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Abstract: In this research, a hybrid method, entitled the Laplace Residual Power Series technique, is 

adapted to find series solutions to a time-fractional model of Navier-Stokes equations in the sense of 

Caputo derivative. We employ the proposed method to construct analytical solutions to the target 

problem using the idea of the Laplace transform and the residual function with the concept of limit at 

infinity. A simple modification of the suggested method is presented to deal easily with the nonlinear 

terms constructed on the properties of the power series. Three interesting examples are solved and 

compared with the exact solutions to test the reliability, simplicity, and capacity of the presented 

method of solving systems of fractional partial differential equations. The results indicate that the used 

technique is a simple approach for solving nonlinear fractional differential equations since it depends 

only on the residual functions and the concept of the limit at infinity without needing differentiation 

or other complex computations. 
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1. Introduction 

In the past decade, many researchers have studied many fractional partial differential equations 

(FPDEs) types. Since the beginning of fractional calculus history in 1695, when L’Hospital raised the 

question: what is the meaning of 
𝑑𝑛𝑦

𝑑𝑥𝑛
  if 𝑛 =

1

2
   That is, what if n is fractional  11  Even for new 
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researchers, the fractional derivatives were complicated-although it appears in many parts of sciences 

such as physics, engineering, bioengineering, COVID-19 studies, and many other branches of sciences 

12–9 . In addition, many definitions of fractional derivatives have been given 110–11 . Fractional order 

derivatives of a given function involve the entire function history where the following state of a fractional 

order system is dependent on its current state and all its historical states 14–11 . 

There are several analytical and numerical techniques for handling fractional problems, B-spline 

functions, Bernoulli polynomials, Adomian decomposition, variational iteration, Homotopy analysis, 

and many others 112–17 . On top of that, some applicable analytical methods are developed to address 

nonlinear problems with fractional derivatives. One of these approaches is the Laplace residual power 

series method (LRPSM) 118–29 , which shows its efficiency and applicability in solving nonlinear 

problems. 

The LRPSM is a very modern technique, and it is a hybrid method of two approaches, the Laplace 

transform (LT) and the idea of the residual power series method (RPSM) 130–33 . In 2020, the authors 

in the article 118  were able to adapt the LT to solve nonlinear neutral fractional pantograph equations 

using the residual function and the RPSM idea. The LT, usually, is implemented to solve linear equations 

only, but the LRPSM can overcome this disadvantage and thus adapts it to solve nonlinear equations of 

different types. The LRPSM presents an approximate analytical solution with a series form using the 

concept of the Laurent series and the power series 118–25 . What distinguishes LRPSM from RPSM is 

the use of the idea of limit at infinity in getting the coefficients of a series solution rather than the concept 

of a fractional derivative as in RPSM. Many articles used the proposed method to treat several types of 

differential equations of fractional orders. In 2021, El-Ajou adapted LRPSM to establish solitary 

solutions of nonlinear dispersive FPDEs 119  and to present series solutions for systems of Caputo 

FPDEs with variable coefficients 120 . Newly, the LRPSM is used for solving Fuzzy Quadratic Riccati 

Differential Equations 121 , time-fractional nonlinear water wave PDE 122 , fractional Lane-Emden 

equations 123 , Fisher’s equation and logistic system model 124 , and nonlinear fractional reaction-

diffusion for bacteria growth model 125 . 

Claude Louis Navier and Gabriel Stokes have created the so-called Navier-Stokes equations 

(NSEs). A French mechanical engineer Claude was affiliated in continuum mechanics with a 

physicist specializing and the French government, whose main contribution was the Navier-Stokes 

equations (1822). This famous equation made his name among the several names incised on the 

Eiffel Tower. Moreover, Newton’s second law for fluid substance, which is central to fluid mechanics 

has been used in describing many physical phenomena in many applied sciences 134–37 . For 

example, the study of airflow around a wing and water flow in pipes and used as one of the continuity 

equations needed to build microscopic models in 1985 and also as a special case considered to 

establish the relationship between external and pressure forces on the fluid to the responses of fluid 

flow 138 . 

The motivation of this work is to adapt the LRPSM to provide analytical solutions for a multi-

dimensional time-fractional Navier-Stokes (M-DT-FNS) system which takes the following form 139 : 

𝐷𝑡
𝛼𝑢 + (𝑢 ∙ ∇)𝑢 = 𝜐∇2𝑢 −

1

𝜌
∇𝑝, 0 < 𝛼 ≤ 1,    (1.1) 

where 𝐷𝑡
𝛼 is the Caputo fractional-derivative operator of order 𝛼, 𝑝 = 𝑝(𝜒, 𝜍, 𝜁, 𝑡) is the pressure, 𝜌 is 

the density, 𝑢 is a vector field that represents the flow velocity vector, 𝜐 =
𝜇

𝜌
 is the kinematic viscosity 

(𝜇 is the dynamic viscosity), and ∇ & ∇2 are the gradient and Laplacian operators, respectively, subject 
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to the initial conditions (ICs) at the initial velocity: 

𝑢 = 𝜑.           (1.2) 

If the density is constant throughout the fluid domain, then the vector Eq (1.1) is an 

incompressible NSEs. 

The vector Eqs (1.1) and (1.2) can be separated in a system form as follows 139,40 : 

𝐷𝑡
𝛼𝑢1 + 𝑢1

𝜕𝑢1

𝜕𝜒
+ 𝑢2

𝜕𝑢1

𝜕𝜍
+ 𝑢3

𝜕𝑢1

𝜕𝜁
=  𝜐 (

𝜕2𝑢1

𝜕𝜒2
+
𝜕2𝑢1

𝜕𝜍2
+
𝜕2𝑢1

𝜕𝜁2
) −

1

𝜌

𝜕𝑝

𝜕𝜒
,    

𝐷𝑡
𝛼𝑢2 + 𝑢1

𝜕𝑢2

𝜕𝜒
+ 𝑢2

𝜕𝑢2

𝜕𝜍
+ 𝑢3

𝜕𝑢2

𝜕𝜁
=  𝜐 (

𝜕2𝑢2

𝜕𝜒2
+
𝜕2𝑢2

𝜕𝜍2
+
𝜕2𝑢2

𝜕𝜁2
) −

1

𝜌

𝜕𝑝

𝜕𝜍
,    

𝐷𝑡
𝛼𝑢3 + 𝑢1

𝜕𝑢3

𝜕𝜒
+ 𝑢2

𝜕𝑢3

𝜕𝜍
+ 𝑢3

𝜕𝑢3

𝜕𝜁
=  𝜐 (

𝜕2𝑢3

𝜕𝜒2
+
𝜕2𝑢3

𝜕𝜍2
+
𝜕2𝑢3

𝜕𝜁2
) −

1

𝜌

𝜕𝑝

𝜕𝜁
,  (1.3) 

subject to the initial conditions (ICs): 

𝑢1(𝜒, 𝜍, 𝜁, 0) = 𝑓(𝜒, 𝜍, 𝜁) = 𝑓,           

𝑢2(𝜒, 𝜍, 𝜁, 0) = ℎ(𝜒, 𝜍, 𝜁) = ℎ,           

𝑢3(𝜒, 𝜍, 𝜁, 0) = 𝑔(𝜒, 𝜍, 𝜁) = 𝑔,        (1.4) 

where 𝑢 = 〈𝑢1, 𝑢2, 𝑢3〉  and 𝜑 = 〈𝑓, ℎ, 𝑔〉  such that 𝑢1 ,𝑢2 ,𝑢3 , and 𝑝  are analytical functions of four 

variables 𝜒, 𝜍, 𝜁 & 𝑡. 

In this equation, the solution represents the fluid velocity and pressure. It is commonly used to 

describe the motion of fluids in models relevant to weather, ocean currents, water flow in pipes, etc. 

The novelty of this study is obvious in the proposed method when dealing with the Navier-Stokes 

problem, we show the simplicity and the applicability of the method, and we mention also that the 

method needs no differentiation, linearization, or discretization, the only mathematical step we need 

after taking the LT and defining the residual functions, is taking the limit at infinity which is much 

easier compared to other analytical techniques. Moreover, in this research, we obtain a general formula 

of the solution that neither researcher has, allowing us to compute as many possible terms of the series 

solution directly. 

This study is prepared as follows: After the introduction section, a few fundamental principles 

and theories are reviewed for constructing an analytic series solution to the M-DT-FNS system using 

LRPSM. In Section 3, we constructed a Laplace residual power series (LRPS) solution to the goal 

problem. Three interesting examples are presented to explain the technique’s simplicity and accuracy, 

which are displayed in Section 4. Finally, some conclusions are made about the features of the method 

used and its applicability in solving other types of problems. 

2. Basic concepts 

This part presents fundamental definitions and properties of fractional operators and power series. 

Definition 2.1. 11  The time Caputo fractional-derivative of order α  of the multivariable function 

𝑢(𝜒, 𝜍, 𝜁, 𝑡), is defined by 
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𝐷𝑡
𝛼[𝑢(𝜒, 𝜍, 𝜁, 𝑡)] = {

1

Γ(𝑛−𝛼)
∫

𝜕𝑛

𝜕𝜉𝑛
𝑢(𝜒,𝜍,𝜁,𝜉)

(𝑡−𝜉)𝛼+1−𝑛
𝑑𝜉

𝑡

0
,   𝑛 − 1 < 𝛼 < 𝑛,

𝜕𝑛

𝜕𝑡𝑛
𝑢(𝜒, 𝜍, 𝜁, 𝑡),   𝛼 = 𝑛.

   (2.1) 

Lemma 2.1. 11  The operator 𝐷𝑡
𝛼, 𝑡 ≥ 0, 𝑛 − 1 < 𝛼 ≤ 𝑛 satisfies the following properties: 

1) 𝐷𝑡
𝛼𝑐 = 0, 𝑐 ∈ ℝ. 

2) 𝐷𝑡
𝛼𝑡𝑞 = {

0        , 𝑞 < 𝛼,   𝑞 is integer
Γ(𝑞+1)

Γ(𝑞−𝛼+1)
𝑡𝑞−𝛼  , otherwise

, for 𝑞 > −1. 

Definition 2.2. 118  The time-LT for the multivariable function 𝑢(𝜒, 𝜍, 𝜁, 𝑡) is defined by: 

𝑈(𝜒, 𝜍, 𝜁, 𝑠) = ℒ[𝑢(𝜒, 𝜍, 𝜁, 𝑡)] = ∫ 𝑒−𝑠𝑡𝑢(𝜒, 𝜍, 𝜁, 𝑡)𝑑𝑡, 𝑠 > 𝛿
∞

0
.    (2.2) 

We denote the inverse LT of the function 𝑈(𝜒, 𝜐, 𝜁, 𝑠) and define it as 

𝑢(𝜒, 𝜍, 𝜁, 𝑡) = ℒ−1[𝑈(𝜒, 𝜍, 𝜁, 𝑠)] = ∫ 𝑒𝑠𝑡
𝑧+𝑖∞

𝑧−𝑖∞
𝑈(𝜒, 𝜍, 𝜁, 𝑠)𝑑𝑠;   𝑧 = 𝑅𝑒(𝑠) > 𝑧0.  (2.3) 

The most popular properties of the LT are mentioned below. 

