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1. Introduction  

Architects, astronomers, and statisticians all find nonlinear models to be incredibly intriguing 
since so many real-world physical structures are fundamentally nonlinear. Nonlinear equations provide 
access to intriguing phenomena like Chaos while being challenging to investigate. In fact, even simple 
nonlinear dynamical frameworks can exhibit peculiar behavior, the so-called deterministic Chaos. 
Because chaos may also exist inside irrelevant arrangements, the chaos theory has been so astounding. 
We must now acknowledge that “Chaos” isn't really described. The most common definition of 
disordered elements is those elements that are begun by regular dynamical circumstances but have 
comparative or undefinable orientations from certain stochastic measures [1,2]. 

In the past 30 years, there has been a significant increase in the interesting nonlinear 
phenomenon known as chaos. It is useful or has extraordinary promise in a wide range of domains, 
including biomedical design, secure correspondence, information encryption, and stream components 
[Chen and Yu, 2003]. Complex dynamical practices in a disordered framework have unusual features, 
such as an extreme affectivity to minute variations in starting circumstances or constrained phase 
space directions. Despite this fact, synchronization and management of disorganized frameworks 
have attracted a wide range of research throughout time [3–5]. 

Notably, Chaos cannot occur continuously inside all-out orders of three or less. This attestation 
is predicated on conventional notions of order, such as a few states in a framework or the full 
spectrum of various separations or reconciliations in the framework. In fact, three differential 
conditions incorporating the non-numerical derivative may be used to classify the framework 
configuration. To comprehend this fact, we might investigate the dynamical model of partial order in 
the framework. The incomplete order was offered by Hartley et al. [6]. Partial frameworks were first 
introduced in [7] together with Chua's framework, the fragmentary order cell brain system, and the 
order turbulence frameworks were shown in several other studies (for example [8–16]). 

Each of these instances saw the Chaos being presented in a framework with fewer than three 
full queries. This idea gave rise to Chua's framework, which created a further jumbled request. 
Additionally, the phrase “framework request” should be mentioned. If we consider the PDEs, the 
framework order is not equal to the number of differential equations. The framework order equates to 
a most elevated offshoot of the numerical model's fragmented differential equation. 

Then again, fractional calculus, as speculation of integral order integration and differentiation to 
its non-integer (fragmentary) order partner, has ended up being an important device in the 
demonstrating of numerous physical marvels [17,18]. This numerical phenomenon permits to depiction 
of a genuine article more precisely than the old-style whole number techniques. Fractional derivatives 
give an incredible instrument to portraying frameworks with long haul memory [19–22], nonlocal 
spatial [23], and fractal properties [24]. The focal points of the fragmentary request frameworks are 
given degrees of opportunity in the model, and a “memory” is remembered for the model [25]. 

Consideration of fragmented order frameworks has recently emerged as an active research area. 
Fractional order frameworks' perplexing components have recently attracted a lot of attention. As 
hypotheses of several significant frameworks, it has been shown that incomplete request frameworks 
may also function loudly [26,27]. It has also been mentioned that some fragmentary request 
frameworks can offer confused attractors with an order under 3. Furthermore, other studies 
demonstrate that chaotic fragmented order frameworks may also be synced [28–30]. 

Due to its successful usage in several scientific disciplines, including statistics, applied 
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mathematics, dynamics, mathematical biology, control theory, optimization, and chaos theory, 
fractional analysis has recently gained appeal as a topic of study. New derivative and integral 
operators are being defined at a rapid rate in fractional analysis. Kao et al. [31] studied 
Mittag-Leffler synchronization of delayed fractional memristor neural networks via adaptive control 
while Li et al. [32] investigated Mittag-Leffler stability of fractional-order nonlinear differential 
systems with state-dependent delays. Using the ideas of fractional derivatives, several new findings 
have been put out by scholars in many domains [33–37]. 

The scope of this paper is to apply the time-fractional Caputo and Caputo-Fabrizio fractional 
derivatives to the nonlinear chaotic systems of the Chua type. A comparison between the chaotic 
behavior of systems with differential operators of integer order and systems with fractional 
differential operators is carried out by using a numerical study of the mathematical models. Even if 
the classical Chua's circuit with chaotic behavior is largely studied, our generalization can highlight 
new aspects of system behavior and the effects of memory on the evolution of the chaotic 
generalized circuit. 

2. A brief summary of Caputo and Caputo-Fabrizio derivatives  

Fractional calculus generalizes the integration and differentiation operator to non-integer order 
operators. 

