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Abstract: A mathematical model was built using delay differential equations to investigate the effect
of active and passive immunotherapies in delaying the progression of Parkinson’s Disease. The model
described the dynamics between healthy and infected neurons and alpha-synuclein with innate and
adaptive immune responses. The model was examined qualitatively and numerically. The qualitative
analysis produced two equilibrium points. The local stability of the free and endemic equilibrium
points was established depending on the basic reproduction number, R0. Numerical simulations were
executed to show the agreement with the qualitative results. Moreover, a sensitivity analysis on R0

was conducted to examine the critical parameters in controlling R0. We found that if treatment is
administered in the early stages of the disease with short time delays, alpha-synuclein is combated,
inhibiting activated microglia and T cells and preserving healthy neurons. It can be concluded that
administering time of immunotherapies plays a significant role in hindering the advancement of
Parkinson’s disease.
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1. Introduction

Parkinson’s disease (PD) is a familiar neurodegenerative disease. The death of dopaminergic
neurons that secrete dopamine in the Substantia Nigra pars Compacta (SNc), a brain region, is the
primary cause. Also, the autopsies of Parkinson’s patients exhibited the presence of Lewy bodies,
which are an aggregation of misfolded alpha-synuclein (α-syn) protein [1–5]. The aggregation of
α-syn protein within a neuron obstructs the cell’s autophagy leading to neuronal death [6, 7]. As a
result, the protein is released into the extracellular surroundings inducing again neuronal
loss [4, 8–10]. The pathological α-syn acts as a prion-like protein and spreads from cell to
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cell [11–13] causing toxic in recipient cells [5, 7, 14, 15].
The immune system defends the body from foreign antigens. Microglia are innate immune cells

in the central nervous system (CNS) that constantly check the brain’s environment [16, 17] with an
immediate non-selective response against viruses [18, 19]. The activation of microglia leads to the
release of anti-inflammatory cytokines to protect and alert neighboring cells [20]. Moreover, they
act fast to absorb and dispose of misfolded α-syn [21–23] to prevent neurodegeneration. However,
activated microglia amid severe inflammation may fail to be regulated, causing damage to healthy
neurons [20].

Adaptive immune cells are more sophisticated than innate immune cells. It provides more vital
protection to the immune system since it develops a memory of antigens when encountered in the
future. It is slower than the innate immune cells and takes one to two weeks to confront the antigen. The
effector response takes place in two phases: The first phase is antigen recognition, cell preparation, and
activation by antigen-specific T and B cells. The second stage is the effector response by activating the
T cells and their exit from the lymphatic system to the disease site, alternatively, by releasing antibodies
from B cells into the bloodstream. There are two types of T cells: Helper T cells (CD4+), whose
function is to recognize antigens and activate the cellular response to remove disease-causing agents
and stimulate B cells. The other type is cytotoxic T cells (CD8+), which are responsible for antiviral
and antitumor activity [18, 19]. Lymphatic tissues contain antigen-presenting cells (APCs) whose
function is to produce the necessary cytokines for T cells and B cells lymphocyte maintenance [18].
They are cells that can break protein into peptides and present them with the major histocompatibility
complex (MHC) at the cell surface to interact with the appropriate T cells [24]. Mature T cells are
activated when the T cell receptor (TCR) recognizes the antigenic peptide complexed with MHC on an
APC [25].

Microglia cells release pro-inflammatory cytokines when they encounter antigens. The persistent
inflammation of the innate immune system causes an increase in the permeability of the blood-brain
barrier, whose primary function is to protect the brain environment from any damage. T cells infiltrate
the CNS through the blood-brain barrier and release inflammatory cytokines, and neurons eventually
die due to the presence of persistent inflammation and a cytotoxic environment. Several studies have
confirmed the presence of high levels of T cells in the SNc after death in Parkinson’s patients compared
to healthy controls [18, 26].

Immunotherapy is a therapeutic strategy to modulate the immune response to confer
neuroprotection in Parkinson’s patients by reducing microglia activation, inhibiting pro-inflammatory
T cell responses, increasing neuronal support, and removing unfolded protein. There are two types of
immunotherapy; the first is active immunization, which offers the patient fragments of the pathogen
protein to produce antibodies inside the body to give a long-lasting response due to eliminating the
α-syn aggregation. The second is passive immunization, where patients are injected with antibodies
against the antigen. Active immunization does not require repeated doses; however, passive
immunization needs repeated doses [15]. An example of active immunization is PD01A, developed
by AFFiRiS, which involves delivering a vaccine with a short antigen peptide that mimics a portion of
α-syn and helps stimulate in vivo antibodies recognize the α-syn aggregation and not the monomeric
form. Preclinical trials showed decreased α-syn scores and improved memory and motor defects. As
for passive immunization, PRX002 is the first α-syn therapy developed by Prothena. Multiple
ascending-dose trials of PRX002 in PD patients have shown a significant reduction of α-syn [18].
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Mathematical models participated in understanding the dynamics of neurodegeneration
diseases [27, 28]. For example, in Alzheimer’s disease, Puri and Li [29] modeled the interaction
between amyloid-β, neurons, microglia, and astrocytes. They found that activated microglia play a
significant role in forming neuropathy. In [30], Hao and Friedman used nonlinear partial differential
equations to describe the dynamics between neurons, astrocytes, microglia, macrophages, amyloid-β
aggregation, and hyperphosphorylated tau proteins. They suggested a therapeutic approach to slow
the progression of the disease.

For PD models, Kuznetsova and Kuznetsova [31] presented a model that explains the aggregation
of α-syn within a neuron cell. They concluded that deficiency in the degradation mechanisms is the
primary cause for α-syn accumulation. Moreover, they demonstrated in [32], using two models, α-
syn transmission, active and diffusive, in both healthy and diseased axons. They discovered that α-
syn aggregation in Lewy bodies appears in diseased axons. In [33], Sneppen et al. formed a model
describing the connection between α-syn aggregation and proteasome activity. They found that α-syn
aggregation is contained when the ratio between the proteasome and α-syn is below a critical level.

The immune system protects the CNS by eliminating any form of toxicity in the brain. The
clearance process creates inflammations which result in damaged neurons. The immune system’s
overactive response may cause neurodegeneration that leads to PD. In [34], we discussed the impact
of the extracellular α-syn on the progression of PD. The model represented the relations between
neurons, extracellular α-syn, and innate immune response. The model represented the relations
between neurons, extracellular α-syn, and innate immune response. A reduction in extracellular α-syn
and a reduction in inflammation induced by activated microglia in the CNS were examined as
therapeutic interventions. We found that there is no apparent effect of the latter on delaying neuronal
deterioration. Treatments that reduce extracellular α-syn, whether alone or in combination with other
treatments, preserve neurons and delay Parkinson’s disease.

This work investigates the effect of active and passive immunotherapies on delaying the progression
of PD. The model includes the immune responses from both the innate and adaptive systems. We
model the dynamics between neurons, extracellular α-syn, activated microglia, and activated T cells
using delay differential equations. Delay differential equations have been used in the literature to model
diseases see for example [35]. To our knowledge, this is a novel PD model that examines the impact of
both active and passive immunotherapies on the dynamics of PD progression. Also, the administering
time of the therapies can be explored by using delay differential equations.

The paper is outlined as follows. In Section 2, we formulate the model and present a description
of the variables and parameters. The feasible region of the model is demonstrated in Section 3. The
stability of the equilibrium points is investigated in Section 4. Finally, Numerical simulations adjacent
to parameters analysis are illustrated in Section 5. A brief conclusion is given in Section 6.

2. Mathematical model

We propose a model describing the dynamics related to the interaction between neurons,
extracellular α-syn, and innate and adaptive immune cells. The model consists of five compartments:
The density of healthy neurons, N(t); the density of infected neurons in the brain, I(t); the density of
extracellular α-syn, αS (t); the density of the activated microglia, M(t); and the density of the
activated T cells, T (t).
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We assume that healthy neurons are produced at a rate of σ during neurogenesis and die during
apoptosis at the rate of µ1. Extracellular α-syn infects healthy neurons at the rate of β. As a result,
healthy neurons move to the infected neuron compartment. α-syn accumulates within the infected
neurons, causing their death at the rate of d1. During the lysis of the infected neurons, a percentage
e of survived α-syn wander off into the extracellular. Infected neurons and extracellular α-syn in the
CNS lead to innate immune response and trigger microglia activation. Consequently, microglia secrete
cytokines yielding the death of neurons and extracellular α-syn at the rate of a1. The inflammation due
to microglia activation increases the permeability of the blood-brain barrier, causing the movement of
α-syn beyond the CNS. This leads to the response of adaptive immune cells; therefore, T cells are
activated. The infiltration of activated T cells propagates inflammation causing the death of neurons
and extracellular α-syn at the rate of a2. We assume that the activation of microglia and T cells inhibits
at the rate of µ2, µ3, respectively.

