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Lyapunov candidates. The fractional framework is expanded to the piecewise approach, and a
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identifying nature.
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1. Introduction

Because we encounter a variety of hazardous contagious illnesses on a regular basis, developing
appropriate mathematical simulations and combating contagious infections has proven progressively
crucial in recent decades. Vaccination is an infectious agent approach for infections including seasonal
flu, tetanus, pneumonia, smallpox, and others. HPAI H5N6, an avian influenza A variant, is a pathogen
that transforms through H5N1, a similar form of avian influenza infection that is as dangerous as
H5N6. According to [1], the highly contagious viral H5N6, which would be visible in all bird species,
is expected to be the most recent extremely enteric bacteria strain to emerge in Beijing since July 2014.
H5N6 influenza viruses with lower virulence had previously emerged in many parts of the world,
including Europe (1984), Scandinavia (2002), and the United States (1975, 2013), but the effects on
the livestock industry and environmental safety were minor. In contrast to previous incidents, the HPAI
H5N6 that emerged in Beijing (2014) severely attacked and endangered birds and living beings [2].

According to research, all occurrences of H5N6 in individuals have had interaction involving live
poultry exchanges. Despite the chance of this virus’s transmission from chickens to individuals being
considered minimal, there have been 16 incidences of H5N6 significantly entering the bloodstream
and six fatalities from China [2, 3]. 11 people were found to be contaminated by the lethal infection in
the 16 cases, resulting in a 69 percent incident morbidity incidence [3]. Nausea, diarrhoea, bronchitis,
multi-organ dysfunction, dementia, cardiogenic distress, and blindness are some of the indications of
H5N6 in people [4].

Although mathematical modelling investigations into H5N6 are infrequent, there have been a
handful of analyses that estimate various subtypes of avian influenza for poultry and human
activities [5, 6]. Several studies have chosen to use bilinear recurrence estimates to investigate avian
influenza propagation, including bird and human populations, for accessibility [7]. Consequently, in
an attempt to achieve a considerable reduction in the proportion of sick individuals, current avian
influenza estimates have begun to assume saturated transmission rather than bilinear
transmission [8].Recently, Liu et al. [9] and Zhang et al. [7] employed semilinear and partially
prevalence rates to simulate the transmission of H7N9 independently. Lee and Lao [10] constructed
many theories that incorporate bilinear occurrence and saturation transmission to examine the
propagation of avian influenza. The avian-only half-saturated prevalence estimate considering the
immunization approach is proposed by Lee and Lao [10] as follows:

ṡ(ξ) = (1 − q)Ξ − ωs − ϑbsi
Hb+i ,

v̇(ξ) = qΞ − ωv − (1−φ)ϑνvi
Hν+i ,

i̇(ξ) = ϑbsi
Hb+i −

(1−φ)ϑνvi
Hν+i − (ω + λ)i,

(1.1)

where s(ξ), v(ξ) and v(ξ) represent vulnerable, immunized, and contagious people at time step ξ,
respectively. Ξ signifies a steady pace of acquisition of vulnerable people; q represents the
immunization program’s high incidence; the factor ω represents the specie’s normal fatality rate; ϑb
represents the spread of infection rate when vulnerable people come into contact with infectious
patients; ϑν represents the proportion of immunised birds that acquire avian influenza; λ represents
infection fatality; and φ represents vaccination effectiveness; the half-saturation parameter for avian
pathogen sensitive birds is implied by Hb and the half-saturation parameter for avian pathogen
sensitive birds is implied by Hνsignifies the half-saturation value for avian variant inoculated birds.
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Several key conclusions in classical calculus were published in the eighteenth century by notable
researchers including Liouville, Riemann, Euler, Fourier, and many others [11–14]. Non-locality is a
major motivator for attention in fractional calculus implementations [15–17]. There are numerous
fascinating occurrences that exhibit what are known as memory influences, which means that their
existence is dependent not just on time and location but also on their original configuration. Recently,
fractional differential equations have been used in thermodynamics, thermoplastic flowability, regular
variation in heat transfer, biostatistics, blood circulation anomalies, wind resistance, electromagnetics,
deformability, capacitance concept, electrical connections, molecular biology, cognitive science, and
appropriate scientific results. In previous studies, various forms of nonlocal fractional derivatives have
subsequently been proposed to tackle the elimination of derivative operators having power-law.
Caputo-Fabrizio [18], for example, presented a fresh fractional derivative predicated on the
exponential kernel. Meanwhile, this operator is experiencing significant difficulties with the kernel’s
placement. Atangana and Baleanu developed a unique improved formulation of a fractional derivative
using the Mittag-Leffler function as a non-local and non-singular kernel in [19] to alleviate
CaputoFabrizios turmoil. The Atangana-Baleanu-Caputo (ABC) fractional derivative accurately
describes the memory [20–22]. The ABC operator’s most noteworthy uses can be discovered
in [23–25]. This generalized Mittag-Leffler kernel can, however, describe crossover from
conventional to sub-diffusion as well as crossover from stochastic process to power-law. Moreover,
this kernel cannot detect crossover from deterministic to stochastic settings or from stochastic to
deterministic environments, which is a significant drawback of such operators in these cases [26, 27].
Atangana and Seda [28] subsequently proposed the ideas of piecewise differential/integral
formulations. Furthermore, they expanded their novel notion of simulation by proposing piecewise
modelling. This revolutionary notion may represent the destiny of modelling, as we propose in this
work a creative pathway to simulate epidemiological concerns involving crossover tendencies.
Furthermore, it has been discovered that fractional DEs can be used to simulate global occurrences
relatively precisely [29–32]. The global problem of infection propagation drew the interest of scholars
from numerous domains, resulting in the establishment of a variety of ideas to assess and predict the
progress of the outbreak; for more information, see [33, 34].