Lemma 2.2. 118,19  Assume that 𝑈(𝜒, 𝜍, 𝜁, 𝑠) = ℒ[𝑢(𝜒, 𝜍, 𝜁, 𝑡)]  and 𝑉(𝜒, 𝜍, 𝜁, 𝑠) = ℒ[𝑣(𝜒, 𝜍, 𝜁, 𝑡)]   

Then 

1) lim
𝑠→∞

𝑠 𝑈(𝜒, 𝜍, 𝜁, 𝑠) = 𝑢(𝜒, 𝜍, 𝜁, 0). 

2) ℒ [𝑎
𝑡𝑖𝛼

Γ(𝑖𝛼+1)
] =

𝑎

𝑠𝑖𝛼+1
, 𝑎 ∈ ℝ, 𝑖 = 0, 1,⋯. 

3) ℒ[𝐷𝑡
𝑚𝛼𝑢(𝜒, 𝜍, 𝜁, 𝑡)] = 𝑠𝑚𝛼𝑈(𝜒, 𝜍, 𝜁, 𝑠) − ∑ 𝑠(𝑚−𝑛)𝛼−1𝐷𝑡

𝑛𝛼𝑢(𝜒, 𝜍, 𝜁, 0), 0 < 𝛼 ≤ 1𝑚−1
𝑛=0 , 

where 𝐷𝑡
𝑚𝛼 = 𝐷𝑡

𝛼𝐷𝑡
𝛼 …𝐷𝑡

𝛼 (𝑚-times). 

Theorem 2.1. 119  The power series expansion of the multivariable function 𝑢(𝜒, 𝜍, 𝜁, 𝑡)  can be 

expressed as 

𝑢(𝜒, 𝜍, 𝜁, 𝑡) = ∑
𝑓𝑖(𝜒,𝜍,𝜁)𝑡

𝑖𝛼

Γ(𝑖𝛼+1)
∞
𝑖=0 ,        (2.4) 

where 𝑓𝑖(𝜒, 𝜍, 𝜁) = 𝐷𝑡
𝑖𝛼𝑢(𝜒, 𝜍, 𝜁, 0), 𝑖 = 0, 1,⋯. 

Thus, the LT of Eq (2.4) is a Laurent expansion in the Laplace space of the following form: 

𝑢(𝜒, 𝜍, 𝜁, 𝑡) = ∑
𝑓𝑖(𝜒,𝜍,𝜁)𝑡

𝑖𝛼

Γ(𝑖𝛼+1)
∞
𝑖=0 .        (2.5) 

Theorem 2.2. 119  Assume that  

|𝑠ℒ[𝐷𝑡
(𝑚+1)𝛼𝑢(𝜒, 𝜍, 𝜁, 𝑡)] | ≤ 𝑀, 

on 0 ≤ 𝑠 ≤ 𝑞, 0 < 𝛼 ≤ 1  and 𝑀 = 𝑀(𝜒, 𝜍, 𝜁)  for some 𝜒 , 𝜍 , and  𝜁 ∈ 𝐼 . Then the remainder 

𝑅𝑚( 𝜒, 𝜍, 𝜁, 𝑠) of the new fractional Laurent series (2.5) satisfies the following inequality 

|𝑅𝑚( 𝜒, 𝜍, 𝜁, 𝑠)| ≤
𝑀

𝑠(𝑚+1)𝛼+1
. 
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It is known that the LT cannot be distributed in the case of multiplication. Therefore, the following 

Lemma is introduced to simplify the calculations at the application of LRPSM, based on the 

characteristics of the powers of the power series. 

Lemma 2.3. Assume that 𝑈(𝜒, 𝜍, 𝜁, 𝑠) = ℒ[𝑢(𝜒, 𝜍, 𝜁, 𝑡)](𝑠)  and 𝑉(𝜒, 𝜍, 𝜁, 𝑠) = ℒ[𝑣(𝜒, 𝜍, 𝜁, 𝑡)](𝑠)   

Assume that the functions 𝑈(𝜒, 𝜍, 𝜁, 𝑠) and 𝑉(𝜒, 𝜍, 𝜁, 𝑠) have Laurent expansions as: 

𝑈(𝜒, 𝜐, 𝜁, 𝑠) = ∑
𝑓𝑖(𝜒,𝜐,𝜁)

𝑠𝑖𝛼+1
∞
𝑖=0 ,          

𝑉(𝜒, 𝜍, 𝜁, 𝑠) = ∑
𝑔𝑗(𝜒,𝜍,𝜁)

𝑠𝑗𝛼+1
∞
𝑗=0 .        (2.6) 

Then, ℒ[𝑢(𝜒, 𝜍, 𝜁, 𝑡)𝑣(𝜒, 𝜍, 𝜁, 𝑡)](𝑠) can be expanded in a Laurent series form, as follows 

ℒ[𝑢(𝜒, 𝜍, 𝜁, 𝑡)𝑣(𝜒, 𝜍, 𝜁, 𝑡)](𝑠) = ∑ ∑
𝑓𝑖(𝜒,𝜍,𝜁)𝑔𝑗(𝜒,𝜍,𝜁)Γ((𝑖+𝑗)𝛼+1)

Γ(𝑖𝛼+1)Γ(𝑗𝛼+1)𝑠(𝑖+𝑗)𝛼+1
.∞

𝑗=0
∞
𝑖=0    (2.7) 

Proof  Directly, we can prove the Lemma as follows: 

ℒ[𝑢(𝜒, 𝜍, 𝜁, 𝑡)𝑣(𝜒, 𝜍, 𝜁, 𝑡)](𝑠) = ℒ[ℒ−1[𝑈(𝜒, 𝜍, 𝜁, 𝑠)]ℒ−1[𝑉(𝜒, 𝜍, 𝜁, 𝑠)]](𝑠)  

= ℒ [ℒ−1 [∑
𝑓𝑖(𝜒,𝜍,𝜁)

𝑠𝑖𝛼+1
 ∞

𝑖=0 ] ℒ−1 [∑
𝑔𝑖(𝜒,𝜍,𝜁)

𝑠𝑗𝛼+1
∞
𝑗=0 ]] (𝑠)  

= ℒ [∑
𝑓𝑖(𝜒,𝜍,𝜁)𝑡

𝑖𝛼

Γ(𝑖𝛼+1)
∞
𝑖=0 ∑

𝑔𝑖(𝜒,𝜍,𝜁)𝑡
𝑗𝛼

Γ(𝑗𝛼+1)
∞
𝑗=0 ] (𝑠)  

= ℒ [∑ ∑
𝑓𝑖(𝜒,𝜍,𝜁)𝑔𝑗(𝜒,𝜍,𝜁)𝑡

(𝑖+𝑗)α

Γ(𝑖𝛼+1)Γ(𝑗𝛼+1)
∞
𝑗=0

∞
𝑖=0 ] (𝑠)  

= ∑ ∑
𝑓𝑖(𝜒,𝜍,𝜁)𝑔𝑗(𝜒,𝜍,𝜁)Γ((𝑖+𝑗)𝛼+1)

Γ(𝑖𝛼+1)Γ(𝑗𝛼+1)𝑠(𝑖+𝑗)𝛼+1
∞
𝑗=0

∞
𝑖=0 .  

It is noteworthy, that we can express the 𝑘th-truncated series of the Laurent series (2.7) as follows: 

ℒ[𝑢𝑘(𝜒, 𝜍, 𝜁, 𝑡)𝑣𝑘(𝜒, 𝜍, 𝜁, 𝑡)](𝑠) = ∑ ∑
𝑓𝑖(𝜒,𝜍,𝜁)𝑔𝑗(𝜒,𝜍,𝜁)Γ((𝑖+𝑗)𝛼+1)

Γ(𝑖𝛼+1)Γ(𝑗𝛼+1)𝑠(𝑖+𝑗)𝛼+1
𝑘
𝑗=0 ,𝑘

𝑖=0   (2.8) 

which we will use extensively throughout our work on the next pages. 

3. The Laplace residual power series method 

We employ the LRPSM to establish a series solution for the M-DT-FNS system (1.1) in this part 

of this article. This technique is mainly based on applying the LT on the target equations, assuming 

solutions of the generated equations have Laurent expansions, and then using the idea of the limit at 

infinity with the residual functions to get the unknown coefficients in expansions. Finally, we run the 

inverse LT to obtain the solution of the given equations in the original space. 

To get the LRPS solution of the system (1.1), we first apply the LT to each equation in the 

system (1.1) and use the third part of Lemma 2.2 with the ICs (1.2). Then, after some simplification, 

we get the following algebraic system in Laplace: 
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𝑈1 −
𝑓

𝑠
+

1

𝑠𝛼
ℒ [𝑢1

𝜕𝑢1

𝜕𝜒
] +

1

𝑠𝛼
ℒ [𝑢2

𝜕𝑢1

𝜕𝜍
] +

1

𝑠𝛼
ℒ [𝑢3

𝜕𝑢1

𝜕𝜁
] −

 𝜐

𝑠𝛼
(
𝜕2𝑈1

𝜕𝜒2
+
𝜕2𝑈1

𝜕𝜍2
+
𝜕2𝑈1

𝜕𝜁2
) +

1

𝜌𝑠𝛼
𝜕𝑃

𝜕𝜒
= 0,   

𝑈2 −
ℎ

𝑠
+

1

𝑠𝛼
ℒ [𝑢1

𝜕𝑢2

𝜕𝜒
] +

1

𝑠𝛼
ℒ [𝑢2

𝜕𝑢2

𝜕𝜍
] +

1

𝑠𝛼
ℒ [𝑢3

𝜕𝑢2

𝜕𝜁
] −

 𝜐

𝑠𝛼
(
𝜕2𝑈2

𝜕𝜒2
+
𝜕2𝑈2

𝜕𝜍2
+
𝜕2𝑈2

𝜕𝜁2
) +

1

𝜌𝑠𝛼
𝜕𝑃

𝜕𝜍
= 0,   

𝑈3 −
𝑔

𝑠
+

1

𝑠𝛼
ℒ [𝑢1

𝜕𝑢3

𝜕𝜒
] +

1

𝑠𝛼
ℒ [𝑢2

𝜕𝑢3

𝜕𝜍
] +

1

𝑠𝛼
ℒ [𝑢3

𝜕𝑢3

𝜕𝜁
] −

 𝜐

𝑠𝛼
(
𝜕2𝑈3

𝜕𝜒2
+
𝜕2𝑈3

𝜕𝜍2
+
𝜕2𝑈3

𝜕𝜁2
) +

1

𝜌𝑠𝛼
𝜕𝑃

𝜕𝜁
= 0, (3.1) 

where 𝑈1 = ℒ[𝑢1], 𝑈2 = ℒ[𝑢2], 𝑈3 = ℒ[𝑢3] and 𝑃 = ℒ[𝑝]. 

