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Abstract: By considering the fact that the growth of microorganisms in a chemostat is subject to
white noise, we construct a stochastic chemostat model with degenerate diffusion by using a discrete
Markov chain. By solving the corresponding Fokker-Planck equation, we derive the explicit expression
of the stationary joint probability density, which peaks near the deterministic equilibrium. Next, we
simulate the the marginal probability density functions for different noise intensities and further discuss
the relationship of the marginal probability density function and noise intensities. For the statistical
properties of the stochastic model, we mainly investigate the effect of white noise on the variance and
skewness of the concentration of microorganisms.
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1. Introduction

Chemostat refers to a laboratory apparatus used for growing microorganisms in a cultured
environment. The simplest chemostat apparatus consists of three interconnected tanks called feed
bottle, culture vessel and collection vessel. The growth limiting substrate is pumped from the feed
bottle to the culture vessel, where the interaction between the microorganisms and the substrate takes
place, and another flow is pumped from the culture vessel to the collection vessel such that the
volume of the culture vessel remains constant [1].

Chemostat tools play a key role in population dynamics, the chemical field, industrial treatment,
biochemical development and other fields [2, 3]. Chemostat is also used in wastewater treatment, with
which wastewater can be converted into treated water and reused in daily activities [4–6]. The classical
mathematical model describing the continuous culture of the microorganisms in the chemostat takes
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the following form:  dS
dt =

Q
V

(
S 0 − S

)
− γ−1µ(S )x,

dx
dt = µ(S )x − Q

V x,
(1.1)

where S (t) and x(t) denote the concentrations of the growth limiting substrate and microorganisms at
time t, respectively. S 0 is the input concentration, Q is the input flow, V is the volume of liquid media
inside the culture vessel and the ratio Q/V is usually denoted by D which is also called the dilution
rate. µ(S ) is known as the response function representing the substrate uptake rate, and the constant γ
measures the growth yield of the microorganisms. Taking the Holling type-II response function (i.e.,
µ(S ) = mS/(a + S )) and introducing the variable transformation xnew = γ−1xold such that the yield
coefficient γ can be scaled out in model (1.1), then it can be written as dS

dt = D
(
S 0 − S

)
− mS x

a+S ,
dx
dt =

(
mS
a+S − D

)
x.

(1.2)

The dynamics of model (1.2) is completely determined by the break-even concentration λ which
satisfies mλ/(a + λ) = D [7, 8]. If λ ≥ S 0, the washout equilibrium E0 = (S 0, 0) is globally stable and
the microorganisms become extinct. If λ < S 0, the unique positive equilibrium E∗ = (S ∗, x∗) is
globally stable and the microorganisms persist.

All along, the research on various chemostat models has not been interrupted. For instance, Chen
et al. [9, 10] analyzed the extinction and permanence of chemostat models with pulsed input. Shi
et al. [11] studied the coexistence of competing species in a reaction-diffusion chemostat model.
Alzahrani et al. [12] researched the global dynamics of a cell quota-based model in a chemostat.
Baratti et al. [13] analytically characterized the nonlinear stochastic dynamics of a class of two-state
bioreactors with isotonic or nonisotonic kinetics using Fokker-Planck theory. Lu et al. [14] proposed a
(state, input)-disturbed continuous stirred tank reactors (CSTRs) model that considers unknown but
bounded fluctuations in kinetics, flow rates, and heat exchange, they developed a feedback control law
that stabilizes the CSTRs system to reach noise-to-state exponential stability. One can see
Refs. [15–21] and the references cited therein for more studies on the chemostat models.

With the accumulation of experimental data and the deepening of research, scholars have found that
the growth of organisms has random fluctuation, and that influence of random environmental noise
on biological populations is everywhere. Even under extremely precise experimental conditions, the
growth process of microorganisms will be affected by random factors such as temperature, humidity,
and light change, which will inevitably lead to the fluctuation of parameters in the established model,
such as the maximum growth rate and dilution rate [22]. Therefore, it is more realistic to describe
and analyze biological systems with stochastic mathematical models. With the establishment of Itô’s
stochastic integral, the research on stochastic differential equations and stochastic mathematical models
has developed rapidly. There are many different ways of modeling stochasticity or randomness in the
chemostat. For example, based on deterministic model (1.2), the authors replaced the dilution rate D by
D + αḂ(t) in Ref. [23] and replaced the maximum growth rate m by m +σḂ(t) in Refs. [24,25], where
Ḃ(t) represents the white noise and α and σ are the noise intensities. In Refs. [26–29], the authors
assumed that stochastic perturbations are the white noise type which are directly proportional to the
variables S and x. Except for the white noise, telegraph noise, Markovian switching and the Ornstein-
Uhlenbeck process have also been taken into consideration in the chemostat model; see Refs. [30–36].
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In the aforementioned works, the authors mainly investigated the asymptotic orbital properties of the
stochastic chemostat models.