The goal of this research is to examine the mechanisms of NPAI infection by employing the
revolutionary notion of the piecewise fractional framework in the context of the Atangana-Baleanu
derivative. We used NPAI infection with half saturation data to determine the terms and demonstrate
that the current structure employing a piecewise technique yields effective adaptation to the results
proposed by [10]. The modeling computations are illustrated graphically to demonstrate the theories
developed. Therefore, when environmental perturbations are considered, determining the threshold of
randomized infectious systems becomes problematic. Several stochastic systems no longer have
non-negative steady states. As a result, the stationary distribution of stochastic processes has garnered
a lot of consideration. We focus on analyzing the stochastic NPAI model’s having half-saturated
incidences and attempting to provide a criterion for infection extermination and permanence, as well
as studying the stochastic model’s stationary distribution.
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2. Model depiction

Recently, researchers discovered that white noise can disrupt the transmission of contagious
diseases, internal migration, and the formulation of preventive mechanisms. The appropriate
stochastic frameworks have been investigated by researchers [35]. In 2021, authors [36] presented a
novel notion for analyzing and predicting the transmission of COVID-19 throughout Africa and
Europe using stochastic and deterministic methods. Rashid et al. [37, 38] contemplated the stochastic
fractal-fractional tuberculosis model via a non-singular kernel with random densities and hepatitis B
virus infection model, respectively. The novel dynamics of a stochastic fractal-fractional immune
effector response to viral infection via latently infectious tissues are investigated by Rashid et al. [39].
Adopting the propensity of Zhou et al. [40], the stochastic random densities are assumed to be
independent and directly proportional to s(ξ), v(ξ) and i(ξ). The DEs can then be used to characterize
the stochastic form of the scheme (1.1) is presented in the schematic diagram Figure 1.

Figure 1. Flow diagram for HPIA epidemic model.

2.1. Piecewise NPAI model

This part explores the framework (1.1) in Atangana-Baleanu piecewise fractional differential
equations. To accomplish this, we formulate the model (1.1) in piecewise DEs, which are provided
by: 

ṡ(ξ) = (1 − q)Ξ − ωs − ϑbsi
Hb+i ,

v̇(ξ) = qΞ − ωv − (1−φ)ϑνvi
Hν+i ,

i̇(ξ) = ϑbsi
Hb+i −

(1−φ)ϑνvi
Hν+i − (ω + λ)i,

(2.1)


ABC
0 Dα

ξ s(ξ) = (1 − q)Ξ − ωs − ϑbsi
Hb+i ,

ABC
0 Dα

ξv(ξ) = qΞ − ωv − (1−φ)ϑνvi
Hν+i ,

ABC
0 Dα

ξ i(ξ) = ϑbsi
Hb+i −

(1−φ)ϑνvi
Hν+i − (ω + λ)i,

(2.2)


ds(ξ) =

(
(1 − q)Ξ − ωs − ϑbsi

Hb+i
)
dξ + ℘1s(ξ)dB1(ξ),

dv(ξ) =
(
qΞ − ωv − (1−φ)ϑνvi

Hν+i
)
dξ + ℘2v(ξ)dB2(ξ),

di(ξ) =
( ϑbsi

Hb+i −
(1−φ)ϑνvi

Hν+i − (ω + λ)i
)
dξ + ℘3i(ξ)dB3(ξ),

(2.3)
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In the preceding frameworks (2.1)–(2.3), we allocate time periods ξ ∈ [0,T1], ξ ∈ [T1,T2]
and [T2,T] accordingly. For α ≥ 0 and ℘ι, ι = 1, 2, 3 specifies the non-negative white noises, whereas
the formulation of the Atangana-Baleanu derivative and the corresponding piecewise DEs findings are
represented below:

ABC
0 Dα

ξF1(ξ) =
ABC(α)
1 − α

ξ∫
0

F ′1 (θ)Eα

(
−

α

1 − α
(ξ − θ)α

)
dθ, (2.4)

where ABC(α) = 1 − α + α
Γ(α) signifies the normalization function.

