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Abstract: This paper proposes an analytical solution for a fractional fuzzy acoustic wave equation.
Under the fractional Caputo-Fabrizio operator, we use the Laplace transformation and the iterative
technique. In the present study, the achieved series type result was determined, and we approximated
the estimated values of the suggested models. All three problems used two various fractional-order
simulations between 0 and 1 to obtain the upper and lower portions of the fuzzy results. Since the
exponential function is present, the fractional operator is non-singular and global. Due to its dynamic
behaviors, it provides all fuzzy form solutions that happen between 0 and 1 at any level of fractional
order. Because the fuzzy numbers return the solution in a fuzzy shape with upper and lower branches,
the unknown quantity likewise incorporates fuzziness.

Keywords: iterative transform method; Caputo-Fabrizio operator; fuzzy fractional acoustic waves
equation; approximate solution
Mathematics Subject Classification: 34A34, 33B15, 35A22, 35A20, 44A10

1. Introduction

The theory of fuzziness is an effective method designed to simulate uncertainties. As a result, several
natural phenomena have been modeled using fuzzy notions [1,2]. The fractional fuzzy differential
equation is a widely utilized model in various research fields, including the evaluation of weapon
systems, population modeling, electro hydraulics, and civil engineering modeling. As a result, in fuzzy
calculus, the idea of the derivative is vital [3,4]. As a result, fuzzy fractional differential equations have
received significant focus in engineering and mathematics [5—8]. The first is research by Agarwal et al.
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on fuzzy fractional differential equations [1]. They introduced the Riemann-Liouville notion to study
fractional fuzzy differential equations as part of the Hukuhara concept. We continue to live in a world
of ambiguity and uncertainty, which is the nature of the real world [9, 10]. Numerous people are prone
to distrust everything around them and question if it is for their benefit or that of others [11-14]. Since
their observations are insufficient or incorrect, and they lack clarity. Assume we are in a situation
where there is a great deal of incorrect information and uncertainty [15, 16]. We cannot respond to
many legitimate inquiries based on inaccurate facts [17-19]. For scientists, this mindset and attitude of
uncertainty are crucial. Rather than combating uncertainty, our objective should be to discover ways
to comprehend and operate around it, since the evolution, resources, and way of life you desire are
constantly changing [20-24].

Consider the following fuzzy fractional long wave equation investigated with the iterative transform
method :

o°n 10> 0 (6%
—t—-—|===0, O <1, O <1, 0, 1.1
oue 20 ou\oe < =@ v> 1)
with initial condition
fi(g,0) = ¢,

on op O 0 (0
o=  de T oy Oy \oe?

with initial condition

):0, 0<e<l, O<w<l, ¥>0, (1.2)

1 a
i = h? =
f(e,0) = 3asech”(we), a>0, @ RIS
o”n  of 0 (0%
—t——-2—|—1]=0, O <1, O <1, 0, 1.3
ou® " e a¢(682 =€ =@ V> (1.3)
with initial condition
(e, 0)=¢e"*
and o .
gl(;;‘”ﬁ “6(;"”):0, O<e<l, O<w<l, >0, (1.4)
with initial condition
fi(g,0) = sine. (1.5)

Equation (1.1) is the nonlinear fractional order regularized long wave equation (RLWE), (1.2) is the
nonlinear fractional general RLWE, and (1.3) and (1.4) are linear fractional RLWEs [25].

Benjamin Bona Mahony’s equation (BBME) also recognized the regularized long wave (RLW)
equation. This is an improved version of the Kortewega-de Vries equation (KdV), simulating long
surface gravity waves with low amplitude propagating in a single direction in two dimensions.
Examples of RLW equations in action include wave propagation in elastic rods with longitudinal
dispersion, stress waves in compressed gas bubble mixtures, ion-acoustic plasma waves, rotational tube
flows, and plasma magneto-hydrodynamic waves. The RLW equations are characterized as effective
models for various major physical structures in engineering and physics [26-28]. RLW equations also
generates numerous liquid flow issues where shocks or viscosity make diffusion a significant concern.
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RLW equations represent any nonlinear wave diffusion problem, including dissipation. This dissipation
may result from heat conduction, a chemical reaction, viscosity, thermal radiation, or mass diffusion,
depending on the issue being modeled [29,30].