Inflammation plays a significant role in protecting the CNS; however, at the same time, damage to
neurons occurs. The therapeutic approach to PD is to eliminate the excess of α-syn from the
extracellular space and improve the immune system’s tolerance for α-syn. Two types of
immunotherapies can be delivered to PD patients, active and passive immunization. The active
involves immunization with a short antigenic peptide, which imitates α-syn. The passive is to deliver
anti α-syn antibodies to the brain. We embody immunotherapies in the model by assuming that after a
time τ, extracellular α-syn are eliminated by a percentage of ε1. Accordingly, due to the
immunization, the activation of microglia and T cells is inhibited by a percentage of ε2 and ε3,
respectively. The model dynamics are depicted in Figure 1.

Figure 1. The dynamics of the model.

The model is formulated by the following system of nonlinear delay differential equations where the
parameters belong to the interval (0, 1] (see Table 1 for a summary of all the variables and parameters
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in the model):

N
′

(t) = σ − βN(t)αS (t) − a1N(t) − a2N(t) − µ1N(t),

I
′

(t) = βN(t)αS (t) − d1I(t) − a1I(t) − a2I(t),

αS
′

(t) = ed1I(t) − a1αS (t) − a2αS (t) − ε1α̃S (t, τ),

M
′

(t) = a1I(t) + a1αS (t) − ε2M̃(t, τ) − µ2M(t),

T
′

(t) = a1I(t) + (a1 + a2)αS (t) − ε3T̃ (t, τ) − µ3T (t).

(2.1)

Table 1. Definition of symbols in model (2.3).

Symbol Definition Units

t Time day

τ Delay time day

N Density of healthy neurons in the brain g/ml

I Density of infected neurons in the brain g/ml

αS Density of extracellular α-syn in the brain g/ml

M Density of activated microglia g/ml

T Density of activated T cell g/ml

σ Density of new neurons per day due to neurogenesis g/ml/day

β Neuron infection rate ml/g/day

µ1 Apoptosis rate of neurons day−1

µ2 Annihilation rate of activated microglia day−1

µ3 Annihilation rate of activated T cell day−1

d1 Death rate of infected neurons due to α-syn aggregations day−1

a1 Activation rate of microglia due to extracellular α-syn and infected neurons day−1

a2 Activation rate of T cell due to extracellular α-syn and infected neurons day−1

e Percentage of α-syn survival from death of infected neurons .
ε1 Percentage of extracellular α-syn clearance due to immunotherapy .
ε2 Percentage of inhibited activated microglia due to immunotherapy .
ε3 Percentage of inhibited activated T cells due to immunotherapy .

The development of the densities in the extracellular α-syn, α̃S (t, τ), the activated microglia, M̃(t, τ)
and the activated T cells, T̃ (t, τ) are described as follows:(

∂

∂t
+
∂

∂τ

)
α̃S (t, τ) = −(a1 + a2)α̃S (t, τ), α̃S (t, 0) = ed1I(t),(

∂

∂t
+
∂

∂τ

)
M̃(t, τ) = −µ2M̃(t, τ), M̃(t, 0) = a1I(t) + a1αS (t), (2.2)(

∂

∂t
+
∂

∂τ

)
T̃ (t, τ) = −µ3T̃ (t, τ), T̃ (t, 0) = a1I(t) + (a1 + a2)αS (t).

Here, we used the same approach as in [36] to model the development. Moreover, we express the
boundary conditions when τ = 0, that is, α̃S (t, 0), M̃(t, 0) and T̃ (t, 0) in terms of the state variables. By
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using the method of characteristic coordinates for first order partial differential equations in [37], we
solve the first order partial differential equations in (2.2). We obtain the following solutions:

α̃S (t, τ) = ed1I(t − τ)e−(a1+a2)τ,

M̃(t, τ) = a1(I(t − τ) + αS (t − τ))e−µ2τ,

T̃ (t, τ) = (a1I(t − τ) + (a1 + a2)αS (t − τ))e−µ3τ.

Hence, system (2.1) can be rewritten as follows:

N
′

(t) = σ − βN(t)αS (t) − a1N(t) − a2N(t) − µ1N(t),

I
′

(t) = βN(t)αS (t) − d1I(t) − a1I(t) − a2I(t),

αS
′

(t) = ed1I(t) − a1αS (t) − a2αS (t) − ε1ed1I(t − τ)e−(a1+a2)τ,

M
′

(t) = a1I(t) + a1αS (t) − ε2a1(I(t − τ) + αS (t − τ))e−µ2τ − µ2M(t),

T
′

(t) = a1I(t) + (a1 + a2)αS (t) − ε3(a1I(t − τ)
+ (a1 + a2)αS (t − τ))e−µ3τ − µ3T (t).

(2.3)

3. Basic analysis

This section demonstrates the well-posedness of model (2.3) by establishing its positivity and
boundedness in a feasible region. Also, it explores the model’s equilibrium points and their existence
criteria and calculates the basic reproduction number using the next-generation method.

Theorem 3.1. If the initial values of model (2.3) are non-negative, N(0) ≥ 0, I(0) ≥ 0, αS (0) ≥ 0,
M(0) ≥ 0, and T (0) ≥ 0, then the solutions of the model, N(t), I(t), αS (t), M(t), and T (t), are non-
negative for all t > 0.

Proof. Let N(0), I(0), αS (0), M(0) and T (0) be non-negative. From system (2.3), we have,

N
′
∣∣∣
N=0

= σ ≥ 0,

I
′
∣∣∣
I=0

= βNαS ≥ 0, for all αS ≥ 0.

Thus, N(t) and I(t) are non-negative. Similarly,

αS ′
∣∣∣
αS =0

= ed1(I(t) − ε1e−(a1+a2)τI(t − τ)).

For τ = 0,
αS

′
∣∣∣
αS =0

= ed1I(t)(1 − ε1) ≥ 0,

since ε1 ≤ 1. For τ > 0, αS
′
∣∣∣
αS =0
≥ 0, since e−(a1+a2)τ < 1. Therefore, αS is non-negative. Applying the

same approach, we find,

M
′
∣∣∣
M=0

= a1(I(t) + αS (t) − ε2(I(t − τ) + αS (t − τ))e−µ2τ) ≥ 0,

T
′
∣∣∣
T=0

= a1(I(t) − ε3I(t − τ)e−µ3τ) + (a1 + a2)(αS (t) − ε3αS (t − τ)e−µ3τ) ≥ 0.

Hence, the solution (N(t), I(t), αS (t),M(t),T (t)) is non-negative for all t > 0. �
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Theorem 3.2. The feasible region of model (2.3),

Ω∗ =
{
(N, I, αS ,M,T ) ∈ R5

+ : 0 ≤ N ≤
σ

a1 + a2 + µ1
, 0 ≤ I ≤

σ

a1 + a2 + µ1
,

0 ≤ αS ≤
ed1σ

(a1 + a2 + µ1)(a1 + a2)
, 0 ≤ M ≤

a1σ(ed1 + a1 + a2)
µ2(a1 + a2 + µ1)(a1 + a2)

,

0 ≤ T ≤
σ(ed1 + a1)

µ3(a1 + a2 + µ1)
}
,

is positively invariant.

Proof. From the first equation in (2.3), we obtain

N
′

≤ σ − (a1 + a2 + µ1)N.

Thus,

d
dt

[
N exp

{ ∫ t

0

(
a1 + a2 + µ1

)
dρ

}]
≤ σ exp

{ ∫ t

0

(
a1 + a2 + µ1

)
dρ

}
.

Integration yields,

N(t) ≤ N0e−(a1+a2+µ1)t +
σ

(a1 + a2 + µ1)
−

σ

(a1 + a2 + µ1)
e−(a1+a2+µ1)t.

Thus, lim supt→∞N(t) ≤ σ/(a1 + a2 +µ1). Consequently, I(t) ≤ σ/(a1 + a2 +µ1), since infected neurons
I are a part from the healthy neurons N. From the third equation in (2.3), we have

αS
′

≤ ed1I − (a1 + a2)αS ≤
ed1σ

(a1 + a2 + µ1)
− (a1 + a2)αS .

Integration gives,

αS (t) ≤ αS 0 −
ed1σ

(a1 + a2 + µ1)(a1 + a2)
e−(a1+a2)t +

ed1σ

(a1 + a2 + µ1)(a1 + a2)
.