3. Dynamical aspects of stochastic NPAI epidemic model

In this paper, suppose a complete probability space (Θ,F , {Fξ}ξ≥0,P) fulfilling the given
assumptions (That are., it is nondecreasing and right continuous whilst F0 have all empty sets P),
indicating R+ = [0,∞), Rd

+ = {x = (x1, ..., xd) | xi > 0, i ∈ [1, d]}. Also, there is an integral mapping
F1(ξ) defined on [0,∞). introducing F u

1 = sup{F1(ξ) | ξ ≥ 0}, F l
1 = inf{F1(ξ) | ξ ≥ 0}.

Next, we will examine at the d-dimensional stochastic DE

dY(ξ) = F1(Y(ξ), ξ)dξ + G(Y(ξ), ξ)dB(ξ), t ≥ t0,

subject to intial condition Y(0) = X0 ∈ Rd, B(ξ) denotes a d-dimensional standard Brownian motion
presented on the complete probability space (Θ,F , {Fξ}ξ≥0,P). Suppose C2,1(Rd × [t0,∞]; R+) the
collection of all positive H(x, ξ) on Rd × [t0,∞] such that continuous twice differentiable in Y and
once in ξ. The differential operator L is proposed by [41]:

L =
∂

∂ξ
+

d1∑
ι=1

fι(Y, ξ)
∂

∂Xι

+
1
2

d1∑
ι,κ=1

[
GT(Y, ξ)G(Y, ξ)

]
ικ

∂2

∂Xι∂Xκ

.

Now L imposed on a mappingH ∈ C2,1(Rd × [t0,∞]; R+), we have

LH(Y, ξ) = Hξ(Y, ξ) +Hx(Y, ξ)F1(Y, ξ) +
1
2

trac[GT(Y, ξ)HxxG(Y, ξ)],

whereHξ = ∂H
∂ξ
,Hx =

(∂H
∂x1
, ..., ∂H

∂xd

)
, Hxx =

( ∂2H
∂xι∂xκ

)
d1×d1

. By the Itô’s technique, if Y(ξ) ∈ Rd1 , then

dH(Y(ξ), ξ) = LH(Y(ξ), ξ)dξ +Hx(Y(ξ), ξ)G(Y(ξ), ξ)dB(ξ).

3.1. Existence-uniqueness of the global non-negative solution

Theorem 3.1. For every ξ ≥ 0 a.s., system (2.3) has a unique global solution (s(ξ), v(ξ), i(ξ)) ∈ R3
+ for

any given initial value (s(0), v(0), i(0)) ∈ R3
+.

Proof. Our argument is predicated on the research of Mao et al. [42]. Because the parameters of
scheme (2.3) are Lipschitz continuous locally. As a result, there is a unique local solution (s, v, i)
on ξ ∈ (0, ϕ0) for every ICs (s(0), v(0), i(0)) ∈ R3

+, where ϕ0 is the moment of the explosive. We
simply require to demonstrate ϕ0 = ∞ (a.s). to show the local solution is global. Allow k0 to be large
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enough for each factor of (s(0), v(0), i(0)) inside this interval
[
1/k0, k0

]
for every integer k ≥ k0, now

introducing the stopping time,

ϕk = inf
{
ξ ∈ [0, ϕ0] | min{s(ξ), v(ξ), i(ξ)} ≤

1
k

or max{s(ξ), v(ξ), i(ξ)} ≥ k
}
.

Setting inf ∅ = ∞. Note that when k 7→ ∞ then ϕk is nondecreasing. Taking ϕ∞ = lim
k 7→∞

ϕk,

therefore ϕ∞ ≤ ϕ0 (a.s). We intend to prove ϕ∞ = ∞ (a.s) then ϕ0 = ∞ (a.s), which implies that
(s, v, i) ∈ R3

+, ∀ξ ≥ 0. Also, if ϕ∞ (a.s), then there are two constants T ≥ 0 and ε ∈ (0, 1) such that
P{ϕ∞ ≤ T} ≥ ε. Therefore, there is an integer k1 ≥ k0 such that

P{ϕk ≤ T} ≥ ε, ∀k ≥ k1. (3.1)

Defining a functional Ĥ : R3
+ 7→ R+, that is,

Ĥ(s, v, i) = (s + v + i) − 3 − ln(s + v + i).

In accordance with the criteria of (u1 − ln u1 − 1) ≥ 0 as u1 ≥ 0, we find Ĥ(s, v, i) is a positive C2

mapping.
Implementing Itô’s technique, we have

Ĥ(s, v, i) = LĤ(s, v, i)dξ + ℘1(s − 1)dB1(ξ) + ℘2(v − 1)dB2(ξ) + ℘3(i − 1)dB3(ξ),

where

LĤ(s, v, i) =
(s − 1

s
){

(1 − q)Ξ − ωs −
ϑbsi

Hb + i
}

+
1
2
℘2

1

+
(v − 1

v
){

qΞ − ωv −
(1 − φ)ϑνvi

Hν + i
}

+
1
2
℘2

2

+
( i − 1

i
){ ϑbsi

Hν + i
+

(1 − φ)ϑνvi
Hν + 1

− (ω + λ)i
}

+
1
2
℘2

3

≤ Ξ + λ + ϑb + (1 − φ)ϑν + 3ω +
1
2

(℘2
1 + ℘2

2 + ℘2
3) : Φ1.

