precise numerical 

values [40]. The beneficial quality of the HM is that HM can catch the interconnection of the input 

values, which settles on it extremely valuable in DM. The HM operators can manage the cooperation 

between the attribute values. Later Lui [41] modified the HM operators to GHM operators. In the past 

several years, the HM and GHM have received a ton of consideration from numerous scholars and 

they employed it in many present notions such as Yu and Wu [42] presented interval-valued 

intuitionistic fuzzy (IF) (IVIF) HM operators, Lui et al. [43] invented some intuitionistic uncertain 

linguistic HM operators and their application to DM, Wei et al. [44] explored picture fuzzy (PF) HM 

operators in MADM. Yu [45] described IF geometric HM AOs. There is a difference among HM 

operator, Choquet integral (CI), and power average (PA). The main focus of the HM operator is on the 

aggregated inputs and CI and PA focus on varying the weight vector of the AOs. For a collection of 

attributes (𝒜𝑗 , 𝑗 = 1, 2, … , 𝑛)  the BM operator may consider the relationship among any pair of 

attributes 𝒜𝑗  and 𝒜𝑘  (𝑗 ≠ 𝑘) . But the BM neglects the relationship of the attribute with itself. 

Moreover, the relationship among the attributes 𝒜𝑗  and 𝒜𝑘  (𝑗 ≠ 𝑘)  is equal to the relationship 

among the attributes 𝒜𝑘 and 𝒜𝑗 (𝑗 ≠ 𝑘). However, the BM operator treats it independently and the 

outcomes are consequently superfluity. While the HM operator has the same kind of framework as the 

BM operator. The HM can handle the above-mentioned two issues of the BM operators. However, the 

appropriate inputs which must be aggregated by the prevailing HM operators can take the structure of 

fuzzy number (FN), intuitionistic FN, picture FN, etc. which confine the advantages and usefulness of 

the HM operators to various other fields. One of the best ways to fill this gap is to expand the HM 

operator in the environment of BCFN which is the main goal of this study. 

In this study, we introduce: 

1) GHM and HM operators in the BCFS setting which have the benefits of taking into account 

the interrelatedness among the parameters and BCFN. 

2) BCFGHM operator and its particular cases show its supremacy. Also, introduce the 

BCFWGHM operator. 

3) A MADM procedure based on the interpreted operators for solving DM issues. 

4) A descriptive example (selection of the finest renewable energy generation project) to portray 

the applicability and usefulness of the initiated MADM procedure. 

The rest of the manuscript is constructed similar to Section 2, we reviewed the BCFS and its 

related elementary laws. In Section 3, firstly, the conceptions of HM and GHM are revised, secondly, 

we expanded the GHM into the environment of BCFSs to introduce BCFGHM and BCFWGHM 

operators for aggregating BCFNs. In Section 4, We propounded a MADM procedure based on the 

established BCFGHM, and BCFWGHM operators to cope with BCFN information. Section 5, 

included a descriptive example exhibiting the benefits and competencies of the interpreted MADM 
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procedure. In Section 6, we demonstrated the usefulness of the propounded operators and interpreted 

the MADM procedure by competing them with some current work. The concluding remarks are 

exhibited in Section 7. 

2. Preliminaries 

Here, we review the BCFS and its related elementary laws. In the following study 𝔇̇̆ will denote 

a universal set. 

Definition 1: [35] A BCFS 𝛵̇̆ is of the structure 

𝛵̇̆ = {𝔶̇̆, (Γ̇̆
𝛵̇̆
+(𝔶̇̆), Γ̇̆

𝛵̇̆
−(𝔶̇̆)) | 𝔶̇̆ ∈ 𝔇̇̆}  

where Γ̇̆
𝛵̇̆
+(𝔶̇̆): 𝔇̇̆ → [0, 1] + 𝔦 [0, 1]  and Γ̇̆

𝛵̇̆
+(𝔶̇̆): 𝔇̇̆ → [−1, 0] + 𝔦 [−1, 0] , specified the PMG and 

NMG in this structure i.e. Γ̇̆
𝛵̇̆
+(𝔶̇̆) = 𝛿̇

𝛵̇̆
+(𝔶̇̆) + 𝔦 𝜂̇̆

𝛵̇̆
+(𝔶̇̆)  and Γ̇̆

𝛵̇̆
−(𝔶̇̆) = 𝛿̇

𝛵̇̆
−(𝔶̇̆) + 𝔦 𝜂̇̆

𝛵̇̆
−(𝔶̇̆) , with 

𝛿̇
𝛵̇̆
+(𝔶̇̆), 𝜂̇̆

𝛵̇̆
+(𝔶̇̆) ∈ [0, 1] and 𝛿̇

𝛵̇̆
−(𝔶̇̆), 𝜂̇̆

𝛵̇̆
−(𝔶̇̆) ∈ [−1, 0]. A BCF number (BCFN) is of the shape 

𝛵̇̆ = (𝔶̇̆, (Γ̇̆
𝛵̇̆
+(𝔶̇̆), Γ̇̆

𝛵̇̆
−(𝔶̇̆))) = (𝔶̇̆, 𝛿̇

𝛵̇̆
+(𝔶̇̆) + 𝔦 𝜂̇̆

𝛵̇̆
+(𝔶̇̆), 𝛿̇

𝛵̇̆
−(𝔶̇̆) + 𝔦𝜂̇̆

𝛵̇̆
−(𝔶̇̆)). 

Definition 2: [36] In the existence of BCFN 

𝛵̇̆ = (𝔶̇̆, (Γ̇̆
𝛵̇̆
+(𝔶̇̆), Γ̇̆

𝛵̇̆
−(𝔶̇̆))) = (𝔶̇̆, 𝛿̇

𝛵̇̆
+(𝔶̇̆) + 𝔦 𝜂̇̆

𝛵̇̆
+(𝔶̇̆), 𝛿̇

𝛵̇̆
−(𝔶̇̆) + 𝔦𝜂̇̆

𝛵̇̆
−(𝔶̇̆)). 

1) The score value 𝔖ℬ is interpreted as 

𝔖ℬ (𝛵̇̆) =
1

4
(2 + 𝛿̇

𝛵̇̆
+(𝔶̇̆) + 𝜂̇̆

𝛵̇̆
+(𝔶̇̆) + 𝛿̇

𝛵̇̆
−(𝔶̇̆) + 𝜂̇̆

𝛵̇̆
−(𝔶̇̆)),   𝔖ℬ ∈ [0, 1]. 

2) The accuracy value ℋℬ is interpreted as 

ℋℬ (𝛵̇̆) =
𝛿̇
𝛵̇̆

+(𝔶̇̆) + 𝜂̇̆
𝛵̇̆

+(𝔶̇̆) + 𝛿̇
𝛵̇̆
−(𝔶̇̆) + 𝜂̇̆

𝛵̇̆
−(𝔶̇̆)

4
, ℋℬ ∈ [0, 1]. 

Definition 3: [36] In the existence of two BCFNs 𝛵̇̆1 = (𝔶̇̆, (Γ̇̆
𝛵̇̆1
̇
+ (𝔶̇̆), Γ̇̆

𝛵̇̆1

− (𝔶̇̆)))  and 𝛵̇̆2 =

(𝔶̇̆, (Γ̇̆
𝛵̇̆2
̇
+ (𝔶̇̆), Γ̇̆

𝛵̇̆2

− (𝔶̇̆))). 

1) If 𝔖ℬ (𝛵̇̆1) < 𝔖ℬ (𝛵̇̆2), then 𝛵̇̆1 < 𝛵̇̆2; 
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2) If 𝔖ℬ (𝛵̇̆1) > 𝔖ℬ (𝛵̇̆2), then 𝛵̇̆1 > 𝛵̇̆2; 

3) If 𝔖ℬ (𝛵̇̆1) = 𝔖ℬ (𝛵̇̆2), then 

a. If ℋℬ (𝛵̇̆1) < ℋℬ (𝛵̇̆2), then 𝛵̇̆1 < 𝛵̇̆2, 

b. If ℋℬ (𝛵̇̆1) > ℋℬ (𝛵̇̆2), then 𝛵̇̆1 > 𝛵̇̆2
̇
, 

c. If ℋℬ (𝛵̇̆1) = ℋℬ (𝛵̇̆2), then 𝛵̇̆1 = 𝛵̇̆2. 