In this paper, we mainly devote our attention to the investigation of the statistical properties of
a stochastic chemostat model. The rest of this article is as follows. In Section 2, the construction
procedure of the stochastic chemostat model is presented. In Section 3, we first derive the stationary
joint probability density function of (S , x) and the marginal probability density function of x, and
then we discuss the effects of noise intensity on the variance and skewness of the concentration of
microorganisms. A simple discussion is given in Section 4.

2. Construction of the stochastic chemostat model

We first consider a discrete time Markov chain. For a fixed time increment ∆t > 0, we define a
process X(∆t)(t) =

(
S (∆t)(t), x(∆t)(t)

)T for t = 0,∆t, 2∆t, · · · , where S (∆t)(t) denotes the concentration of
the growth limiting substrate and x(∆t)(t) is the concentration of microorganisms. Let the initial value
X(∆t)(0) = X0 ∈ R

2
+ which is deterministic. A sequence of random variables is denoted by

{
R(∆t)(k)

}∞
k=0

.
Suppose that these variables are jointly independent and that within each sequence the variables are
identically distributed such that

ER(∆t)(k) = 0, E
[
R(∆t)(k)

]2
= σ2∆t, E

[
R(∆t)(k)

]4
= o(∆t) (2.1)

for k = 0, 1, · · · , where σ ≥ 0 is a constant that reflects the size of the stochastic effect.
The variables R(∆t)(k) (i = 0, 1, · · · , n) are supposed to capture the effect of random influences on

the concentration of microorganisms during the period [k∆t, (k + 1)∆t). And we assume that S (∆t) and
x(∆t) change within that time period according to the deterministic Eq (1.2). In addition, the random
effects on the concentration of microorganisms are modelled by R(∆t)(k). Specifically, for k = 0, 1, · · · ,
we get

S (∆t)((k + 1)∆t
)
=S (∆t)(k∆t)+{

D
(
S 0 − S (∆t)(k∆t)

)
−

mS (∆t)(k∆t)x(∆t)(k∆t)
a + S (∆t)(k∆t)

}
∆t

and
x(∆t)((k + 1)∆t

)
=x(∆t)(k∆t) + R(∆t)(k)x(∆t)(k∆t)+{

mS (∆t)(k∆t)x(∆t)(k∆t)
a + S (∆t)(k∆t)

− Dx(∆t)(k∆t)
}
∆t.

We will show that X(∆t)(t) converges to a diffusion process as ∆t → 0. We must determine the
drift coefficient and diffusion coefficient of the diffusion process. Let P(∆t)(y, dz) denote the transition
probabilities of the homogeneous Markov chain{

X(∆t)(k∆t)
}∞

k=0
,

that is,
P(∆t)(y,Z) = Prob

{
X(∆t)((k + 1)∆t

)
∈ Z | X(∆t)(k∆t) = y

}
for all y = (S , x) ∈ R2

+ and all Borel sets Z ⊂ R2
+.
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Let

F(∆t)(y) =
(

f (∆t)
0 (y)

f (∆t)
1 (y)

)
and

G(∆t)(y)
(

g(∆t)
00 (y) g(∆t)

01 (y)
g(∆t)

10 (y) g(∆t)
11 (y)

)
denote the drift coefficient and diffusion coefficient, respectively. It follows from (2.1) that

f (∆t)
0 (y) =

1
∆t

∫
(z0 − S )P(∆t)(y, dz)

= D
(
S 0 − S

)
−

mS x
a + S

,

(2.2)

f (∆t)
1 (y) =

1
∆t

∫
(z1 − x)P(∆t)(y, dz)

=

( mS
a + S

− D
)

x +
x
∆t

ER(∆t)(0)

=

( mS
a + S

− D
)

x,

(2.3)

and
g(∆t)

11 (y) =
1
∆t

∫
(z1 − x)2P(∆t)(y, dz)

=
1
∆t

E
[( mS

a + S
− D

)
x∆t + R(∆t)(0)x

]2

=

( mS
a + S

− D
)2

x2∆t + 2
( mS
a + S

− D
)

x2ER(∆t)(0) +
x2

∆t
E
[
R(∆t)(0)

]2

=

( mS
a + S

− D
)2

x2∆t + σ2x2.