Therefore, we find

LĤ(s, v, i) ≤ Φ1dξ +
{
℘1(s − 1)dB1(ξ) + ℘2(v − 1)dB2(ξ) + ℘3(i − 1)dB3(ξ)

}
.

Applying integration over 0 to ϕk∧T and considering expectation, we have

EĤ(s(ϕk∧T), v(ϕk∧T), i(ϕk∧T)) ≤ Φ1E(ϕk∧T) + Ĥ(s(0), v(0), i(0))
≤ Φ1T + Ĥ(s(0), v(0), i(0)).

For k ≥ k1, suppose Θk = {ϕk ≤ T}, from (3.1), then P(Θk) ≥ ε. Obviously, for each $ ∈ Θk, there
is one or more of s(ϕk, $), v(ϕk, $), i(ϕk, $) equals either 1/k or k, therefore
H̃

(
s(ϕk, $), v(ϕk, $), i(ϕk, $)

)
is not less than either k − 1 ln k or 1/k − 1 + ln k, then

Φ1T + Ĥ(s(0), v(0), i(0))
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≥ E
[
IΘk($)Ĥ(s(ϕk, $), v(ϕk, $), i(ϕk, $))

]
≥ ε(k − 1 − ln k) ∧

(
1/k − 1 + ln k

)
,

where IΘk(.) represents the indicating mapping of Θk. Thus, applying limit k 7→ ∞ yields contradiction

∞ = Φ1T + Ĥ(s(0), v(0), i(0)) < ∞.

Thus, we find ϕ∞ = ∞, (a.s). This completes the proof.

3.2. Extinction of the epidemic

One of the primary challenges in epidemiology is how to govern epidemic patterns so that the
infection becomes endemic and persists throughout time. In this part, we attempt to determine the
threshold quantity for pathogen extermination and permanence.

Let us define

Rs
0 =

2Ξ

2(ω + λ) + ℘2
3

( (1 − q)ϑbHν + (1 − φ)qϑνHb
ωHbHν

)
.

Following the work of [24], We obtain the accompanying lemma.

Lemma 3.1. For initial settings (s(0), v(0), i(0)) ∈ R3
+, then the solution of the model (s, v, i) satisfies

lim
ξ 7→∞

ln s(ξ)
ξ
≤ 0, lim

ξ 7→∞

ln v(ξ)
ξ
≤ 0, lim

ξ 7→∞

ln i(ξ)
ξ
≤ 0, (a.s). (3.2)

That is lim
ξ 7→∞

s(ξ)+v(ξ)+i(ξ)
ξ

= 0, (a.s). Also, if ω > 1
2 (℘2

1 ∨ ℘
2
2 ∨ ℘

2
3), we find

lim
ξ 7→∞

1
ξ

ξ∫
0

s(ξ)dB1(ξ) = 0, lim
ξ 7→∞

1
ξ

ξ∫
0

v(ξ)dB1(ξ) = 0, lim
ξ 7→∞

1
ξ

ξ∫
0

i(ξ)dB1(ξ) = 0.

Theorem 3.2. Assume that there is a non-negative solution of the model (2.3) (s(ξ), v(ξ), i(ξ)) having
the initial settings (s(0), v(0), i(0)), we find
(i) If Rs

0 < 1, then lim
ξ 7→∞

sup ln i(ξ)
ξ
≤ (ω + λ +

℘2
3

2 )(Rs
0 − 1) < 0 (a.s). This suggests that the infection will

be extinguished in the long run.

(ii) If Rs
0 > 1, then lim

ξ 7→∞
inf 1

ξ

ξ∫
0

i(ς)dς ≥ (ω+λ+
℘2

3
2 )(Rs

0−1)
Φ2

> 0 (a.s), where

Φ2 =
ω + λ

ω

( (ω + ϑb)Hν + ω(ω + (1 − φ)ϑν)Hb
HbHν

)
.

This means that the sickness will be present for a long time.

Proof. Utilizing Itô’s technique to ln i(ξ), we find

d ln i(ξ) =

(
ϑbs

Hb + i
+

(1 − φ)ϑνv
Hν + i

− (ω + λ +
℘2

3

2
)
)
dξ + ℘3dB3(ξ).
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Applying integration technique from 0 to ξ, we have

ln i(ξ) − ln i(0) =

ξ∫
0

(
ϑbs

Hb + i
+

(1 − φ)ϑνv
Hν + i

− (ω + λ +
℘2

3

2
)
)
dς + ℘3

ξ∫
0

dB3(ς).

In view of the strong law of large numbers [43], we have

lim
ξ 7→∞

1
ξ

ξ∫
0

dB3(ς) = 0. (a.s).