Definition 4: [36] In the existence of two BCFNs  

𝛵̇̆1 = (𝔶̇̆, (Γ̇̆𝛵̇̆1
+(𝔶̇̆), Γ̇̆

𝛵̇̆1

− (𝔶̇̆))) = (𝔶̇̆, 𝛿̇
𝛵̇̆1

+ (𝔶̇̆) + 𝔦 𝜂̇̆
𝛵̇̆1

+ (𝔶̇̆), 𝛿̇
𝛵̇̆1

− (𝔶̇̆) + 𝔦 𝜂̇̆
𝛵̇̆1

− (𝔶̇̆)) 

and 

𝛵̇̆2 = (𝔶̇̆, (Γ̇̆𝛵̇̆2
+(𝔶̇̆), Γ̇̆

𝛵̇̆2

− (𝔶̇̆))) = (𝔶̇̆, 𝛿̇
𝛵̇̆2

+ (𝔶̇̆) + 𝔦 𝜂̇̆
𝛵̇̆2

+ (𝔶̇̆), 𝛿̇
𝛵̇̆2

− (𝔶̇̆) + 𝔦 𝜂̇̆
𝛵̇̆2

− (𝔶̇̆)), 

with 𝛼 > 0, then 

1) 𝛵̇̆1⊕ 𝛵̇̆2 =

(

 
 
𝔶̇̆,

(

 
𝛿̇
𝛵̇̆1

+ (𝔶̇̆) + 𝛿̇
𝛵̇̆2

+ (𝔶̇̆) − 𝛿̇
𝛵̇̆1

+ (𝔶̇̆)𝛿̇
𝛵̇̆2

+ (𝔶̇̆) + 𝔦 (𝜂̇̆
𝛵̇̆1

+ (𝔶̇̆) + 𝜂̇̆
𝛵̇̆2

+ (𝔶̇̆) − 𝜂̇̆
𝛵̇̆1

+ (𝔶̇̆)𝜂̇̆
𝛵̇̆2

+ (𝔶̇̆)) ,

− (𝛿̇
𝛵̇̆1

− (𝔶̇̆)𝛿̇
𝛵̇̆2

− (𝔶̇̆)) + 𝔦 (− (𝜂̇̆
𝛵̇̆1

− (𝔶̇̆)𝜂̇̆
𝛵̇̆2

− (𝔶̇̆)))
)

 

)

 
 
, 

2) 𝛵̇̆1⊗ 𝛵̇̆2 =

(

 
 
𝔶̇̆, (

𝛿̇
𝛵̇̆1

+ (𝔶̇̆)𝛿̇
𝛵̇̆2

+ (𝔶̇̆) + 𝔦 (𝜂̇̆
𝛵̇̆1

+ (𝔶̇̆)𝜂̇̆
𝛵̇̆2

+ (𝔶̇̆)) ,

𝛿̇
𝛵̇̆1

− (𝔶̇̆)+𝛿̇̆
𝛵̇̆2

− (𝔶̇̆) + 𝛿̇
𝛵̇̆1

− (𝔶̇̆)𝛿̇
𝛵̇̆2

− (𝔶̇̆) + 𝔦 (𝜂̇̆
𝛵̇̆1

− (𝔶̇̆) + 𝜂̇̆
𝛵̇̆2

− (𝔶̇̆) + 𝜂̇̆
𝛵̇̆1

− (𝔶̇̆)𝜂̇̆
𝛵̇̆2

− (𝔶̇̆))
)

)

 
 
, 

3) 𝛼𝛵̇̆1 = (𝔶̇̆, (1 − (1 − 𝛿̇𝛵̇̆1
+ (𝔶̇̆))

𝛼

+ 𝔦 (1 − (1 − 𝜂̇̆
𝛵̇̆1

+ (𝔶̇̆))
𝛼

) , − |𝛿̇
𝛵̇̆1

− (𝔶̇̆)|
𝛼
+ 𝔦 (− |𝜂̇̆

𝛵̇̆1

− (𝔶̇̆)|
𝛼
))), 

4) 𝛵̇̆1
𝛼
= (𝜏, ((𝛿̇

𝛵̇̆1

+ (𝔶̇̆))
𝛼

+ 𝔦 (𝜂̇̆
𝛵̇̆1

+ (𝔶̇̆))
𝛼

, −1 + (1 + 𝛿̇
𝛵̇̆1

− (𝔶̇̆))
𝛼

+ 𝔦 (−1 + (1 + 𝜂̇̆
𝛵̇̆1

− (𝔶̇̆))
𝛼

))). 

Theorem 1: [36] In the existence of two BCFNs 

𝛵̇̆1 = (𝔶̇̆, (Γ̇̆𝛵̇̆1
+ (𝔶̇̆), Γ̇̆

𝛵̇̆1

− (𝔶̇̆))) = (𝔶̇̆, 𝛿̇
𝛵̇̆1

+ (𝔶̇̆) + 𝔦𝜂̇̆
𝛵̇̆1

+ (𝔶̇̆), 𝛿̇
𝛵̇̆1

− (𝔶̇̆) + 𝔦𝜂̇̆
𝛵̇̆1

− (𝔶̇̆)) 

and 
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𝛵̇̆2 = (𝔶̇̆, (Γ̇̆𝛵̇̆2
+(𝔶̇̆), Γ̇̆

𝛵̇̆2

− (𝔶̇̆))) = (𝔶̇̆, 𝛿̇
𝛵̇̆2

+ (𝔶̇̆) + 𝔦𝜂̇̆
𝛵̇̆2

+ (𝔶̇̆), 𝛿̇
𝛵̇̆2

− (𝔶̇̆) + 𝔦𝜂̇̆
𝛵̇̆2

− (𝔶̇̆)), 

with 𝛼, 𝛼1, 𝛼2 > 0, then 

1) 𝛵̇̆1⊕𝛵2̆
̇ = 𝛵̇̆2⊕ 𝛵̇̆1, 

2) 𝛵̇̆1⊗𝛵2̆
̇ = 𝛵2̆

̇ ⊗ 𝛵̇̆2, 

3) 𝛼 (𝛵̇̆1⊕𝛵2̆
̇ ) = 𝛼𝛵1̆

̇ ⊕ 𝛼𝛵̇̆2, 

4) (𝛵̇̆1⊗𝛵2̆
̇ )
𝛼
= 𝛵1̆

̇ 𝛼⊗ 𝛵̇̆2
𝛼
, 

5) 𝛼1𝛵̇̆1⊕𝛼2𝛵1̆
̇ = (𝛼1 + 𝛼2)𝛵̇̆1, 

6) 𝛵̇̆1
𝛼1
⊗𝛵1̆

̇ 𝛼2 = 𝛵̇̆1
𝛼1+𝛼2

, 

7) (𝛵̇̆1
𝛼1
)
𝛼2
= 𝛵̇̆1

𝛼1𝛼2
. 

3. Generalized bipolar complex fuzzy Heronian mean operators 

Firstly, the conceptions of HM [33] and GHM [35] are revised in this portion. Secondly, the BCFS 

is an effective technique to describe the uncertainty in genuine DM procedures. Therefore, we expand 

the GHM into the environment of BCFSs to introduce BCFGHM and BCFWGHM operators for 

aggregating BCFNs. Moreover, the necessary properties and different special cases of the introduced 

operator are similarly discussed in this portion. For our convenience, the terms 

𝛵̇̆𝑟̆ = (Γ̇̆𝛵̇̆𝑟̆
+ , Γ̇̆

𝛵̇̆𝑟̆

−) = (𝛿̇
𝛵̇̆𝑟̆

+ + 𝒾η̇̆
𝛵̇̆𝑟̆

+ , 𝛿̇
𝛵̇̆𝑟̆

− + 𝒾η̇̆
𝛵̇̆𝑟̆

− ) (𝑟̆ = 1, 2, 3, … , 𝓃) 

specified the collection of BCFNs in the rest of the article. 

3.1. The HM and GHM 

Following we revise the conception of HM [33] and GHM [35]. 