In 2006, Daftardar-Gejji and Jafari [31] suggested a novel iterative technique that various authors
have applied to get the numerical solutions of different classes of linear and nonlinear ordinary,
partial and fractional order differential equations. Jafari et al. [32] employed a new iterative method
to solve numerically different classes of fractional diffusion and fractional wave equations. It has
also been applied by Bhalekar and Daftardar-Gejji to find numerical solutions to fractional evolution
equations and fractional boundary value problems [33]. In this article, we propose a new iterative
transform method to solve numerically fuzzy fractional acoustic wave equations. The fuzzy fractional
acoustic wave equations have many applications in physical sciences; therefore, different graphs are
presented to show the dynamics behavior of the equations. The solutions are obtained in a rather more
straightforward way than other techniques [34-36].

The current study has been structured as follows: In Section 2, we give some basic notions of basic
definitions of the Laplace transformation. In Section 3, we give an analysis of the suggested technique.
In Section 4, numerical results and finally, the conclusion is presented in Section 5.

2. Preliminaries

Definition 2.1. [37-39] The Caputo-Fabrizio fractional fuzzy integral form with respect to y, with the
fuzzy continuous term U (i) on a [0, b] subset of R is defined as

1-— W
WMWhM£%m+ﬁ%£ﬂmw,mﬁaw¢ @.1)

where M(0) = M(1) = 1.
The Caputo-Fabrizio non-integer order fuzzy integral is given as follows:

[“FI7aw)l, = U7 ), I°p,)), 0<r<I, (2.2)
where
e — ki f¢~5)ds J € (0, 00)
p W) = M( )u( @) + M) J, f( , @, ,00),
and
CF w'—
W)Aﬂ)M) M(Lfﬂmws .9 € (0,00,

Definition 2.2. [37-39] The same applies for operator fi(y) € LF[0,b] N CF[0,b], as f(y) =
(@), 1u()], 0 < r < 1and 0 < g < b. CF is defined as the fractional Caputo-Fabrizio derivative in
the sense of fuzzy logic:

[“"D7aW)], = [D”u(o), D"aWo)l, 0<w <1, (2.3)

where

, N
[F D7 (o)) = ([fgmwwﬁL%w
w 0 1
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and

M d , - -9
[ D7Hi()] = L) [ fo HS) exp(—2 L Myay

1l-w —w
convergence or existence of the integral, and m = [@w] + 1. As @ lies in the interval (0, 1], m = 1.

Definition 2.3. The fuzzy Laplace transform function ¥ (x) is defined as [37-39]

T =Wl = [ e fwds w0 @4
0
Definition 2.4. The Laplace transform of Caputo-Fabrizio is

V) — v a0) — v (0) — - — ﬁ"(o).

£ D™ ()] = i

Definition 2.5. [37-39] The Mittag-Leffler function Eg(y) is defined by

N Y
Ep(y) = Z; T 2.5)

where 8 > 0.

Definition 2.6. [37-39] A mappings k : R — [0, 1], if the following criteria are met, it is named a
fuzzy number:

(1) The value of k is continuous until it reaches its maximum;

(i) kfp(n1) + p(2)} = min{k(y1), k(y2)};
(ii1) there exists yy € R; k(yg) = 1, i.e., k is normal;
(iv) cl{y € R, k(y) > 0} is bounded and continuous, where c/ defines closured for the support of y.