Suppose that the solution of the system (3.1), 𝑈1, 𝑈2, and 𝑈3, has the following fractional Laurent 

expansions as follows: 

𝑈1 = ∑
𝑓𝑖(𝜒,𝜍,𝜁)

𝑠𝑖𝛼+1
∞
𝑖=0 ,           

𝑈2 = ∑
ℎ𝑗(𝜒,𝜍,𝜁)

𝑠𝑗𝛼+1
∞
𝑗=0 ,           

𝑈3 = ∑
𝑔𝑟(𝜒,𝜍,𝜁)

𝑠𝑟𝛼+1
∞
𝑟=0 .         (3.2) 

Assume that also 𝑃 has the following Laurent expansion: 

𝑃 =
𝜑

𝑠
+ ∑

𝜑𝑖

𝑠𝑖𝛼+1
∞
𝑖=1 .         (3.3) 

According to Theorem 2.1 and using the ICs (1.2), the expansions in Eq (3.2) can be rewritten as 

follows: 

𝑈1 =
𝑓

𝑠
+ ∑

𝑓𝑖(𝜒,𝜍,𝜁)

𝑠𝑖𝛼+1
∞
𝑖=1 ,          

𝑈2 =
ℎ

𝑠
+ ∑

ℎ𝑖(𝜒,𝜍,𝜁)

𝑠𝑖𝛼+1
∞
𝑖=1 ,          

𝑈3 =
𝑔

𝑠
+ ∑

𝑔𝑟(𝜒,𝜍,𝜁)

𝑠𝑟𝛼+1
∞
𝑟=1 .        (3.4) 

The 𝑘th-truncated series of the expansions in Eqs (3.3) and (3.4) are given by: 

𝑈1,𝑘 =
𝑓

𝑠
+ ∑

𝑓𝑖

𝑠𝑖𝛼+1
𝑘
𝑖=1 ,           

𝑈2,𝑘 =
ℎ

𝑠
+ ∑

ℎ𝑗

𝑠𝑗𝛼+1
𝑘
𝑗=1 ,          

𝑈3,𝑘 =
𝑔

𝑠
+ ∑

𝑔𝑟

𝑠𝑟𝛼+1
,𝑘

𝑟=1           

𝑃𝑘 =
𝜑

𝑠
+∑

𝜑𝑖

𝑠𝑖𝛼+1
𝑘
𝑖=1 .         (3.5) 

To find the coefficients in the series expansions of Eq (3.4), we establish the Laplace residual 

functions (ℒRF) of the equations in the system (3.1) as follows: 
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ℒ𝑅𝑒𝑠1(𝑠) = 𝑈1 −
𝑓

𝑠
+

1

𝑠𝛼
ℒ [𝑢1

𝜕𝑢1

𝜕𝜒
] +

1

𝑠𝛼
ℒ [𝑢2

𝜕𝑢1

𝜕𝜍
] +

1

𝑠𝛼
ℒ [𝑢3

𝜕𝑢1

𝜕𝜁
] −

 𝜐

𝑠𝛼
(
𝜕2𝑈1

𝜕𝜒
+
𝜕2𝑈1

𝜕𝜍2
+
𝜕2𝑈1

𝜕𝜁2
) +

1

𝜌𝑠𝛼
𝜕𝑃

𝜕𝜒
,    

ℒ𝑅𝑒𝑠2(𝑠) = 𝑈2 −
ℎ

𝑠
+

1

𝑠𝛼
ℒ [𝑢1

𝜕𝑢2

𝜕𝜒
] +

1

𝑠𝛼
ℒ [𝑢2

𝜕𝑢2

𝜕𝜍
] +

1

𝑠𝛼
ℒ [𝑢3

𝜕𝑢2

𝜕𝜁
] −

 𝜐

𝑠𝛼
(
𝜕2𝑈2

𝜕𝜒2
+
𝜕2𝑈2

𝜕𝜍2
+
𝜕2𝑈2

𝜕𝜁2
) +

1

𝜌𝑠𝛼
𝜕𝑃

𝜕𝜍
,    

ℒ𝑅𝑒𝑠3(𝑠) = 𝑈3 −
𝑔

𝑠
+

1

𝑠𝛼
ℒ [𝑢1

𝜕𝑢3

𝜕𝜒
] +

1

𝑠𝛼
ℒ [𝑢2

𝜕𝑢3

𝜕𝜍
] +

1

𝑠𝛼
ℒ [𝑢3

𝜕𝑢3

𝜕𝜁
] −

 𝜐

𝑠𝛼
(
𝜕2𝑈3

𝜕𝜒2
+
𝜕2𝑈3

𝜕𝜍2
+
𝜕2𝑈3

𝜕𝜁2
) +

1

𝜌𝑠𝛼
𝜕𝑃

𝜕𝜁
,  (3.6) 

and the kth-𝓛RF for 𝑘 = 1,2, …, as follows: 

ℒ𝑅𝑒𝑠1,𝑘(𝑠) = 𝑈1,𝑘 −
𝑓

𝑠
+

1

𝑠𝛼
ℒ [𝑢1,𝑘

𝜕𝑢1,𝑘

𝜕𝜒
] +

1

𝑠𝛼
ℒ [𝑢2,𝑘

𝜕𝑢1,𝑘

𝜕𝜍
]      

+
1

𝑠𝛼
ℒ [𝑢3,𝑘

𝜕𝑢1,𝑘

𝜕𝜁
] −

 𝜐

𝑠𝛼
(
𝜕2𝑈1,𝑘

𝜕𝜒2
+
𝜕2𝑈1,𝑘

𝜕𝜍2
+
𝜕2𝑈1,𝑘

𝜕𝜁2
) +

1

𝜌𝑠𝛼
𝜕𝑃𝑘

𝜕𝜒
,   

ℒ𝑅𝑒𝑠2,𝑘(𝑠) = 𝑈2,𝑘 −
ℎ

𝑠
+

1

𝑠𝛼
ℒ [𝑢1,𝑘

𝜕𝑢2,𝑘

𝜕𝜒
] +

1

𝑠𝛼
ℒ [𝑢2,𝑘

𝜕𝑢2,𝑘

𝜕𝜍
]      

+
1

𝑠𝛼
ℒ [𝑢3,𝑘

𝜕𝑢2,𝑘

𝜕𝜁
] −

 𝜐

𝑠𝛼
(
𝜕2𝑈2,𝑘

𝜕𝜒2
+
𝜕2𝑈2,𝑘

𝜕𝜍2
+
𝜕2𝑈2,𝑘

𝜕𝜁2
) +

1

𝜌𝑠𝛼
𝜕𝑃𝑘

𝜕𝜍
,   

ℒ𝑅𝑒𝑠3,𝑘(𝑠) = 𝑈3,𝑘 −
𝑔

𝑠
+

1

𝑠𝛼
ℒ [𝑢1,𝑘

𝜕𝑢3,𝑘

𝜕𝜒
] +

1

𝑠𝛼
ℒ [𝑢2,𝑘

𝜕𝑢3,𝑘

𝜕𝜍
]      

+
1

𝑠𝛼
ℒ [𝑢3,𝑘

𝜕𝑢3,𝑘

𝜕𝜁
] −

 𝜐

𝑠𝛼
(
𝜕2𝑈3,𝑘

𝜕𝜒2
+
𝜕2𝑈3,𝑘

𝜕𝜍2
+
𝜕2𝑈3,𝑘

𝜕𝜁2
) +

1

𝜌𝑠𝛼
𝜕𝑃𝑘

𝜕𝜁
. (3.7) 

Using Lemma 2.3 and substituting the expansions in Eq (3.5) into Eq (3.7) gives the Laurent 

series form to the kth-ℒRFs as follows: 

ℒ𝑅𝑒𝑠1,k(𝑠) = ∑
𝑓𝑖

𝑠𝑖𝛼+1
𝑘
𝑖=1 + ∑ ∑

𝛤((𝑖+𝑗)𝛼+1)𝑓𝑖
𝜕𝑓𝑗

𝜕𝜒

𝛤(𝑖𝛼+1)𝛤(𝑗𝛼+1)𝑠(𝑖+𝑗+1)𝛼+1
𝑘
𝑗=0

𝑘
𝑖=0      

+∑ ∑
𝛤((𝑖+𝑗)𝛼+1)ℎ𝑖

𝜕𝑓𝑗

𝜕𝜍

𝛤(𝑖𝛼+1)𝛤(𝑗𝛼+1)𝑠(𝑖+𝑗+1)𝛼+1
𝑘
𝑗=0

𝑘
𝑖=0         

+∑ ∑
𝛤((𝑖+𝑗)𝛼+1)𝑔𝑖

𝜕𝑓𝑗

𝜕𝜁

𝛤(𝑖𝛼+1)𝛤(𝑗𝛼+1)𝑠(𝑖+𝑗+1)𝛼+1
𝑘
𝑗=0

𝑘
𝑖=0 −

 𝜐
𝜕2𝑓

𝜕𝜒2

𝑠𝛼+1
− ∑

 𝜐
𝜕2𝑓𝑖
𝜕𝜒2

𝑠(𝑖+1)𝛼+1
𝑘
𝑖=1   

−
 𝜐
𝜕2𝑓

𝜕𝜍2

𝑠𝛼+1
− ∑

 𝜐
𝜕2𝑓𝑖
𝜕𝜍2

𝑠(𝑖+1)𝛼+1
𝑘
𝑖=1 −

 𝜐
𝜕2𝑓

𝜕𝜁2

𝑠𝛼+1
− ∑

 𝜐
𝜕2𝑓𝑖
𝜕𝜁2

𝑠(𝑖+1)𝛼+1
𝑘
𝑖=1 +

𝜕𝜑

𝜕𝜒

𝜌𝑠𝛼+1
    

+∑

𝜕𝜑𝑖
𝜕𝜒

𝜌𝑠(𝑖+1)𝛼+1
𝑘
𝑖=1 ,            

ℒ𝑅𝑒𝑠2,k(𝑠) = ∑
ℎ𝑖

𝑠𝑖𝛼+1
𝑘
𝑖=1 + ∑ ∑

𝛤((𝑖+𝑗)𝛼+1)𝑓𝑖
𝜕ℎ𝑗

𝜕𝜒

𝛤(𝑖𝛼+1)𝛤(𝑗𝛼+1)𝑠(𝑖+𝑗+1)𝛼+1
𝑘
𝑗=0

𝑘
𝑖=0      

+∑ ∑
𝛤((𝑖+𝑗)𝛼+1)ℎ𝑖

𝜕ℎ𝑗

𝜕𝜍

𝛤(𝑖𝛼+1)𝛤(𝑗𝛼+1)𝑠(𝑖+𝑗+1)𝛼+1
𝑘
𝑗=0

𝑘
𝑖=0         
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+∑ ∑
𝛤((𝑖+𝑗)𝛼+1)𝑔𝑖

