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1. Introduction

The fractional calculus, and its application, have proved itself as an optimal method to study the
real world problems. This branch of applied analysis has been used in various domains of science,
engineering and technology [1–7]. In 2013, Bulut et al. [8] analyzed the time-fractional generalized
Burger equation and trial equations for optimizing the wave equation. He [9] presented the compact
solution in porous media for seepage flow equation in 1998. In 2020, Dubey et al. [10] examined
the fractional order computer virus propagation model. Kumar et al. [11] presented the mathematical
model for chemical system. Singh et al. [12] examined the fractional order multi-dimensional diffusion
problems.

In 2015, Ramswaroop et al. [13] presented the new computational method for a biological system
as fractional Lotka-Volterra application. Ghanbari and Kumar [14] studied a fractional order
predator-prey model with Beddington-DeAngelis functional response by using a numerical scheme.
Zhou [15] gave variation iteration method for solving Cauchy equation. A detailed analysis of Cauchy
problems have been given in several works [16–18]. Dubey et al. [19] studied fractional order
Black-Scholes European option pricing model. Recently, Maitama et al. [20,21] proposed an
integrated fractional transformation for analyzing the steady heat transfer problem. In 2019, the
Caputo-fractional differential equation is analyzed by an improved Shehu transformation by
Belgacem et al. [22]. Bokhari et al. [23] presented a novel application of the Shehu transformation for
solving Atangana-Baleanu derivatives in 2019. El-Tawil [24,25] introduced the q-homotopy analysis
method whose mechanism is based on homotopy which is generalized of the homotopy analysis
method introduced and applied by Liao [26–29]. In 2018, Noeiaghdam et al. [30] applied homotopy
analysis on a modified epidemiological model of computer viruses. In 2021, Noeiaghdam et al. [31]
approached homotopy analysis transform method for the nonlinear bio-mathematical model of
malaria infection. In 2021, Noeiaghdam et al. [32] presented a nonlinear fractional order model of
COVID-19. In 2016, Noeiaghdam et al. [33] applied homotopy analysis transform for solving Abel’s
integral equations of first kind. In 2017, Singh et al. [34] introduced an efficient method for solving
the time fractional Rosenau-Hyman equation. In 2010, Keskin et al. [35] introduced a new method
based on fractional PDE. This method is applied for reducing the domain of differential
transformation. Gupta [36] analyzed fractional Bennery-Lin equation by fractional PDE in 2011. The
key outcome of this approach is, the discreteness of approximate solutions. Srivastava et al. [37]
defined the RDTM solutions over the Caputo-time fractional order hyperbolic telegraph equation. In
recent years several methods and applied aspects for fractional calculus have been studied by many
authors [38–42].

In this paper, the time-fractional Cauchy problem is analyzed by the q-HASTA and the RDTA
over the Caputo’s sense fractional derivatives. The q-HASTA is a well coupling of the q-HAM. The
homotopical approach comprises with differential topology, the Shehu transform and the Laplace-type
integral transform [20–23]. The q-HAM [24,25] is an extension of homotopy analysis methods [26–
30]. The RDTA technique is an optimized method developed by Keskin et al. [35]. There are 3
key outcomes of this paper stated as, small parameters, compact system of equation and approximate
functional range. Thus, the proposed method is referred as the efficient and compact with respect to
time and computations. The initial equation is introduced next.
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The time fractional Cauchy differential equation as follows:

Dη
τw(ζ, τ) + δ(ζ, τ)wζ(ζ, τ) = β(ζ), 0 < η ≤ 1, τ > 0, (1.1)

w(ζ, 0) = ψ(ζ), ζ ∈ R. (1.2)

If δ(ζ, τ) = δ(constant), β(ζ) = 0 and η = 1, Eq (1.1) is called as the transport equation [16,18] that
can play crucial role in the moving of wind and the spread of AIDS. If we assume δ(ζ, τ) = w(ζ, τ),
η = 1 the Eq (1.2) is formed as the inviscid Burgers’ equation [17,18] approaches the one-dimensional
stream of particles have zero viscosity. Next, the pre-requisites are given.

2. Preliminaries

This section presents the applied notations, feature and definitions related to fractional calculus
deals with generalization of integer order derivatives and integrations.