Therefore, lim supt→∞αS (t) ≤ ed1σ/[(a1 + a2 + µ1)(a1 + a2)]. Similarly, from the rest of the equations
in (2.3), we have

lim supt→∞M(t) ≤
a1σ(ed1 + a1 + a2)

µ2(a1 + a2 + µ1)(a1 + a2)
,

lim supt→∞T (t) ≤
σ(ed1 + a1)

µ3(a1 + a2 + µ1)
.

Next, we prove that Ω∗ is a positively invariant set. Let (N(0), I(0), αS (0),
M(0), T (0)) be in Ω∗, From (2.3), we have

N
′

+ I
′

+ αS
′

+ M
′

+ T
′

= σ − (a1 + a2 + µ1)N − d1I − a2I + a1(αS + I) + ed1I

− µ2M − µ3T − ε1ed1I(t − τ)e−(a1+a2)τ

− ε2a1(I(t − τ) + αS (t − τ))e−µ2τ
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− ε3(a1I(t − τ) + (a1 + a2)αS (t − τ))e−µ3τ.

Then

N
′

+ I
′

+ αS
′

+ M
′

+ T
′

≤ σ − (a1 + a2 + µ1)N − (d1 + a2 − a1 − ed1)I
+ a1αS − µ2M − µ3T.

At the boundary,

N
′

+ I
′

+ αS
′

+ M
′

+ T
′

≤ σ − (a1 + a2 + µ1)
σ

(a1 + a2 + µ1)

− (d1 + a2 − a1 − ed1)
σ

(a1 + a2 + µ1)

+ a1
ed1σ

(a1 + a2 + µ1)(a1 + a2)
− µ3

σ(ed1 + a1)
µ3(a1 + a2 + µ1)

− µ2
a1σ(ed1 + a1 + a2)

µ2(a1 + a2 + µ1)(a1 + a2)
.

After simplifying, we get

N
′

+ I
′

+ αS
′

+ M
′

+ T
′

≤ −
σ(d1 + a2)

(a1 + a2 + µ1)
−

a1σ(a1 + a2)
(a1 + a2)(a1 + a2 + µ1)

< 0.

Hence, the solution (N(t), I(t), αS (t),M(t),T (t)) stays in Ω∗. Therefore, Ω∗ is positively invariant. �

Equilibrium points of model (2.3) are calculated by equating the right-hand side equations to zero,
that is,

σ − βN(t)αS (t) − a1N(t) − a2N(t) − µ1N(t) = 0, (3.1)
βN(t)αS (t) − d1I(t) − a1I(t) − a2I(t) = 0, (3.2)
ed1I(t) − a1αS (t) − a2αS (t) − ε1ed1I(t − τ)e−(a1+a2)τ = 0, (3.3)
a1I(t) + a1αS (t) − ε2a1(I(t − τ) + αS (t − τ))e−µ2τ − µ2M(t) = 0, (3.4)
a1I(t) + (a1 + a2)αS (t) − ε3(a1I(t − τ)
+ (a1 + a2)αS (t − τ))e−µ3τ − µ3T (t) = 0. (3.5)

At equilibrium, we have

lim
t→∞

I(t) = lim
t→∞

I(t − τ),

lim
t→∞

αS (t) = lim
t→∞

αS (t − τ).

If αS = 0, then from (3.3), I = 0. Substituting for αS = I = 0 in (3.4) and (3.5), we get, M = T = 0.
Consequently, from (3.1), we obtain, N0 = σ/(a1 + a2 + µ1). Hence, the model has a free equilibrium
point, E0 = (N0, 0, 0, 0, 0), which exists always with no conditions.

Next, we find the basic reproduction number using the free equilibrium point and the
next-generation method [38]. The infected compartments in model (2.3) are I and αS . Let
X = (I, αS )T , then Eqs (3.2) and (3.3) can be rewritten as X′ = T (X) − V (X), where

T =

[
βN(t)αS (t)

0

]
and V =

[
(d1 + a1 + a2)I(t)

(a1 + a2)αS (t) + ε1ed1I(t − τ)e−(a1+a2)τ − ed1I(t)

]
.
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By evaluating the Jacobian of T and V at the free equilibrium point, we have the following matrices
T and V , respectively:

T =

[
0 βN0

0 0

]
and V =

[
(d1 + a1 + a2) 0

ed1(ε1e−(a1+a2)τ − 1) (a1 + a2)

]
.

The inverse of V is

V−1 =


1

d1 + a1 + a2
0

ed1(1 − ε1e−(a1+a2)τ)
(d1 + a1 + a2)(a1 + a2)

1
a1 + a2

 .
Hence, the next-generation matrix is

K = TV−1 =

βN0ed1(1 − ε1e−(a1+a2)τ)
(d1 + a1 + a2)(a1 + a2)

βN0

a1 + a2
0 0

 .
The reproduction number is the spectral radius of K, that is,

R0 =
βN0ed1(1 − ε1e−(a1+a2)τ)
(d1 + a1 + a2)(a1 + a2)

. (3.6)

Alternatively,

R0 =
σβed1(1 − ε1e−(a1+a2)τ)

(d1 + a1 + a2)(a1 + a2)(a1 + a2 + µ1)
, (3.7)

where N0 = σ/(a1 + a2 + µ1).
To find the endemic equilibrium point of the model, that is, E∗ = (N∗, I∗, αS ∗,M∗,T ∗), we solve the

Eqs (3.1)–(3.5). From Eq (3.1), we obtain

N∗ =
σ

βαS ∗ + a1 + a2 + µ1
.

Substituting N∗ in Eq (3.2), yields

I∗ =
σβαS ∗

(βαS ∗ + a1 + a2 + µ1)(d1 + a1 + a2)
.

Inserting I∗ into Eq (3.3), we have

ed1(1 − ε1e−(a1+a2)τ)
βσ

(d1 + a1 + a2)(βαS ∗ + a1 + a2 + µ1)
= (a1 + a2).

Hence,

αS ∗ =
ed1(1 − ε1e−(a1+a2)τ) − (a1 + a2 + µ1)(a1 + a2)(a1 + a2 + d1)

β(a1 + a2 + d1)(a1 + a2)
.

Rewriting αS ∗ in terms of R0 as

αS ∗ =
(a1 + a2 + µ1)(R0 − 1)

β
.
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From Eq (3.4), we obtain

M∗ =
a1(I∗ + αS ∗)(1 − ε2e−µ2τ)

µ2
.

Finally, from Eq (3.5), we get

T ∗ =
(a1(I∗ + αS ∗) + a2αS ∗)(1 − ε3e−µ3τ)

µ3
.

We summarize the results in the following theorem.

Theorem 3.3. Model (2.3) has two equilibrium points:

• Free equilibrium point, E0 = (N0, 0, 0, 0, 0) exists always, where N0 =
σ

a1 + a2 + µ1
.

• Endemic equilibrium point, E∗ = (N∗, I∗, αS ∗,M∗,T ∗) exists when R0 > 1, where,

N∗ =
σ

R0(a1 + a2 + µ1)
, I∗ =

σ(R0 − 1)
R0(a1 + a2 + d1)

, αS ∗ =
(a1 + a2 + µ1)(R0 − 1)

β
,

M∗ =
a1(I∗ + αS ∗)(1 − ε2e−µ2τ)

µ2
, T ∗ =

(a1(I∗ + αS ∗) + a2αS ∗)(1 − ε3e−µ3τ)
µ3

.

4. Stability analysis

Using the linearization method for delay differential equations [38, 39], we examine the local
stability of the equilibrium points of model (2.3). For global stability of the free equilibrium point, the
theorems of Castillo-Chavez and Song [40] are utilized in the same manner as in [41].

Theorem 4.1. The free equilibrium point, E0 = (N0, 0, 0, 0, 0), of model (2.3) is locally asymptotically
stable if R0 < 0.5(1 − ε1e−(a1+a2)τ).

Proof. First, we prove the stability of E0 for τ = 0. The Jacobian matrix of model (2.3) evaluated at
E0 is:

J(E0) =


−(a1 + a2 + µ1) 0 −βN0 0 0

0 −(d1 + a1 + a2) βN0 0 0
0 ed1(1 − ε1) −(a1 + a2) 0 0
0 a1(1 − ε2) a1(1 − ε2) −µ2 0
0 a1(1 − ε3) (a1 + a2)(1 − ε3) 0 −µ3


.

The characteristic equation, |J(E0) − λI| = 0, gives

(−µ3 − λ)(−µ2 − λ)(−(a1 + a2 + µ1) − λ)[λ2 + (2a1 + 2a2 + d1)λ

+ (a1 + a2)(a1 + a2 + d1)(1 −
βN0ed1(1 − ε1)

(a1 + a2)(a1 + a2 + d1)
)] = 0.