Definition 5: [40] In the existence of a family 𝛵̇̆𝑟̆ (𝑟̆ = 1, 2, 3, … , 𝓃) of all real numbers greater than 

or equal to zero the HM is interpreted as 

𝐻𝑀(𝛵̇̆1, 𝛵̇̆2, 𝛵̇̆3, … , 𝛵̇̆𝓃) =
2

𝓃(𝓃 + 1)
∑∑√𝛵̇̆𝑟̆ 𝛵̇̆𝑠̆

𝓃

𝑠̆=1

𝓃

𝑟̆=1

, 

Definition 6: [42] In the existence of a family 𝛵̇̆𝑟̆ (𝑟̆ = 1, 2, 3, … , 𝓃) of all real numbers greater than 

or equal to zero, with 𝔭̆, 𝔮̆ ≥ 0, then the GHM is interpreted as 
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𝐺𝐻𝑀𝔭̆,𝔮̆ (𝛵̇̆1, 𝛵̇̆2, 𝛵̇̆3, … , 𝛵̇̆𝓃) = (
2

𝓃(𝓃 + 1)
∑∑𝛵̇̆𝑟̆

𝔭̆
𝛵̇̆𝑠̆
𝔮̆

𝓃

𝑠̆=1

𝓃

𝑟̆=1

)

1
𝔭̆+𝔮̆

. 

3.2. The BCFGHM operator and its special cases 

Following we propound BCFGHM operator. 

Definition 7: A function 𝐵𝐶𝐹𝐺𝐻𝑀: 𝛵̇̆𝓃 → 𝛵̇̆, with 𝔭̆, 𝔮̆ ≥ 0 is demonstrated as 

𝐵𝐶𝐹𝐺𝐻𝑀𝔭̆,𝔮̆ (𝛵̇̆1, 𝛵̇̆2, 𝛵̇̆3, … , 𝛵̇̆𝓃) = (
2

𝓃(𝓃 + 1)
⊕
𝑟̆=1

𝓃

⊕
𝑠̆=1

𝓃

(𝛵̇̆𝑟̆
𝔭̆
⊗ 𝛵̇̆𝑠̆

𝔮̆
))

1
𝔭̆+𝔮̆

, 

is said to be a BCFGHM operator. 

Theorem 2: The aggregated value by employing the BCFGHM operator is a BCFN and interpreted as 

𝐵𝐶𝐹𝐺𝐻𝑀𝔭̆,𝔮̆ (𝛵̇̆1, 𝛵̇̆2, 𝛵̇̆3, … , 𝛵̇̆𝓃) 

=

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 (1 − (∏ (1 − 𝛿̇

𝛵̇̆𝑟̆

+𝔭̆
𝛿̇
𝛵̇̆𝑠̆

+𝔮̆
)𝓃

𝑟̆=1
𝑠̆=1

)

2

𝓃(𝓃+1)

)

1

𝔭̆+𝔮̆

+𝒾(1 − (∏ (1 − 𝜂̇̆
𝛵̇̆𝑟̆

+𝔭̆
𝜂̇̆
𝛵̇̆𝑠̆

+𝔮̆
)𝓃

𝑟̆=1
𝑠̆=1

)

2

𝓃(𝓃+1)

)

1

𝔭̆+𝔮̆

−1 + (1 − (|∏ (−1 + (1 + 𝛿̇
𝛵̇̆𝑟̆

− )
𝔭̆
(1 + 𝛿̇

𝛵̇̆𝑠̆

−)
𝔮̆

)𝓃
𝑟̆=1
𝑠̆=1

|

2

𝓃(𝓃+1)

))

1

𝔭̆+𝔮̆

+𝒾

(

 
 
−1 + (1 − (|∏ (−1 + (1 + 𝜂̇̆

𝛵̇̆𝑟̆

− )
𝔭̆
(1 + 𝜂̇̆

𝛵̇̆𝑠̆

− )
𝔮̆

)𝓃
𝑟̆=1
𝑠̆=1

|

2

𝓃(𝓃+1)

))

1

𝔭̆+𝔮̆

)

 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

. 

Proof: By employing Definition (4), we have 

𝛵̇̆𝑟̆
𝔭̆
= (𝛿̇

𝛵̇̆𝑟̆

+𝔭̆
+ 𝒾 𝜂̇̆

𝛵̇̆𝑟̆

+𝔭̆
 , −1 + (1 + 𝛿̇

𝛵̇̆𝑟̆

− )
𝔭̆
+ 𝒾 (−1 + (1 + 𝜂̇̆

𝛵̇̆𝑟̆

− )
𝔭̆

)), 

𝛵̇̆𝑠̆
𝔮̆
= (𝛿̇

𝛵̇̆𝑠̆

+𝔮̆
+ 𝒾 𝜂̇̆

𝛵̇̆𝑠̆

+𝔮̆
, −1 + (1 + 𝛿̇

𝛵̇̆𝑠̆

−)
𝔮̆
+ 𝒾 (−1 + (1 + 𝜂̇̆

𝛵̇̆𝑠̆

− )
𝔮̆

)), 

and 
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(𝛵̇̆𝑟̆
𝔭̆
⊗ 𝛵̇̆𝑠̆

𝔮̆
) = (𝛿̇

𝛵̇̆𝑟̆

+𝔭̆
𝛿̇
𝛵̇̆𝑠̆

+𝔮̆
, −1 + (1 + 𝛿̇

𝛵̇̆𝑟̆

− )
𝔭̆
(1 + 𝛿̇

𝛵̇̆𝑠̆

−)
𝔮̆

), 

then 

⊕
𝑟̆=1

𝓃

⊕
𝑠̆=1

𝓃

(𝛵̇̆𝑟̆
𝔭̆
⊗ 𝛵̇̆𝑠̆

𝔮̆
)

=

(

 
 
 
 
 1 −∏(1 − 𝛿̇

𝛵̇̆𝑟̆

+𝔭̆
𝛿̇
𝛵̇̆𝑠̆

+𝔮̆
)

𝓃

𝑟̆=1
𝑠̆=1

+ 𝒾(1 −∏(1 − 𝜂̇̆
𝛵̇̆𝑟̆

+𝔭̆
𝜂̇̆
𝛵̇̆𝑠̆

+𝔮̆
)

𝓃

𝑟̆=1
𝑠̆=1

)

−∏(−1 + (1 + 𝛿̇
𝛵̇̆𝑟̆

− )
𝔭̆
(1 + 𝛿̇

𝛵̇̆𝑠̆

−)
𝔮̆

)

𝓃

𝑟̆=1
𝑠̆=1

+ 𝒾(−∏(−1 + (1 + 𝜂̇̆
𝛵̇̆𝑟̆

− )
𝔭̆
(1 + 𝜂̇̆

𝛵̇̆𝑠̆

− )
𝔮̆

)

𝓃

𝑟̆=1
𝑠̆=1

)

)

 
 
 
 
 

, 

and 

2

𝓃(𝓃 + 1)
⊕
𝑟̆=1

𝓃

⊕
𝑠̆=1

𝓃

(𝛵̇̆𝑟̆
𝔭̆
⊗ 𝛵̇̆𝑠̆

𝔮̆
) 

=

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1 − (∏(1 − 𝛿̇
𝛵̇̆𝑟̆

+𝔭̆
𝛿̇
𝛵̇̆𝑠̆

+𝔮̆
)

𝓃

𝑟̆=1
𝑠̆=1

)

2
𝓃(𝓃+1)

+𝒾

(

 
 
1 − (∏(1 − 𝜂̇̆

𝛵̇̆𝑟̆

+𝔭̆
𝜂̇̆
𝛵̇̆𝑠̆

+𝔮̆
)

𝓃

𝑟̆=1
𝑠̆=1

)

2
𝓃(𝓃+1)

)

 
 

−

(

 
 
|−∏(−1 + (1 + 𝛿̇

𝛵̇̆𝑟̆

− )
𝔭̆
(1 + 𝛿̇

𝛵̇̆𝑠̆

−)
𝔮̆

)

𝓃

𝑟̆=1
𝑠̆=1

|

2
𝓃(𝓃+1)

)

 
 

+𝒾

(

  
 
−

(

 
 
|−∏(−1 + (1 + 𝛿̇

𝛵̇̆𝑟̆

− )
𝔭̆
(1 + 𝛿̇

𝛵̇̆𝑠̆

−)
𝔮̆

)

𝓃

𝑟̆=1
𝑠̆=1

|

2
𝓃(𝓃+1)

)

 
 

)

  
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

. 