2.1.  Caputo-derivative  

Definition 1. Function :[0, ] [0, 1] ,k R    

; 0 1,
( , ) (1 )

( ); 1,

t
k t

t




 

 


   

 

         (1) 

where ( )   is Euler’s integral of the second kind and ( )   is Dirac’s distribution is called Caputo 
kernel. It is easy to see that the function from the LT ( , )k t   is given by  

   1

0

( , ) ( ) ( , ) ( , ) ; [0,1],stL k t s k s k t e dt s   


          (2) 

where LT= Laplace transform. 
Definition 2. For a differentiable function, ( ), [0, ], 0,f t t T T   the Caputo derivative of order   

is defined by the following operator 

 
0

( ) ( , ) ( ) ( , ) ( ) ,
t

C
tD f t k t f t k t f d                 (3) 

where 
( )

( ) .
df t

f t
dt

  
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Using the properties of LT and Eqs (2) and (3), the LT of Cd is 

         1 1( ) ( , ) ( ) ( ) ( ) [ ( ) (0)] ( ) (0).C
tL D f t L k t s L f t s s sf s f s f s s f             (4) 

Definition 3. Function :[0, ] [0,1] ,p R    

1

( ); 0,

( , )
; 0 1,

( )

t

p t t
 









   

 

is called Riemann-Lioville kernel. 
Definition 4. For an inferable function ( ), [0, ], 0,f t t T T   the Riemann Liouville fractional 

integral operator of order   is defined as  

 
0

( ) ( , ) ( ) ( , ) ( ) .
t

tJ f t p t f t p t f d               (5) 

Hence, LT of (5) is  

  ( ) ( ).tL J f t s f s          (6) 

The following properties are useful. 
Properties: 

(1)  0

0

( ) ( ,0) ( ) ( ) ( ) (0),
t

C
tD f t k t f t f d f t f                 (7) 

(2)  1 ( )
( ) ( ,1) ( ) ( ) ( ) ,C

t

df t
D f t k t f t t f t

dt
                 (8) 

(3)  0 ( ) ( ,0) ( ) ( ) ( ) ( ),tJ f t p t f t t f t f t                (9) 

(4)  1

0

( ) ( ,1) ( ) ( ) ,
t

tJ f t p t f t f d                  (10) 

(5)    ( ) ( ); ( ) ( ) (0).C C
t t t tD J f t f t J D f t f t f                (11) 

Proof: 

            1( ) ( ) (0) ( ) ( ) ( ) .C
t t t t tL D J f t s L J f t s J f s L J f t s s f s L f t                

Applying the inverse operator L-1, we obtain   ( ) ( ).C
t tD J f t f t    

In the same way, the second relation (11) is obtained. 
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2.2. Caputo-Fabrizio derivative  

Definition 5. Function :[0, ] [0,1] ,w R    

11
; 0 1,

( , ) 1
( ); 1,

e
w t

t


  

 





  

 

        (12) 

is called Caputo-Fabrizio kernel.  

The LT of function ( , )w t   is 

  1
( , ) ( , ) , [0,1].

(1 )
L w t w s

s
  

 
  

 
       (13) 

Definition 6. For a differentiable function ( ), [0, ], 0,f t t T T   Caputo-Fabrizio derivative of 

order   is given by  

 
0

( ) ( , ) ( ) ( , ) ( ) ,
t

CF
tD f t w t f t w t f d                (14) 

from (13) and (14) it is obtained the LT of Caputo-Fabrizio derivative 

         ( ) (0)
( ) ( , ) ( ) ( ) ( ) .

(1 )
CF

t

sf s f
L D f t L w t s L f t s

s
 

 


 
 

     (15) 

The fractional integral operator of order [0,1]   associated with the CFD (14) is  

 
0

( ) (1 ) ( ) ( ) .
t

tI f t f t f d               (16) 

The LT of the operator (16) is  

   (1 )
( ) ( ).t

s
L I f t f s

s
   

        (17) 

Operators defined by (14) and (16) have the listed features: 

(1)  0 ( ) 1 ( ) ( ) (0),CF
tD f t f t f t f                 (18) 

(2)  1 ( )
( ) ( ,1) ( ) ( ) ( ) ,CF

t

df t
D f t w t f t t f t

dt
                 (19) 
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(3)    0 1

0

( ) ( ); ( ) ( ) ,
t

t tI f t f t I f t f d                 (20) 

(4)   ( ) ( ) (0).CF
t tI D f t f t f                   (21) 

Proof: 

       (1 ) (1 ) ( ) (0) 1
( ) ( ) ( ) (0) ( ) (0) .

