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Abstract: We consider saddle point problem and proposed an updating QR factorization technique
for its solution. In this approach, instead of working with large system which may have a number of
complexities such as memory consumption and storage requirements, we computed QR factorization of
matrix A and then updated its upper triangular factor R by appending the matrices B and

(
BT −C

)
to

obtain the solution. The QR factorization updated process consisting of updating of the upper triangular
factor R and avoid the involvement of orthogonal factor Q due to its expensive storage requirements.
This technique is also suited as an updating strategy when QR factorization of matrix A is available and
it is required that matrices of similar nature be added to its right end or at bottom position for solving
the modified problems. Numerical tests are carried out to demonstrate the applications and accuracy
of the proposed approach.
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1. Introduction

Saddle point problems occur in many scientific and engineering applications. These applications
inlcudes mixed finite element approximation of elliptic partial differential equations (PDEs) [1–3],
parameter identification problems [4, 5], constrained and weighted least squares problems [6, 7],
model order reduction of dynamical systems [8, 9], computational fluid dynamics (CFD) [10–12],
constrained optimization [13–15], image registration and image reconstruction [16–18], and optimal
control problems [19–21]. Mostly iterative solvers are used for solution of such problem due to its
usual large, sparse or ill-conditioned nature. However, there exists some applications areas such as
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optimization problems and computing the solution of subproblem in different methods which requires
direct methods for solving saddle point problem. We refer the readers to [22] for detailed survey.

The Finite element method (FEM) is usually used to solve the coupled systems of differential
equations. The FEM algorithm contains solving a set of linear equations possessing the structure of
the saddle point problem [23, 24]. Recently, Okulicka and Smoktunowicz [25] proposed and analyzed
block Gram-Schmidt methods using thin Householder QR factorization for solution of 2 × 2 block
linear system with emphasis on saddle point problems. Updating techniques in matrix factorization is
studied by many researchers, for example, see [6, 7, 26–28]. Hammarling and Lucas [29] presented
updating of the QR factorization algorithms with applications to linear least squares (LLS) problems.
Yousaf [30] studied QR factorization as a solution tools for LLS problems using repeated partition
and updating process. Andrew and Dingle [31] performed parallel implementation of the QR
factorization based updating algorithms on GPUs for solution of LLS problems. Zeb and Yousaf [32]
studied equality constraints LLS problems using QR updating techniques. Saddle point problems
solver with improved Variable-Reduction Method (iVRM) has been studied in [33]. The analysis of
symmetric saddle point systems with augmented Lagrangian method using Generalized Singular
Value Decomposition (GSVD) has been carried out by Dluzewska [34]. The null-space approach was
suggested by Scott and Tuma to solve large-scale saddle point problems involving small and non-zero
(2,2) block structures [35].

In this article, we proposed an updating QR factorization technique for numerical solution of saddle
point problem given as

Mz = f ⇔
(

A B
BT −C

) (
x
y

)
=

(
f1

f2

)
, (1.1)

which is a linear system where A ∈ Rp×p, B ∈ Rp×q (q ≤ p) has full column rank matrix, BT represents
transpose of the matrix B, and C ∈ Rq×q. There exists a unique solution z = (x, y)T of problem (1.1) if
2 × 2 block matrix M is nonsingular. In our proposed technique, instead of working with large system
having a number of complexities such as memory consumption and storage requirements, we
compute QR factorization of matrix A and then updated its upper triangular factor R by appending B
and

(
BT −C

)
to obtain the solution. The QR factorization updated process consists of updating of

the upper triangular factor R and avoiding the involvement of orthogonal factor Q due to its expensive
storage requirements [6]. The proposed technique is not only applicable for solving saddle point
problem but also can be used as an updating strategy when QR factorization of matrix A is in hand
and one needs to add matrices of similar nature to its right end or at bottom position for solving the
modified problems.

The paper is organized according to the following. The background concepts are presented in
Section 2. The core concept of the suggested technique is presented in Section 3, along with a
MATLAB implementation of the algorithm for problem (1.1). In Section 4 we provide numerical
experiments to illustrate its applications and accuracy. Conclusion is given in Section 5.