Thus,  
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𝐵𝐶𝐹𝐺𝐻𝑀𝔭̆,𝔮̆ (𝛵̇̆1, 𝛵̇̆2, 𝛵̇̆3, … , 𝛵̇̆𝓃) = (
2

𝓃(𝓃 + 1)
⊕
𝑟̆=1

𝓃

⊕
𝑠̆=1

𝓃

(𝛵̇̆𝑟̆
𝔭̆
⊗ 𝛵̇̆𝑠̆

𝔮̆
))

1
𝔭̆+𝔮̆

 

=

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(

 
 
1 − (∏(1 − 𝛿̇

𝛵̇̆𝑟̆

+𝔭̆
𝛿̇
𝛵̇̆𝑠̆

+𝔮̆
)

𝓃

𝑟̆=1
𝑠̆=1

)

2
𝓃(𝓃+1)

)

 
 

1
𝔭̆+𝔮̆

+𝒾

(

 
 
1 − (∏(1 − 𝜂̇̆

𝛵̇̆𝑟̆

+𝔭̆
𝜂̇̆
𝛵̇̆𝑠̆

+𝔮̆
)

𝓃

𝑟̆=1
𝑠̆=1

)

2
𝓃(𝓃+1)

)

 
 

1
𝔭̆+𝔮̆

−1 +

(

  
 
1 −

(

 
 
|∏(−1 + (1 + 𝛿̇

𝛵̇̆𝑟̆

− )
𝔭̆
(1 + 𝛿̇

𝛵̇̆𝑠̆

−)
𝔮̆

)

𝓃

𝑟̆=1
𝑠̆=1

|

2
𝓃(𝓃+1)

)

 
 

)

  
 

1
𝔭̆+𝔮̆

+𝒾

(

 
 
 
 

−1 +

(

  
 
1 −

(

 
 
|∏(−1 + (1 + 𝜂̇̆

𝛵̇̆𝑟̆

− )
𝔭̆
(1 + 𝜂̇̆

𝛵̇̆𝑠̆

− )
𝔮̆

)

𝓃

𝑟̆=1
𝑠̆=1

|

2
𝓃(𝓃+1)

)

 
 

)

  
 

1
𝔭̆+𝔮̆

)

 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

. 

The BCFGHM operator holds the following axioms 

1) Idempotency: For a BCFN 𝛵̇̆0, if 𝛵̇̆𝑟̆ = 𝛵̇̆0 ∀ 𝑟̆, then 

𝐵𝐶𝐹𝐺𝐻𝑀𝔭̆,𝔮̆ (𝛵̇̆1, 𝛵̇̆2, 𝛵̇̆3, … , 𝛵̇̆𝓃) = 𝛵̇̆0. 

2) Boundedness: For any collection of BCFNs 𝛵̇̆𝑟̆ (𝑟̆ = 1, 2, 3, … ,𝓃)  if 𝛵̇̆𝑟̆
∗
= max

𝑟̇
{𝛵̇̆𝑟̆}  and 

𝛵̇̆𝑟̆
∎
= min

𝑟̇
{𝛵̇̆𝑟̆}, then 

min
𝑟̇
{𝛵̇̆𝑟̆} ≤ 𝐵𝐶𝐹𝐺𝐻𝑀

𝔭̆,𝔮̆ (𝛵̇̆1, 𝛵̇̆2, 𝛵̇̆3, … , 𝛵̇̆𝓃) ≤ max
𝑟̇
{𝛵̇̆𝑟̆}. 

3) Monotonicity: For any two collections of BCFNs 𝛵̇̆𝑟̆, 𝛵̇̆𝑟̆
′(𝑟̆ = 1, 2, 3, … , 𝓃) if 𝛵̇̆𝑟̆ ≤ 𝛵̇̆𝑟̆

′ for 

all 𝑟̆, i.e. 𝛿̇
𝛵̇̆𝑟̆

+ ≤ 𝛿̇
𝛵̇̆𝑟̆

+′, 𝜂̇̆
𝛵̇̆𝑟̆

+ ≤ 𝜂̇̆
𝛵̇̆𝑟̆

+′, 𝛿̇
𝛵̇̆𝑟̆

− ≤ 𝛿̇
𝛵̇̆𝑟̆

−′, 𝜂̇̆
𝛵̇̆𝑟̆

− ≤ 𝜂̇̆
𝛵̇̆𝑟̆

−′, then 

𝐵𝐶𝐹𝐺𝐻𝑀𝔭̆,𝔮̆ (𝛵̇̆1, 𝛵̇̆2, 𝛵̇̆3, … , 𝛵̇̆𝓃) ≤ 𝐵𝐶𝐹𝐺𝐻𝑀
𝔭̆,𝔮̆ (𝛵̇̆1

′, 𝛵̇̆2
′, 𝛵̇̆3

′, … , 𝛵̇̆𝓃
′ ). 
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By changing the values of the parameters 𝔭̆ and 𝔮̆, we obtain the following particular cases of 

the interpreted BCFGHM operator. 

Case 1: By taking 𝔭̆ = 𝔮̆ =
1

2
, the interpreted BCFGHM converted BCF HM (BCFHM), demonstrated 

as 

𝐵𝐶𝐹𝐻𝑀
1
2
,
1
2 (𝛵̇̆1, 𝛵̇̆2, 𝛵̇̆3, … , 𝛵̇̆𝓃) 

=

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(

 
 
1 − (∏(1 −√𝛿̇

𝛵̇̆𝑟̆

+ 𝛿̇
𝛵̇̆𝑠̆

+)

𝓃

𝑟̆=1
𝑠̆=1

)

2
𝓃(𝓃+1)

)

 
 

1
𝔭̆+𝔮̆

+𝒾

(

 
 
1 − (∏(1 − √𝜂̇̆𝛵̇̆𝑟̆

+ 𝜂̇̆
𝛵̇̆𝑠̆

+ )

𝓃

𝑟̆=1
𝑠̆=1

)

2
𝓃(𝓃+1)

)

 
 

1
𝔭̆+𝔮̆

−1 +

(

  
 
1 −

(

 
 
−|∏(−1 + √(1 + 𝛿̇

𝛵̇̆𝑟̆

− ) (1 + 𝛿̇
𝛵̇̆𝑠̆

−))

𝓃

𝑟̆=1
𝑠̆=1

|

2
𝓃(𝓃+1)

)

 
 

)

  
 

1
𝔭̆+𝔮̆

+𝒾

(

 
 
 
 

−1 +

(

  
 
1 −

(

 
 
|−∏(−1 + √(1 + 𝜂̇̆

𝛵̇̆𝑟̆

− ) (1 + 𝜂̇̆
𝛵̇̆𝑠̆

− ))

𝓃

𝑟̆=1
𝑠̆=1

|

2
𝓃(𝓃+1)

)

 
 

)

  
 

1
𝔭̆+𝔮̆

)

 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

. 

Case 2: By considering  𝔮̆ → 0 , the BCFGHM operators converted to BCF generalized mean 

(BCFGM), which is demonstrated as  
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lim
 𝔮̆→0

𝐵𝐶𝐹𝐺𝐻𝑀𝔭̆,𝔮̆ (𝛵̇̆1, 𝛵̇̆2, 𝛵̇̆3, … , 𝛵̇̆𝓃) = (
1

𝓃
⊕
𝑟̆=1

𝓃

𝛵̇̆𝑟̆
𝔭̆
)

1
𝔭̆
 

=

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(

 
 
1 − (∏(1 − 𝛿̇

𝛵̇̆𝑟̆

+𝔭̆
)

𝓃

𝑟̆=1
𝑠̆=1

)

1
𝓃

)

 
 

1
𝔭̆

+𝒾

(

 
 
1 − (∏(1 − 𝜂̇̆

𝛵̇̆𝑟̆

+𝔭̆
)

𝓃

𝑟̆=1
𝑠̆=1

)

1
𝓃

)

 
 

1
𝔭̆

−1 +

(

  
 
1 −

(

 
 
|−∏(−1 + (1 + 𝛿̇

𝛵̇̆𝑟̆

− )
𝔭̆

)

𝓃

𝑟̆=1
𝑠̆=1

|

1
𝓃

)

 
 

)

  
 

1
𝔭̆

+𝒾

(

 
 
 
 

−1 +

(

  
 
1 −

(

 
 
|−∏(−1 + (1 + 𝜂̇̆

𝛵̇̆𝑟̆

− )
𝔭̆

)

𝓃

𝑟̆=1
𝑠̆=1

|

1
𝓃

)

 
 

)

  
 

1
𝔭̆

)

 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

. 