Thus,

(−µ3 − λ)(−µ2 − λ)(−(a1 + a2 + µ1) − λ)[λ2 + (2a1 + 2a2 + d1)λ
+ (a1 + a2)(a1 + a2 + d1)(1 − R0)] = 0.
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Clearly, λ1 = −µ2, λ2 = −µ3 and λ3 = −(a1 + a2 + µ1). As for λ4,5, they satisfy the equation:

P(λ) = λ2 + α1λ + α2 = 0, (4.1)

where

α1 = 2a1 + 2a2 + d1,

α2 = (a1 + a2)(a1 + a2 + d1)(1 − R0).

All terms of the quadratic equation (4.1) are positive if R0|τ=0 < 1. Hence, the eigenvalues λ4,5 are
negative. Therefore, for τ = 0, E0 is locally asymptotically stable if R0|τ=0 < 1.

Next, we investigate the stability of E0 for τ > 0. The Jacobian matrix of model (2.3) evaluated at
E0 is

J(E0) = J1(E0) + J2(E0),

where

J1(E0) =


−(a1 + a2 + µ1) 0 −βN0 0 0

0 −(d1 + a1 + a2) βN0 0 0
0 ed1 −(a1 + a2) 0 0
0 a1 a1 −µ2 0
0 a1 (a1 + a2) 0 −µ3


,

J2(E0) =


0 0 0 0 0
0 0 0 0 0
0 −ed1ε1e−(a1+a2)τ 0 0 0
0 −a1ε2e−µ2τ −a1ε2e−µ2τ 0 0
0 −a1ε3e−µ3τ −(a1 + a2)ε3e−µ3τ 0 0


.

The characteristic equation for delay differential equations is |J1(E0) + J2(E0)e−λτ − λI| = 0. Then

(−µ3 − λ)(−µ2 − λ)(−(a1 + a2 + µ1) − λ)[(d1 + a1 + a2 + λ)(a1 + a2 + λ)
− βN0ed1(1 − ε1e−(a1+a2)e−λτ)] = 0. (4.2)

Clearly, λ1 = −µ2, λ2 = −µ3 and λ3 = a1 + a2 + µ1. For λ4,5, they satisfy the equation:

P(λ) = λ2 + (d1 + 2a1 + 2a2)λ + (d1 + a1 + a2)(a1 + a2)
− βN0ed1(1 − ε1e−(a1+a2)τe−λτ) = 0. (4.3)

Rewrite (4.3) as:
P(λ) = (λ2 + aλ + b) + ce−λτ = 0, (4.4)

where

a = d1 + 2a1 + 2a2,

b = (d1 + a1 + a2)(a1 + a2) − βN0ed1,

c = βed1N0ε1e−(a1+a2)τ.
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Separate P(λ) as:
P(λ) = P1(λ) + P2(λ)e−λτ = 0,

where

P1(λ) = λ2 + aλ + b,

P2(λ) = c.

Assume that λ = iw, where w ∈ R, Then,

P(iw) = P1(iw) + P2(iw)e−iwτ = 0.

Using Euler’s formula, we have

P(iw) = P1(iw) + P2(iw)(cos (wτ) − i sin (wτ)) = 0.

Now,

P1(iw) = −w2 + iaw + b,

P2(iw) = c.

Let

P1(iw) = R1(w) + iQ1(w),
P2(iw) = R2(w) + iQ2(w),

where R1, R2, Q1 and Q2 are the real and imaginary parts of P1 and P2, respectively. Then

R1(w) = −w2 + b,

Q1(w) = aw,

R2(w) = c,

Q2(w) = 0.

Thus,
P(iw) = R1(w) + iQ1(w) + R2(w)(cos (wτ) − i sin (wτ)) = 0.

This equation equals zero if and only if the real and the imaginary parts are zero. Therefore,

R1(w) = −R2(w) cos (wτ),
Q1(w) = R2(w) sin (wτ).

By squaring the above two equations, we have

R2
1(w) = R2

2(w) cos2 (wτ),
Q2

1(w) = R2
2(w) sin2 (wτ).
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Adding these two equations, we obtain

R2
1(w) + Q2

1(w) − R2
2(w) = 0.

That is,
w4 + (a2 − 2b)w2 + b2 − c2 = 0.

Let u = w2, then we get
u2 + (a2 − 2b)u + b2 − c2 = 0. (4.5)

We explore the criteria for Eq (4.5) to have negative roots. If a2 − 2b and b2 − c2 are positive, then the
roots are negative. Now,

a2 − 2b = d2
1 + 2a1d1 + 2a2d1 + 4a1a2 + 2a2

1 + 2a2
2 + 2βN0ed1 > 0,

b2 − c2 = (d1 + a1 + a2)2(a1 + a2)2 − (βN0ed1)2ε2
1e−2(a1+a2)τ

− 2(d1 + a1 + a2)(a1 + a2)(βN0ed1) + (βN0ed1)2

= (d1 + a1 + a2)2(a1 + a2)2(1 −
2βN0ed1

(d1 + a1 + a2)(a1 + a2)
)

+ (βN0ed1)2(1 − ε2
1e−2(a1+a2)τ)

= (d1 + a1 + a2)2(a1 + a2)2(1 −
2R0

(1 − ε1e−(a1+a2)τ)
)

+ (βN0ed1)2(1 − ε2
1e−2(a1+a2)τ).

If R0 < 0.5(1 − ε1e−(a1+a2)τ), then b2 − c2 > 0. Note that ε1e−(a1+a2)τ < 1. Thus, The roots of Eq (4.5)
are negative if R0 < 0.5(1 − ε1e−(a1+a2)τ). But w ∈ R, then the eigenvalues λ , iw. Therefore, the
eigenvalues do not change their signs to a positive sign when τ increases and remain negative as they
were when τ = 0. Hence, E0 is locally asymptotically stable if R0 < 0.5(1 − ε1e−(a1+a2)τ). �

Theorem 4.2. The endemic equilibrium point, E∗ = (N∗, I∗, αS ∗,M∗,T ∗), of model (2.3) is locally

asymptotically stable if R0 >
2

(1 − ε1e−(a1+a2)τ)
.

Proof. First, we prove the stability of E∗ for τ = 0. The Jacobian matrix of model (2.3) evaluated at
E∗ is:

J(E∗) =


−(βαS ∗ + a1 + a2 + µ1) 0 −βN∗ 0 0

βαS ∗ −(d1 + a1 + a2) βN∗ 0 0
0 ed1(1 − ε1) −(a1 + a2) 0 0
0 a1(1 − ε2) a1(1 − ε2) −µ2 0
0 a1(1 − ε3) (a1 + a2)(1 − ε3) 0 −µ3


.

The characteristic equation, |J(E∗) − λI| = 0, yields

(−µ3 − λ)(−µ2 − λ)
{
− βαS ∗(βN∗ed1(1 − ε1)) − (βαS ∗ + a1 + a2 + µ1 + λ)

× [(d1 + a1 + a2 + λ)(a1 + a2 + λ) − βN∗ed1(1 − ε1)]
}

= 0.
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It is easy to see that λ1 = −µ2 and λ2 = −µ3. As for λi (i = 3, 4, 5), they satisfy the equation:

P(λ) = λ3 + γ2λ
2 + γ1λ + γ0 = 0, (4.6)

where,

γ2 = βαS ∗ + 3a1 + 3a2 + d1 + µ1,

γ1 = (βαS ∗ + a1 + a2 + µ1)(2a1 + 2a2 + d1)

+ (a1 + a2 + d1)(a1 + a2)(1 −
βN∗ed1(1 − ε1)

(a1 + a2 + d1)(a1 + a2)
)

= (βαS ∗ + a1 + a2 + µ1)(2a1 + 2a2 + d1)

+ (a1 + a2 + d1)(a1 + a2)(1 −
βσed1(1 − ε1)

R0|τ=0(a1 + a2 + d1)(a1 + a2)(a1 + a2 + µ1)
)

= (βαS ∗ + a1 + a2 + µ1)(2a1 + 2a2 + d1),

γ0 = (βαS ∗ + a1 + a2 + µ1)(a1 + a2 + d1)

× (a1 + a2)(1 −
βN∗ed1(1 − ε1)

(a1 + a2 + d1)(a1 + a2)
) + β2αS ∗N∗ed1(1 − ε1)

= β2αS ∗N∗ed1(1 − ε1).

We can see that γ2, γ1 and γ0 are all positive. Thus, the eigenvalues λ3,4,5 are negative. Hence, for
τ = 0, E∗ is locally asymptotically stable.