2. Background study

Some important concepts are given in this section. These concepts will be used further in our main
Section 3.
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The QR factorization of a matrix S ∈ Rp×q is defined as

S = QR, Q ∈ Rp×p, R ∈ Rp×q, (2.1)

where Q is an orthogonal matrix and R is an upper trapezoidal matrix. It can be computed using Gram
Schmidt orthogonalization process, Givens rotations, and Householder reflections.

The QR factorization using Householder reflections can be obtained by successively pre-multiplying
matrix S with series of Householder matrices Hq · · ·H2H1 which introduces zeros in all the subdiagonal
elements of a column simultaneously. The H ∈ Rq×q matrix for a non-zero Householder vector u ∈ Rq

is in the form
H = Iq − τuuT , τ =

2
uT u

. (2.2)

Householder matrix is symmetric and orthogonal. Setting

u = t ± ‖t‖2 e1, (2.3)

we have
Ht = t − τuuT t = ∓αe1, (2.4)

where t is a non-zero vector, α is a scalar, ‖·‖2 is the Euclidean norm, and e1 is a unit vector.
Choosing the negative sign in (2.3), we get positive value of α. However, severe cancellation error

can occur if α is close to a positive multiple of e1 in (2.3). Let t ∈ Rq be a vector and t1 be its first
element, then the following Parlett’s formula [36]

u1 = t1 − ‖t‖2 =
t2
1 − ‖t‖

2
2

t1 + ‖t‖2
=
−(t2

2 + · · · + t2
n)

t1 + ‖t‖2
,

can be used to avoid the cancellation error in the case when t1 > 0. For further details regarding QR
factorization, we refer to [6, 7].

With the aid of the following algorithm, the Householder vector u required for the Householder
matrix H is computed.

Algorithm 1 Computing parameter τ and Householder vector u [6]
Input: t ∈ Rq

Output: u, τ
σ = ‖t‖22
u = t, u(1) = 1
if (σ = 0) then
τ = 0

else
µ =

√
t2
1 + σ

end if
if t1 ≤ 0 then

u(1) = t1 − µ

else
u(1) = −σ/(t1 + µ)

end if
τ = 2u(1)2/(σ + u(1)2)
u = u/u(1)
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3. Solution procedure

We consider problem (1.1) as
Mz = f ,

where

M =

(
A B
BT −C

)
∈ R(p+q)×(p+q), z =

(
x
y

)
∈ Rp+q, and f =

(
f1

f2

)
∈ Rp+q.

Computing QR factorization of matrix A, we have

R̂ = Q̂T A, d̂ = Q̂T f1, (3.1)

where R̂ ∈ Rp×p is the upper triangular matrix, d̂ ∈ Rp is the corresponding right hand side (RHS)
vector, and Q̂ ∈ Rp×p is the orthogonal matrix. Moreover, multiplying the transpose of matrix Q̂ with
matrix Mc = B ∈ Rp×q, we get

Nc = Q̂T Mc ∈ R
p×q. (3.2)

Equation (3.1) is obtained using MATLAB build-in command qr which can also be computed by
constructing Householder matrices H1 . . .Hp using Algorithm 1 and applying Householder QR
algorithm [6]. Then, we have

R̂ = Hp . . .H1A, d̂ = Hp . . .H1 f1,

where Q̂ = H1 . . .Hp and Nc = Hp . . .H1Mc. It gives positive diagonal values of R̂ and also economical
with respect to storage requirements and times of calculation [6].

Appending matrix Nc given in Eq (3.2) to the right end of the upper triangular matrix R̂ in (3.1), we
get

Ŕ =
[

R̂(1 : p, 1 : p) Nc(1 : p, 1 : q)
]
∈ Rp×(p+q). (3.3)

Here, if the factor Ŕ has the upper triangular structure, then Ŕ = R̄. Otherwise, by using Algorithm 1
to form the Householder matrices Hp+1 . . .Hp+q and applying it to Ŕ as

R̄ = Hp+q . . .Hp+1Ŕ and d̄ = Hp+q . . .Hp+1d̂, (3.4)

we obtain the upper triangular matrix R̄.
Now, the matrix Mr =

(
BT −C

)
and its corresponding RHS f2 ∈ R

q are added to the R̄ factor and
d̄ respectively in (3.4)

R̄r =

(
R̄(1 : p, 1 : p + q)

Mr(q : p + q, q : p + q)

)
and d̄r =

(
d̄(1 : p)
f2(1 : q)

)
.