𝜕ℎ𝑗

𝜕𝜁

𝛤(𝑖𝛼+1)𝛤(𝑗𝛼+1)𝑠(𝑖+𝑗+1)𝛼+1
𝑘
𝑗=0

𝑘
𝑖=0 −

 𝜐
𝜕2ℎ

𝜕𝜒2

𝑠𝛼+1
− ∑

 𝜐
𝜕2ℎ𝑖
𝜕𝜒2

𝑠(𝑖+1)𝛼+1
𝑘
𝑖=1   

−
 𝜐
𝜕2ℎ

𝜕𝜍2

𝑠𝛼+1
− ∑

 𝜐
𝜕2ℎ𝑖
𝜕𝜍2

𝑠(𝑖+1)𝛼+1
𝑘
𝑖=1 −

 𝜐
𝜕2ℎ

𝜕𝜁2

𝑠𝛼+1
− ∑

 𝜐
𝜕2ℎ𝑖
𝜕𝜁2

𝑠(𝑖+1)𝛼+1
𝑘
𝑖=1 +

𝜕

𝜕𝜍
𝜑

𝜌𝑠𝛼+1
    

+∑

𝜕𝜑𝑖
𝜕𝜍

𝜌𝑠(𝑖+1)𝛼+1
𝑘
𝑖=1 ,            

ℒ𝑅𝑒𝑠3,k(𝑠) = ∑
𝑔𝑖

𝑠𝑖𝛼+1
𝑘
𝑖=1 + ∑ ∑

𝛤((𝑖+𝑗)𝛼+1)𝑓𝑖
𝜕𝑔𝑗

𝜕𝜒

𝛤(𝑖𝛼+1)𝛤(𝑗𝛼+1)𝑠(𝑖+𝑗+1)𝛼+1
𝑘
𝑗=0

𝑘
𝑖=0       

+∑ ∑
𝛤((𝑖+𝑗)𝛼+1)ℎ𝑖

𝜕𝑔𝑗

𝜕𝜍

𝛤(𝑖𝛼+1)𝛤(𝑗𝛼+1)𝑠(𝑖+𝑗+1)𝛼+1
𝑘
𝑗=0

𝑘
𝑖=0         

+∑ ∑
𝛤((𝑖+𝑗)𝛼+1)𝑔𝑖

𝜕𝑔𝑗

𝜕𝜁

𝛤(𝑖𝛼+1)𝛤(𝑗𝛼+1)𝑠(𝑖+𝑗+1)𝛼+1
𝑘
𝑗=0

𝑘
𝑖=0 −

𝜐
𝜕2ℎ

𝜕𝜒2

𝑠𝛼+1
−∑

𝜐
𝜕2𝑔𝑖
𝜕𝜒2

𝑠(𝑖+1)𝛼+1
𝑘
𝑖=1    

−
𝜐
𝜕2𝑔

𝜕𝜍2

𝑠𝛼+1
− ∑

𝜐
𝜕2𝑔𝑖
𝜕𝜍2

𝑠(𝑖+1)𝛼+1
𝑘
𝑖=1 −

𝜐
𝜕2𝑔

𝜕𝜁2

𝑠𝛼+1
− ∑

𝜐
𝜕2𝑔𝑖
𝜕𝜁2

𝑠(𝑖+1)𝛼+1
𝑘
𝑖=1 +

𝜕𝜑

𝜕𝜁

𝜌𝑠𝛼+1
    

+∑

𝜕𝜑𝑖
𝜕𝜁

𝜌𝑠(𝑖+1)𝛼+1
𝑘
𝑖=1 .           (3.8) 

El-Ajou in 119  proved the validity of the following formula, which is considered the essential 

tool of LRPSM: 

lim
s→∞

𝑠𝑘𝛼+1 ℒ𝑅𝑒s(𝑠) = lim
s→∞

𝑠𝑘𝛼+1 ℒ𝑅𝑒𝑠k(𝑠) = 0, 𝑘 = 1,2,3,….  (3.9) 

To find the first coefficients in the expansions in Eq (3.4), consider the first truncated series of 

the Laurent expansions of Eq (3.5) as follows: 

𝑈1,1 =
𝑓

𝑠
+

𝑓1

𝑠𝛼+1
,            

𝑈2,1 =
ℎ

𝑠
+

ℎ1

𝑠𝛼+1
,            

𝑈3,1 =
𝑔

𝑠
+

𝑔1

𝑠𝛼+1
,            

𝑃1 =
𝜑

𝑠
+

𝜑1

𝑠𝛼+1
.          (3.10) 

Substituting Eq (3.10) into the first-ℒRes, multiplying each equation by 𝑠𝛼+1, and taking the limit 

as 𝑠 → ∞, we have truth in Eq (3.9): 
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lim
s→∞

𝑠𝛼+1 ℒ𝑅𝑒𝑠1,1(𝑠) = 𝑓1 + 𝑓
𝜕𝑓

𝜕𝜒
+ ℎ

𝜕𝑓

𝜕𝜍
+ 𝑔

𝜕𝑓

𝜕𝜁
− 𝜐

𝜕2𝑓

𝜕𝜒2
− 𝜐

𝜕2𝑓

𝜕𝜍2
− 𝜐

𝜕2𝑓

𝜕𝜁2
+
1

𝜌

𝜕𝜑

𝜕𝜒
= 0,    

lim
𝑠→∞

𝑠𝛼+1 ℒ𝑅𝑒𝑠2,1(𝑠) = ℎ1 + 𝑓
𝜕ℎ

𝜕𝜒
+ ℎ

𝜕ℎ

𝜕𝜍
+ 𝑔

𝜕ℎ

𝜕𝜁
− 𝜐

𝜕2ℎ

𝜕𝜒2
− 𝜐

𝜕2ℎ

𝜕𝜍2
− 𝜐

𝜕2ℎ

𝜕𝜁2
+
1

𝜌

𝜕𝜑

𝜕𝜍
= 0,    

lim
𝑠→∞

𝑠𝛼+1 ℒ𝑅𝑒𝑠3,1(s) = 𝑔1 + 𝑓
𝜕𝑔

𝜕𝜒
+ ℎ

𝜕𝑔

𝜕𝜍
+ 𝑔

𝜕𝑔

𝜕𝜁
− 𝜌

𝜕2𝑔

𝜕𝜒2
− 𝜌

𝜕2𝑔

𝜕𝜍2
− 𝜌

𝜕2𝑔

𝜕𝜁2
+
1

𝜌

𝜕𝜑

𝜕𝜁
= 0.  (3.11) 

Therefore, the first coefficients of the expansions of Eq (3.4) become known and take the 

following forms: 

𝑓1 = 𝜐 (
𝜕𝑓

𝜕𝜒2
+

𝜕𝑓

𝜕𝜍2
+

𝜕𝑓

𝜕𝜁2
) −

1

𝜌

𝜕𝜑

𝜕𝜒
− (𝑓

𝜕𝑓

𝜕𝜒
+ ℎ

𝜕𝑓

𝜕𝜍
+ 𝑔

𝜕𝑓

𝜕𝜁
),     

ℎ1 = 𝜐 (
𝜕ℎ

𝜕𝜒2
+

𝜕ℎ

𝜕𝜍2
+

𝜕ℎ

𝜕𝜁2
) −

1

𝜌

𝜕𝜑

𝜕𝜍
− (𝑓

𝜕ℎ

𝜕𝜒
+ ℎ

𝜕ℎ

𝜕𝜍
+ 𝑔

𝜕ℎ

𝜕𝜁
),     

𝑔1 = 𝜐 (
𝜕𝑔

𝜕𝜒2
+

𝜕𝑔

𝜕𝜍2
+

𝜕𝑔

𝜕𝜁2
) −

1

𝜌

𝜕𝜑

𝜕𝜁
− (𝑓

𝜕𝑔

𝜕𝜒
+ ℎ

𝜕𝑔

𝜕𝜍
+ 𝑔

𝜕𝑔

𝜕𝜁
).   (3.12) 

Now, to obtain the second coefficients of the series expansions in Eq (3.4), we substitute the 

following second truncated series: 

𝑈1,2 =
𝑓

𝑠
+

𝑓1

𝑠𝛼+1
+

𝑓2

𝑠2𝛼+1
,           

𝑈2,2 =
ℎ

𝑠
+

ℎ1

𝑠𝛼+1
+

ℎ2

𝑠2𝛼+1
,           

𝑈3,2 =
𝑔

𝑠
+

𝑔1

𝑠𝛼+1
+

𝑔2

𝑠2𝛼+1
,           

𝑃2 =
𝜑

𝑠
+

𝜑1

𝑠𝛼+1
+

𝜑2

𝑠2𝛼+1
,        (3.13) 

into the 2nd-ℒRF, multiply each equation by 𝑠2𝛼+1, and use Eq (3.9), we obtain the forms of required 

coefficients as follows: 

𝑓2 = 𝜐 (
𝜕2𝑓1

𝜕𝜒2
+
𝜕2𝑓1

𝜕𝜍2
+
𝜕2𝑓1

𝜕𝜁2
) −

1

𝜌

𝜕𝜑1

𝜕𝜒
− (𝑓1

𝜕𝑓

𝜕𝜒
+ 𝑓

𝜕𝑓1

𝜕𝜒
+ ℎ1

𝜕𝑓

𝜕𝜍
+ ℎ

𝜕𝑓1

𝜕𝜍
+ 𝑔1

𝜕𝑓

𝜕𝜁
+ 𝑔

𝜕𝑓1

𝜕𝜁
),  

ℎ2 = 𝜐 (
𝜕2ℎ1

𝜕𝜒2
+
𝜕2ℎ1

𝜕𝜍2
+
𝜕2ℎ1

𝜕𝜁2
) −

1

𝜌

𝜕𝜑1

𝜕𝜍
− (𝑓1

𝜕ℎ

𝜕𝜒
+ 𝑓

𝜕ℎ1

𝜕𝜒
+ ℎ1

𝜕ℎ

𝜕𝜍
+ ℎ

𝜕ℎ1

𝜕𝜍
+ 𝑔1

𝜕ℎ

𝜕𝜁
+ 𝑔

𝜕ℎ1

𝜕𝜁
),  

𝑔2 = 𝜐 (
𝜕2𝑔1

𝜕𝜒2
+
𝜕2𝑔1

𝜕𝜍2
+
𝜕2𝑔1

𝜕𝜁2
) −

1

𝜌

𝜕𝜑1

𝜕𝜁
− (𝑓1

𝜕𝑔

𝜕𝜒
+ 𝑓

𝜕𝑔1

𝜕𝜒
+ ℎ1

𝜕𝑔

𝜕𝜍
+ ℎ

𝜕𝑔1

𝜕𝜍
+ 𝑔1

𝜕𝑔

𝜕𝜁
+ 𝑔

𝜕𝑔1

𝜕𝜁
). (3.14) 