Considering the superior limit and applying the stochastic comparison concept with disease-free
equilibrium E0 =

(
(1−p−1)Ξ

ω
, qΞ

ω
, 0

)
, we get

lim
ξ 7→∞

sup
ln i(ξ)
ξ

= lim
ξ 7→∞

sup
1
ξ

ξ∫
0

(
ϑbs

Hb + i
+

(1 − φ)ϑνv
Hν + i

)
dς −

(
(ω + λ +

℘2
3

2
)
)

≤

( (1 − q)ϑbHν + (1 − φ)qϑνHb
ωHbHν

)
−

(
ω + λ +

℘2
3

2
)

=
(
ω + λ +

℘2
3

2
)
(Rs

0 − 1) < 0 (a.s).

As a result, it implies that lim
ξ 7→∞

i(ξ) = 0, (a.s). which shows that the infection will be eliminated in the

long run.
(ii) Define a C2-mappingH1

H1(s, v, i) = −

(Hb + Hν

HbHν

i −
ϑb
ω

s + i
Hb
− ln i −

(1 − φ)ϑν
ω

v + i
Hν

)
.

Implementing Itô’s technique, we have

LH1 =
(
ω + λ +

℘2
3

2
)
−

ϑbs
Hb + i

−
(1 − φ)ϑνv

Hν + i
−

( HbHν

Hb + Hν

)(
ϑbs

Hb + i
+

(1 − φ)ϑνv
Hν + i

− (ω + λ)i
)

−
ϑb
ωHb

(
(1 − q)Ξ − ωs +

(1 − φ)ϑνvi
Hν + i

− (ω + λ)i
)

−
(1 − φ)ϑν
ωHν

(
qΞ − ωv +

ϑbsi
Hb + i

− (ω + λ)i
)

≤
(
ω + λ +

℘2
3

2
)
−
ϑbs
Hb
−

(1 − φ)ϑνv
Hν

−
ϑb
Hb

( (1 − q)Ξ
ω

− s
)
−

(1 − φ)ϑν
Hν

(qΞ

ω
− v

)
+
ω + λ

ω

(
ω + ϑb

Hb
+
ω + (1 − φ)ϑν

Hν

)
i

=
(
ω + λ +

℘2
3

2
)
−

(1 − q)Ξϑb
ωHb

−
(1 − φ)qΞϑν

ωHν

+ Φ2i.

Then

LH1 ≤ −
(
ω + λ +

℘2
3

2
)
(Rs

0 − 1) + Φ2i.
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Assume that

Φ3 =
ω + ϑb
ωHb

+
ω + (1 − φ)ϑν

ωHν

.

Eventually, we have

dH1(s, v, i) = LH1dξ − ℘3dB3(ξ) −
ϑb

ωHb
℘1dB1(ξ) −

(1 − φ)ϑν
ωHν

℘2vdB2(ξ) − Φ2℘3dB3(ξ).

Integrating above equation with respect to ξ, we have

H1(s(ξ), v(ξ), i(ξ)) −H1(s(0), v(0), i(0))
ξ

≤ −
(
ω + λ +

℘2
3

2
)
(Rs

0 − 1) +
Φ2

ξ

ξ∫
0

i(ς)dς −
Q(ξ)
ξ
−

ϑb
ωHb

1
ξ

ξ∫
0

℘1sdB1(ς)

−
(1 − φ)ϑν
ωHν

1
ξ

ξ∫
0

℘2vdB2(ς) −
K3

ξ

ξ∫
0

℘3idB3(ς),

where Q(ξ) =

ξ∫
0
℘3dB3(ς) is a martingale. In view of the strong principal of large numbers for

martingales, we have

lim
ξ 7→∞

Q1(ξ)
ξ

= 0. (a.s). (3.3)

Utilizing (3.3) and Lemma 3.1, we find

lim
ξ 7→∞

inf Φ2
1
ξ

ξ∫
0

i(ς)dς ≥
(
ω + λ +

℘2
3

2
)
(Rs

0 − 1) + lim
ξ 7→∞

inf
(
H1(s(ξ), v(ξ), i(ξ)) −H1(s(0), v(0), i(0))

ξ

)

≥
(
ω + λ +

℘2
3

2
)
(Rs

0 − 1) > 0. (a.s).

As a result, if Rs
0 > 1, the infection will remain for an extended period of time. The proof is now

complete.

3.3. Ergodicity and stationary distribution

Despite the absence of an endemic equilibrium point in the stochastic framework (2.3), we intend to
investigate the existence of an ergodic stationary distribution that potentially shows illness permanence.
Furthermore, we present several findings from Has’minskii’s approach, see [44].

Suppose there is a homogeneous Markov procedure Θd fulfilling the subsequent stochastic DE:

dY(ξ) = h1(x)dξ +

n∑
ι=1

Gι(Y)dBι(ξ). (3.4)

The diffusion matrix A1(x) = (aικ(x) and aικ(x) =
n∑̀
=1
G

(ι)
` (x)G(κ)

` (x).
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Lemma 3.2. Suppose there is a bounded domainD ⊂ Θd having a regular boundary F such that

(a) there is a non-negative number Q1 such that
d1∑
ι,κ=1

aικ(x)ζιζκ ≥ Q|ζ |2, x ∈ D, ζ ∈ Rd.