Definition 2.1. [43] A real function £(τ), τ > 0 is said to be in the space Cυ, υ ∈ R if there exists a real
numberρ(> υ), such that £(τ) = τρβ(τ), where β(τ) ∈ C [0,∞) , and its said to be in the space Cn

υ if and
only if £(n) ∈ Cυ; n ∈ N.

Definition 2.2. If n ∈ N, n − 1 < η ≤ n, the derivative property of the Laplace transform in the Caputo
sense Dη

τ£(τ) is obtained by the Caputo [1,2] and Kilbas et al. [3] in the form

L
{
Dη
τ£(τ)

}
= sηL {£(τ)} −

n−1∑
k=0

sη−k−1£(k)(0+). (2.1)

Definition 2.3. For η > 0, £(τ) ∈ Cν, ν ≥ −1, the Riemann-Liouville fractional integral Iη£(τ) is
expressed as

Iη£(τ) =
{ 1
Γ(η)

∫ τ

0
(τ − t)η−1£(τ)dτ, η > 0, τ > 0,

£(τ), η = 0.
(2.2)

Definition 2.4. For n ∈ N, n − 1 < η ≤ n, £(τ) ∈ Cn
ν , ν ≥ −1, τ > 0, then the Caputo [1] fractional

derivative of £(τ) is illustrated as

Dη
τ£(τ) =

1
Γ(n − η)

∫ τ

0
(τ − t)n−η−1£n(τ)dt. (2.3)

Definition 2.5. The fractional derivative property of Shehu transform in the Riemann-Liouville
form, [20] if n − 1 < η ≤ n, η > 0,r = 1 + [η]and £(τ), Ir−η£(τ), d

dτ Ir−η£(τ), · · · , dr

dτr Ir−η£(τ), Dη
τ£(τ) ∈ A,

was obtained by

S [Dη£(τ)] = (
s
u

)ηS [£(τ)] −
r−1∑
k=0

( s
u

)r−k−1 dk−1

dτk−1 Ir−η£(0+). (2.4)

And the Caputo form, [21] if η > 0, r = 1 + [η]and £(τ), d
dt £(τ), · · · , dr

dtr £(τ), Dη£(t) ∈ A, was obtained
by the Caputo [1,2] as

S
[
Dη
τ£(τ)

]
= (

s
u

)ηS [£(τ)] −
r−1∑
k=0

( s
u

)r−k−1 dk−1

dτk−1 £(k)(0+). (2.5)
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Definition 2.6. Let we consider V(s, u) denote the Shehu transform of v(τ), and then the inverse Shehu
transform is given by [21]; defined as

v(τ) = S −1 [V(s, u)] = lim
p→∞

1
2πi

∫ η+iρ

η−iρ

1
u

exp
( sτ

u

)
V(s, u)ds, s > 0, u > 0. (2.6)

3. Analysis of q-HASTA

We analysis the q-HASTA for a general fractional differential equation of order η given in the
following manners:

Dη
τ w(ζ, τ) + R w(ζ, τ) + N w(ζ, τ) = κ(ζ, τ), τ > 0, n − 1 < η ≤ n, n ∈ N. (3.1)

Where Dη
τw(ζ, τ) denote the fractional Caputo derivative of w(ζ, τ), R and N are the linear and the

nonlinear differential operators respectively, κ(ζ, τ) denoted the source term.
Next, we employ the Shehu transform on Eq (3.1), we get

S [Dη
τ w] + S [Rw] + S [N w] = S [κ(ζ, τ)]. (3.2)

Using the result of Shehu transform for Caputo fractional derivative, we get

S [w] −
(u

s

)η n−1∑
k=0

sη−k−1w(k)(ζ, 0) +
(u

s

)η [
S [Rw] + S [N w] − S [κ(ζ, τ)]

]
= 0. (3.3)

We involved the nonlinear operator as

N[χ(ζ, τ ; ρ)] = S [χ(ζ, τ ; ρ)] −
(

u
s

)η ∑n−1
k=0 sη−k−1χ(k)(ζ, τ ; ρ)(0+)

+
(

u
s

)η [
S [Rχ(ζ, τ ; ρ)] + S [N χ(ζ, τ ; ρ)] − S [κ(ζ, τ)]

]
= 0.