We can repeat the previous steps to find the third and the fourth coefficients of the 

expansions (3.4) as: 

𝑓3 = 𝜐 (
𝜕2𝑓2

𝜕𝜒2
+
𝜕2𝑓2

𝜕𝜍2
+
𝜕2𝑓2

𝜕𝜁2
) +

1

𝜌

𝜕𝜑2

𝜕𝜒
   

−(𝑓2
𝜕𝑓

𝜕𝜒
+ 𝑓

𝜕𝑓2

𝜕𝜒
+ ℎ2

𝜕𝑓

𝜕𝜍
+ ℎ

𝜕𝑓2

𝜕𝜍
+ 𝑔2

𝜕𝑓

𝜕𝜁
+ 𝑔

𝜕𝑓2

𝜕𝜁
)  

−
Γ(2𝛼+1)

Γ2(𝛼+1)
(𝑓1

𝜕𝑓1

𝜕𝜒
+ ℎ1

𝜕𝑓1

𝜕𝜍
+ 𝑔1

𝜕𝑓1

𝜕𝜁
),  
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ℎ3 = 𝜐 (
𝜕2ℎ2

𝜕𝜒2
+
𝜕2ℎ2

𝜕𝜍2
+
𝜕2ℎ2

𝜕𝜁2
) −

1

𝜌

𝜕𝜑2

𝜕𝜍
  

−(𝑓2
𝜕ℎ

𝜕𝜒
+ 𝑓

𝜕ℎ2

𝜕𝜒
+ ℎ2

𝜕ℎ

𝜕𝜍
+ ℎ

𝜕ℎ2

𝜕𝜍
+ 𝑔2

𝜕ℎ

𝜕𝜁
+ 𝑔

𝜕ℎ2

𝜕𝜁
)  

−
Γ(2𝛼+1)

Γ2(𝛼+1)
(𝑓1

𝜕ℎ1

𝜕𝜒
+ ℎ1

𝜕ℎ1

𝜕𝜍
+ 𝑔1

𝜕ℎ1

𝜕𝜁
),  

𝑔3 = 𝜐 (
𝜕2𝑔2

𝜕𝜒2
+
𝜕2𝑔2

𝜕𝜍2
+
𝜕2𝑔2

𝜕𝜁2
) −

1

𝜌

𝜕𝜑2

𝜕𝜁
  

−(𝑓2
𝜕𝑔

𝜕𝜒
+ 𝑓

𝜕𝑔2

𝜕𝜒
+ ℎ2

𝜕𝑔

𝜕𝜍
+ ℎ

𝜕𝑔2

𝜕𝜍
+ 𝑔2

𝜕𝑔

𝜕𝜁
+ 𝑔

𝜕𝑔2

𝜕𝜁
)  

−
Γ(2𝛼+1)

Γ2(𝛼+1)
(𝑓1

𝜕𝑔1

𝜕𝜒
+ ℎ1

𝜕𝑔1

𝜕𝜍
+ 𝑔1

𝜕𝑔1

𝜕𝜁
).     (3.15) 

Also, one can get 

𝑓4 = 𝜐 (
𝜕2𝑓3

𝜕𝜒2
+
𝜕2𝑓3

𝜕𝜍2
+
𝜕2𝑓3

𝜕𝜁2
) −

1

𝜌

𝜕𝜑3

𝜕𝜒
  

−(𝑓3
𝜕𝑓

𝜕𝜒
+ 𝑓

𝜕𝑓3

𝜕𝜒
+ ℎ3

𝜕𝑓

𝜕𝜍
+ ℎ

𝜕𝑓3

𝜕𝜍
+ 𝑔3

𝜕𝑓

𝜕𝜁
+ 𝑔

𝜕𝑓3

𝜕𝜁
)  

−
Γ(3𝛼+1)

Γ(2α+1)Γ(𝛼+1)
(𝑓2

𝜕𝑓1

𝜕𝜒
+ 𝑓1

𝜕𝑓2

𝜕𝜒
+ ℎ2

𝜕𝑓1

𝜕𝜍
+ ℎ1

𝜕𝑓2

𝜕𝜍
+ 𝑔2

𝜕𝑓1

𝜕𝜁
+ 𝑔1

𝜕𝑓2

𝜕𝜁
),  

ℎ4 = 𝜐 (
𝜕2ℎ3

𝜕𝜒2
+
𝜕2ℎ3

𝜕𝜍2
+
𝜕2ℎ3

𝜕𝜁2
) −

1

𝜌

𝜕𝜑3

𝜕𝜍
  

−(𝑓3
𝜕ℎ

𝜕𝜒
+ 𝑓

𝜕ℎ3

𝜕𝜒
+ ℎ3

𝜕ℎ

𝜕𝜍
+ ℎ

𝜕ℎ3

𝜕𝜍
+ 𝑔3

𝜕ℎ

𝜕𝜁
+ 𝑔

𝜕ℎ3

𝜕𝜁
)  

−
Γ(3𝛼+1)

Γ(2α+1)Γ(𝛼+1)
(𝑓2

𝜕ℎ1

𝜕𝜒
+ 𝑓1

𝜕ℎ2

𝜕𝜒
+ ℎ2

𝜕ℎ1

𝜕𝜍
+ ℎ1

𝜕ℎ2

𝜕𝜍
+ 𝑔2

𝜕ℎ1

𝜕𝜁
+ 𝑔1

𝜕ℎ2

𝜕𝜁
),  

𝑔4 = 𝜐 (
𝜕2𝑔3

𝜕𝜒2
+
𝜕2𝑔3

𝜕𝜍2
+
𝜕2𝑔3

𝜕𝜁2
) −

1

𝜌

𝜕𝜑3

𝜕𝜁
  

−(𝑓3
𝜕𝑔

𝜕𝜒
+ 𝑓

𝜕𝑔3

𝜕𝜒
+ ℎ3

𝜕𝑔

𝜕𝜍
+ ℎ

𝜕𝑔3

𝜕𝜍
+ 𝑔3

𝜕𝑔

𝜕𝜁
+ 𝑔

𝜕𝑔3

𝜕𝜁
)  

−
Γ(3𝛼+1)

Γ(2α+1)Γ(𝛼+1)
(𝑓2

𝜕𝑔1

𝜕𝜒
+ 𝑓1

𝜕𝑔2

𝜕𝜒
+ ℎ2

𝜕𝑔1

𝜕𝜍
+ ℎ1

𝜕𝑔2

𝜕𝜍
+ 𝑔2

𝜕𝑔1

𝜕𝜁
+ 𝑔1

𝜕𝑔2

𝜕𝜁
) (3.16) 

Now, we can get the form of the unknown 𝑘th-coefficients in the expansions of Eq (3.4) as follows: 

𝑓𝑘 = 𝜐 (
𝜕2𝑓𝑘−1

𝜕𝜒2
+
𝜕2𝑓𝑘−1

𝜕𝜍2
+
𝜕2𝑓𝑘−1

𝜕𝜁2
) −

1

𝜌

𝜕𝜑𝑘−1

𝜕𝜒
  

−∑
Γ((𝑘−1)𝛼+1)

Γ(𝑖𝛼+1)Γ((𝑘−𝑖−1)𝛼+1)
(𝑓𝑖

𝜕𝑓𝑘−𝑖−1

𝜕𝜒
+ ℎ𝑖

𝜕𝑓𝑘−𝑖−1

𝜕𝜍
+ 𝑔𝑖

𝜕𝑓𝑘−𝑖−1

𝜕𝜁
)𝑘−1

𝑖=0 , 𝑘 = 1,2,⋯,  

ℎ𝑘 = 𝜐 (
𝜕2ℎ𝑘−1

𝜕𝜒2
+
𝜕2ℎ𝑘−1

𝜕𝜍2
+
𝜕2ℎ𝑘−1

𝜕𝜁2
) −

1

𝜌

𝜕𝜑𝑘−1

𝜕𝜍
  

−∑
Γ((𝑘−1)𝛼+1)

Γ(𝑖𝛼+1)Γ((𝑘−𝑖−1)𝛼+1)
(𝑓𝑖

𝜕ℎ𝑘−𝑖−1

𝜕𝜒
+ ℎ𝑖

𝜕ℎ𝑘−𝑖−1

𝜕𝜍
+ 𝑔𝑖

𝜕ℎk−𝑖−1

𝜕𝜁
)𝑘−1

𝑖=0 , 𝑘 = 1,2,⋯,  
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𝑔𝑘 = 𝜐 (
𝜕2𝑔𝑘−1

𝜕𝜒2
+
𝜕2𝑔𝑘−1

𝜕𝜍2
+
𝜕2𝑔𝑘−1

𝜕𝜁2
) −

1

𝜌

𝜕𝜑𝑘−1

𝜕𝜁
   

−∑
Γ((𝑘−1)𝛼+1)

Γ(𝑖𝛼+1)Γ((𝑘−𝑖−1)𝛼+1)
(𝑓𝑖

𝜕𝑔𝑘−𝑖−1

𝜕𝜒
+ ℎ𝑖

𝜕𝑔𝑘−𝑖−1

𝜕𝜍
+ 𝑔𝑖

𝜕𝑔𝑘−𝑖−1

𝜕𝜁
)𝑘−1

𝑖=0 , 𝑘 = 1,2,⋯. (3.17) 

Thus, the solution of the algebraic system (3.1) can be expressed as: 

𝑈1(𝜒, 𝜍, 𝜁, 𝑠) =
𝑓

𝑠
+

𝑓1

𝑠𝛼+1
+

𝑓2

𝑠2𝛼+1
+⋯,        

𝑈1(𝜒, 𝜍, 𝜁, 𝑠) =
ℎ

𝑠
+

ℎ1

𝑠𝛼+1
+

ℎ2

𝑠2𝛼+1
+⋯,        

𝑈3(𝜒, 𝜍, 𝜁, 𝑠) =
𝑔

𝑠
+

𝑔1

𝑠𝛼+1
+

𝑔2

𝑠2𝛼+1
+⋯.      (3.18) 

Finally, to get the LRPS solution of the M-DT-FNS systems (1.1) and (1.2) in the original space, 

we apply the inverse LT on the solution in Eq (3.18), to get 

𝑢1(𝜒, 𝜍, 𝜁, 𝑡) = 𝑓 +
𝑓1𝑡

𝛼

Γ(𝛼+1)
+

𝑓2𝑡
2𝛼

Γ(2𝛼+1)
+⋯,        

𝑢2(𝜒, 𝜍, 𝜁, 𝑡) = ℎ +
ℎ1𝑡

𝛼

Γ(𝛼+1)
+

ℎ2𝑡
2𝛼

Γ(2𝛼+1)
+⋯,        

𝑢3(𝜒, 𝜍, 𝜁, 𝑡) = 𝑔 +
𝑔1𝑡

𝛼

Γ(𝛼+1)
+

𝑔2𝑡
2𝛼

Γ(2𝛼+1)
+⋯.      (3.19) 

4. Numerical application 

In this section, we present some numerical examples that explain the working mechanism of the 

LRPSM. Comparisons and graphical illustrations are made to demonstrate the accuracy and efficiency 

of the technique. 