Therefore,
lim
∆t→0+

sup
∥y∥≤K

| g(∆t)
11 (y) − σ2x2 |= 0 (2.4)

for all 0 < K < ∞. Similarly, one can verify

lim
∆t→0+

sup
∥y∥≤K

| g(∆t)
00 (y) |= lim

∆t→0+
sup
∥y∥≤K

| g(∆t)
01 (y) |= lim

∆t→0+
sup
∥y∥≤K

| g(∆t)
10 (y) |= 0. (2.5)

Besides, form (2.1), we know that, for all 0 < K < ∞,

lim
∆t→0+

sup
∥y∥≤K

1
∆t

∫
∥ z − y ∥3 P(∆t)(y, dz) = 0. (2.6)

In line with Ref. [26], the definition of X(∆t)(t) can be extended to all t ≥ 0 by setting X(∆t)(t) =
X(∆t)(k∆t) for t ∈ [k∆t, (k + 1)∆t). According to Theorem 7.1 and Lemma 8.2 in [37], and (2.2)–(2.6),
we can conclude that, as ∆t → 0, X(∆t)(t) converges weakly to the solution of the following stochastic
differential equation: dS =

[
D

(
S 0 − S

)
− mS x

a+S

]
dt,

dx =
(

mS
a+S − D

)
xdt + σxdB,

(2.7)
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with the initial condition X(0) = X0, where B = B(t) is the one-dimensional standard Brownian motion,
σ is the noise intensity and other symbols have the same meanings as in the deterministic model (1.2).
For the uniqueness of the global positive solution to the stochastic Model (2.7), we have the following
lemma.

Lemma 2.1. For any given initial value (S (0), x(0)) ∈ R2
+, model (2.7) has a unique positive solution

(S (t), x(t)) on t ≥ 0; in addition, the solution (S (t), x(t)) will remain in R2
+ with a probability of one,

namely, (S (t), x(t)) ∈ R2
+ for all t ≥ 0 almost surely.

Proof. Notice that the local Lipschitz continuity of the coefficients in model (2.7) for any given initial
value (S (0), x(0)) ∈ R2

+; so, model (2.7) has a unique positive local solution (S (t), x(t)) on t ∈ [0, te),
where te is the explosion time. Next, we will show that te = ∞.

Since the solution (S (t), x(t)) is positive on t ∈ [0, te), from (2.7) we have

dS ≤ D
(
S 0 − S

)
dt, (2.8)

and
dx ≤ (m − D) xdt + σxdB. (2.9)

Denote by Ψ(t) the solution of the following equation:dΨ(t) = D
(
S 0 − Ψ(t)

)
dt,

Ψ(0) = S (0),
(2.10)

and denote by Φ(t) the solution of the stochastic differential equationdΦ(t) = (m − D)Φ(t)dt + σΦ(t)dB,

Φ(0) = x(0).
(2.11)

It follows from the comparison theorem for stochastic equations [38] that S (t) ≤ Ψ(t), x(t) ≤ Φ(t), and
t ∈ [0, te), a.s.

Similarly, from (2.7), we can also have

dS ≥
[
D

(
S 0 − S

)
− mΦ

]
dt, (2.12)

and
dx ≥ −x (Ddt − σdB) , (2.13)

on t ∈ [0, te). Denote by ψ(t) the solution of the stochastic differential equationdψ(t) =
[
D

(
S 0 − ψ

)
− mΦ

]
dt,

ψ(0) = S (0),
(2.14)

and denote by ϕ(t) the solution of the equationdϕ = −ϕ (Ddt − σdB) ,
ϕ(0) = x(0).