(3.4)

Now we use the classical HAM and a homotopy equation is presented as

(1 − nρ) S [χ(ζ, τ ; ρ) − w0(ζ, τ)] = ℏ ρH(ζ, τ) N [w(ζ, τ )], (3.5)

where S is the Shehu transform operator, ρ ∈ [0, 1
n ], n ≥ 1 and ℏ , 0 are the embedding parameter and

auxiliary parameter respectively, H(ζ, τ) a non-zero auxiliary function, w0(ζ, τ) is an basis assumption
of w(ζ, τ) and χ(ζ, τ ; ρ) is a unknown real function which construct the following result

χ(ζ, τ ; ρ) =
{

w0(ζ, τ), ρ = 0,
w (ζ, τ), ρ = 1

n .
(3.6)

Consequently, as ρ goes from 0 to 1
n , the solution χ(ζ, τ ; ρ) converge from the initial guess w0(ζ, τ)

to the solution w(ζ, τ). Expressing of χ(ζ, τ ; ρ) as the Taylor’s series form with respect to ρ, as

χ(ζ, τ ; ρ) = w0(ζ, τ) +
+∞∑
m=1

wm(ζ, τ) ρm, (3.7)
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where
wm(ζ, τ) =

1
m !

∂mχ(ζ, τ ; ρ)
∂ρm

∣∣∣ρ=0. (3.8)

If we select appropriate values of the initial guess, auxiliary linear operator, the auxiliary parameter
and the auxiliary function, the series (3.7) converges at ρ = 1

n , then it provides the solutions of the
given problem Eq (3.1), in the form

w(ζ, τ) = w0(ζ, τ) +
+∞∑
m=1

wm(ζ, τ)(
1
n

)m. (3.9)

And the governing equation can be deduced from the zero deformation Eq (3.5).
Now differentiate the zero-order deformation Eq (3.5) m-times with respect to ρ and taking ρ = 0

and finally dividing them by m !, it yields

S [wm(ζ, τ) − kmwm−1(ζ, τ)] = ℏH(ζ, τ)ℜm(w⃗m−1). (3.10)

We define the vectors as

w⃗m = {w0(ζ, τ), w1(ζ, τ), w2(ζ, τ), . .., wm(ζ, τ)}. (3.11)

Taking the inverse Shehu transform on Eq (3.10), we have

wm(ζ, τ) = kmwm−1(ζ, τ) + ℏ S −1[H(ζ, τ)ℜm(w⃗m−1)], (3.12)

whereℜm(w⃗m−1) is given as

ℜm(w⃗m−1) =
1

(m − 1)!

[
∂m−1 N [χ(ζ, τ ; ρ)]

∂ρm−1

]∣∣∣∣∣∣
ρ=0

, (3.13)

and

km =

{
0 i f m ≤ 1,
n i f m > 1.

(3.14)

Finally, we solve the Eq (3.12) and we compute wm(ζ, τ) for m ≥ 1, selecting appropriate parameter ℏ
and n, we deduce the q-HASTA convergence solution series as

w(ζ, τ) = w0(ζ, τ) +
+∞∑
m=1

wm(ζ, τ)(
1
n

)m. (3.15)

Theorem 3.1. If appropriate selection of convergences control parameters ℏ , 0, n ≥ 1,and also
suitable selection of H(ζ, τ) , 0,w0(ζ, τ), in Eq (3.12) such that ∥wm+1∥ ≤

(
Φ
n

)
∥wm∥ , 0 < Φ < n, then

the solution series
∑+∞

m=0 wm(ζ, τ)(1/n)m,uniformly convergence, where ∥·∥∞ presented the appropriate
norm.

Proof. We prove that the sequence ⟨ϑm⟩
∞
m=0 , is the Cauchy sequence. Let’s assume that ϑm,is the

sequence of partially sums of ϑm =
∑m

k=0 wk(ζ, τ)(1/n)k.