Example 4.1. 135,36  Consider the following two-DT-FNSEs: 

𝐷𝑡
𝛼𝑢1 + 𝑢1

𝜕𝑢1

𝜕𝜒
+ 𝑢2

𝜕𝑢1

𝜕𝜍
= 𝜐 (

𝜕2𝑢1

𝜕𝜒2
+
𝜕2𝑢1

𝜕𝜍2
),        

𝐷𝑡
𝛼𝑢2 + 𝑢1

𝜕𝑢2

𝜕𝜒
+ 𝑢2

𝜕𝑢2

𝜕𝜍
= 𝜐 (

𝜕2𝑢2

𝜕𝜒2
+
𝜕2𝑢2

𝜕𝜍2
),      (4.1) 

with the ICs: 

𝑢1(𝜒, 𝜍, 0) = − sin(𝜒 + 𝜍),        

𝑢2(𝜒, 𝜍, 0) = sin(𝜒 + 𝜍),       (4.2) 

where 𝜐 ∈ ℝ, and 𝑢1 and 𝑢2 are two functions of three variables 𝜒, 𝜍, and 𝑡. 

Note that, when 𝛼 = 1 the exact solution of the systems (4.1) and (4.2) is 

𝑢1 = −𝑒
−2𝜐𝑡 sin(𝜒 + 𝜍),         

𝑢2 = 𝑒
−2𝜐𝑡 sin(𝜒 + 𝜍).       (4.3) 

Based on the algorithm of the solution obtained in Section 3 and the result in Eq (3.19), we can 

obtain the LRPS solution of the systems (4.1) and (4.2) as follows: 
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𝑢1(𝜒, 𝜍, 𝑡) = 𝑓 +
𝑓1𝑡

𝛼

Γ(𝛼+1)
+

𝑓2𝑡
2𝛼

Γ(2𝛼+1)
+⋯,       

𝑢2(𝜒, 𝜍, 𝑡) = ℎ +
ℎ1𝑡

𝛼

Γ(𝛼+1)
+

ℎ2𝑡
2𝛼

Γ(2𝛼+1)
+⋯,     (4.4) 

where the coefficients 𝑓𝑘, ℎ𝑘, 𝑘 = 1,2, …, are given by the general formula obtained in Eq (3.17) which 

in the two dimensions will be as follows: 

𝑓𝑘 = 𝜐 (
𝜕2𝑓𝑘−1

𝜕𝜒2
+
𝜕2𝑓𝑘−1

𝜕𝜍
) − ∑

𝛤((𝑘−1)𝛼+1)(𝑓𝑖
𝜕𝑓𝑘−𝑖−1

𝜕𝜒
+ℎ𝑖

𝜕𝑓𝑘−𝑖−1
𝜕𝜍

)

𝛤(𝑖𝛼+1)𝛤((𝑘−𝑖−1)𝛼+1)

𝑘−1
𝑖=0 ,    

ℎ𝑘 = 𝜐 (
𝜕2ℎ𝑘−1

𝜕𝜒2
+
𝜕2ℎ𝑘−1

𝜕𝜍2
) − ∑

𝛤((𝑘−1)𝛼+1)(𝑓𝑖
𝜕ℎ𝑘−𝑖−1

𝜕𝜒
+ℎ𝑖

𝜕𝑓ℎ𝑘−𝑖−1
𝜕𝜍

)

𝛤(𝑖𝛼+1)𝛤((𝑘−𝑖−1)𝛼+1)

𝑘−1
𝑖=0 . (4.5) 

Thus, we conclude that 

𝑓1 = 2𝜐 sin(𝜒 + 𝜍) ,                        ℎ1 = −2𝜐 sin(𝜒 + 𝜍) 

𝑓2 = −(2𝜐)
2 sin(𝜒 + 𝜍) ,               ℎ2 = (2𝜐)

2 sin(𝜒 + 𝜍) 

𝑓3 = (2𝜐)
3 sin(𝜒 + 𝜍) ,                  ℎ3 = −(2𝜐)

3 sin(𝜒 + 𝜍) 

𝑓4 = −(2𝜐)
4 sin(𝜒 + 𝜍) ,               ℎ4 = (2𝜐)

4 sin(𝜒 + 𝜍) 

                     ⋮                                                           ⋮ 

𝑓𝑘 = (−1)
𝑘+1(2𝜐)𝑘 sin(𝜒 + 𝜍) ,  ℎ𝑘 = (−2𝜐)

𝑘 sin(𝜒 + 𝜍) , 𝑘 = 1,2,⋯. 

Hence, we can express the LRPS solution of Eqs (4.1) and (4.2) as: 

𝑢1(𝜒, 𝜍, 𝑡) = − sin(𝜒 + 𝜍)∑
(−2𝜐)𝑛𝑡𝑛𝛼

Γ(𝑛𝛼+1)
∞
𝑛=0 ,       

𝑢2(𝜒, 𝜍, 𝑡) = sin(𝜒 + 𝜍)∑
(−2𝜐)𝑛𝑡𝑛𝛼

Γ(𝑛𝛼+1)
∞
𝑛=0 .     (4.6) 

Table 1 shows the stability of the results obtained, where the solution is stable with various values 

of 𝑡. 

Table 1. Numerical results for Example 1 at 𝛼 = 1, 𝜒 = 0.1, 𝜍 = 0.5. 
𝑡 Numerical results of 𝑢1(𝜒, 𝜍, 𝑡) 
 𝑢1,6(𝜒, 𝜍, 𝑡) 𝑢1,8(𝜒, 𝜍, 𝑡) 𝑢1,10(𝜒, 𝜍, 𝑡) 𝑢1(𝜒, 𝜍, 𝑡) |𝑢1(𝜒, 𝜍, 𝑡) − 𝑢1,10(𝜒, 𝜍, 𝑡)| 

0.16 −0.481157 −0.481157 −0.481157 −0.481157 5.551115 × 10−17 
0.32 −0.410015 −0.410015 −0.410015 −0.410015 4.957146 × 10−14 
0.48 −0.349392 −0.349391 −0.349391 −0.349391 4.238276 × 10−12 
0.64 −0.297736 −0.297732 −0.297731 −0.297732 9.907064 × 10−11 
0.80 −0.253732 −0.253710 −0.253710 −0.253710 1.138797 × 10−9 
0.96 −0.216273 −0.216199 −0.216198 −0.216198 8.355848 × 10−9 

𝑡 Numerical results of 𝑢2(𝜒, 𝜍, 𝑡) 
 𝑢2,6(𝜒, 𝜍, 𝑡) 𝑢2,8(𝜒, 𝜍, 𝑡) 𝑢2,10(𝜒, 𝜍, 𝑡) 𝑢2(𝜒, 𝜍, 𝑡) |𝑢2(𝜒, 𝜍, 𝑡) − 𝑢2,10(𝜒, 𝜍, 𝑡)| 

0.16 0.481157 0.481157 0.481157 0.481157 5.551115 × 10−17 
0.32 0.410015 0.410015 0.410015 0.410015 4.957146 × 10−14 
0.48 0.349392 0.349391 0.349391 0.349391 4.238276 × 10−12 
0.64 0.297736 0.297732 0.297731 0.297732 9.907064 × 10−11 
0.80 0.253732 0.253710 0.253710 0.253710 1.138797 × 10−9 
0.96 0.216273 0.216199 0.216198 0.216198 8.355848 × 10−9 
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This solution is the same as that obtained by the Laplace decomposition method 136  and the 

variational iteration transform method 135 . In a special case, taking 𝛼 = 1 gives the exact solution in 

terms of elementary functions as follows: 

𝑢1(𝜒, 𝜍, 𝑡) = −𝑒
−2𝜐𝑡 sin(𝜒 + 𝜍),  

𝑢2(𝜒, 𝜍, 𝑡) = 𝑒
−2𝜐𝑡 sin(𝜒 + 𝜍).       (4.7) 

The behavior of the velocity field of the two-DT-FNSEs (4.1) and (4.2) is depicted in Figure 1 

for various values of 𝛼  at 𝑡 = 0.5  and 𝜐 = 0.5 . The 10th-truncated series of Eq (4.6) is plotted in 

Figure 1(a-c) for 𝛼 = 0.6, 𝛼 = 0.8, and 𝛼 = 1, respectively, whereas, the exact solution at 𝛼 = 1 is 

plotted in Figure 1(d). The graphics indicate consistency in the behavior of the solution at various 

values of 𝛼, as well as the convention of the exact solution with the obtained solution in Figure 1(c,d). 

Figure 2 shows the action of the 10th approximate analytical solution of the initial value problems 

(IVP) (4.1) and (4.2) along the line 𝜍 = 𝜒  and in the region 𝐷 = {(𝜒, 𝑡): −3 ≤ 𝜒 ≤ 3, 0 ≤ 𝑡 < 1}  for 

distinct values of 𝛼, and at 𝜐 = 0.5. The 10th approximate solution is plotted in Figure 2(a-c) for 𝛼 = 0.6, 

𝛼 = 0.8, and 𝛼 = 1, respectively, whereas, the exact solution at 𝛼 = 1 is plotted in (d). Also, the graphics 

indicate consistency in the action of the solution at distinct values of 𝛼, the accord nation of the exact 

solution with the approximate solution in Figure 2(c,d) as well as the region of convergence of the series 

solution. 

Example 4.2. 135,36  Consider the following two-DT-FNSEs:  

𝐷𝑡
𝛼𝑢1 + 𝑢1

𝜕𝑢1

𝜕𝜒
+ 𝑢2

𝜕𝑢1

𝜕𝜍
= 𝜐 (

𝜕2𝑢1

𝜕𝜒2
+
𝜕2𝑢1

𝜕𝜍2
),       

𝐷𝑡
𝛼𝑢2 + 𝑢1

𝜕𝑢2

𝜕𝜒
+ 𝑢2

𝜕𝑢2

𝜕𝜍
= 𝜐 (

𝜕2𝑢2

𝜕𝜒2
+
𝜕2𝑢2

𝜕𝜍2
),     (4.8) 

with the ICs: 

𝑢1(𝜒, 𝜍, 0) = −𝑒
𝜒+𝜍,            

𝑢2(𝜒, 𝜍, 0) = 𝑒
𝜒+𝜍,         (4.9) 

where 𝜐 ∈ ℝ and 𝑢1 and 𝑢2 are two functions of three variables 𝜒, 𝜍, and 𝑡. 