We continue the proof by exploring the stability of E∗ for τ > 0. The Jacobian matrix of model (2.3)
evaluated at E∗ is

J(E∗) = J1(E∗) + J2(E∗),

where

J1(E∗) =


−(βαS ∗ + a1 + a2 + µ1) 0 −βN∗ 0 0

βαS ∗ −(d1 + a1 + a2) βN∗ 0 0
0 ed1 −(a1 + a2) 0 0
0 a1 a1 −µ2 0
0 a1 (a1 + a2) 0 −µ3


,

J2(E∗) =


0 0 0 0 0
0 0 0 0 0
0 −ed1ε1e−(a1+a2)τ 0 0 0
0 −a1ε2e−µ2τ −a1ε2e−µ2τ 0 0
0 −a1ε3e−µ3τ −(a1 + a2)ε3e−µ3τ 0 0


.

The characteristic equation is |J1(E∗) + J2(E∗)e−λτ − λI| = 0, we have

(−µ3 − λ)(−µ2 − λ)[(−(βαS ∗ + a1 + a2 + µ1) − λ)×
[(d1 + a1 + a2 + λ)(a1 + a2 + λ) − βN∗ed1(1 − ε1e−(a1+a2)e−λτ)]
− βαS ∗(βN∗ed1(1 − ε1e−(a1+a2)e−λτ))] = 0. (4.7)

AIMS Mathematics Volume 8, Issue 1, 1800–1832.



1814

We find that λ1 = −µ2, λ2 = −µ3 and λi (i = 3, 4, 5) satisfy the following equation:

P(λ) = λ3 + [d1 + 3a1 + 3a2 + βαS ∗ + µ1]λ2

+ [(d1 + a1 + a2)(a1 + a2) − βN∗ed1(1 − ε1e−(a1+a2)τe−λτ)
+ (d1 + 2a1 + 2a2)(βαS ∗ + a1 + a2 + µ1)]λ
+ (d1 + a1 + a2)(a1 + a2)(βαS ∗ + a1 + a2 + µ1)
− βN∗ed1(1 − ε1e−(a1+a2)τe−λτ)(a1 + a2 + µ1) = 0. (4.8)

Rewrite (4.8) as
P(λ) = (λ3 + r2λ

2 + r1λ + r0) + (z1λ + z0)e−λτ = 0, (4.9)

where

r2 = d1 + 3a1 + 3a2 + βαS ∗ + µ1,

r1 = (d1 + a1 + a2)(a1 + a2) − βN∗ed1 + (d1 + 2a1 + 2a2)(βαS ∗ + a1 + a2 + µ1),
r0 = (d1 + a1 + a2)(a1 + a2)(βαS ∗ + a1 + a2 + µ1) − (a1 + a2 + µ1)βN∗ed1,

z1 = βN∗ed1ε1e−(a1+a2)τ,

z0 = (a1 + a2 + µ1)βN∗ed1ε1e−(a1+a2)τ.

Separate P(λ) as
P(λ) = P1(λ) + P2(λ)e−λτ = 0,

where

P1(λ) = λ3 + r2λ
2 + r1λ + r0,

P2(λ) = z1λ + z0.

Assume that λ = iw, where w ∈ R. Then,

P(iw) = P1(iw) + P2(iw)e−iwτ = 0.

Using Euler’s formula, we get

P(iw) = P1(iw) + P2(iw)(cos (wτ) − i sin (wτ)) = 0.

Now,

P1(iw) = −iw3 − r2w2 + ir1w + r0,

P2(iw) = iz1w + z0.

Let

P1(iw) = R1(w) + iQ1(w),
P2(iw) = R2(w) + iQ2(w).
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Where R1, R2,Q1 and Q2 are the real and imaginary parts of P1 and P2, respectively. Then

R1(w) = −r2w2 + r0,

Q1(w) = −w3 + r1w,

R2(w) = z0,

Q2(w) = z1w.

Thus,
P(iw) = R1(w) + iQ1(w) + (R2(w) + iQ2(w))(cos (wτ) − i sin (wτ)) = 0.

This equation equals to zero if and only if the real and the imaginary parts are zero. Therefore,

R1(w) = −R2(w) cos (wτ) − Q2(w) sin (wτ),
Q1(w) = R2(w) sin (wτ) − Q2(w) cos (wτ).

By squaring the above two equations and adding them, we have

R2
1(w) + Q2

1(w) − R2
2(w) − Q2

2(w) = 0.

That is,
w6 + (r2

2 − 2r1)w4 + (r2
1 − 2r0r2 − z2

1)w2 + r2
0 − z2

0 = 0.

Let u = w2, we get
u3 + (r2

2 − 2r1)u2 + (r2
1 − 2r0r2 − z2

1)u + r2
0 − z2

0 = 0. (4.10)

For Eq (4.10) to have negative roots, we must show that r2
2−2r1 > 0, r2

1−2r0r2− z2
1 > 0 and r2

0− z2
0 > 0.

First, we start with the coefficient of u2,

r2
2 − 2r1 = (d1 + 2a1 + 2a2 + βαS ∗ + a1 + a2 + µ1)2 − 2(d1 + a1 + a2)(a1 + a2)

+ 2βN∗ed1 − 2(d1 + 2a1 + 2a2)(βαS ∗ + a1 + a2 + µ1),
r2

2 − 2r1 = (d1 + a1 + a2)2 + (a1 + a2)2 + (βαS ∗ + a1 + a2 + µ1)2 + 2βN∗ed1

+ 2(d1 + a1 + a2)(a1 + a2) − 2(d1 + a1 + a2)(a1 + a2)
+ 2(d1 + a1 + a2)(βαS ∗ + a1 + a2 + µ1) + 2(a1 + a2)(βαS ∗ + a1 + a2 + µ1)
− 2(d1 + 2a1 + 2a2)(βαS ∗ + a1 + a2 + µ1),

r2
2 − 2r1 = (d1 + a1 + a2)2 + (a1 + a2)2 + (βαS ∗ + a1 + a2 + µ1)2 + 2βN∗ed1.

Thus, r2
2 − 2r1 is positive. Next, we compute r2

1 − 2r0r2 − z2
1,

r2
1 − 2r0r2 − z2

1 = [(d1 + a1 + a2)(a1 + a2) + (d1 + 2a1 + 2a2)(βαS ∗ + a1 + a2 + µ1)]2

+ β2N∗
2
e2d2

1 − 2βN∗ed1(d1 + a1 + a2)(a1 + a2)
− 2βN∗ed1(d1 + 2a1 + 2a2)(βαS ∗ + a1 + a2 + µ1)
+ 2(d1 + 3a1 + 3a2 + βαS ∗ + µ1)(a1 + a2 + µ1)βN∗ed1

− 2(d1 + 3a1 + 3a2 + βαS ∗ + µ1)(d1 + a1 + a2)(a1 + a2)
× (βαS ∗ + a1 + a2 + µ1) − (βN∗ed1ε1e−(a1+a2)τ)2,
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r2
1 − 2r0r2 − z2

1 = (d1 + a1 + a2)2(a1 + a2)2 + (d1 + 2a1 + 2a2)2(βαS ∗ + a1 + a2 + µ1)2

+ 2(d1 + a1 + a2)(a1 + a2)(d1 + 2a1 + 2a2)(βαS ∗ + a1 + a2 + µ1)

+ β2N∗
2
e2d2

1(1 − ε2
1e−2(a1+a2)τ) − 2βN∗ed1(d1 + a1 + a2)(a1 + a2)

− 2βN∗ed1(d1 + 2a1 + 2a2)(βαS ∗ + a1 + a2 + µ1)
+ 2(d1 + 2a1 + 2a2 + βαS ∗ + a1 + a2 + µ1)(a1 + a2 + µ1)βN∗ed1

− 2(d1 + 2a1 + 2a2 + βαS ∗ + a1 + a2 + µ1)(d1 + a1 + a2)(a1 + a2)
× (βαS ∗ + a1 + a2 + µ1),

r2
1 − 2r0r2 − z2

1 = (d1 + a1 + a2)2(a1 + a2)2 + β2N∗
2
e2d2

1(1 − ε2
1e−2(a1+a2)τ)

+ ((d1 + a1 + a2) + (a1 + a2))2(βαS ∗ + a1 + a2 + µ1)2

− 2βN∗ed1(d1 + a1 + a2)(a1 + a2)
− 2βN∗ed1(d1 + 2a1 + 2a2)(βαS ∗ + a1 + a2 + µ1)
+ 2(d1 + 2a1 + 2a2 + βαS ∗ + a1 + a2 + µ1)(a1 + a2 + µ1)βN∗ed1

− 2(d1 + a1 + a2)(a1 + a2)(βαS ∗ + a1 + a2 + µ1)2,

r2
1 − 2r0r2 − z2

1 = (d1 + a1 + a2)2(a1 + a2)2 + β2N∗
2
e2d2

1(1 − ε2
1e−2(a1+a2)τ)