(b) There exists a positive C2 mapping H such that LH is negative for each x ∈ Θd | D, then the
Markov technique Y(ξ) has a one unique ergodic stationary distribution π(.) and

P
{

lim
T7→∞

1
T

∫ T

0
F1(Y(ξ))dξ =

∫
Θd

F1(x)π(dx) = 1
}

(3.5)

exists, for ∀x ∈ Θd, where F1(, ) is an integrable mapping concerning to measure π.

Theorem 3.3. For Rs
0 > 1 and for initial settings (s(0), v(0), i(0)), then the model (2.3) has a unique

stationary distribution π(.) and it possesses the ergodic behavior.

Proof. By means of the hypothesis of Theorem 3.1, there is only on global non-negative solution
(s(ξ), v(ξ), i(ξ)) ∈ R3

+ and for ICs (s(0), v(0), i(0)) ∈ R3
+. We simply require to check Suppositions

(a) and (b) of Lemma 3.2 to demonstrate Theorem 3.3. We anticipate obtaining several in order to
show (b) in the neighbourhood D ⊂ R3

+ and a positive C2-mapping H such that LHs ≤ −1, for every
(s, v, i) ∈ R3

+ | D. Introducing C2-mapping H̃

H̃ = QH1 − ln(s) − ln(v) +
1

1 + %
(s + v + i)%+1, (3.6)

whereH1 is stated in Theorem 3.2, Q > 0 and % ∈ (0, 1) admits

F
u1

1 − Q1(ω + λ +
℘2

3

2
)(Rs

0 − 1) ≤ 2 (3.7)

and

ζ := ω −
%

2
(℘2

1 ∨ ℘
2
2 ∨ ℘

2
3) > 0 (3.8)

respectively. Furthermore there is a continuous mapping F1 = −
(1−q)Ξ

s −
ζ

2s%+1 + 2ω + ϑb + (1 − φ)ϑν +
1
2 (℘2

1 + ℘2
2). We may immediately see that

lim
k 7→∞,(s,v,i)∈R3

+ |Uk

H̃(s, v, i) = ∞, (3.9)

where Uk = (1/k, k) × (1/k, k) × (1/k, k). Suppose (s̃0, ṽ0, ĩ0) be the lowest point of H̃(s, v, i). By a
positive mappingH , we have

Hs(s, v, i) = H̃(s, v, i) − H̃(s̃0, ṽ0, ĩ0). (3.10)

SupposeH2 = − ln s,H3 = − ln v andH4 = 1
%
(v + s + i)%+1.

Utilizing Itô’s technique, we have

LH2 = −
(1 − q)Ξ

s
+ (ω +

℘2
1

2
) +

ϑbi
Hb + i
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≤ (ω + ϑb +
℘2

1

2
) −

(1 − q)Ξ
s

,

LH3 = −
qΞ

v
+ (ω +

℘2
2

2
) +

(1 − φ)ϑνi
Hν + i

≤ (ω + ϑb +
℘2

2

2
) + (1 − φ1)ϑν −

qΞ

v
,

LH4 = (s + v + i)%
{
Ξ − ωs − ωs − (ω + λ)

}
+
%

2
(s + v + i)%−1(℘2

1s2 + ℘2
2v2 + ℘2

3i2)

≤ ∆ −
ζ

2
(s + v + i)%+1

≤ ∆ −
ζ

2
(s%+1 + v%+1 + i%+1), (3.11)

where ∆ := sup(s,v,i)∈R3
+

{
Ξ(s + v + i)% − − ζ2 (s + v + i)%+1}. Furthermore, we have

LHs ≤ Q1

{
− (ω + λ +

℘2
3

2
)(Rs

0 − 1) + Φ2i
}

+2ω + ϑb + (1 − φ)ϑν + ∆ +
1
2

(℘2
1 + ℘1

2) −
(1 − q)Ξ

s
−

qΞ

H
−
ζ

2
(s%+1 + v%+1 + i%+1)

:= F1(s) + F2(v) + F3(i), (3.12)

where

F1(s) = −
(1 − q)Ξ

s
−
ζ

2
s%+1 + 2ω + ϑb + (1 − φ)ϑν + ∆ +

1
2

(℘2
1 + ℘2

2),

F2(v) = −
qΞ

H
−
ζ

2
v%+1,

F3(i) = −Q1(ω + λ +
℘2

3

2
)(Rs

0 − 1) + Q1Φ2i −
ζ

2
i%+1. (3.13)

Therefore, we have
Case I: When s 7→ ∞ or s 7→ 0+, then

F1(s) + F2(v) + F3(i) ≤ f (s) + F
u1

3 7→ −∞. (3.14)

Case II: When v 7→ ∞ or v 7→ 0+, then

F1(s) + F2(v) + F3(i) ≤ F2(v) + F
u1

1 + F
u1

3 7→ −∞. (3.15)

Case III: When i 7→ ∞, then

F1(s) + F2(v) + F3(i) ≤ F3(i) + F
u1

1 + F
u1

2 7→ −∞. (3.16)