These fuzzy numbers are collectively referred to as €.
3. The general application of the proposed technique
Consider the fractional fuzzy partial differential equation
L1 DY (s, p)] = £ | DYace, ) + Dyii(e, ) + KrYH(e, 0], (3.1)

where @ € (0, 1]; the Laplace transformation used in (3.1) is

U£ﬁ(8’ l/’) - ﬁ(g, g, 0) B ~ _
vro(-v) £ [Diﬂ(s, W) + D}i(e,v) + K(r'H(e, w)]

On applying the initial fuzzy source, we achieve

vEfi(e, ) =g(&,0) + (v + (1 = v)E [ D2fi(e, ) + DYfi(e, ) + R H(e,v)]

g, 0) N v+w(l —v)
v v

(3.2)

£(e.¥) = )£ (D2, w) + Dlfite. ) + R H(z. ).
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We write the result of fi(e, ¢) =

Yoo fn(€,¥); we get

£Zﬁn<a,w):g(8’§)+(v+w(l_v)) [ 2> e )
n=0 n=0

+D; Zun(s W) +F(OHe, w}

We can write the following solutions:

Lio(e, ¥) =

g(&,0) N (v + (1l - v)) [
v v

£[k(nH (e, )],

1 -
£i1(e,0) = (%”)) £ D2fo(e ) + Difiote, )]

1 -
£la2(8’ l//) = (W) £ [Dzlal(& l//) + D?ﬂl(s’ '70)] s

£:an+1(8’ lﬂ) = (

Applying the Laplace inverse transformation, we get

! (—” rols ”)) £[k(ryH(e, w]] ,
v

! (W)ﬂmm(s, w)]],

1 &) = 86 0) + £

ﬁO(S’ ‘ﬁ) = g(g, é/) +£

p (e y) = £
/“71 (8’ W) = £_1
p(ey) = £

Hy(&, ) = £

po (ey)=£"

Thus, the result is obtained as
e g) = p (e, 9) +p (&) +p (&,4) + -,
H(E ) = po(Ey) + (&, 9) + (e, 4) + -+

Equation (3.6) is the series form result.
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| v+w(l —v)
o)

[(v+ @(1 —v)
| v
[(v+ @(l —v)
| v
[(v+ @(1l —v)
| U
[(v+ @(1 —v)
U

1%

£ [D2fin(e, ) + Difin(e, )]

£ D2, (e.0) + Dy o).
£ [Dite.0) + Difite )]
£|D2u (e.9) + Dl (&, w)]— ,
£[p |

SHi (&, 9) + Doy (e,9) ||

(22l o+ D ]|

:(v + (1 —v)

Fr(8.9) = £ )£ |D2,(e.) + DI (2.0 .

(3.3)

(3.4)

(3.5)

(3.6)
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4. Numerical solutions

Example 1. Consider the fractional fuzzy non-linear regularised long wave equation [40]

10>  00*

CFD?,&(S,{#)+§E—&//882 =0, 0<e<l, O<w<l, y¥>0,
with the initial fuzzy condition
fi(g,0) = ke.
Using the scheme of (4.1), we obtain
B (&9) = k(ne,  [yley) = k(re,
p, (& 9) = —k(nell + @y — @},
wi(&, ) = —k(Ne{l + @y — @},
2,12
o) =260 {1 = 2o+ (1 -+ T,
2,12
(e, ) = 2K(r)e {(1 — ooy + (1 - o) + %} ,
201 _ 2 3,13
w1 (e.) = —4k(r)e {(1 — o3y + (- @) + 2 (12 D wf }
201 _ 2 3,03
Tis(e,0) = —4R(r)e {(1 _ 3w+ (1 —w) + o2 (12 2L w;f’ }

The series type solution is achieved using (4.1) and we get

f(e, ) =fo(e, ) + (e, ) + fia(e, ) + fiz(e, ) + fig(e,f) + - - - .