+ ((d1 + a1 + a2)2 + (a1 + a2)2)(βαS ∗ + a1 + a2 + µ1)2

− 2βN∗ed1(d1 + a1 + a2)(a1 + a2)
− 2βN∗ed1(d1 + 2a1 + 2a2)(βαS ∗ + a1 + a2 + µ1)
+ 2(d1 + 2a1 + 2a2 + βαS ∗ + a1 + a2 + µ1)(a1 + a2 + µ1)βN∗ed1,

r2
1 − 2r0r2 − z2

1 = (d1 + a1 + a2)2(a1 + a2)2 + β2N∗
2
e2d2

1(1 − ε2
1e−2(a1+a2)τ)

+ ((d1 + a1 + a2)2 + (a1 + a2)2)(βαS ∗ + a1 + a2 + µ1)2

− 2βN∗ed1(d1 + a1 + a2)(a1 + a2)
− 2βN∗ed1(d1 + 2a1 + 2a2)(βαS ∗ + a1 + a2 + µ1)
+ 2βN∗ed1(d1 + a1 + a2)(a1 + a2) + 2βN∗ed1(a1 + a2)2

+ 2βN∗ed1µ1(d1 + 2a1 + 2a2)
+ 2βN∗ed1(βαS ∗ + a1 + a2 + µ1)(a1 + a2)
+ 2βN∗ed1µ1(βαS ∗ + a1 + a2 + µ1),

r2
1 − 2r0r2 − z2

1 = (d1 + a1 + a2)2(a1 + a2)2 + β2N∗
2
e2d2

1(1 − ε2
1e−2(a1+a2)τ)

+ ((d1 + a1 + a2)2 + (a1 + a2)2)(βαS ∗ + a1 + a2 + µ1)2

− 2βN∗ed1(d1 + a1 + a2)(βαS ∗ + a1 + a2 + µ1)
− 2βN∗ed1(a1 + a2)(βαS ∗ + a1 + a2 + µ1)
+ 2βN∗ed1(a1 + a2)2 + 2βN∗ed1µ1(d1 + 2a1 + 2a2)
+ 2βN∗ed1(βαS ∗ + a1 + a2 + µ1)(a1 + a2)
+ 2βN∗ed1µ1(βαS ∗ + a1 + a2 + µ1),

r2
1 − 2r0r2 − z2

1 = (d1 + a1 + a2)2(a1 + a2)2 + β2N∗
2
e2d2

1(1 − ε2
1e−2(a1+a2)τ)

+ ((d1 + a1 + a2)2 + (a1 + a2)2)(βαS ∗ + a1 + a2 + µ1)2
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− 2βN∗ed1(d1 + a1 + a2)(βαS ∗ + a1 + a2 + µ1)
+ 2βN∗ed1(a1 + a2)2 + 2βN∗ed1µ1(d1 + 2a1 + 2a2)
+ 2βN∗ed1µ1(βαS ∗ + a1 + a2 + µ1),

r2
1 − 2r0r2 − z2

1 = (d1 + a1 + a2)2(a1 + a2)2 + β2N∗
2
e2d2

1(1 − ε2
1e−2(a1+a2)τ)

+ (a1 + a2)2(βαS ∗ + a1 + a2 + µ1)2

+ (d1 + a1 + a2)(βαS ∗ + a1 + a2 + µ1)
× [(d1 + a1 + a2)(βαS ∗ + a1 + a2 + µ1) − 2βN∗ed1]
+ 2βN∗ed1(a1 + a2)2 + 2βN∗ed1µ1(d1 + 2a1 + 2a2)
+ 2βN∗ed1µ1(βαS ∗ + a1 + a2 + µ1).

Thus, the term r2
1 − 2r0r2 − z2

1 is positive if A is positive, where

A = (d1 + a1 + a2)(βαS ∗ + a1 + a2 + µ1)
× [(d1 + a1 + a2)(βαS ∗ + a1 + a2 + µ1) − 2βN∗ed1].

By using βαS ∗ + a1 + a2 + µ1 = R0(a1 + a2 + µ1) and N∗ = σ/R0(a1 + a2 + µ1), we get

A = R0(d1 + a1 + a2)(a1 + a2 + µ1)

× [R0(d1 + a1 + a2)(a1 + a2 + µ1) −
2βσed1

R0(a1 + a2 + µ1)
]

= (d1 + a1 + a2)[R2
0(d1 + a1 + a2)(a1 + a2 + µ1)2 − 2βσed1]

= 2βσed1(d1 + a1 + a2)[
R0(1 − ε1e−(a1+a2)τ)(a1 + a2 + µ1)

2(a1 + a2)
− 1].

Therefore, A > 0 if R0 >
2(a1 + a2)

(1 − ε1e−(a1+a2)τ)(a1 + a2 + µ1)
. Finally,

r2
0 − z2

0 = (d1 + a1 + a2)2(a1 + a2)2(βαS ∗ + a1 + a2 + µ1)2

+ (a1 + a2 + µ1)2β2N∗
2
e2d2

1(1 − ε2
1e−2(a1+a2)τ)

− 2βN∗ed1(d1 + a1 + a2)(a1 + a2)(βαS ∗ + a1 + a2 + µ1)(a1 + a2 + µ1),

r2
0 − z2

0 = (a1 + a2 + µ1)2β2N∗
2
e2d2

1(1 − ε2
1e−2(a1+a2)τ)

+ R2
0(d1 + a1 + a2)2(a1 + a2)2(a1 + a2 + µ1)2

− 2βσed1(d1 + a1 + a2)(a1 + a2)(a1 + a2 + µ1),

r2
0 − z2

0 = (a1 + a2 + µ1)2β2N∗
2
e2d2

1(1 − ε2
1e−2(a1+a2)τ)

+ 2βσed1(d1 + a1 + a2)(a1 + a2)(a1 + a2 + µ1)

× [
R2

0(d1 + a1 + a2)(a1 + a2)(a1 + a2 + µ1)
2βσed1

− 1],

r2
0 − z2

0 = (a1 + a2 + µ1)2β2N∗
2
e2d2

1(1 − ε2
1e−2(a1+a2)τ)

+ 2βσed1(d1 + a1 + a2)(a1 + a2)(a1 + a2 + µ1)[
R0(1 − ε1e−(a1+a2)τ)

2
− 1].
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Thus, r2
0 − z2

0 is positive if R0 >
2

(1 − ε1e−(a1+a2)τ)
.

Since
2

(1 − ε1e−(a1+a2)τ)
>

2(a1 + a2)
(1 − ε1e−(a1+a2)τ)(a1 + a2 + µ1)

,

then, all coefficient are positive if R0 >
2

(1 − ε1e−(a1+a2)τ)
= R∗0. Consequently, The roots of Eq (4.10)

are negative if R0 > R∗0. But w ∈ R, then the eigenvalues λ , iw. Therefore, the eigenvalues do not
change their signs to a positive sign when τ increases and remain negative as they were when τ = 0.
Hence, E∗ is locally asymptotically stable if R0 > R∗0. �

Next, we prove the global stability of the free equilibrium point when τ = 0 by using Castillo-
Chavez and Song approach in [40]. First, we introduce the following lemma.

Lemma 4.3. Consider a disease model system written in the form:

dX
dt

= F(X,Y),

dY
dt

= G(X,Y), G(X, 0) = 0,
(4.11)

where X ∈ Rm denotes the non-disease compartments and Y ∈ Rn denotes the disease compartments.
U0 = (X0, 0) denotes the disease free equilibrium of system (4.11). Assuming the conditions (C1) and
(C2) below:

(C1) For dX
dt = F(X, 0), X0 is globally asymptotically stable,

(C2) G(X,Y) = AY − Ĝ(X,Y), with Ĝ(X,Y) ≥ 0 for (X,Y) ∈ Ω,

where A = ∂G
∂Y (X0, 0) has all non-negative off-diagonal elements and Ω is the region where the model

makes biological sense.

If system (4.11) satisfies the above two conditions then the following theorem holds.

Theorem 4.4. The free equilibrium point E0 = (N0, 0, 0, 0, 0) of model (2.3) is globally asymptotic
stable with respect to Ω∗ if R0 < 1, τ = 0 and that assumptions (Cl) and (C2) of Lemma 4.3 are
satisfied.

Proof. Apply Lemma 4.3 to system (2.3), Consider X = (N,M,T )T and Y = (I, αS )T . When I = αS =

0, the non-infected subsystem is X′(t) = F(X,Y), which can be rewritten as follows

N
′

(t) = σ − (a1 + a2 + µ1)N,

M
′

(t) = −µ2M, T
′

(t) = −µ3T,

where F(X,Y) is the right-hand side of the subsystem. Solving the equations, we obtain

N(t) = (N(0) −
σ

a1 + a2 + µ1
)e−(a1+a2+µ1)t +

σ

a1 + a2 + µ1
,

M(t) = M(0)e−µ2t, T (t) = T (0)e−µ3t,
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where N(0), M(0) and T (0) are the initial values. Then limt→∞ N(t) = σ
a1+a2+µ1

= N0, limt→∞ M(t) =

0 = M0, and limt→∞ T (t) = 0 = T 0. Thus, regardless of the initial values, the non-infected subsystem
tends to the free equilibrium point, X0 = (N0,M0,T 0). Hence, the condition (C1) from Lemma 4.3 is
satisfied.