(2.15)
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Using the comparison theorem for stochastic equations [38] again, we have S (t) ≥ ψ(t), x(t) ≥
ϕ(t), t ∈ [0, te), a.s.

To sum up, ψ(t) ≤ S (t) ≤ Ψ(t),
ϕ(t) ≤ x(t) ≤ Φ(t), t ∈ [0, te), a.s.

(2.16)

Since Eqs (2.10), (2.11), (2.14) and (2.15), are all linear, the expressions of Ψ(t),Φ(t), ψ(t), and ϕ(t)
can all be explicitly solved from Eqs (2.10), (2.11), (2.14) and (2.15), respectively. Obviously, these
solutions are all positive and globally existent for all t ∈ [0,∞). Thus, we can get that the explosion
time te = ∞ from (2.16). The proof is thus completed.

3. Statistical property analysis

In this section, we derive the stationary joint probability density function of (S , x) and the marginal
probability density function of x based on the stochastic model (2.7). In view of the biological
significance, we consider the case that the deterministic model (1.2) has a stable positive equilibrium
E∗ = (S ∗, x∗), i.e., the microorganisms persists in the chemostat. Let y = ln S and z = ln x, then, the
stochastic model (2.7) can be rewritten asdy =

[
DS 0e−y − D − mez

a+ey

]
dt,

dz =
(

mey

a+ey − D
)

dt + σdB,

and its linearized version near (ln S ∗, ln x∗) is as follows:dy = (a11y + a12z) dt,

dz = a21ydt + σdB,
(3.1)

where

a11 =
mS ∗x∗

(a + S ∗)2 −
DS 0

S ∗
= −

D[(S ∗)2 + aS 0]
(a + S ∗)S ∗

, a12 = −
mx∗

a + S ∗
, a21 =

maS ∗

(a + S ∗)2 . (3.2)

By using the variable transformations u = y and v = −a12
a11

z for Eq (3.1), we obtaindu = (a11u − a11v) dt,

dv = −a12
a11

a21udt − a12
a11
σdB.

(3.3)

It follows from the theory of Markov processes [39–41] that the transition probability density
function P(u, v, t|u0, v0, t0) is governed by the following Fokker-Planck equation:

∂P
∂t
=

∂2

∂v2

(
a2

12σ
2

2a2
11

P
)
+
∂

∂u
[a11(v − u)P] +

∂

∂v

(
a12a21

a11
uP

)
,

and the stationary probability density P(u, v) is determined by

∂2

∂v2

(
a2

12σ
2

2a2
11

P
)
+
∂

∂u
[a11(v − u)P] +

∂

∂v

(
a12a21

a11
uP

)
= 0,
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i.e., (
∂

∂v
−
∂

∂u

) [
a2

12σ
2

2a2
11

∂P
∂v
+ a11(u − v)P

]
+
∂

∂v

[
a2

12σ
2

2a2
11

∂P
∂u
+ a11(v − u)P +

a12a21

a11
uP

]
= 0. (3.4)

One can find that

P(u, v) = C0 exp
{
−

a2
11

a2
12σ

2

[(
a12a21

a11
− a11

)
u2 + 2a11uv − a11v2

]}
= C0 exp

{
a11

a2
12σ

2

[
a2

11(u − v)2 − a12a21u2
]} (3.5)

satisfies 
a2

12σ
2

2a2
11

∂P
∂v + a11(u − v)P = 0,

a2
12σ

2

2a2
11

∂P
∂u + a11(v − u)P + a12a21

a11
uP = 0,

where C0 is a positive constant such that
!
R2 P(u, v)dudv = 1. That is to say, the function P(u, v)

showed in (3.5) is a solution of Eq (3.4), and it is the stationary joint probability density of (u, v)
corresponding to the linear model (3.3). Then, the stationary joint probability density of (S , x)
corresponding to the linearized version of the stochastic model (2.7) is as follows

P(S , x) = C0 exp

 a11

a2
12σ

2

a2
11

(
ln

S
S ∗
+

a12

a11
ln

x
x∗

)2

− a12a21

(
ln

S
S ∗

)2 .
Thus, the result obtained so far in this section can be summarized as the following theorem.