Using Algorithm 1 to build the householder matrices H1 . . .Hp+q and apply it to R̄r and its RHS d̄r, this
implies

R̃ = Hp+q . . .H1

(
R̄
Mr

)
, d̃ = Hp+q . . .H1

(
d̄
f2

)
.

Hence, we determine the solution of problem (1.1) as z̃ = backsub(R̃, d̃), where backsub is the
MATLAB built-in command for backward substitution.
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The algorithmic representation of the above procedure for solving problem (1.1) is given in
Algorithm 2.

Algorithm 2 Algorithm for solution of problem (1.1)
Input: A ∈ Rp×p, B ∈ Rp×q, C ∈ Rq×q, f1 ∈ R

p, f2 ∈ R
q

Output: z̃ ∈ Rp+q

[Q̂, R̂] = qr(A), d̂ = Q̂T f1, and Nc = Q̂T Mc

R̂(1 : p, q + 1 : p + q) = Nc(1 : p, 1 : q)
if p ≤ p + q then

R̄ = triu(R̂), d̄ = d̂
else

for m = p − 1 to min(p, p + q) do
[u, τ, R̂(m,m)] = householder(R̂(m,m), R̂(m + 1 : p,m))
W = R̂(m,m + 1 : p + q) + uT R̂(m + 1 : p,m + 1 : p + q)
R̂(m,m + 1 : p + q) = R̂(m,m + 1 : p + q) − τW
if m < p + q then

R̂(m + 1 : p,m + 1 : p + q) = R̂(m + 1 : p,m + 1 : p + q) − τuW
end if
d̄(m : p) = d̂(m : p) − τ

(
1
u

) (
1 uT

)
d̂(m : p)

end for
R̄ = triu(R̂)

end if
for m = 1 to min(p, p + q) do

[u, τ, R̄(m,m)] = householder(R̄(m,m),Mr(1 : q,m))
W1 = R̄(m,m + 1 : p + q) + uT Mr(1 : q,m + 1 : p + q)
R̄(m,m + 1 : p + q) = R̄(m,m + 1 : p + q) − τW1

if m < p + q then
Mr(1 : q,m + 1 : p + q) = Mr(1 : q,m + 1 : p + q) − τuW1

end if
d̄m = d̄(m)
d̄(m) = (1 − τ)d̄(m) − τuT f2(1 : q)
f3(1 : q) = f2(1 : q) − τud̄m − τu(uT f2(1 : q))

end for
if p < p + q then

[Q̀r, R̀r] = qr(Mr(:, p + 1 : p + q))
R̄(p + 1 : p + q, p + 1 : p + q) = R̀r

f3 = Q̀T
r f2

end if
R̃ = triu(R̄)
d̃ = f3

z̃ = backsub
(
R̃(1 : p + q, 1 : p + q), d̃(1 : p + q)

)
AIMS Mathematics Volume 8, Issue 1, 1672–1681.
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4. Numerical experiments

To demonstrate applications and accuracy of our suggested algorithm, we give several numerical
tests done in MATLAB in this section. Considering that z = (x, y)T be the actual solution of the
problem (1.1) where x = ones(p, 1) and y = ones(q, 1). Let z̃ be our proposed Algorithm 2 solution.
In our test examples, we consider randomly generated test problems of different sizes and compared
the results with the block classical block Gram-Schmidt re-orthogonalization method (BCGS2) [25].
Dense matrices are taken in our test problems. We carried out numerical experiments as follow.

Example 1. We consider

A =
A1 + A′1

2
, B = randn(′state′, 0), and C =

C1 + C′1
2

,

where randn(′state′, 0) is the MATLAB command used to reset to its initial state the random number
generator; A1 = P1D1P′1, C1 = P2D2P′2, P1 = orth(rand(p)) and P2 = orth(rand(q)) are randomly
orthogonal matrices, D1 = logspace(0,−k, p) and D2 = logspace(0,−k, q) are diagonal matrices
which generates p and q points between decades 1 and 10−k respectively. We describe the test matrices
in Table 1 by giving its size and condition number κ. The condition number κ for a matrix S is defined
as κ(S ) = ‖S ‖2

∥∥∥S −1
∥∥∥

2
. Moreover, the results comparison and numerical illustration of backward error

tests of the algorithm are given respectively in Tables 2 and 3.