By observation, we have

∥ϑm+1 − ϑm∥ = ∥wm+1∥ ≤ (Φ/n) ∥wm∥ ≤ (Φ/n)2 ∥wm−1∥ ≤ · · · ≤ (Φ/n)m+1 ∥w0∥ .
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For ∀m ≥ l, m, l ∈ N, we deduced from the above equation

∥ϑm − ϑl∥ = ∥ϑm − ϑm−1 + ϑm−1 − ϑm−2 + ϑm−2 − ϑm−3 + · · · + ϑl+1 − ϑl∥

≤ ∥ϑm − ϑm−1∥ + ∥ϑm−1 − ϑm−2∥ + ∥ϑm−2 − ϑm−3∥ + · · · + ∥ϑl+1 − ϑl ∥

≤ (Φ/n)m ∥w0∥ + (Φ/n)m−1 ∥w0∥ + (Φ/n)m−2 ∥w0∥ + · · · + (Φ/n)l+1 ∥w0∥

=
(
(Φ/n)m + (Φ/n)m−1 + (Φ/n)m−2 + · · · + (Φ/n)l+1

)
∥w0∥ ,

=
Φm+1

nm(n − Φ)
∥w0∥ .

For m, l→ ∞, and then ∥ϑm − ϑl∥ → 0. Therefore, the sequence ⟨ϑm⟩
∞
m=0 , is a Cauchy sequence, hence

convergence.
Table 1 gives the basic results of the Sehu transform.

Table 1. The basic results of the Shehu transform S [w (τ)] =
∫ ∞

0
exp

(
−sτ

u

)
w(τ) dτ ; s > 0, u > 0.

Original functions w(τ) The Shehu transformed function
S [w(τ)] = W(s, u)

1 u/s
τn; n = 0, 1, 2, 3, · · · . (u/s)n+1

exp(β(τ)) u/s − βu
cos(τ) us/s2 + u2

sin(τ) u2/s2 + u2

4. Basic idea of the reduced differential transforms algorithm (RDTA)

To demonstrate the basis analysis of the RDTA, we take a function j(ζ, τ) such as j(ζ, τ) = ε(α) ν(β).
According to the one dimension differential transform, we can be defined j(ζ, τ) such as:

j (ζ, τ) =
+∞∑
α=0

ε(α) ζα
+∞∑
β=0

ν(β) τβ =
+∞∑
α=0

+∞∑
β=0

J(α, β) ζατβ, (4.1)

where J(α, β) = ε(α) ν(β) represent the spectrum of j(ζ, τ).
The basis preliminaries and operations of the RDTA are defined below.

Definition 4.1. If j(ζ, τ) is analytical and differentiable about the ζ and time scale τ in the interest
domain, then the spectrum function [36,37]

RD[ j(ζ, τ)] =
1

Γ(kη + 1)

[
∂µ

∂τµ
j(ζ, τ)

]
τ=τ0

≈ Jµ(ζ). (4.2)

Which presented the fractional reduced transformed of j(ζ, τ) and its inverse transform of Jµ(ζ)
defined as

R−1
D [Jµ(ζ)] =

+∞∑
µ=0

Jµ(ζ) (τ − τ0)µη ≈ j (ζ, τ), (4.3)
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where RD is the reduced differential transform operator and it’s inverse operator denoted by R−1
D , [35].

From Eqs (4.2) and (4.3), we can see that

j (ζ, τ) =
+∞∑
µ=0

1
Γ(µη + 1 )

[
∂µ

∂τµ
j (ζ, τ)

]∣∣∣∣∣∣
τ=τ0

(τ − τ0)µη, (4.4)

if we set τ = 0,in above Eq (4.4), it convert to

j (ζ, τ) =
+∞∑
µ=0

1
Γ(µη + 1 )

[
∂µ

∂τµ
j (ζ, τ)

]∣∣∣∣∣∣
τ=τ0

(τ)µη. (4.5)

From the above, we noted that the reduced differential transform solution can be deduced by expansion
of the power series.

Definition 4.2. If w(ζ, τ) = R−1
D [Wµ(ζ)], p(ζ, τ) = R−1

D [Pµ(ζ)], and ∗ denote the convolution, indicate
form of the multiplication of the RDTA in fractional form. The mathematical fractional operation of
the RDTA is shown in the Table 2.