(1 )
CF CF

t t t

s s sf s f
L I D f t L D f t f s f L f t f

s s s s
     

 
    

     
 

 

Applying the inverse Laplace transform, we have (21). 

2.3. Numerical approximations of fractional operators 

For this section, we give the approximate formulas for the operators defined in previous 
sections. For the domain of time, [0, ], 0,T T   we consider a uniform discretization by points 

,nt nh 0,1,..., ,n N here 
T

h
N

  is the step-size of time discretization. For 1[ , ],j jt t   

0,1,..., 1j N  , the following approximations will be accepted.  

1 1

1 1
( ) ( ) ( ) , ( ) ( ) ( ) .

2 j j j jf f t f t f f t f t
h

           
       (22) 

a) Fractional Caputo derivative  

 
1

1

1

00

1 1
1

1
0 0

( ) ( )1
( ) ( ) ( )

(1 ) (1 )

( ) ( )
( ) ,

(1 )

jn

j

j

j

tt n
C n

t n n
j t

tn n
j j

n nj j j
j jt

t f
D f t t f d d

f t f t
t d a f f

h


 



    
 

 











 
 


 


   
   

         

 

 



    (23) 

where 

1 1 1,2,..., ,
0,1,..., 1,( ), ( ) ( ) , (0,1).

(2 )
n N

j j nj j n

h
f f t a n j n j


  




  

          
   (24) 

Similarly, we obtain  
b) Fractional integral Riemann-Liouville operator 

 
1

1
0

( ) ,
n

t n nj j j
j

J f t b f f





           (25) 

where 
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1,2,..., ,
0,1,..., 1,( ) ( 1) , (0,1).

2 (1 )
n N

nj j n

h
b n j n j


  



         

 

c) Fractional Caputo- Fabrizio derivative  

 
1

1
0

( ) ,
n

t n nj j j
j

J f t c f f





           (26) 

where 

1,2,..., ,
0,1,..., 1,

1
exp ( 1) exp ( ) , (0,1).

1 1
n N

nj j n

h h
c n j n j

h

  
  


 

                  
 

d) Fractional integral operator associated with Caputo-Fabrizio derivative  

 
1

0 1 1
0

2(1 ) 2(1 )
( ) (1 ) ; 1,2,..., , [0,1].

2 2

n

t n j j
j

h h
I f t f f f n N     






          
  (27) 

3. Generalized Chua’s systems  

Classical Chua’s oscillator is an electronic circuit that can exhibit nonlinear dynamical 
phenomena such Chaos. Such a circuit is presented in Figure 1, where 1 2,C C  are the capacitors 1L  

is the introduced coil and (NR) is the nonlinear resistor [38]  
The equations give the mathematical model  

 

 

 

1 1
2 1 1 1 1 1

1 1

2 1
1 1 2 1 1

1 2

1
2 1 1

1 1

( ) 1
( ) ( ) ( ( )) ,

( ) 1
( ) ( ) ( ) ,

( ) 1
( ) ( ) ,L

dV t
GV t GV t V t

dt C

dV t
GV t GV t I t

dt C

dI t
V t R I t

dt L




   



   



   


     (28) 

where 
2

1
,G

R
    

1( )I t  = current  

1 1 2 1( ), ( )V t V t = voltages  

capacitors = 1 2andC C ,  

and 1 1( ( ))V t  = nonlinear resistor as shown in Figure 2,  

and also described as 

 1 1 1 1 1 1 1 1

1
( ( )) ( ) ( ) ( ) ( ) ,

2b a b p pV t G V t G G V t B V t B            (29) 
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where 0, 0a bG G   are appropriate constants and pB  is the breakpoint voltage of the diode. 

 

Figure 1. Graphically abstract. 

 

Figure 2. Graphically abstract. 

Introducing the non-dimensional variables and functions  

1 2 1
1 2 3 0 1

2

2 2 2
2

1 1 1

, , , , , ,

, .

a b

p p p

L

G GV V GtI
X X X t m m

B B B G C G G

C C C R

C L G L G
  

     

  
    (30) 

Equstions (28) and (29) become 
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1
1 2 1

2
1 2 3

3
2 3

( )
( ) ( ) ( ( )),

( )
( ) ( ) ( ),

( )
( ) ( ),

dX t
X t X t X t

dt
dX t

X t X t X t
dt

dX t
X t X t

dt

 

 

    

   

   

       (31) 

where  

 1
1 1 1 0 1 1 1

( ( )) 1
( ( )) ( ) ( ) ( ) 1 ( ) 1 .