Table 1. Test problems description.

Problem size(A) κ(A) size(B) κ(B) size(C) κ(C)
(1) 16×16 1.0000e+05 16×9 6.1242 9×9 1.0000e+05
(2) 120×120 1.0000e+05 120×80 8.4667 80×80 1.0000e+05
(3) 300×300 1.0000e+06 300×200 9.5799 200×200 1.0000e+06
(4) 400×400 1.0000e+07 400×300 13.2020 300×300 1.0000e+07
(5) 900×900 1.0000e+08 900×700 15.2316 700×700 1.0000e+08

Table 2. Numerical results.

Problem size(M) κ(M) ‖z−z̃‖2
‖z‖2

‖z−zBCGS 2‖2
‖z‖2

(1) 25×25 7.7824e+04 6.9881e-13 3.3805e-11
(2) 200×200 2.0053e+06 4.3281e-11 2.4911e-09
(3) 500×500 3.1268e+07 1.0582e-09 6.3938e-08
(4) 700×700 3.5628e+08 2.8419e-09 4.3195e-06
(5) 1600×1600 2.5088e+09 7.5303e-08 3.1454e-05
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Table 3. Backward error tests results.

Problem ‖M−Q̃R̃‖F
‖M‖F

∥∥∥I − Q̃T Q̃
∥∥∥

F
(1) 6.7191e-16 1.1528e-15
(2) 1.4867e-15 2.7965e-15
(3) 2.2052e-15 4.1488e-15
(4) 2.7665e-15 4.9891e-15
(5) 3.9295e-15 6.4902e-15

The relative errors for the presented algorithm and its comparison with BCGS2 method in Table 2
showed that the algorithm is applicable and have good accuracy. Moreover, the numerical results for
backward stability analysis of the suggested updating algorithm is given in Table 3.

Example 2. In this experiment, we consider A = H where H is a Hilbert matrix generated with
MATLAB command hilb(p). It is symmetric, positive definite, and ill-conditioned matrix. Moreover,
we consider test matrices B and C similar to that as given in Example 1 but with different dimensions.
Tables 4–6 describe the test matrices, numerical results and backward error results, respectively.

Table 4. Test problems description.

Problem size(A) κ(A) size(B) κ(B) size(C) κ(C)
(6) 6×6 1.4951e+07 6×3 2.6989 3×3 1.0000e+05
(7) 8×8 1.5258e+10 8×4 2.1051 4×4 1.0000e+06
(8) 12×12 1.6776e+16 12×5 3.6108 5×5 1.0000e+07
(9) 13×13 1.7590e+18 13×6 3.5163 6×6 1.0000e+10
(10) 20×20 2.0383e+18 20×10 4.4866 10×10 1.0000e+10

Table 5. Numerical results.

Problem size(M) κ(M) ‖z−z̃‖2
‖z‖2

‖z−zBCGS 2‖2
‖z‖2

(6) 9×9 8.2674e+02 9.4859e-15 2.2003e-14
(7) 12×12 9.7355e+03 2.2663e-13 9.3794e-13
(8) 17×17 6.8352e+08 6.8142e-09 1.8218e-08
(9) 19×19 2.3400e+07 2.5133e-10 1.8398e-09
(10) 30×30 8.0673e+11 1.9466e-05 1.0154e-03

Table 6. Backward error tests results.

Problem ‖M−Q̃R̃‖F
‖M‖F

∥∥∥I − Q̃T Q̃
∥∥∥

F
(6) 5.0194e-16 6.6704e-16
(7) 8.4673e-16 1.3631e-15
(8) 7.6613e-16 1.7197e-15
(9) 9.1814e-16 1.4360e-15
(10) 7.2266e-16 1.5554e-15
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From Table 5, it can bee seen that the presented algorithm is applicable and showing good accuracy.
Table 6 numerically illustrates the backward error results of the proposed Algorithm 2.

5. Conclusions

In this article, we have considered the saddle point problem and studied updated of the
Householder QR factorization technique to compute its solution. The results of the considered test
problems with dense matrices demonstrate that the proposed algorithm is applicable and showing
good accuracy to solve saddle point problems. In future, the problem can be studied further for sparse
data problems which are frequently arise in many applications. For such problems updating of the
Givens QR factorization will be effective to avoid unnecessary fill-in in sparse data matrices.
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