Case 3: By taking 𝔭̆ → 2  and 𝔮̆ → 0 , the BCFGHM operator is converted to BCF square mean 

(BCFSM), which is displayed as  
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𝐵𝐶𝐹𝐺𝐻𝑀2,0 (𝛵̇̆1, 𝛵̇̆2, 𝛵̇̆3, … , 𝛵̇̆𝓃) = (
1

𝓃
⊕
𝑟̆=1

𝓃

𝛵̇̆𝑟̆
2)

1
2
 

=

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(

 
 
1 − (∏(1 − 𝛿̇

𝛵̇̆𝑟̆

+2)

𝓃

𝑟̆=1
𝑠̆=1

)

1
𝓃

)

 
 

1
2

+𝒾

(

 
 
1 − (∏(1 − 𝜂̇̆

𝛵̇̆𝑟̆

+2)

𝓃

𝑟̆=1
𝑠̆=1

)

1
𝓃

)

 
 

1
2

−1 +

(

  
 
1 −

(

 
 
|−∏(−1 + (1 + 𝛿̇

𝛵̇̆𝑟̆

− )
2

)

𝓃

𝑟̆=1
𝑠̆=1

|

1
𝓃

)

 
 

)

  
 

1
2

+𝒾

(

 
 
 
 

−1 +

(

  
 
1 −

(

 
 
|−∏(−1 + (1 + 𝜂̇̆

𝛵̇̆𝑟̆

− )
2

)

𝓃

𝑟̆=1
𝑠̆=1

|

1
𝓃

)

 
 

)

  
 

1
2

)

 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

. 

Case 4: By taking 𝔭̆ → 1 and 𝔮̆ → 0, the BCFGHM operator is converted to BCF average (BCFA), 

which is displayed as 

𝐵𝐶𝐹𝐺𝐻𝑀1,0 (𝛵̇̆1, 𝛵̇̆2, 𝛵̇̆3, … , 𝛵̇̆𝓃) = (
1

𝓃
⊕
𝑟̆=1

𝓃

𝛵̇̆𝑟̆) 

=

(

 
 
 
 
 
 
 
 

(

 
 
1 − (∏(1 − 𝛿̇

𝛵̇̆𝑟̆

+ )

𝓃

𝑟̆=1
𝑠̆=1

)

1
𝓃

)

 
 
+ 𝒾

(

 
 
1 − (∏(1 − 𝜂̇̆

𝛵̇̆𝑟̆

+ )

𝓃

𝑟̆=1
𝑠̆=1

)

1
𝓃

)

 
 

−

(

 
 
|−∏(𝛿̇

𝛵̇̆𝑟̆

− )

𝓃

𝑟̆=1
𝑠̆=1

|

1
𝓃

)

 
 
+ 𝒾

(

  
 
−

(

 
 
|−∏(𝜂̇̆

𝛵̇̆𝑟̆

− )

𝓃

𝑟̆=1
𝑠̆=1

|

1
𝓃

)

 
 

)

  
 

)

 
 
 
 
 
 
 
 

, 
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=

(

 
 
 
 
 
 

(

 
 
1 − (∏(1 − 𝛿̇

𝛵̇̆𝑟̆

+ )

𝓃

𝑟̆=1
𝑠̆=1

)

1
𝓃

)

 
 
 + 𝒾 

(

 
 
1 − (∏(1 − 𝜂̇̆

𝛵̇̆𝑟̆

+ )

𝓃

𝑟̆=1
𝑠̆=1

)

1
𝓃

)

 
 

−∏|𝛿̇
𝛵̇̆𝑟̆

− |

1
𝓃

𝓃

𝑟̆=1
𝑠̆=1

 +  𝒾 (−∏|𝜂̇̆
𝛵̇̆𝑟̆

− |

1
𝓃

𝓃

𝑟̆=1
𝑠̆=1

)

)

 
 
 
 
 
 

. 

Case 5: By taking 𝔭̆ = 𝔮̆ = 1  then the BCFGHM operator is converted to BCF generalized 

interrelated square mean (BCFGISM) which is displayed as 

𝐵𝐶𝐹𝐺𝐻𝑀1,1 (𝛵̇̆1, 𝛵̇̆2, 𝛵̇̆3, … , 𝛵̇̆𝓃) = (
2

𝓃(𝓃 + 1)
⊕
𝑟̆=1

𝓃

⊕
𝑠̆=1

𝓃

(𝛵̇̆𝑟̆⊗ 𝛵̇̆𝑠̆))

1
2

 

=

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(

 
 
1 − (∏(1 − 𝛿̇

𝛵̇̆𝑟̆

+ 𝛿̇
𝛵̇̆𝑠̆

+)

𝓃

𝑟̆=1
𝑠̆=1

)

2
𝓃(𝓃+1)

)

 
 

1
2

+𝒾

(

 
 
1 − (∏(1 − 𝜂̇̆

𝛵̇̆𝑟̆

+ 𝜂̇̆
𝛵̇̆𝑠̆

+ )

𝓃

𝑟̆=1
𝑠̆=1

)

2
𝓃(𝓃+1)

)

 
 

1
2

−1 +

(

  
 
1 −

(

 
 
|−∏(−1 + (1 + 𝛿̇

𝛵̇̆𝑟̆

− ) (1 + 𝛿̇
𝛵̇̆𝑠̆

−))

𝓃

𝑟̆=1
𝑠̆=1

|

2
𝓃(𝓃+1)

)

 
 

)

  
 

1
2

+𝒾

(

 
 
 
 

−1 +

(

  
 
1 −

(

 
 
|−∏(−1 + (1 + 𝜂̇̆

𝛵̇̆𝑟̆

− ) (1 + 𝜂̇̆
𝛵̇̆𝑠̆

− ))

𝓃

𝑟̆=1
𝑠̆=1

|

2
𝓃(𝓃+1)

)

 
 

)

  
 

1
2

)

 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

. 

Case 6: By taking 𝔭̆ → ∞, 𝔮̆ = 0, then the BCFGHM operator decreases to the following 

lim
 𝔭̆→∞

𝐵𝐶𝐹𝐺𝐻𝑀𝔭̆,0 (𝛵̇̆1, 𝛵̇̆2, 𝛵̇̆3, … , 𝛵̇̆𝓃) = (
1

𝓃
⊕
𝑟̆=1

𝓃

𝛵̇̆𝑟̆
𝔭̆
)

1
𝔭̆
= max

𝑟̆
(𝛵̇̆𝑟̆) 

Case 7: By taking 𝔭̆ → 0, 𝔮̆ = 0, then the BCFGHM operator decreases to the BCF geometric mean 

operator 
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lim
 𝔭̆→0

𝐵𝐶𝐹𝐺𝐻𝑀𝔭̆,0 (𝛵̇̆1, 𝛵̇̆2, 𝛵̇̆3, … , 𝛵̇̆𝓃) = lim
 𝔭̆→0

(
1

𝓃
⊕
𝑟̆=1

𝓃

𝛵̇̆𝑟̆
𝔭̆
)

1
𝔭̆
=⊗
𝑟̆=1

𝓃

(𝛵̇̆𝑟̆)

1
𝓃
= (⊗

𝑟̆=1

𝓃

(𝛵̇̆𝑟̆))

1
𝓃

. 

3.3. BCFWGHM operator 

It is essential to contract the weighted structure of BCFGHM operators because, the aggregated 

values have their weights in many cases. Here, we establish the BCFWGHM operator. 