This indicates that when i 7→ 0+, then

F1(s) + F2(v) + F3(i) ≤ F3(i) + F
u1

1 =⇒ F
u1

1 − Q1(ω + λ +
℘2

3

2
)(Rs

0 − 1) ≤ −2. (3.17)
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We define a domainD =
{
s ∈ [ε, 1/ε], v ∈ [ε, 1/ε], i ∈ [ε, 1/ε]

}
, then

LHs(s, v, i) ≤ −1, ∀(s, v, i) ∈ R3
+ | D. (3.18)

Thus, assertion (b) satisfies.
However, the diffusion matrix for model (2.3) is defined as

A =


℘2

1s2 0 0
0 ℘2

2v2 0
0 0 ℘2

3i2

 . (3.19)

It is simple to demonstrate that there is a c̃ = ℘2
1s2 ∨ ℘2

2v2 ∨ ℘2
3i2 > 0 such that

3∑
ι,κ=1

aικ(s, v, i)ζιζκ = ℘2
1s2ζ2

1 + ℘2
2v2ζ2

2 + ℘2
3s2ζ2

3 ≥ c̃|ζ |2 (3.20)

for every (s, v, i) ∈ D and ζ ∈ R3
+. Finally, assertion (a) satisfies. Therefore, model (2.3) has a unique

stationary distribution π and is ergodic.

4. Numerical experiment

We employ the technique of Atangana and Araz described in [28] for the application of the
Atangana-Baleanu derivative to validate the numerically piecewise model (2.2) and (2.3). We begin
the method as follows:

dχ`(ξ)
dξ = Υ(ξ, χ`) = Υ(ξ, χ`), χ`(0) = χ`,0, ` = 1, 2, ...,n i f ξ ∈ [0,T1],

ABC
T1

Dα
ξ = Υ(ξ, χ`), χ`(T1) = χ`,1, ` = 1, 2, ...,n i f ξ ∈ [T1,T2],

dχ`(ξ) = Υ(ξ, χ`)dξ + ℘`χ`B`(ξ), χ`(T2) = χ`,2, ` = 1, 2, ...,n i f ξ ∈ [T2,T].

(4.1)

The numerical solution to this problem is provided by

χm1
` = χ`(0) +

m1∑
κ=2

{
23
12Υ(tκ, χκ) − 4

3Υ(tκ−1, χκ−1) + 5
12Υ(tκ−2, χκ−2)

}
∆ξ, 0 ≤ t ≤ T1,

χm2
` = χ`(T1) + 1−α

ABC(α)Υ(ξm2 , χm2) +
α(∆ξ)α

ABC(α)Γ(α+1)

m2∑
r2=m1+3

Υ(tr2−2, χκ2−2)

×
{
(m2 − r2 + 1)α − (m2 − r2)α

}
+

α(∆ξ)α

ABC(α)Γ(α+2)

m2∑
κ2=m1+3

[
Υ(tr2−1, χr2−1) − Υ(tr2−2, χr2−2)

]
×
{
(m2 − r2 + 1)α(m2 − r2 + 3 + 2α) − (m2 − r2)α(m2 − r2 + 3 + 3α)

}
+

α(∆ξ)α

2ABC(α)Γ(α+3)

m2∑
r2=m1+3

[
Υ(tr2 , χr2) − 2Υ(tr2−1, χr2−1) + Υ(tr2−2, χr2−2)

]
×
{
(m2 − r2 + 1)α

(
2(m2 − r2)2 + (3α + 10)(m2 − r2) + 2α2 + pα + 12

)
−(m2 − r2)α

(
2(m2 − r2)2 + (5α + 10)(m2 − r2) + 6α2 + 18α + 12

)}
, T1 ≤ ξ ≤ T2,

χm3
` = χ`(T2) +

m3∑
κ3=m2+3

{
23
12Υ(tr3 , χr3) −

4
3Υ(tr3−1, χr3−1) + 5

12Υ(tr3−2, χr3−2)
}
∆ξ

+℘`
m3∑

r3=m2+3
χr3
`

(
B

r3−1
` − B

r3
`

)
, T2 ≤ ξ ≤ T.

(4.2)
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4.1. Results and discussion

Here, we will now apply the piecewise solution scheme presented in [28] to provide a numerical
simulation of the developed frameworks (2.1)–2.3 that incorporates the ABC fractional operator. The
time is measured in days here. The significance of the parameters used in the simulation can be seen
in [10].