Table 2. The fundamental concepts of the RDTA.
Functions j(ζ, τ) Reduced differential transformed function

RD[ j(ζ, τ) = Jµ(ζ)
w(ζ, τ) ∗ p(ζ, τ) Wµ(ζ) ∗ Pµ(ζ) =

∑µ
ℓ=0 Wℓ(ζ) ∗ Pµ−ℓ(ζ)

c1w(ζ, τ) ± c2 p(ζ, τ) c1Wµ(ζ) ± c2Pµ(ζ)(
∂ℵη/∂τℵη

)
w(x, τ) (Γ(µη + ℵη + 1)/Γ(µη + 1)) Wµ+ℵ(ζ)

w(ζ, τ)p(ζ, τ)
∑µ

i=0 Wi(ζ)Pµ−i(ζ) =
∑µ
ℓ=0 Pℓ(ζ)Wµ−ℓ(ζ)

ζrτnw(ζ, τ) ζrWµ−n(ζ)
ζrτn ζrδ(µ − n)
eλτ λµ/Γ(µ + 1)

5. Numerical examples

Here we analysis the validities of both the proposed algorithm by series solution and graphical
representations, taking auxiliary functionH(ζ, τ) = 1. We use w = w(ζ, τ)is the function of space
coordinate ζ(ζ ∈ R)and time scale τ (τ > 0), a is arbitrary constant.

Example 1. We consider the following transpose equation [16–18] in fractional form

∂ηw
∂τη
+ a

∂w
∂ζ
= 0, (5.1)

and the initial conditions

w(ζ, 0) = w0 = ζ
2. (5.2)

Case 1: q-HASTA solution
Computing Shehu transform on Eq (5.1) with the initial condition (5.2) as

S
[
w (ζ, τ)

]
−

u
s
ζ2 +

uη

sη
S

[
a
∂w(ζ, τ)
∂ζ

]
= 0. (5.3)

AIMS Mathematics Volume 8, Issue 1, 1427–1454.



1434

We presented the nonlinear operator as

N
[
χ(ζ, τ; ρ)

]
= S

[
χ(ζ, τ; ρ)

]
−

u
s
ζ2 + a

uη

sη
S

[
∂χ(ζ, τ; ρ)

∂ζ

]
, (5.4)

and we have

ℜ (w⃗m−1) = S (w⃗m−1) − (1 −
km

n
)

u
s
ζ2 + a

uη

sη

[
∂ w⃗m−1

∂ζ

]
. (5.5)

The mth-order deformed equation is defined as

S
[
wm(ζ, τ) − kmwm−1(ζ, τ)

]
= ℏℜm(w⃗m−1). (5.6)

By using the inverse Shehu transform of Eq (5.6)

wm(ζ, τ) = kmwm−1(ζ, τ) + ℏS −1 [
ℜm(w⃗m−1)

]
. (5.7)

Simplifying the Eq (5.7), for m = 1, 2, 3, · · · , and we get

w1(ζ, τ) = 2a ζ ℏ
τη

Γ (η + 1)
,

w2(ζ, τ) = 2a ζ ℏ (ℏ + n)
τ
η

Γ (η + 1)
+ 2a2 ℏ2 τ2η

Γ (2η + 1)
,

w3(ζ, τ) = 2a ζ ℏ (ℏ + n)2 τ
η

Γ (η + 1)
+ 4a2 ℏ2 (h + n)

τ2η

Γ (2η + 1)
, (5.8)

...

And so on, the components of wm(ζ, τ),m ≥ 4, can be easily obtained. The series solution is given as

w(ζ, τ) = w0(ζ, τ) +
∞∑

m=1

wm(ζ, τ)(
1
n

)m. (5.9)

For ℏ = −1, n = 1 and η = 1 then clearly, the solution series (5.9) provides the solution and converges
to the exact solution w(ζ, τ) = ζ2 − 2aζτ + a2τ2, which is coincident to VIM [15].
Case 2: RDTA solution

We apply the RDTA to Eq (5.1), to obtain

Γ(mη + η + 1 )
Γ(mη + 1)

Wm+1 = − a
∂Wm

∂ζ
. (5.10)

Applying the RDTA with initial condition (5.2), we have

W0(ζ) = ζ2,

W1(ζ) = −2a ζ
1

Γ(η + 1)
,W2(ζ) = 2a2 1

Γ (2η + 1)
,W3(ζ) = 0 , (5.11)

...
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and so on, in this way, we found the exact solution in second terms iteration, selecting η = 1.
Using (5.11) we get the following approximations for the RDTA series solution

w(ζ, τ) =
∑3

m=0 Wm(ζ) τmη = W0(ζ) +W1(ζ) τη +W2(ζ) τ2η +W3(ζ) τ3η.