2p

V t
X t m X t m m X t X t

B G

           (32) 

3.1. Fractional-order Chua’s system with power-law kernel of memory  

This section considers Chua’s generalized system highlighted by the fractional differential 
equations with time-fractional Caputo derivative. 

Such type systems are given by 

1 1 2 1( ) ( ) ( ) ( ( )),C
tD X t X t X t X t              (33) 

2 1 2 3( ) ( ) ( ) ( ),C
tD X t X t X t X t             (34) 

3 2 3( ) ( ) ( ), 0 1.C
tD X t X t X t                (35) 

To determine numerical solutions of the system (33)–(35) with the original conditions 

0
1 1(0) ,X X 0 0

2 2 3 3(0) , (0) ,X X X X         (36) 

we will use numerical approximations given in the previous sections. 

Multiplying Eq (34) by   and adding by (35), we get 

2 3 1 2( ) ( ) ( ) ( ) ( ).C C
t tD X t D X t X t X t              (37) 

Applying the fractional integral operator ( )tJ    to Eq (37) and using the property (11), we obtain 

0 0
3 2 3 2 1 2( ) ( ) ( ) ( ) ( ).t tX t X X X t J X t J X t                (38) 

Replacing Eq (38) into (34), we obtain the following system for the unknown functions 1( )X t  and 

2 ( )X t : 
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1 1 2 1( ) ( ) ( ) ( ( )),C
tD X t X t X t X t              (39) 

0 0
2 1 2 2 3 2 1 2( ) ( ) ( ) ( ) ( ) ( ) ( ).C

t t tD X t X t X t X X X t J X t J X t                (40) 

Let T  be a positive number and [0, ]t T . We consider a uniform discretization of the interval 

[0, ]T  with the points , 0,1,2,..., , .n

T
t nh n N h

N
    

For a function ( ),t  values into discretization points nt  will be denoted by ( ) .n
nt   

Applying the operator ( )tJ    to Eq (39), we get 

0
1 1 1 2 1( ) ( ) ( ) ( ( )).t t tX t X J X t J X t J X t               (41) 

For the last term, we have 

1

1

1
1 1

1 1 1
00

1 1
1 1

1
0 0

1 1
( ( )) ( ) ( ( )) ( ) ( ( ))

( ) ( )

( ( ))
( ) 2 ( ).

( )

jn

n
j

j

j

tt n

t nt t
j t

tn n
j j

nj
j jt

J X t t X d t X d

X t
t d b X

  



        
 


  








 




 


 

   
 

 


 

 

 (42) 

Using the approximate formulas (23), (25) and (42), Eqs (40) and (41) become 

   
1 1 1

0 1 1
1 1 1 1 2 2 1

0 0 0

2 ( ),
n n n

n j j j j j
nj nj nj

j j j

X X b X X b X X b X   
  

 

  

             (43) 

   

 

1 1
1 0 0 1

2 2 1 2 2 3 2 1 1
0 0

1
1

2 2
0

( ) , 1, 2,..., 1,

n n
j j n n n j j

nj nj
j j

n
j j

nj
j

a X X X X X X X b X X

b X X n N

  

 

 
 

 






       

    

 


    (44) 

where 

1 1( ) ( 1) ; ( ) ( 1) .
(2 ) 2 (1 )nj nj

h h
a n j n j b n j n j

 
   

 


                   

  (45) 

Making 1n   and 0j   into Eqs (43) and (44), we obtain the system 

1 1 0 0 0
10 1 10 2 10 1 10 2 10 1 1(1 ) (1 ) 2 ( ) ,b X b X b X b X b X P             

 1 1 0 0 0 0 0
10 1 10 10 2 10 2 2 3 10 1 10 2 1(1 ) 1 ( ) ( ) ,b X a b X a X X X b X b X Q                      
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with the solution 

1 10 1 1 10 10
1 1 1

10 10 10 10

[1 ( ) ]
( ) ,

(1 ) ( ) 1

b Q P a b
X t X

a b b b

   
     

     
 

      
      (46) 

1 10 1 10 1
2 1 2

10 10 10 10

(1 ) (1 )
( ) .