The lower and upper type results are achieved as

e y) = p (e,9) + p (8,9) +p(&,4) + (e, 9) + p (&) + -,
/_1(8, 17[/) = ﬁO(S’ w) + ﬁl (8, '7[/) + ﬁZ(S’ '7[’) + ﬁ3(8’ lr//) + ﬁ4(8’ lﬁ) +ee,

ue, ) = k(re — k(Ne{l + wy — @} + 2k(r)e {(1 — ooy + (1 - o)’ +

TP
2

— 4x(r)e {(1 —@)Boy + (1 -o) + 5

(e, ) = k(r)e — k(re{l + oy — @} + 2k(r)e {(1 —w)2oy + (1 - o) +

3!

201 _ 2 3,3
3w (1 — oW +w;[/}+”.’

wZ l//Z
2

—4k(r)e {(1 - @) 3wy + (1 - @)’ 7

The exact solution is e
#(8,1!’)=K1+l//-

3!

201 _ 2 33
+3w(1 o)W +ww}+“..

}
}

4.1)

4.2)

(4.3)

4.4)

4.5)

(4.6)
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Figures 1 and 2 show that the effectiveness of multiple (upper and lower bound accuracy) surface
graphs for Example 1 interacting with the fuzzy Caputo-Fabrizio operator and Laplace transformation
is being exhibited in this investigation. Figure 1 represents a three-dimensional graph of the fuzzy
solution at different fractional orders of @ of Example 1. Figure 2 represents the two-dimensional
graph of the fuzzy solution at different fractional orders of @ of Example 1. The two similar color
legends represent the upper and lower portions of the fuzzy solution, respectively.

0 02 04 0.6 0.8 1

Figure 2. The fuzzy analytical result figure of lower and upper branches of Example 1.

Example 2. Consider the fractional fuzzy linear regularised long wave equation [40]
ofit 00%1

CFDw~ Xz _9
(//l‘t(g, lvl’) + 88 awagz

=0, O<e<l, O<w<l, ¥>0, 4.7)

with the initial fuzzy condition
(e, 0) =ke ®. (4.8)

AIMS Mathematics Volume 8, Issue 1, 1770-1783.



1777

Using the scheme of (4.7), we obtain
1, (& 0) = KD, Tigle,§) = Rr)e™,
/_11(8, ) = k(e {1 + oy — @}, p,(ey) =«kre{l + oy - @},

2,12
p(&:4) = k(r)e™ {(1 - o)2oy + (1 - @) + —wzw } ,
27172
Ho(&, ) = k(r)e™® {(1 — ooy + (1 — @) + _wZ‘/’ } ) (4.9)
201 — 2 33
(& 9) = k(rje™ {(1 ~ @) 3wy + (1 - @) + 3@ (12 oW, ff;ﬁ }
201 — 2 33
Hs(&,¥) = k(r)e™ {(1 -~ 3oy +(1-@) + @ (12 oW, w3"/’ }

The series type solution is achieved using (4.7) and we get
(e, ) = fio(e, ) + [ (&, 4) + fia(&,4) + fiz(&,4) + fa(e, ) + -+ . (4.10)
The lower and upper type results are achieved as
pey) = p (&9) + 1 (&9) + p (&, 4) + p () +p (8. ) + -+,
H(E W) = po(&, ) + 1y (&, 9) + (&, ¥) + p3(8, ) + (e, ) + - -+,

e, ) = K™ + k(e (1 + Ty — @) + k(e {(1 o+ (1 - o) + wzf}
(e {(1 o 3wyt (- @) + 3w2(12‘ oW, w;‘f} e (@.11)
maw):ﬂﬂéf+ﬂﬂéﬂl+w¢—w}+ﬂﬂé€%1—wﬂww+(k—wf+Gé%}
+Hﬂf%@—wf%w+ﬂ—wf+&ﬁa;ww{ﬂif}+m
The exact solution is |
fi(e, ) =ke" . (4.12)

Figures 3 and 4 show that the effectiveness of multiple (upper and lower bound accuracy) surface
graphs, for Example, 2 interacting with the fuzzy Caputo-Fabrizio operator and Laplace transformation
is being exhibited in this investigation. Figure 3 represents the three-dimensional graph of the fuzzy
solution at different fractional orders of @ of Example 2. Figure 4 represents the two-dimensional
graph of the fuzzy solution at different fractional orders of @ of Example 2. The two similar color
legends represent the upper and lower portions of the fuzzy solution, respectively.