Next, we consider the infected subsystem of system (2.3) when τ = 0, that is,

I′(t) = βNαS − (d1 + a1 + a2)I,
αS ′(t) = ed1I − a1αS − a2αS − ε1ed1I. (4.12)

Rewrite the subsystem in (4.12) in matrix form as:

dY
dt

=

[
βNαS − (d1 + a1 + a2)I

ed1I − a1αS − a2αS − ε1ed1I

]
= G(X,Y).

To satisfy the condition (C2), we must express G(X,Y) = AY − Ĝ(X,Y) such that A = ∂G
∂Y (X0, 0). Now,

G(X,Y) =

[
βNαS − (d1 + a1 + a2)I

ed1I − a1αS − a2αS − ε1ed1I

]
=

[
βNαS − (d1 + a1 + a2)I − βαS N0 + βαS N0

ed1I − a1αS − a2αS − ε1ed1I

]
=

[
−(d1 + a1 + a2) βN0

ed1(1 − ε1) −(a1 + a2)

] [
I
αS

]
−

[
βαS (N0 − N)

0

]
= AY − G̃(X,Y).

Clearly, A = ∂G
∂Y (X0, 0) and has non-negative off-diagonal elements. Also, G̃(X,Y) ≥ 0 for (X,Y) ∈ Ω∗

since N ≤ N0 in Ω∗. Thus, the condition (C2) in Lemma 4.3 is satisfied. Hence, E0 is globally
asymptotically stable if R0 < 1 and τ = 0. �

5. Numerical analysis

The numerical simulations in this section are performed using MATLAB function dde23. First,
we illustrate the agreement between the numerical and the qualitative results of model (2.3). Then,
sensitivity analysis of the basic reproduction number, R0, is investigated for the model’s parameters.
Finally, we examine the role of immunotherapies in controlling the progression of PD.

5.1. Numerical experiments

The qualitative analysis showed that if R0 < 1, the free equilibrium point is stable. If R0 > 1,
the endemic equilibrium point exists and is stable. We conduct experiments by solving model (2.3)
numerically. The model’s parameters are chosen to satisfy the existence and stability conditions. Some
parameters are referenced to [30], which has similar biological processes and the rest are estimated.
Tables 2 and 3 display the parameters values satisfying R0 < 1 and R0 > 1, respectively.

Figure 2 illustrates the time variation of the models’ compartments in case R0 < 1 for three different
initial histories. We see in the figure that the solution curves tend to the free equilibrium point E0 =
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(0.0025, 0, 0, 0, 0). Similarly, in Figure 3, the solution curves in case R0 > 1 tend to the endemic
equilibrium point E∗ = (0.0811, 0.0124, 0.0269, 0.1019, 0.0757). Hence, the numerical simulations
agreed with the qualitative analysis.

Table 2. Parameter values for R0 < 1.

Symbol Value Units Reference

τ 50 day Estimated
σ 10−4 g/ml/day Estimated
β 0.5 ml/g/day Estimated
µ1 1.9 × 10−4 day−1 [30]
µ2 6 × 10−3 day−1 [30]
µ3 0.015 day−1 [30]
d1 3.4 × 10−4 day−1 [30]
a1 2 × 10−2 day−1 [30]
a2 2 × 10−2 day−1 [30]
e 0.5 . Estimated
ε1 0.3 . Estimated
ε2 0.3 . Estimated
ε3 0.3 . Estimated

Table 3. Parameter values for R0 > 1.

Symbol Value Units Reference

τ 50 day Estimated
σ 5 × 10−3 g/ml/day Estimated
β 0.8 ml/g/day Estimated
µ1 1.9 × 10−4 day−1 [30]
µ2 6 × 10−3 day−1 [30]
µ3 0.015 day−1 [30]
d1 0.1 day−1 Estimated
a1 2 × 10−2 day−1 [30]
a2 2 × 10−2 day−1 [30]
e 0.9 . Estimated
ε1 0.3 . Estimated
ε2 0.3 . Estimated
ε3 0.3 . Estimated
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Figure 2. Time plots of model (2.3) when R0 < 1 with different initial histories. a.
(0.0014, 0.001, 8 × 10−6, 0.002, 0.003), b. (0.0008, 0.0015, 7 × 10−6, 0.003, 0.001),
c. (0.002, 0.002, 6 × 10−6, 0.001, 0.002).
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Figure 3. Time plots of model (2.3) when R0 > 1 with different initial histories.
a.(0.1, 0.001, 1 × 10−6, 0.02, 0.02) [30], b. (0.05, 0.0001, 1 × 10−6, 0.0002, 2 × 10−7),
c. (0.025, 0.002, 1 × 10−6, 0.001, 3 × 10−7).

5.2. Sensitivity analysis

The basic reproduction number depends on the models’ parameters. Each parameter either increases
or decreases the value of R0. We demonstrate the sensitivity of R0 to the parameters in model (2.3)
analytically and numerically. Analytically, we evaluate the partial derivative of R0 with respect to
one parameter at a time. If the result of the differentiation is positive (negative), then R0 increases
(decreases) as the parameter increases. The differentiation of R0 is the following:

∂R0

∂d1
=

eβσ(1 − ε1e−(a1+a2)τ)
(a1 + a2 + d1)2(a1 + a2 + µ1)

> 0,

∂R0

∂σ
=

ed1β(1 − ε1e−(a1+a2)τ)
(a1 + a2)(a1 + a2 + d1)(a1 + a2 + µ1)

> 0,

∂R0

∂e
=

d1βσ(1 − ε1e−(a1+a2)τ)
(a1 + a2)(a1 + a2 + d1)(a1 + a2 + µ1)

> 0,

∂R0

∂β
=

ed1σ(1 − ε1e−(a1+a2)τ)
(a1 + a2)(a1 + a2 + d1)(a1 + a2 + µ1)

> 0,
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∂R0

∂µ1
=

−ed1βσ(1 − ε1e−(a1+a2)τ)
(a1 + a2)(a1 + a2 + d1)(a1 + a2 + µ1)2 < 0,

∂R0

∂ε1
=

−ed1βσ(e−(a1+a2)τ)
(a1 + a2)(a1 + a2 + d1)(a1 + a2 + µ1)

< 0,

∂R0

∂τ
=

ed1βσε1(a1 + a2)e−(a1+a2)τ)
(a1 + a2)(a1 + a2 + d1)(a1 + a2 + µ1)

> 0,

∂R0

∂a1
=

1
(a1 + a2)2(a1 + a2 + d1)2(a1 + a2 + µ1)2

×

{
ed1βσε1e−(a1+a2)ττ(a1 + a2)(a1 + a2 + d1)(a1 + a2 + µ1)

− ed1βσ(1 − ε1e−(a1+a2)τ)((a1 + a2 + µ1)(2a1 + 2a2 + d1)

+ (a1 + a2 + d1)(a1 + a2))
}
,

∂R0

∂a2
=

1
(a1 + a2)2(a1 + a2 + d1)2(a1 + a2 + µ1)2

×

{
ed1βσε1e−(a1+a2)ττ(a1 + a2)(a1 + a2 + d1)(a1 + a2 + µ1)

− ed1βσ(1 − ε1e−(a1+a2)τ)((a1 + a2 + µ1)(2a1 + 2a2 + d1)

+ (a1 + a2 + d1)(a1 + a2))
}
. (5.1)

From (5.1), we see that the basic reproduction number decreases when the parameters: µ1 and ε1

increase. However, it increases when the parameters: σ, e, β, τ and d1 increase. As for the parameters
a1 and a2, we can not determine the sign of the derivative; however, numerically R0 decreases with
increasing a1 and a2. No change occurs when varying the parameters: ε2, ε3, µ2 and µ3 since R0 does
not depend on them. These results are displayed in Figure 4. In the figure, we numerically graph the
dependence of R0 to one parameter at a time. We allow one parameter to vary while fixing the others
at a specific value given in Table 3.