Definition 8: A function 𝐵𝐶𝐹𝑊𝐺𝐻𝑀: 𝛵̇̆𝓃 → 𝛵̇̆, with 𝔭̆, 𝔮̆ ≥ 0 is demonstrated as 

𝐵𝐶𝐹𝑊𝐺𝐻𝑀𝔭̆,𝔮̆ (𝛵̇̆1, 𝛵̇̆2, 𝛵̇̆3, … , 𝛵̇̆𝓃) = (
2

𝓃(𝓃 + 1)
⊕
𝑟̆=1

𝓃

⊕
𝑠̆=1

𝓃

(𝛵̇̆𝑟̆
ᾧ𝑟̆𝔭̆⊗ 𝛵̇̆𝑠̆

ᾧ𝑠̆𝔮̆))

1
𝔭̆+𝔮̆

, 

is said to be a BCFWGHM operator. Where ᾧ = (ᾧ1, ᾧ2, … , ᾧ𝔫)
𝑇
  is a weight vector (WV) of 

𝛵̇̆𝑟̆(𝑟̆ = 1, 2, 3, … , 𝓃) with ᾧ𝑟̆ ≥ 0 and ∑ ᾧ𝑟̆
𝓃
𝑟̆=1 = 1. 

Theorem 3: The aggregated value by employing the BCFWGHM operator is a BCFN and interpreted 

as 

𝐵𝐶𝐹𝑊𝐺𝐻𝑀𝔭̆,𝔮̆ (𝛵̇̆1, 𝛵̇̆2, 𝛵̇̆3, … , 𝛵̇̆𝓃) 

=

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(

 
 
1 − (∏(1 − 𝛿̇

𝛵̇̆𝑟̆

+ᾧ𝑟̆𝔭̆𝛿̇
𝛵̇̆𝑠̆

+ᾧ𝑠̆𝔮̆)

𝓃

𝑟̆=1
𝑠̆=1

)

2
𝓃(𝓃+1)

)

 
 

1
𝔭̆+𝔮̆

+𝒾

(

 
 
1 − (∏(1 − 𝜂̇̆

𝛵̇̆𝑟̆

+ᾧ𝑟̆𝔭̆𝜂̇̆
𝛵̇̆𝑠̆

+ᾧ𝑠̆𝔮̆)

𝓃

𝑟̆=1
𝑠̆=1

)

2
𝓃(𝓃+1)

)

 
 

1
𝔭̆+𝔮̆

−1 +

(

  
 
1 −

(

 
 
|−∏(−1 + (1 + 𝛿̇

𝛵̇̆𝑟̆

− )
ᾧ𝑟̆𝔭̆
(1 + 𝛿̇

𝛵̇̆𝑠̆

−)
ᾧ𝑠̆𝔮̆
)

𝓃

𝑟̆=1
𝑠̆=1

|

2
𝓃(𝓃+1)

)

 
 

)

  
 

1
𝔭̆+𝔮̆

+𝒾

(

 
 
 
 

−1 +

(

  
 
1 −

(

 
 
|−∏(−1 + (1 + 𝜂̇̆

𝛵̇̆𝑟̆

− )
ᾧ𝑟̆𝔭̆
(1 + 𝜂̇̆

𝛵̇̆𝑠̆

− )
ᾧ𝑠̆𝔮̆
)

𝓃

𝑟̆=1
𝑠̆=1

|

2
𝓃(𝓃+1)

)

 
 

)

  
 

1
𝔭̆+𝔮̆

)

 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

. 
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4. MADM model for BCFNs 

We propound a MADM procedure based on the established BCFGHM, and BCFWGHM 

operators to cope with BCFN information in this portion. 

Let 𝓂  alternatives i.e. 𝒱̇̆𝑠̆ = {𝒱̇̆1, 𝒱̇̆2, … , 𝒱̇̆𝓂}  and 𝓃  attributes i.e. 𝔏̇̆𝑟̆ = {𝔏̇̆1, 𝔏̇̆2, … , 𝔏̇̆𝓃} 

with respect to WVs ᾧ = (ᾧ1, ᾧ2, … , ᾧ𝔫)
𝑇
 with ᾧ𝑟̆ ≥ 0 and ∑ ᾧ𝑟̆

𝓃
𝑟̆=1 = 1. Let 𝔄̇̆ = (𝔞̇̆𝑠̆𝑟̆)𝓂×𝓃 =

(Γ̇̆𝑠̆𝑟̆
+ , Γ̇̆𝑠̆𝑟̆

−)
𝓂×𝓃

 be a BCF decision matrix, which contains BCFNs and every pair consists of PMG and 

NMG, where Γ̇̆𝑠̆𝑟̆
+   signifies the PMG that the alternatives 𝒱̇̆𝑠̆  satisfies the positive aspect of the 

attribute 𝔏̇̆𝑟̆ provided by an expert and  Γ̇̆𝑠̆𝑟̆
−  signifies the NMG that the alternatives 𝒱̇̆𝑠̆ satisfies the 

negative aspect of the attribute 𝔏̇̆𝑟̆ provided by an expert. The DM procedure includes the following 

steps 

Step 1: The expert provides his/her point of view in the shape of BCFNs and by using these we create 

a decision matrix. 

Step 2: Frequently the attributes are split into two various categories, categories: Benefit kind and cost 

kind attributes. To retain the steadiness of the attribute values, we transform the decision matrix into a 

normalization matrix excluding if all attributes are of a similar sort. For this, we utilize the formula 

given as follows 

𝔞̇̆𝑠̆𝑟̆ = (Γ̇̆𝑠̆𝑟̆
+ , Γ̇̆𝑠̆𝑟̆

−) = {
(𝛿̇𝑠̆𝑟̆

+ + 𝑖 𝜂̇̆𝑠̆𝑟̆
+ , 𝛿̇𝑠̆𝑟̆

− + 𝑖𝜂̇̆𝑠̆𝑟̆
− ) ,             for benefit kind,

(𝛿̇𝑠̆𝑟̆
+ + 𝑖 𝜂̇̆𝑠̆𝑟̆

+ , 𝛿̇𝑠̆𝑟̆
− + 𝑖𝜂̇̆𝑠̆𝑟̆

− )
𝑐
,                for cost kin d,

 

where, (𝛿̇𝑠̆𝑟̆
+ + 𝑖 𝜂̇̆𝑠̆𝑟̆

+ , 𝛿̇𝑠̆𝑟̆
− + 𝑖𝜂̇̆𝑠̆𝑟̆

− )
𝑐
 means the complement of (𝛿̇𝑠̆𝑟̆

+ + 𝑖 𝜂̇̆𝑠̆𝑟̆
+ , 𝛿̇𝑠̆𝑟̆

− + 𝑖𝜂̇̆𝑠̆𝑟̆
− ). 

Step 3: Employ the interpreted BCFGHM and BCFWGHM operators to aggregate the BCFNs. 

Step 4: Determine the score values by employing Definition (2 (1)) of the aggregated values acquired 

in the last step. If the score values of any two alternatives are the same then find the accuracy values 

by employing Definition (2 (2)). 

Step 5: Position all the alternatives as per their score or accuracy values. 

Step 6: The finest alternative is chosen in this step as per their ranking determined in the last step. 

Step 7: End. 

5. Descriptive example 

Here, we illustrate the benefits and competencies of the interpreted MADM procedure through a 

descriptive example. 

These days, our society is presently undermined because of various natural problems and the 

utilization of non-renewable energy sources. In this way, the advancement of novel energy generation 

projects are currently expanding rapidly. More extensive assessment techniques are expected to choose 

the appropriate projects, so we can perceive their solidarity and shortcoming, and set forward a few 

novel suggestions to accomplish the objective. Renewable energy, regularly referred to as hygienic 

energy, is produced from natural resources or cycles that are constantly recharged. For example, wind 

or sunlight is constant, irrespective of whether their availability depends on the time and climate. Since 

we have progressively imaginative and more affordable approaches to catch and maintain solar and 
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wind power, renewables are turning into an additional significant energy source, representing more 

than one-eighth of the US generation. The development of renewables is occurring on both large and 

small scales from roof solar plates on houses that can offer energy back to the grid to massive offshore 

wind ranches. Indeed, even a few whole provincial communities depend on renewable energy. The 

selection of the finest renewable energy generation project (REGP) is necessary to save society from 

climate and weather changes, which is a DM problem. Here we choose the finest REGP by employing 

interpreted MADM producer. 