Theorem 3.1. If Da
m−D < S 0 holds, then the distribution of (S , x) has a density function P(S , x), and it

has the form

P(S , x) = C0 exp

 a11

a2
12σ

2

a2
11

(
ln

S
S ∗
+

a12

a11
ln

x
x∗

)2

− a12a21

(
ln

S
S ∗

)2 ,
where (S , x) is a solution to model (2.7), where any initial value (S (0), x(0)) ∈ R2

+, (S ∗, x∗) is the
positive equilibrium of the deterministic model (1.2) and a11, a12 and a21 are defined in (3.2).

Remark 3.1. We should point out that the explicit expression of the stationary joint probability
density showed in Theorem 3.1 is obtained by solving the Fokker-Planck equation associated with the
linearization of the chemostat model at the positive equilibrium. It means that the stochastic
trajectories with initial values near the deterministic positive equilibrium will converge to a
distribution which has the probability density P(S , x).

Next, we perform some numerical simulations to verify our results and try to simulate the influence
of environmental fluctuations on the density function.

Fixing parameters S 0 = 4, D = 2, m = 3 and a = 1, we know that the deterministic model (1.2) has a
stable positive equilibrium E∗ = (2, 2). By taking the noise intensity σ = 0.15, we show the stationary
joint probability density P(S , x) in Figure 1, which indicates that the peak of joint probability density
is near the deterministic equilibrium E∗.
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Besides, the marginal probability density functions P(S ) and P(x), namely the probability densities
of the concentrations of the substrate and microorganisms, respectively, can be represented as

P(S ) =
∫ ∞

0
P(S , x)dx, P(x) =

∫ ∞

0
P(S , x)dS .

Figure 1. Joint density function P(S , x) for S 0 = 4, D = 2, m = 3, a = 1 and σ = 0.15.

In Figure 2, we depict the marginal probability density function P(x) with different noise
intensities. It shows that as the noise intensity σ increases, the peak of P(x) is shifted to the left and
the peak height becomes lower. That is to say, the microorganisms concentration taking the highest
probability decreases with the noise intensity, and the probability of a relatively lower or higher
microorganisms concentration increases with the noise intensity. Besides, it follows from the
geometrical asymmetry of P(x) (especially the red curve in Figure 2) that the frequency distribution
has a positive skew distribution, indicating that the probability of a relatively lower microorganisms
concentration is larger than the probability of a higher concentration.

Figure 2. Marginal density function P(x) for S 0 = 4, D = 2, m = 3, a = 1 and different noise
intensities.
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In order to quantitatively investigate the statistical properties of the microorganisms concentration,
with the help of the marginal probability density function P(x), we can further introduce the normalized
variance and skewness of the variable x as follows:

Vx =
⟨x2⟩

⟨x⟩2
− 1, S x =

⟨x3⟩

⟨x⟩3
− 3Vx − 1,

where ⟨xn⟩ =
∫ ∞

0
xnP(x)dx. Figure 3 shows that the numerical calculation results of the variance Vx and

skewness S x as a function of noise intensity σ , which were obtained by taking the same parameters
as those used in Figure 2. Obviously, the curves of Vx(σ) and S x(σ) are monotonically increasing, and
all values of S x are positive, which are consistent with the simulation findings in Figure 3.

(a) (b)
Figure 3. Normalized variance Vx(σ) and skewness S x(σ) of variable x for S 0 = 4, D = 2,
m = 3 and a = 1.

4. Conclusions

This paper is concerned with the effect of white noise on the continuous culture of microorganisms
in the chemostat, which was evaluatedby constructing a stochastic chemostat model and investigating
its statistical properties. Different from the previous methods for analyzing stochastic differential
systems, we derived explicit expressions for the stationary joint probability density by solving the
corresponding Fokker-Planck equation. The results obtained show that the continuous culture of
microorganisms is less stable when the chemostat is subjected to environmental noise, and that the
noise is adverse to the survival of microorganisms. It is consistent with the conclusion of
Refs. [23, 42], in which the asymptotic orbital properties of stochastic chemostat models were
investigated.

We need to point out that this paper deals with a stochastic chemostat model with degenerate
diffusion. It is interesting to study the stochastic chemostat model with non-degenerate diffusion [43].
Another interesting problem is analyzing the effect of colored noise on the statistical properties of a
stochastic chemostat model. These problems deserve further investigation.
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