= ζ2 − 2aζ τη

Γ(η+1) + 2a2 τ2η

Γ(2η+1) .
(5.12)

Which is coincident obtained by the q-HASTA(ℏ = −1, n = 1) and VIM [15] at η = 1, ℏ = −1, n =
1, given as

w(ζ, τ) = ζ2 − 2aζτ + a2τ2. (5.13)

The numerical analysis for the approximate series solution of Eq (5.1) obtained by using the q-HASTA
& the RDTA with the exact solution (5.13) at a = 0.01 in Figures 1–5 are computed by using Maple
package.

Figure 1. The surface shows the exact solution w(ζ, τ) v/s space variable ζ and time
variable τ.

Figure 2. The surface shows the fractional order (η = 0.9), RDTA (q-HASTA, ℏ = −1, n =
1) solution w(ζ, τ) v/s space variable ζ and time variable τ.
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Figure 3. The surface represented the absolute error E3(w) =
∣∣∣wex. − wapr.

∣∣∣ v/s space variable
ζ and time variable τ at ℏ = −1, n = 1, η = 0.9.

Figure 4. Response of family of RDTA (q-HASTA, ℏ = −1, n = 1) solution w(ζ, τ) v/s time
variable τ for varies values of η at space variable ζ = 0.5.
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Figure 5. ℏ − curves depicted comparative study of q-HASTA for varies η at ζ = 0.5, τ =
0.005 and n = 1.

Example 2. The fractional nonlinear equation with variable coefficients is given as

∂ηw
∂τη
+ ζ

∂w
∂ζ
= 0, (5.14)

and the initial conditions
w (ζ, 0) = w0 = ζ

2. (5.15)

Case 1: q-HASTA solution
To solve the Eqs (5.14) and (5.15) by using the Shehu transform with the initial condition, as

S
[
w(ζ, τ)

]
−

u
s
ζ2 +

uη

sη
S

[
ζ
∂v
∂ζ

]
= 0. (5.16)

The nonlinear operator defined by

N
[
χ(ζ, τ ; ρ)

]
= S

[
χ(ζ, τ; ρ )

]
−

u
s
ζ2 +

uη

sη
S

[
ζ
∂χ(ζ, τ ; ρ )

∂ζ

]
, (5.17)

and thus

ℜ (w⃗m−1) = S (wm−1) −
(
1 −

km

n

)
u
s
ζ2 +

uη

sη

[
ζ
∂wm−1

∂ζ

]
. (5.18)

The mth-order deformed equation is given as

S
[
wm(ζ, τ) − kmwm−1(ζ, τ)

]
= ℏℜm(w⃗m−1). (5.19)
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Computing the inverse Shehu transform, we get

wm(ζ, τ) = kmwm−1(ζ, τ) + ℏL−1 [
ℜm(w⃗m−1)

]
. (5.20)

Simplifying the Eq (5.20), for m = 1, 2, 3, · · · , we get

v1(ζ, τ) = 2 ℏζ2 τη

Γ (µ + 1)
,

v2(ζ, τ) = 2ℏ (ℏ + n) ζ2 τη

Γ (η + 1)
+ 4ℏ2 ζ2 τ2η

Γ (2η + 1)
,

v3(ζ, τ) = 2ℏ (ℏ + n)2 ζ2 τη

Γ(η+1)e
ζ + 8ℏ2 (ℏ + n) ζ2 τ2η

Γ(2η+1) + 8ℏ3 ζ2 τ3η

Γ(3η+1) ,
...

(5.21)

And so on, the components of wm(ζ, τ),m ≥ 4, can be easily obtained. Therefore, the approximate
solution series given as

w(ζ, τ) = w0(ζ, τ) +
∞∑

m=1

wm(ζ, τ)
(
1
n

)m

. (5.22)

If we select ℏ = −1, n = 1 and η = 1 then clearly, we can observe that the solution series (5.22),
provide solution which is converges to the exact solution w(ζ, τ) = ζ2e−2τ.