We assume that there is an expert who has to choose the finest REGP in the shortlist 4 projects 

i.e., 𝒱̇̆𝑠̆ (𝑠̆ = 1, 2, 3, 4) which is assessed under the 4 attributes 

1) 𝔏̇̆1 = 𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 𝑟𝑎𝑡𝑒 𝑜𝑓 𝑟𝑒𝑡𝑢𝑟𝑛, 

2) 𝔏̇̆2 = 𝑠𝑡𝑎𝑡𝑖𝑐 𝑖𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡 𝑟𝑒𝑡𝑢𝑟𝑛 𝑝𝑒𝑟𝑖𝑜𝑑, 

3) 𝔏̇̆3 = 𝑛𝑒𝑡 𝑝𝑟𝑒𝑠𝑒𝑛𝑡 𝑣𝑎𝑙𝑢𝑒, 

4) 𝔏̇̆4 = 𝑟𝑒𝑡𝑢𝑟𝑛 𝑜𝑛 𝑖𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡. 

The 4 shortlisted REGPs 𝒱̇̆𝑠̆ (𝑠̆ = 1, 2, 3, 4) are evaluated with BCFNs employing 4 attributes 

weights 𝔴̇̆ = (0.3. 0.15, 0.28, 0.27) by an expert. 

Step 1: The expert delivers his/her opinion in the shape of BCFNs and constructs a BCF decision 

matrix which is displayed in Table 1. 

Table 1. The data is given by an expert. 

 𝕷̇̆𝟏 𝕷̇̆𝟐 𝕷̇̆𝟑 𝕷̇̆𝟒 

𝓥̇̆𝟏 (
0.6 + 𝑖0.7,
−0.2 − 𝑖0.3

) (
0.9 + 𝑖0.99,
−0.7 − 𝑖0.46

) (
0.67 + 𝑖0.75,
−0.2 − 𝑖0.6

) (
0.55 + 𝑖0.77,
−0.54 − 𝑖0.45

) 

𝓥̇̆𝟐 (
0.33 + 𝑖0.2,
−0.27 − 𝑖0.4

) (
0.12 + 𝑖0.56,
−0.32 − 𝑖0.63

) (
0.4 + 𝑖0.25,
−0.7 − 𝑖0.6

) (
0.52 + 𝑖0.7,
−0.1 − 𝑖0.2

) 

𝓥̇̆𝟑 (
0.35 + 𝑖0.32,
−0.17 − 𝑖0.5

) (
0.22 + 𝑖0.46,
−0.23 − 𝑖0.36

) (
0.8 + 𝑖0.52,
−0.35 − 𝑖0.3

) (
0.25 + 𝑖0.35,
−0.2 − 𝑖0.4

) 

𝓥̇̆𝟒 (
0.53 + 𝑖0.23,
−0.71 − 𝑖0.5

) (
0.11 + 𝑖0.64,
−0.15 − 𝑖0.3

) (
0.55 + 𝑖0.29,
−0.39 − 𝑖0.71

) (
0.21 + 𝑖0.53,
−0.32 − 𝑖0.52

) 

Step 2: The information is of the same kind so no need for normalization. 

Step 3: Employing the interpreted BCFGHM and BCFWGHM operators to aggregate the BCFNs 

which is revealed in Table 2. 

Table 2. The aggregate values of each REGP. 

Operators 𝓥̇̆𝟏 𝓥̇̆𝟐 𝓥̇̆𝟑 𝓥̇̆𝟒 

BCFGHM (
0.7778 + 𝑖0.9051
−0.2855 − 0.3747

) (
0.419 + 𝑖0.54

−0. 2201 − 0.3552
) (

0.5401 + 𝑖0.3723
−0. 1606 − 0.3152

) (
0.4516 + 𝑖0.5135
−0.2756 − 0.4217

) 

BCFWGHM (
0. 954 + 𝑖0.9822
−0.0572 − 0.0758

) (
0.8276 + 𝑖0.8732
−0. 0428 − 0.0743

) (
0.8589 + 𝑖0.8634
−0. 0247 − 0.0592

) (
0.8257 + 𝑖0.8676
−0. 0606 − 0.0991

) 

Step 4: Determine the score values by employing Definition (2) of the aggregated values acquired in 



1864 

AIMS Mathematics  Volume 8, Issue 1, 1848–1870. 

the last step which is presented in Table 3. 

Table 3. The score values of each REGP. 

Operators 𝕾𝓑 (𝓥̇̆𝟏) 𝕾𝓑 (𝓥̇̆𝟐) 𝕾𝓑 (𝓥̇̆𝟑) 𝕾𝓑 (𝓥̇̆𝟒) 

BCFGHM 0.7556 0.5959 0.6342 0.567 

BCFWGHM 0.9508 0.8959 0.9096 0.8834 

Step 5: Rank all the renewable energy generation projects 𝒱̇̆𝑠̆ (𝑠̆ = 1, 2, 3, 4) as per their score values 

in the last step. The ranking is demonstrated in Table 4. 

Table 4. The Ordering of each REGP. 

Operators Ordering 

BCFGHM 𝒱̇̆1 > 𝒱̇̆3 > 𝒱̇̆2 > 𝒱̇̆4 

BCFWGHM 𝒱̇̆1 > 𝒱̇̆3 > 𝒱̇̆2 > 𝒱̇̆4 

Step 6: From table 4, it is evident that both BCFGHM and BCFWGHM operators provide us that 

REGP is 𝒱̇̆1 is the best REGP among the all shortlisted 4 REGPs. The 2nd best ERGP is REGP is 𝒱̇̆3 

among the all shortlisted 4 REGPs. 

Step 7: End. 

In the above example, we are considering the value of parameters 𝔭̆ and 𝔮̆ is 2. But for various 

values of both parameters, we can get various outcomes, and the sensitivity analysis of parameters 𝔭̆ 

and 𝔮̆ are given below. 

In the following, we will see the effect of the parameters 𝔭̆ and 𝔮̆ on the DM outcomes depend 

on BCFGHM and BCFWGHM operators. For this, we will consider the above example (Selection of 

the best REGP) and the results for various values of 𝔭̆ and 𝔮̆ are demonstrated in Tables 5 and 6. 

Table 5. The effect of the parameters 𝔭̆ and 𝔮̆ on the BCFGHM operator. 

Values of 𝖕̆ and 𝖖̆ 𝕾𝓑 (𝓥̇̆𝟏) 𝕾𝓑 (𝓥̇̆𝟐) 𝕾𝓑 (𝓥̇̆𝟑) 𝕾𝓑 (𝓥̇̆𝟒) Ranking 

𝖕̆ = 𝟎, 𝖖̆ = 𝟏 0.846 0.692 0.728 0.664 𝒱̇̆1 > 𝒱̇̆3 > 𝒱̇̆2 > 𝒱̇̆4 

𝖕̆ = 𝟎. 𝟓, 𝖖̆ = 𝟎. 𝟓 0.82 0.653 0.704 0.627 𝒱̇̆1 > 𝒱̇̆3 > 𝒱̇̆2 > 𝒱̇̆4 

𝖕̆ = 𝟏, 𝖖̆ = 𝟏 0.781 0.61 0.658 0.582 𝒱̇̆1 > 𝒱̇̆3 > 𝒱̇̆2 > 𝒱̇̆4 

𝖕̆ = 𝟎, 𝖖̆ = 𝟐 0.816 0.659 0.69 0.628 𝒱̇̆1 > 𝒱̇̆3 > 𝒱̇̆2 > 𝒱̇̆4 

𝖕̆ = 𝟐, 𝖖̆ = 𝟐 0.756 0.596 0.634 0.567 𝒱̇̆1 > 𝒱̇̆3 > 𝒱̇̆2 > 𝒱̇̆4 

𝖕̆ = 𝟏𝟎, 𝖖̆ = 𝟏𝟎 0.782 0.658 0.662 0.623 𝒱̇̆1 > 𝒱̇̆3 > 𝒱̇̆2 > 𝒱̇̆4 
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Table 6. The effect of the parameters 𝔭̆ and 𝔮̆ on the BCFWGHM operator. 