(1 ) ( ) 1

b Q b P
X t X

a b b b

 
     
   

 
      

      (47) 

The systems (43) and (44) can be written in the equivalent form 

1 1 1 2(1 ) , 2,3,..., ,n n
nn nn nb X b X P n N            (48) 

   1 1 1 1 21 1 ( ) , 2,3,..., ,n n
nn nn nn nb X a b X Q n N                (49) 

where 

     
2 1

1 1 1 1
2 2 1 1 1 2 1 1

0 0

2 2 ( ),
n n

j j j j n n j
n nj nn nj

j j

P b X X X X b X X b X   
 

   


 

            (50) 

     

 

2 2
1 1 1 1

2 2 1 1 2 1 1 1 1
0 0

2
1 0 0

2 2 2 3
0

( )

( ) .

n n
j j n j j n

n nj nn nn nj nn
j j

n
j j

nj
j

Q a X X b a X b X X b X

b X X X X

   

  

 
   

  
 






       

    

 


  (51) 

Now, we obtain 

 1 1 1
1

1 1 1 1

1 ( )
, 2,3,..., ,

1 ( )
nn nn n nn nn

nn nn nn nn

a b P b Q
X n N

a a b b

   
     

  

   

    
 

      
    (52) 

   1 1
2

1 1 1 1

1 1
, 2,3,..., .

1 ( )
nn n nn nn

nn nn nn nn

b P b Q
X n N

a a b b

 
     

 

   

  
 

      
    (53) 

4. Numerical discussions and conclusion  

Under this part, we report the remedies of the proposed configuration generated from the 
nonlinear chaotic systems of the Chua type using the numerical methodology with time 
fractional-Caputo, Caputo-Fabrizio fractional derivatives and Laplace transform method in Section 2. 

This is achieved for different fractional values of .  In this computation, we considered the 
sequential available parameters 9.5, 0.15, 0.3, 14, 0.98, 0.02a b c           in the 

Caputo-Fabrizio fractional version of Chua’s cubic dynamical system. Where Chua’s cubic 
dynamical system is represented as 
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3( )x a y bx cx

y x y z

z y z 







   


   


   


         (54)
 

The numerical simulations are depicted in Figures 3 for   variation versus time parameter t. It 
is observed that the changes in proposed models are deducting but considering the different values of 
fractional parameter. Initially as well as after lager time the influence are not deducted. The Chaotic 
behaviour of   is observed. 

Figures 3–11 show numerical simulation results. The Figures 4–7, 1   when 
9.5, 0.15, 0.3, 14, 0.02a b c        . In this case, from figure 4, it is clear that the 

Caputo-Fabrizio fractional version of the equation of (54) is chaotic due to the tendency to replicate 
the scroll attractor or many chaotic cycles for a two-dimensional portrait for the x-axis and y-axis. In 
Figure 5 the two-dimensional portrait for the x-axis and z-axis is demonstrated as a diagonal chaotic 
behaviour with the tendency to replicate the scroll attractor. Similarly, Figure 6 shows the chaotic 
behaviour of the portrait with a scroll attractor of several chaotic cycles. The three-dimensional 
portrait for the x-axis, y-axis and z-axis in Figure 7 portrays the highly chaotic behaviour of the 
portrait when the Caputo-Fabrizio fractional order of Chua’s cubic dynamical system is used, and the 
validation is seen in Figure 5. The numerical simulations of 1 2( ), ( )X t X t , 1 3( ), ( )X t X t , 

2 3( ), ( )X t X t  and 1 2 3( ), ( ), ( )X t X t X t  are presented in Figures 8–11. 
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Figure 3. Numerical simulations of 1 2 3( ), ( ), ( )X t X t X t  for   variation. 
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Figure 4. xy phase plane projection. 

 

 

Figure 5. xz phase plane projection. 
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Figure 6. yz phase plane projection. 

 

Figure 7. xyz phase space projection. 
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Figure 8. Numerical simulations of 1 2( ), ( ).X t X t  

 

Figure 9. Numerical simulations of 1 3( ), ( ).X t X t  
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Figure 10. Numerical simulations of 2 3( ), ( ).X t X t  

 

Figure 11. Numerical simulations of 1 2 3( ), ( ), ( ).X t X t X t  
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5. Conclusions  

The objective of this work is to analyze the memory effects of time-fractional Caputo and 
Caputo-Fabrizio fractional derivatives nonlinear chaotic systems of the Chua type. A numerical 
analysis of the mathematical models is used to compare the chaotic behavior of systems with 
differential operators of integer order versus systems with fractional differential operators and has good 
influence. Even though the chaotic behavior of the classical Chua's circuit has been extensively 
investigated, our generalization can highlight new aspects of system behavior and the effects of 
memory on the evolution of the chaotic generalized circuit.  
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