Example 3. Consider the fractional fuzzy regularised linear long wave equation [40]

I y)

DY (e, p) + =0, 0<e<l, O0<w<l, y¥>0, (4.13)
ot

with the initial fuzzy condition
f(g,0) =sine. (4.14)
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Using the scheme of (4.13), we obtain
K, (&, ¥) =«k(r)sine, py(e,¥) = k(r)sine,

/il(s, Y) = —k(r)sine{l + oy — @}, p,(s,¢)=—«k(r)sine{l + oy — @},

2,12
(&) = k(r)sing {(1 —oRoy + (1 -w) + %} ’

2,2
Ha(e, ) = k(r) Sins{(l —~ ooy + (1 - @) + %} (4.15)
201 W2
p (& ¥) = —k(r) sins{(l o) 3oy+ (1 - @) + 3w (12 oW w31'// },
201 — W2
U3, ) = —k(r) Siné‘{(l - w’)23ww +(1- w)3 " 3w (12 (2l " 531'// }

T T T T T T T T T T T
0 1 2 3 4 -]

Figure 4. The fuzzy analytical result figure of lower and upper branches of Example 2.
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The series type solution is achieved using (4.13) and we get

/1(87 l//) = /10(8’ '70) + ﬁl(ga ¢) + la2(8, l//) + ﬁ3(8’ '7[’) + ﬁ4(8’ lr//) +oe (416)

The lower and upper type results are achieved as

pe ) = p (& 9) +p () +p (8,4) + (& 9) +p (&,4) + -+,
/7(8’ lr//) = /70(8’ lvl’) + l_ll(sa lr//) + /72(,9, '70) + /73(87 l//) + /_14(8, 17[/) + - b

2.2
E(s, ¥) =k(r)sine + k(r)sine {1 + wy — w} + k(r)sine {(1 -w)2woy + (1 - ) + 732‘/’ }

201 _ 2 3.3
+«(r) sins{(l — o) 3oy + (1 - @) + @ (12 2l + w31‘ﬂ }+ - (4.17)
_ _ ) _ . — . | 2 @y’
u(e, ) =k(r)ysine + k(r)sine {1 + @y — w} + k(r) smg{(l -2y + (1 -—w) + > }
201 _ 2 303
+E(r)sin8{(1 _ o) 3w+ (1 —w) 42 (12 oW, W;f }+ .
The exact solution is
fi(e, ) =Ksinge™. (4.18)

Figure 5 represents the three-dimensional graph of the fuzzy solution at different fractional orders of
w of Example 3. Figure 6 represents the two-dimensional graph of the fuzzy solution at different
fractional orders of @w of Example 3. The two similar color legends represent the upper and lower
portions of the fuzzy solution, respectively.

Figure 5. The fuzzy analytical solution graph of upper and lower branches of Example 3.

AIMS Mathematics Volume 8, Issue 1, 1770-1783.
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T
5

Figure 6. The fuzzy analytical result figure of lower and upper branches of Example 3.

5. Conclusions

The purpose of this study is to develop a semi-analytic solution to the fuzzy fractional acoustic
waves equation utilizing Caputo-Fabrizio fractional derivatives. As a result, fuzzy operators are a more
appropriate way to explain the physical phenomenon in this case. Considering the uncertainty in the
initial conditions, we examined the acoustic waves equation in a fuzzy manner. Then, we obtained
a parametric formulation of the suggested problem using a new iterative transform method. Our
research has presented numerous illustrations to support the intended methodology and has achieved
a parametric solution for each situation. In future research, this method can be applied to achieve
analytical and approximate solutions of perturbed fractional differential equations under the uncertainty
equipped with non-classical and integral boundary conditions in light of Caputo-Fabrizio.
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