Values of 𝖕̆ and 𝖖̆ 𝕾𝓑 (𝓥̇̆𝟏) 𝕾𝓑 (𝓥̇̆𝟐) 𝕾𝓑 (𝓥̇̆𝟑) 𝕾𝓑 (𝓥̇̆𝟒) Ranking 

𝖕̆ = 𝟎, 𝖖̆ = 𝟏 0.983 0.986 0.99 0.982 𝒱̇̆3 > 𝒱̇̆2 > 𝒱̇̆1 > 𝒱̇̆4 

𝖕̆ = 𝟎. 𝟓, 𝖖̆ = 𝟎. 𝟓 0.974 0.936 0.946 0.929 𝒱̇̆1 > 𝒱̇̆3 > 𝒱̇̆2 > 𝒱̇̆4 

𝖕̆ = 𝟏, 𝖖̆ = 𝟏 0.963 0.916 0.928 0.906 𝒱̇̆1 > 𝒱̇̆3 > 𝒱̇̆2 > 𝒱̇̆4 

𝖕̆ = 𝟎, 𝖖̆ = 𝟐 0.977 0.981 0.986 0.975 𝒱̇̆3 > 𝒱̇̆2 > 𝒱̇̆1 > 𝒱̇̆4 

𝖕̆ = 𝟐, 𝖖̆ = 𝟐 0.951 0.896 0.91 0.883 𝒱̇̆1 > 𝒱̇̆3 > 𝒱̇̆2 > 𝒱̇̆4 

𝖕̆ = 𝟏𝟎, 𝖖̆ = 𝟏𝟎 0.93 0.878 0.891 0.869 𝒱̇̆1 > 𝒱̇̆3 > 𝒱̇̆2 > 𝒱̇̆4 

By varying the values of parameters 𝔭̆ and 𝔮̆ in the BCFWGHM operators, we noted that the 

outcomes are changing, for example considering the value of 𝔭̆ = 0 and 𝔮̆ = 1 or 2, we achieve that 

𝒱̇̆3 is the desirable alternative. This implies that by varying the values of parameters 𝔭̆ and 𝔮̆, one 

can get various outcomes. Thus, the proposed method is more flexible and gives the experts more 

options. The value of parameters depends on the choice of an expert and the given situation. 

6. Comparative analysis 

To demonstrate the usefulness of the propounded operators and MADM procedure interpreted in 

the above sections, we explain a similar descriptive example by competing with several present 

operators and MADM techniques based on various AOs under intuitionistic fuzzy (IF) setting, such as 

IF geometric Heronian mean (IFHM) AOs invented by Yu [45], picture fuzzy (PF) setting i.e. PF 

Heronian mean (PFHM) AOs in MADM is explored by Wei et al. [44], and bipolar fuzzy (BF) setting 

i.e. Dombi AOs explored by Jana et al. [7], and Hamacher AOs invented by Wei et al. [8], under BCF 

setting i.e. BM operator investigated by Mahmood et al. [39] and AOs initiated by Mahmood et al. [38]. 

In the descriptive example, the information is two-dimension with both positive and negative opinions 

of the expert. 

Now by seeing the above-mentioned structures and their MADM procedure, one can easily notice 

that these present structures are not able to cope with such sort of information because the IFGHM 

AOs [45] can merely cope with the information which involves satisfaction and non-satisfaction 

opinion of the expert in a single dimension and can’t overcome the data where two-dimensional and 

negative opinion are involved, likewise, the PFHM AOs [44] can merely cope with the information 

which involves the satisfaction, neutral and non-satisfaction opinion of the expert in a single dimension 

and can’t overcome the data where two-dimensional and negative opinion are involved, and the Dombi 

AOs [7], Hamacher AOs [8] in the setting of BFS can merely cope with the information which involves 

the positive and negative opinion of the expert in a single dimension and can’t overcome the data 

where two dimensions are involved. The BM operator and AOs in the setting of BCFN can handle this 

information and the required outcomes are presented in the Table 7 We depict the score values and 

positioning results of exhibited and current work in table 7 and their graphical depiction is introduced 

in Figure 1. 
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Table 7. The score values and ordering results of the propounded work and present work. 

Operators 𝕾𝓑 (𝓥̇̆𝟏) 𝕾𝓑 (𝓥̇̆𝟐) 𝕾𝓑 (𝓥̇̆𝟑) 𝕾𝓑 (𝓥̇̆𝟒) Ordering 

IFHMA [45] Crashed Crashed Crashed Crashed Crashed 

PFHMA [44] Crashed Crashed Crashed Crashed Crashed 

BFHA [8] Crashed Crashed Crashed Crashed Crashed 

BFDA [7] Crashed Crashed Crashed Crashed Crashed 

BCFNWBM [39] 0.666 0.514 0.552 0.474 𝒱̇̆1 > 𝒱̇̆3 > 𝒱̇̆2 > 𝒱̇̆4 

BCFWAA [38] 0.693 0.539 0.574 0.481 𝒱̇̆1 > 𝒱̇̆3 > 𝒱̇̆2 > 𝒱̇̆4 

BCFWGA [38] 0.637 0.455 0.533 0.416 𝒱̇̆1 > 𝒱̇̆3 > 𝒱̇̆2 > 𝒱̇̆4 

BCFGHM 0.756 0.596 0.634 0.567 𝒱̇̆1 > 𝒱̇̆3 > 𝒱̇̆2 > 𝒱̇̆4 

BCFWGHM 0.951 0.896 0.91 0.883 𝒱̇̆1 > 𝒱̇̆3 > 𝒱̇̆2 > 𝒱̇̆4 

 

Figure 1. The graphical depiction of propounded and prevailing work. 

The BCFNWBM operator investigated by Mahmood et al. [39] and BCFWAA, BCFWGA 

operators introduced by Mahmood et al. [38] are giving us the same outcomes as the proposed 

operators and method are giving for example 𝒱̇̆1 is the finest alternative. But the BCFNWBM [39] is 

not capable of catching the relationship of the argument with itself. Thus, the BM operator can’t 

provide an accurate outcome in every situation. The AOs [38] have no parameters and can just give us 

a single answer and are also not useful in every situation. But the proposed operators have both abilities, 

which include the investigated operators and method can catch the relationship between the attribute 

with itself and also have the parameters 𝔭̆ and 𝔮̆, to give various outcomes. This infers that the laid-

out work is more precise and prevailing than the current work. By our invented MADM based on 

BCFGHM and BCFWGHM operators, we can solve the data stated in the setting BFS, CFS, and FS 

as follows 

1) For the data in the setting BFS, we have to take the unreal part in PMG and NMG equal to zero 

in our propounded work. 
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2) For the data in the setting CFS, we have to ignore the NMG in our propounded work. 

For the data in the setting FS, we have to ignore the NMG and take the unreal part in PMG equal 

to zero in our invented work. 

7. Conclusions 

With the development of the world, decision experts face more difficulties in DM dilemmas. To 

cope with these difficulties various scholars modified the structure of FS and presented BFS, CFS, etc. 

One of the most advance and effective structures of FS is BCFS. The BCFS set can tackle both sides 

of opinion along with extra fuzzy information. Therefore, in this article, we determined the advantages 

of the structure of BCFS, HM, and GHM operators, which give the AOs the ability of taking into 

account the interrelatedness among the parameters. Firstly, we initiated the BCF generalized Heronian 

mean (BCFGHM) operator. Then, we investigated a few of its particular cases by changing the values 

of the parameter to show its supremacy. To handle the weight vector, we propounded the BCFWGHM 

operator. Next, for solving genuine-life dilemmas, we established a MADM procedure based on the 

investigated BCFGHM, and BCFWGHM operator. To portray the practical use of established MADM, 

we presented a descriptive example (selection of the finest renewable energy generation project). 

Through the established MADM approach we determined that 𝒱̇̆1 is the finest project. After that, 

we studied the effectiveness of the parameters 𝔭̆  and 𝔮̆ , on the DM outcomes. Finally, we 

demonstrated the usefulness of the propounded operators and MADM procedure by comparing our 

invented work with several present operators and MADM techniques. In the result of the comparison 

of the propounded work with the prevailing work, we saw that the presented work is more advanced 

and generalized. By our invented MADM based on BCFGHM and BCFWGHM operators, we can 

solve the data stated in the setting BFS, CFS, and FS. The investigated method is not valid for tackling 

the data in the form of bipolar complex intuitionistic FS, BCF soft set, bipolar complex picture FS, etc. 

In the future, we would like to study different articles such as Quasirung FS [46, 47], Q-rung 

Orthopair fuzzy frank AOs [48], PF N-soft set (PFN-SS) [49], complex dual hesitant FS [50], and 

CHFS [51] and will apply for the propounded work in these areas. 
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