The exact solution to problems (4.8) and (4.9) can be obtained, when putting 𝛼 = 1, to be 𝑢1 =

−𝑒−2𝜐𝑡+𝜒+𝜍 and 𝑢2 = 𝑒
−2𝜐𝑡+𝜒+𝜍. Applying the same procedure in Example 4.1, one can obtain the 

following recurrence relations:  

𝑓𝑘 = 𝜐 (
𝜕2𝑓𝑘−1

𝜕𝜒2
+
𝜕2𝑓𝑘−1

𝜕𝜍2
) − ∑

𝛤((𝑘−1)𝛼+1)(𝑓𝑖
𝜕𝑓𝑘−𝑖−1

𝜕𝜒
+ℎ𝑖

𝜕𝑓𝑘−𝑖−1
𝜕𝜍

)

𝛤(𝑖𝛼+1)𝛤((𝑘−𝑖−1)𝛼+1)

𝑘−1
𝑖=0 ,    

ℎ𝑘 = 𝜐 (
𝜕2ℎ𝑘−1

𝜕𝜒2
+
𝜕2ℎ𝑘−1

𝜕𝜍2
) − ∑

𝛤((𝑘−1)𝛼+1)(𝑓𝑖
𝜕ℎ𝑘−𝑖−1

𝜕𝜒
+ℎ𝑖

𝜕𝑓ℎ𝑘−𝑖−1
𝜕𝜍

)

𝛤(𝑖𝛼+1)𝛤((𝑘−𝑖−1)𝛼+1)

𝑘−1
𝑖=0 . (4.10) 

Thus, we conclude that 

𝑓1 = −2𝜐𝑒
𝜒+𝜍,           ℎ1 = 2𝜐𝑒

𝜒+𝜍 

𝑓2 = −(2𝜐)
2𝑒𝜒+𝜍,     ℎ2 = (2𝜐)

2𝑒𝜒+𝜍 

𝑓3 = −(2𝜐)
3𝑒𝜒+𝜍,     ℎ3 = (2𝜐)

3𝑒𝜒+𝜍 , 

𝑓4 = −(2𝜐)
4𝑒𝜒+𝜍,     ℎ3 = (2𝜐)

3𝑒𝜒+𝜍 
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                  ⋮                                ⋮ 

𝑓𝑘 = −(2𝜐)
𝑘𝑒𝜒+𝜍,     ℎ𝑘 = (2𝜐)

𝑘𝑒𝜒+𝜍 , 𝑘 = 1,2,⋯. 

Thus, the LRPS solution of the systems (4.8) and (4.9) can be expressed as follows: 

𝑢1(𝜒, 𝜍, 𝑡) = −𝑒
𝜒+𝜍 ∑

(−2𝜐)𝑖𝑡𝑖𝛼

Γ(𝑖𝛼+1)
∞
𝑖=0 ,         

𝑢2(𝜒, 𝜍, 𝑡) = 𝑒
𝜒+𝜍 ∑

(−2𝜐)𝑗𝑡𝑗𝛼

Γ(𝑗𝛼+1)
∞
𝑗=0 .       (4.11) 

For 𝛼 = 1, the solution in Eq (4.11) has the form: 

𝑢1(𝜒, 𝜍, 𝑡) = −𝑒
−2𝜐𝑡+𝜒+𝜍, 

𝑢2(𝜒, 𝜍, 𝑡) = 𝑒
−2𝜐𝑡+𝜒+𝜍. 

Figure 1. The 3D surface plot of the 10th approximate solutions of 𝑢1 and 𝑢2 at different 

values of 𝛼 and 𝑡 = 0.5 & 𝜐 = 0.5 for the problem in Example 4.1. (a) 𝛼 = 0.6, (b) 𝛼 =

0.8, (c) 𝛼 = 1, (d) 𝛼 = 1 (Exact solutions). 
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Figure 2. The graph of the 3D surface of the 10th approximate solutions of 𝑢1 and 𝑢2 

along the line 𝜍 = 𝜒 and at various values of 𝛼 and 𝜐 = 0.5 for the problem in Example 

4.1. (a) 𝛼 = 0.6, (b) 𝛼 = 0.8, (c) 𝛼 = 1, (d) 𝛼 = 1 (Exact). 

Figure 3 shows the velocity field behavior of the two-DT-FNSEs (4.8) and (4.9) for distinct values 

of 𝛼 at 𝑡 = 0.5 and 𝜐 = 0.5. The 10th LRPS approximate analytical solution of the IVP (4.8) and (4.8) 

plotted in Figure 3(a-c) for 𝛼 = 0.6, 𝛼 = 0.8, and 𝛼 = 1 respectively, while the exact solution at 𝛼 =

1 is plotted in (d). The graphics indicate the consistency in the solution behavior at various values of 

𝛼, as well as the exact solution agreement with the proposed analytical solution in Figure 3(c,d). 
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Figure 3. The 3D surface plot of the 10th approximate solutions of 𝑢1 and 𝑢2 at distinct 

values of 𝛼 and 𝑡 = 0.5 & 𝜐 = 0.5 for the problem in Example 4.2. (a) 𝛼 = 0.6, (b) 𝛼 =

0.8, (c) 𝛼 = 1, (d) 𝛼 = 1 (Exact solutions). 

Figure 4 illustrates the behavior of the 10th approximate solution of the IVP (4.8) and (4.9) along 

the line 𝜍 = 𝜒 and in the region 𝐷 = {(𝜒, 𝑡): −1 ≤ 𝜒 ≤ 1,0 ≤ 𝑡 < 1} for different values of 𝛼, and at 

𝜐 = 0.5. The 10th approximate solution is plotted in Figure 4(a-c) for 𝛼 = 0.6, 𝛼 = 0.8, and 𝛼 = 1, 

respectively, whereas, the exact solution at 𝛼 = 1  is plotted in (d). Also, the graphics indicate 

consistency in the action of the solution at distinct values of 𝛼, the coordination between the exact 

solution and the approximate analytical solution as illustrated in Figure 4(c,d) as well as the 

determination of the region of convergence for the series solution, is clear. 
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Figure 4. 𝑢1 and 𝑢2 along the line 𝜍 = 𝜒 and at various of 𝛼 and 𝜐 = 0.5 for the problem 

in Example 4.2. (a) 𝛼 = 0.6, (b) 𝛼 = 0.8, (c) 𝛼 = 1, (d) 𝛼 = 1 (Exact). 

Example 4.3. 136,41  Consider the following three-DT-FNSEs: 

𝐷𝑡
𝛼𝑢1 + 𝑢1

𝜕𝑢1

𝜕𝜒
+ 𝑢2

𝜕𝑢1

𝜕𝜍
+ 𝑢3

𝜕𝑢1

𝜕𝜁
= 𝜐 (

𝜕2𝑢1

𝜕𝜒2
+
𝜕2𝑢1

𝜕𝜍2
+
𝜕2𝑢1

𝜕𝜁2
),    

𝐷𝑡
𝛼𝑢2 + 𝑢1

𝜕𝑢2

𝜕𝜒
+ 𝑢2

𝜕𝑢2

𝜕𝜍
+ 𝑢3

𝜕𝑢2

𝜕𝜁
= 𝜐 (

𝜕2𝑢2

𝜕𝜒2
+
𝜕2𝑢2

𝜕𝜍2
+
𝜕2𝑢2

𝜕𝜁2
),    

𝐷𝑡
𝛼𝑢3 + 𝑢1

𝜕𝑢3

𝜕𝜒
+ 𝑢2

𝜕𝑢3

𝜕𝜍
+ 𝑢3

𝜕𝑢3

𝜕𝜁
= 𝜐 (

𝜕2𝑢3

𝜕𝜒2
+
𝜕2𝑢3

𝜕𝜍2
+
𝜕2𝑢3

𝜕𝜁2
),  (4.12) 

where 𝑣 ∈ ℝ, and with the ICs: 

𝑢1(𝜒, 𝜍, 𝜁, 0) = −0.5𝜒 + 𝜍 + 𝜁,          

𝑢2(𝜒, 𝜍, 𝜁, 0) = 𝜒 − 0.5𝜍 + 𝜁,          

𝑢3(𝜒, 𝜍, 𝜁, 0) = 𝜒 + 𝜍 − 0.5𝜁,        (4.13) 
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and the exact solution, when 𝛼 = 1, is 

𝑢1 =
−0.5𝜒 + 𝜍 + 𝜁 − 2.25 𝜒 𝑡

1 − 2.25 𝑡2
, 𝑢2 =

𝜒 − 0.5𝜍 + 𝜁 − 2.25𝜍𝑡

1 − 2.25 𝑡2
, 𝑢3 =

𝜒 + 𝜍 − 0.5𝜁 − 2.25𝜁𝑡

1 − 2.25 𝑡2
.  

The general formula (3.12) for the systems (4.12) and (4.13) will be as follows: 

𝑓𝑘 = 𝜐 (
𝜕2𝑓𝑘−1
𝜕𝜒2

+
𝜕2𝑓𝑘−1
𝜕𝜍2

+
𝜕2𝑓𝑘−1
𝜕𝜁2

) 

−∑
𝛤((𝑘 − 1)𝛼 + 1) (𝑓𝑖

𝜕𝑓𝑘−𝑖−1
𝜕𝜒

+ ℎ𝑖
𝜕𝑓𝑘−𝑖−1
𝜕𝜍

+ 𝑔𝑖
𝜕𝑓𝑘−𝑖−1
𝜕𝜁

)

𝛤(𝑖𝛼 + 1)𝛤((𝑘 − 𝑖 − 1)𝛼 + 1)

𝑘−1

𝑖=0

, 

ℎ𝑘 = 𝜐 (
𝜕2ℎ𝑘−1
𝜕𝜒2

+
𝜕2ℎ𝑘−1
𝜕𝜍2

+
𝜕2ℎ𝑘−1
𝜕𝜁2

) 

−∑
𝛤((𝑘 − 1)𝛼 + 1) (𝑓𝑖

𝜕ℎ𝑘−𝑖−1
𝜕𝜒

+ ℎ𝑖
𝜕ℎ𝑘−𝑖−1
𝜕𝜍

+ 𝑔𝑖
𝜕ℎ𝑘−𝑖−1
𝜕𝜁

)

𝛤(𝑖𝛼 + 1)𝛤((𝑘 − 𝑖 − 1)𝛼 + 1)

𝑘−1

𝑖=0

, 

𝑔𝑘 = 𝜐 (
𝜕2𝑔𝑘−1
𝜕𝜒2

+
𝜕2𝑔𝑘−1
𝜕𝜍2

+
𝜕2𝑔𝑘−1
𝜕𝜁2

) 

−∑
𝛤((𝑘 − 1)𝛼 + 1) (𝑓𝑖

𝜕𝑔𝑘−𝑖−1
𝜕𝜒

+ ℎ𝑖
𝜕𝑔𝑘−𝑖−1
𝜕𝜍

+ 𝑔𝑖
𝜕𝑔𝑘−𝑖−1
𝜕𝜁

)

𝛤(𝑖𝛼 + 1)𝛤((𝑘 − 𝑖 − 1)𝛼 + 1)

𝑘−1

𝑖=0

. 