Next, we compute the normalized sensitivity index (elasticity) of R0 with respect to the models’
parameters by using the formula in [38]:

S I[p] =
p

R0

∂R0

∂p
, (5.2)

where p denotes any parameter. We use the values in Table 3 for the parameters.
Table 4 illustrates the elasticity of R0, meaning that a 1% increase in the parameter’s value leads to

an increase or decrease in the percentage of R0. For example, an increase of 1% in σ, e, β, d1 and τ
leads to an increase in R0 by 1%, 1%, 1%, 0.2857% and 0.0846%, respectively. Whereas, an increase
of 1% in µ1, a1, a2, and ε1 yield a decrease in R0 by 0.0047, 1.0982, 1.0982, and 0.0423, respectively.
Also, the table shows that the highest decline in R0 is due to the increase of a1 and a2. This is expected
since these parameters represent the activation of the immune cells to combat the extracellular α-syn.
The alterations of R0 corresponding to the parameters in Figure 4 are consistent with the sensitivity
index in Table 4.
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Figure 4. Variation of R0 with respect to the parameters in system (2.3): (a) parameter d1, (b)
parameter g, (c) parameter e, (d) parameter β,(e) parameter µ1, (f) parameter ε1, (g) parameter
τ, (h) parameter a1, (i) parameter a2.
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Table 4. The sensitivity indices of R0.

Parameter (p) Sensitivity Index (R0)
τ 0.0846
σ 1
β 1
µ1 −0.0047
µ2 0
µ3 0
d1 0.2857
a1 −1.0982
a2 −1.0982
e 1
ε1 −0.0423
ε2 0
ε3 0

5.3. Treatment analysis

We incorporated in model (2.3) two immunotherapy approaches for PD, the active and passive
immunization. In the active approach, PD patients are vaccinated with a short antigenic peptide
imitating α-syn to help produce antibodies against extracellular α-syn, where the formation of the
antibodies needs time. However, in the passive approach, PD patients are vaccinated with antibodies
directly. The parameters in the model representing the effect of immunotherapy are ε1, the clearance
percentage of extracellular α-syn; ε2, the inhibited percentage of activated microglia; and ε3, the
inhibited percentage of activated T cells. We assume that these parameters have larger values in
passive immunization than in active immunization. This is since the construction of antibodies in
active immunization needs time which is not the case in the passive approach. Therefore, we let
ε1 = 0.6, ε2 = 0.5, and ε3 = 0.5 in the passive approach. But in the active approach, the parameters
take the values: ε1 = 0.2, ε2 = 0.15, and ε3 = 0.15.

First, we examine the effect of active immunization with different administration times. In the
model, τ symbolizes the time delay for the immunization. We assume the time delays are: 10, 40, and
60 days. The rest of the parameters in the model are chosen when R0 > 1, the endemic case (see
Table 3). Figure 5 illustrates the impact of the active approach with different time delays compared
with the no-treatment case (ε1 = ε2 = ε3 = 0). Although we see a decline in the size of the
compartment N during the beginning period of active immunization, the equilibrium level of N is
higher than in the no-treatment case. Moreover, we find that the shorter the time delay for the delivery
of active immunization, the highest value of the equilibrium level of N. Conversely, the size of the
other compartments: I, αS , M, and T elevates at the beginning of active immunization; however, it
reaches a lower equilibrium level than in the no-treatment case. Also, the shorter the time delay for
administrating active immunization, the lowest value of the equilibrium level of the compartments.
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Figure 5. Time plots of model (2.3) with active immunization for different delay times.

Second, we study the effect of passive immunization with different time delays for vaccine delivery.
As previously, we compare the results with the no-treatment case. In Figure 6, we find that the size of
compartment N declines but with a higher equilibrium level than in the no-treatment case. However,
if the delay of the vaccine is short (τ = 10), no drop is shown in N, and neurons are preserved at an
equilibrium level. As for the remaining compartments, a rise in their sizes is shown but with a lower
equilibrium level than in the no-treatment case. Also, if the vaccine is delivered in a short time delay,
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α-syn declines, and as a result, infected neurons decrease, and the activation of microglia and T cells
is inhibited.
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Figure 6. Time plots of model (2.3) with passive immunization for different delay times.

Finally, in Figure 7, we compare the two therapeutic approaches with the no-treatment case for
two-time delays: τ = 10 and τ = 60. We see that the two immunotherapy approaches impact
preserving healthy neurons with different equilibrium levels, which are better than the no-treatment
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case. However, the best approach is the passive immunization given at an early stage with a short
delay. Meanwhile, active immunization with a short delay is far better than passive immunization
administered after a long delay. A similar result is shown in the figure for the remaining
compartments, where a decrease in their equilibrium levels is the outcome of immunotherapy.
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Figure 7. Time plots of model (2.3) with passive and active immunization for two-time
delays.
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Hence, the analysis shows that passive immunization might be far better than active immunization
when both are dispensed with a short delay. However, if passive immunization is delayed for a long
time, then active immunization is a good therapy if dispensed with a short delay. This indicates that
administering time for immunization is significant in postponing the degeneration of healthy neurons.

We conclude that active and passive immunotherapy affects the progression of PD. If treatment is
administered in the early stages of the disease with short time delays, α-syn are combated, leading to
the inhibition of activated microglia and T cells. Consequently, healthy neurons are maintained. On
the contrary, the longer the time offered treatment, the more deteriorated conditions for PD patients.

6. Conclusions

We built a model to include the innate and adaptive immune responses. The model aimed to
investigate the effect of immunotherapy on the progression of Parkinson’s disease. Two strategies of
immunotherapy were analyzed, the active and passive immunization. The timing of administrating the
immunization is crucial. Therefore, the model was formulated using delay differential equations. The
qualitative analysis of the model produced two equilibrium points: The free and the endemic
equilibrium points. The local stability of the equilibrium points depended on the basic reproduction
number, R0. If R0 was less than unity, the free equilibrium point was stable. Conversely, if R0 was
greater than unity, the endemic equilibrium point existed and was stable. Numerical experiments were
performed with different initial histories to show the agreement with the qualitative results. Moreover,
a sensitivity analysis was conducted on R0 to scrutinize the parameters involved in decreasing and
increasing the value of R0. We explored the two therapeutic approaches numerically with different
time delays. We concluded that active and passive immunotherapy affects the progression of PD. If
treatment was administered in the early stages of the disease with short time delays, α-syn were
combated, leading to the inhibition of activated microglia and T cells. Consequently, healthy neurons
were maintained. On the contrary, the longer the time offered treatment, the more deteriorated
conditions for PD patients.

For future work, this model can be modified to include in the dynamics two compartments: The
resting microglia and the T helper cells. This may describe the dynamics of Parkinson’s disease with
immunotherapy comprehensively, leading to detailed analysis to reach more meaningful results.

Conflict of interest

The authors declare that there is no conflicts of interest.

References

1. M. J. Benskey, R. G. Perez, F. P. Manfredsson, The contribution of alpha synuclein to neuronal
survival and function–Implications for Parkinson’s disease, J. Neurochem., 137 (2016), 331–359,
https://doi.org/10.1111/jnc.13570

2. S. Mehra, S. Sahay, S. K. Maji, α-Synuclein misfolding and aggregation: Implications in
Parkinson’s disease pathogenesis, Biochim. Biophys. Acta Proteins Proteom., 1867 (2019), 890–
908. https://doi.org/10.1016/j.bbapap.2019.03.001

AIMS Mathematics Volume 8, Issue 1, 1800–1832.

http://dx.doi.org/https://doi.org/10.1111/jnc.13570
http://dx.doi.org/https://doi.org/10.1016/j.bbapap.2019.03.001


1830

3. R. M. Meade, D. P. Fairlie, J. M. Mason, Alpha-synuclein structure and Parkinson’s disease, Mol.
Neurodegener., 14 (2019), 29. https://doi.org/10.1186/s13024-019-0329-1

4. A. D. Schwab, M. J. Thurston, J. Machhi, K. E. Olson, K. L. Namminga, H. E.
Gendelman, et al., Immunotherapy for Parkinson’s disease, Neurobiol. Dis., 137 (2020), 104760.
https://doi.org/10.1016/j.nbd.2020.104760

5. J. Shin, H. J. Kim, B. Jeon, Immunotherapy targeting neurodegenerative proteinopathies:
α-synucleinopathies and tauopathies, J. Movement Disorders, 13 (2020), 11–19.
https://doi.org/10.14802/jmd.19057

6. H. J. Lee, E. D. Cho, K. W. Lee, J. H. Kim, S. G. Cho, S. J. Lee, Autophagic failure
promotes the exocytosis and intercellular transfer of α-synuclein, Exp. Mol. Med., 45 (2013), e22.
https://doi.org/10.1038/emm.2013.45

7. C. R. Overk, E. Masliah, Pathogenesis of synaptic degeneration in Alzheimer’s
disease and Lewy body disease, Biochem. Pharmacol., 88 (2014), 508–516.
https://doi.org/10.1016/j.bcp.2014.01.015
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