Case 2: RDTA solution
We apply the RDTA to Eq (5.14), we obtained the following relation

Γ(mη + η + 1)
Γ(mη + 1)

Wm+1 = − ζ
∂Wm

∂ζ
. (5.23)

Using the RDTA with initial condition (5.15), we get

W0(ζ) = ζ2. (5.24)

Solve the relation (5.23) and using Eq (5.24), we deduce the following components of Wm(ζ), for
m = 0, 1, 2, 3, · · · , as

W1(ζ) = −2ζ2 1
Γ(η + 1)

,W2(ζ) = 4ζ2 1
Γ (2η + 1)

,W3(ζ) = −8ζ2 1
Γ (3η + 1)

,

W4(ζ) = 16ζ2 1
Γ (4η + 1)

, (5.25)

and so on, the components of wm(ζ, t) for m > 4 can be obtained and the RDTA approximate series
solution deduced as

w(ζ, τ) =
∞∑

m=0

Wm(ζ) τmη. = W0(ζ) +W1(ζ) τη +W2(ζ)τ2η +W3(ζ) τ3η +W4(ζ) τ4η + · · ·

= ζ2 − 2ζ2 τη

Γ(η + 1)
+ 4ζ2 τ2η

Γ (2η + 1)
− 8ζ2 τ3η

Γ (3η + 1)
+ 16ζ2 τ4η

Γ (4η + 1)
+ · · · . (5.26)
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When we select η = 1 then the series (5.26), rapidly converges to the exact solution

w(ζ, τ) = ζ2e−2τ. (5.27)

The above result (5.26) is in complete agreement with the q-HASTA (ℏ = −1, n = 1) and VIM [15] at
η = 1.

The numerical analysis for the approximate solution of Eq (5.14) obtained by using the q-HASTA
& the RDTA and the original solution (5.13) in Figures 6–10 are computed by using maple package.

Figure 6. The surface shows the exact solution w(ζ, τ) v/s space variable ζ and time
variable τ.

Figure 7. The surface shows the RDTA (q-HASTA, ℏ = −1, n = 1) solution w(ζ, τ) v/s
space variable ζ and time variable τ at η = 1.
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Figure 8. The surface represented the absolute error E4(w) =
∣∣∣wex. − wapr.

∣∣∣ v/s space
variable ζ and time variable τ at ℏ = −1, n = 1, η = 1.

Figure 9. Comprehensive study b/w exact solution, RDTA solution (ℏ = −1) and the family
of q-HASTA solutions v/s time variable τ at space variable ζ = 1.5 and n = 1.
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Figure 10. ℏ − curves for comparative study of q-HASTA for varies values of η at ζ =
1.5, τ = 0.005 and n = 1.

Example 3. Next, we take the fractional non-homogeneous equation

∂ηw
∂τη
+
∂w
∂ζ
= ζ, (5.28)

and the initial conditions

w (ζ, 0) = w0 = eζ . (5.29)

Case 1: q-HASTA solution
Taking the Shehu transform of Eq (5.28) and using condition (5.29), as

S
[
w(ζ, τ)

]
−

u
s

eζ +
uη

sη
S

[
∂w
∂ζ
− ζ

]
= 0. (5.30)

The nonlinear operator is

N
[
χ(ζ, τ; ρ)

]
= S

[
χ(ζ, τ; ρ)

]
−

u
s

eζ +
uη

sη
S

[
∂χ(ζ, τ; ρ)

∂ζ
− ζ

]
, (5.31)

and we have

ℜ(w⃗m−1) = S (wm−1) − (1 −
km

n
)
u
s

eζ +
uη

sη
S

[
∂w
∂ζ
− (1 −

km

n
)ζ

]
. (5.32)
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The mth-order deformed equation is defined as

S
[
wm(ζ, τ) − kmwm−1(ζ, τ)

]
= ℏℜm(w⃗m−1). (5.33)

The inverse Shehu transform of (5.33), we have

wm(ζ, τ) = kmwm−1(ζ, τ) + ℏS −1 [
ℜm(w⃗m−1)

]
. (5.34)

For m = 1, 2, 3, · · · , simplifying the Eq (5.34), we deduce

w1(ζ, τ) = ℏ(eζ − ζ)
τη

Γ(η + 1)
,

w2(ζ, τ) = ℏ (ℏ + n) (eζ − ζ)
τη

Γ (η + 1)
+ ℏ2(eζ − 1)

τ2η

Γ (2η + 1)
,

w3(ζ, τ) = ℏ (ℏ + n)2 (eζ − ζ)
τη

Γ (η + 1)
+ 2ℏ2(eζ − 1)

τ2η

Γ (2η + 1)
+ ℏ3eζ

τ3η

Γ (3η + 1)
, (5.35)

...