Figures 2–4 depicts the dynamical behaviour of HPAI epidemic model with half saturation utilizing
the idea of piecewise differential operator in the Atangana-Baleanu sense and stochastic perturbations,
respectively. The data analysis conforming to the HPAI models (2.1)–(2.3) outperforms the fractional
model results as comparison to the deterministic technique [10] and the technique proposed by [40].
Furthermore, we exhibit chaotic behaviour of the frameworks (2.1)–2.3 involving fractional-order and
stochastic disturbances, as seen in Figures 5–8. According to Figures 5–8, reducing interaction between
healthy and ignorant persons diminishes the number of diagnosed patients. We conclude that smaller
white noise can contribute to illness permanence, whereas larger white noise causes illness extinction.
Without a doubt, white noise performs a significant influence in the transmission and prevention of
infections. Figures 9 and 10 demonstrates the piecewise view of NPAI models (2.1)–(2.3) utilizing
the multiple fractional-orders with environmental intensities (℘1, ℘2, ℘3) = (0.01, 0.01, 0.01), then ω =

0.003699 > 1
2 (℘2

1 ∨ ℘
2
1 ∨ ℘

2
1) = 0.00015 and Rs

0 = 1.1079 > 1. Theorems 3.2 and 3.3 demonstrate that
an ergodic stationary distribution of the stochastic model (2.3) occurs, and the sickness will endure.
This is supported by Figures 9 and 10. This emphasis that when fractional-order reduces the disease
will die out.

Figures 11–12 explains the behavior of the piecewise framework for distinct parameters settings
ω and alongside the recommended stochastic disturbances It is clear that reducing contacts between
healthy and HPAI individuals reduces the number of infected individuals.

The findings demonstrate that this novel piecewise differential notion generates improved outcomes
for the suggested framework and could potentially be superior for other technological and scientific
challenges.
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Figure 2. Comparison graphs for the model (2.2) and (2.2) for the susceptible individuals
s(ξ) when α = 1 with random densities ℘1 = ℘2 = 0.04 and ℘3 = 0.05.
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Figure 3. Comparison graphs for the model (2.2) and (2.2) for the vaccinated individuals
v(ξ) when α = 1 with random densities ℘1 = ℘2 = 0.04 and ℘3 = 0.05.
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Figure 4. Comparison graphs for the model (2.2) and (2.2) for the infected individuals i(ξ)
when α = 1 with random densities ℘1 = ℘2 = 0.04 and ℘3 = 0.05.

(a) (b)

Figure 5. Chaotic behaviour for the model (2.2) and (2.2) for the vaccinated individuals
v(ξ) and infected individuals i(ξ) when α = 1 with random densities ℘1 = ℘2 = 0.04 and
℘3 = 0.05.
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(a) (b)

Figure 6. Chaotic behaviour for the model (2.2) and (2.2) for the susceptible individuals
s(ξ) and infected individuals i(ξ) when α = 1 with random densities ℘1 = ℘2 = 0.04 and
℘3 = 0.05.

(a) (b)

Figure 7. Chaotic behaviour for the model (2.2) and (2.2) for the susceptible individuals s(ξ)
and vaccinated v(ξ) when α = 1 with random densities ℘1 = ℘2 = 0.04 and ℘3 = 0.05.

(a) (b)

Figure 8. Chaotic behaviour for the model (2.2) and (2.2) for the susceptible individuals
s(ξ), vaccinated v(ξ) and infected individuals i(ξ) when α = 1 with random densities ℘1 =

℘2 = 0.04 and ℘3 = 0.05.
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Figure 9. Dynamical behaviour for the model (2.3) for the susceptible individuals s(ξ) and
vaccinated individuals v(ξ) when random densities ℘1 = ℘2 = ℘3 = 0.01 with multiple
fractional orders.
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Figure 10. Dynamical behaviour for the model (2.3) for the infected individuals i(ξ) when
random densities ℘1 = ℘2 = ℘3 = 0.01 with multiple fractional order.
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Figure 11. Dynamical behaviour for the model (2.3) for the susceptible individuals s(ξ) and
vaccinated individuals v(ξ) when random densities ℘1 = ℘2 = ℘3 = 0.01, α = 1 and varying
values of ω.
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Figure 12. Dynamical behaviour for the model (2.3) for the infected individuals i(ξ) when
random densities ℘1 = ℘2 = ℘3 = 0.01, α = 1 with varying values of ω.

5. Conclusions

In this research, we investigate the stochastic HPAI epidemic system having a half saturation
transmission level, employing the revolutionary Atangana-Baleanu notion of piecewise fractional
differential equation. The framework presented in [10] was expanded to a piecewise structure and its
theoretical conclusions were established. Several qualitative aspects of the model are discussed in
detail. According to the findings, the approximation utilizing the piecewise approach is superior to
that in the systematic review. By employing the notion of Khasminskii and a suitable Lyapunov
operator, the existence of a stationary distribution for the model (2.3) was analytically investigated.
We investigated the disease’s extinction and persistence by proposing the threshold quantity Rs

0 < 1.
The intensity of environmental noise has been shown to have a significant impact on the persistence
of contagious diseases. We anticipated the long-term performance of the structure and demonstrated
the consequences of the fractional-order using numerical simulations.

Our research provides several fresh perspectives on HPAI systems consisting of half saturation and
may have real-world applications for eradicating epidemics. The main areas will be the emphasis of
our future projects: (i) We will conduct a more thorough investigation of the impact of Levy noise
on HPAI systems; (ii) In light of recent developments in this domain, we may consider various HPAI
neutralizing schemes to simulate stock prices using Monte Carlo simulation; and (iii) Finally, we may
broaden this research by using time-delay and trend memory processes by employing the fractional
derivative, another useful tool for describing the memory effect.
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