Thus, we conclude that 

𝑓1 = −2.25𝜒, ℎ1 = −2.25𝜍, 𝑔1 = −2.25𝜁, 

𝑓2 = −2.25𝜒 + 4.5𝜍 + 4.5𝜁, ℎ2 = 4.5𝜒 − 2.25𝜍 + 4.5𝜁, 𝑔2 = 4.5𝜒 + 4.5𝜍 − 2.25𝜁, 

𝑓3 = −𝜒(
5.0625𝛤(2𝛼 + 1)

𝛤(𝛼 + 1)2
+ 20.25), 

ℎ3 = −𝜍 (
5.0625𝛤(2𝛼 + 1)

𝛤(𝛼 + 1)2
+ 20.25), 

𝑔3 = −𝜁 (
5.0625𝛤(2𝛼 + 1)

𝛤(𝛼 + 1)2
+ 20.25), 

𝑓4 =
𝛤(2𝛼 + 1)(−5.0625𝜒 + 10.125𝜍 + 10.125𝜁)

𝛤(𝛼 + 1)2
+
𝛤(3𝛼 + 1)(−10.125𝜒 + 20.25𝜍 + 20.25𝜁)

𝛤 (𝛼 + 1)𝛤(2𝛼 + 1)
 

−20.25𝜒 + 40.5𝜍 + 40.5𝜁, 

ℎ4 =
𝛤(2𝛼 + 1)(10.125𝜒 − 5.0625𝜍 + 10.125𝜁)

𝛤(𝛼 + 1)2
+
𝛤(3𝛼 + 1)(20.25𝜒 − 10.125𝜍 + 20.25𝜁)

𝛤(𝛼 + 1) 𝛤(2𝛼 + 1)
 

+40.5𝜒 − 20.25𝜍 + 40.5𝜁, 
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𝑔4 =
Γ(2𝛼 + 1)(10.125𝜒 + 10.125𝜍 − 5.0625𝜁)

Γ(𝛼 + 1)2
+
Γ(3𝛼 + 1)(20.25𝜒 + 20.25𝜍 − 10.125𝜁)

Γ (𝛼 + 1) Γ(2𝛼 + 1)
 

+40.5𝜒 + 40.5𝜍 − 20.25𝜁,  

𝑓5 = 𝜒

(

 
 
−182.25 −

22.78125Γ(4𝛼 + 1) Γ(2𝛼 + 1)

Γ(𝛼 + 1)3 Γ(3𝛼 + 1)
−
45.5625 Γ(2𝛼 + 1)

Γ(𝛼 + 1)2

+
−
91.125 Γ(3𝛼 + 1)

Γ(2𝛼 + 1)
−
91.125 Γ(4𝛼 + 1)

Γ(3𝛼 + 1)

Γ(𝛼 + 1)
−
45.5625 Γ(4𝛼 + 1)

Γ(2𝛼 + 1)2 )

 
 
, 

ℎ5 = 𝜍

(

 
 
−182.25 −

22.78125Γ(4𝛼 + 1) Γ(2𝛼 + 1)

Γ(𝛼 + 1)3 Γ(3𝛼 + 1)
−
45.5625 Γ(2𝛼 + 1)

Γ(𝛼 + 1)2

+
−
91.125 Γ(3𝛼 + 1)

Γ(2𝛼 + 1)
−
91.125 Γ(4𝛼 + 1)

Γ(3𝛼 + 1)

Γ(𝛼 + 1)
−
45.5625 Γ(4𝛼 + 1)

Γ(2𝛼 + 1)2 )

 
 
, 

𝑔5 = 𝜁

(

 
 
−182.25 −

22.78125Γ(4𝛼 + 1) Γ(2𝛼 + 1)

Γ(𝛼 + 1)3 Γ(3𝛼 + 1)
−
45.5625 Γ(2𝛼 + 1)

Γ(𝛼 + 1)2

+
−
91.125 Γ(3𝛼 + 1)

Γ(2𝛼 + 1)
−
91.125 Γ(4𝛼 + 1)

Γ(3𝛼 + 1)

Γ(𝛼 + 1)
−
45.5625 Γ(4𝛼 + 1)

Γ(2𝛼 + 1)2 )

 
 
. 

So, the LRPS solution of the systems (4.12) and (4.13) has the following series form: 

𝑢1(𝜒, 𝜍, 𝜁, 𝑡) = −0.5𝜒 + 𝜍 + 𝜁 −
2.25

Γ(1+𝛼)
𝜒𝑡𝛼 +

2(2.25)

Γ(1+2𝛼)
(−0.5𝜒 + 𝜍 + 𝜁)𝑡2𝛼  

−
(2.25)2

Γ(1+3𝛼)
(4 +

Γ(1+2𝛼)

Γ2(1+𝛼)
)𝜒𝑡3𝛼 +

(2.25)2

Γ(1+4𝛼)
(8 +

2Γ(1+2𝛼)

Γ2(1+𝛼)
  

+
4Γ(1+3𝛼)

Γ(1+𝛼)Γ(1+2𝛼)
) (−0.5𝜒 + 𝜍 + 𝜁)𝑡4𝛼 +⋯ ,   

𝑢2(𝜒, 𝜍, 𝜁, 𝑡) = 𝜒 − 0.5𝜍 + 𝜁 −
2.25

Γ(1 + 𝛼)
𝜍𝑡𝛼 +

2(2.25)

Γ(1 + 2𝛼)
(𝜒 − 0.5𝜍 + 𝜁)𝑡2𝛼 

−
(2.25)2

Γ(1+3𝛼)
(4 +

Γ(1+2𝛼)

Γ2(1+𝛼)
) 𝜍𝑡3𝛼 +

(2.25)2

Γ(1+4𝛼)
(8 +

2Γ(1+2𝛼)

Γ2(1+𝛼)
  

+
4Γ(1+3𝛼)

Γ(1+𝛼)Γ(1+2𝛼)
) (𝜒 − 0.5𝜍 + 𝜁)𝑡4𝛼 +⋯,  

𝑢3(𝜒, 𝜍, 𝜁, 𝑡) = 𝜒 + 𝜍 − 0.5𝜁 −
2.25

Γ(1+𝛼)
𝜁𝑡𝛼 +

2(2.25)

Γ(1+2𝛼)
(𝜒 + 𝜍 − 0.5𝜁)𝑡2𝛼  

−
(2.25)2

Γ(1+3𝛼)
(4 +

Γ(1+2𝛼)

Γ2(1+𝛼)
) 𝜁𝑡3𝛼 +

(2.25)2

Γ(1+4𝛼)
(8 +

2Γ(1+2𝛼)

Γ2(1+𝛼)
  

+
4Γ(1+3𝛼)

Γ(1+𝛼)Γ(1+2𝛼)
) (𝜒 + 𝜍 − 0.5𝜁)𝑡4𝛼 +⋯.          (4.14) 

The sum of the series in Eq (4.14) at 𝛼 = 1 has the following rational forms: 
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𝑢1(𝜒, 𝜍, 𝜁, 𝑡) =
−0.5𝜒+𝜍+𝜁−2.25𝜒𝑡

1−2.25𝑡2
,         

𝑢2(𝜒, 𝜍, 𝜁, 𝑡) =
𝜒−0.5𝜍+𝜁−2.25𝜍𝑡

1−2.25𝑡2
,         

𝑢3(𝜒, 𝜍, 𝜁, 𝑡) =
𝜒+𝜍−0.5𝜁−2.25𝜁𝑡

1−2.25𝑡2
.      (4.15) 

The behavior of the velocity field of the Three-DT-FNSEs (4.12) and (4.13) is depicted in 

Figure 5 for various values of 𝛼 at 𝑡 = 0.1 and 𝜁 = 3. The 10th-truncated series of Eq (4.10) is 

plotted in Figure 5(a-c) for 𝛼 = 0.6, 𝛼 = 0.8 and 𝛼 = 1, respectively, whereas, the exact solution 

at 𝛼 = 1  is plotted in (d). The graphics indicate consistency in the behavior of the solution at 

various values of 𝛼, as well as the agreement of the exact solution with the approximate solution 

in Figure 5(c,d). 

Figure 5. The 3D surfaces plot of the 10th approximate solutions of 𝑢1, 𝑢2 , and 𝑢3  at 

various values of 𝛼 and 𝑡 = 0.5 & 𝜁 = 3 for the problem in Example 4.3. (a) 𝛼 = 0.6, (b) 

𝛼 = 0.8, (c) 𝛼 = 1, (d) 𝛼 = 1 (Exact solutions). 
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5. Mathematical reviews 

This article presents the LRPSM in a new scheme. We proposed the method and used it to solve 

the M-DT-FNS system. In the following, we state the advantages of using the presented method and 

the disadvantages of treating the M-DT-FNS. 

5.1 Advantages of the method 

1) The method is simple to apply to solve linear and non-linear FPDE compared to other 

techniques, other power series methods are based on finding derivatives and the calculations 

are usually complex, but LRPSM mainly depends on computing the limit at infinity which is 

much easier. 

2) The proposed method is applicable in finding approximate solutions for physical applications, 

and in finding many terms of the analytical series solutions. 

3) The method is accurate and gives approximate solutions close to the exact ones. 

5 2 Disadvantages of the method 

LRPSM needs first to find the LT of the target equations and finally to run the inverse LT to obtain 

the solution in the original space. So, if we have nonhomogeneous equations, the source functions need 

to be piecewise continuous and of exponential order, and after the computations, the inverse LT must 

exist. 

6. Conclusions 

In this article, we have introduced the LRPSM in a new scheme and simplified the technique to 

present series solutions for the M-DT-FNS system in the sense of the Caputo derivative. It is worth 

noting here that we obtained a general formula for an analytic solution of M-DT-FN, which other 

researchers have not previously obtained by other methods. We tested three examples by solving them 

in the proposed technique and then analyzing the results. In the future, we will use LRPSM to solve 

more problems and make new modifications to address the flaws of the presented technique. 
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