and so on, the components of wm(ζ, τ),m > 3, can be easily computed and the series solution is given by

w(ζ, τ) = w0(ζ, τ) +
∞∑

m=1

wm(ζ, τ)
(
1
n

)m

. (5.36)

If we select ℏ = −1, n = 1 and η = 1 then clearly, the series solution (5.36) converges to the exact
solution w(ζ, τ) = τ(ζ − t

2 ) + eζ−τ.
Case 2: RDTA solution

We use the RDTA to Eq (5.28), we obtained the following relation

Γ(mη + η + 1)
Γ(mη + 1)

Wm+1 = ζ(1 − km) −
∂Wm

∂ζ
, (5.37)

the RDTA to the initial condition (5.37), we have

W0(ζ) = ζ2. (5.38)

Apply Eq (5.38) in Eq (5.37), we get the following components of Wm(ζ), for m = 0, 1, 2, 3, · · · ,

W1(ζ) = −
(

eζ − ζ
) 1
Γ(η + 1)

,W2(ζ) =
(

eζ − 1
) 1
Γ (2η + 1)

,W3(ζ) = −eζ
1

Γ (3η + 1)
,

W4(ζ) = eζ 1
Γ(4η+1) ,

...
(5.39)

And so on, the components of wm(ζ, τ) can be easily obtained and the RDTA approximate series
solution deduced as
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w(ζ, τ) =
∑∞

m=0 Wm(ζ) τmη. = W0(ζ) +W1(ζ) τη +W2(ζ) τ2η +W3(ζ) τ3η +W4(ζ) τ4η + · · ·

= ζ2 − (eζ − ζ)
τη

Γ(η + 1)
+ (eζ − 1)

τ2η

Γ (2η + 1)
− eζ

τ3η

Γ (3η + 1)
+ eζ

τ4η

Γ (4η + 1)
− · · · . (5.40)

Which is the same as deduced by the q-HASTA (ℏ = −1, n = 1) and VIM [15] at η = 1. We observed
that the solution series (5.40) at η = 1, converges to the exact solution

w(ζ, τ) = τ(ζ −
τ

2
) + eζ−τ. (5.41)

The numerical simulations of the approximate solution (5.28) deduced by using the q-HASTA & the
RDTA and the exact solution (5.41) are depicted in Figures 11–16.

Figure 11. The surface shows the exact solution w(ζ, τ) v/s space variable ζ and time
variable τ.

Figure 12. The surface shows the RDTA (q-HASTA, ℏ = −1, n = 1) solution w(ζ, τ) v/s
space variable ζ and time variable τ at η = 1.
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Figure 13. The surface shows the absolute error E4(w) =
∣∣∣wex. − wapr.

∣∣∣ v/s space variable ζ
and time variable τ at ℏ = −1, n = 1, η = 1.

Figure 14. Comprehensive study b/w exact solution, RDTA solution (ℏ = −1) and the family
of q-HASTA solutions v/s time variable τ at space variable ζ = 1.5 and n = 1.
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Figure 15. ℏ − curves comparative study of q-HASTA for varies η at ζ = 0.5, τ = 0.005 and
n = 1.

Figure 16. ℏ − curve for q-HASTA solution at ζ = 0.5, τ = 0.005, n = 50 and η = 1.

Example 4. Now, we consider the inviscid Bugers’ equation in fractional form as

∂ηw
∂τη
+ w

∂w
∂ζ
= 0, (5.42)
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and the initial conditions
w(ζ, 0) = w0 = ζ, ζ ∈ R. (5.43)

Case 1: q-HASTA solution
Taking the Shehu transform of Eq (5.42) with the initial condition (5.43), we have

S
[
w (ζ, τ)

]
−

u
s
ζ +

uη

sη
S

[
w
∂w
∂ζ

]
= 0. (5.44)

The nonlinear operator is

N
[
χ(ζ, τ; ρ)

]
= S

[
χ(ζ, τ; ρ)

]
−

u
s
ζ +

uη

sη
S

[
χ(ζ, τ; ρ)

∂χ(ζ, τ; ρ)
∂ζ

]
, (5.45)

and thus

ℜm(w⃗m−1) = S (wm−1) − (1 −
km

n
)
u
s
ζ +

uη

sη
L

m−1∑
i=0

wi
∂wm−i−1

∂ζ

 . (5.46)

The mth-order deformed equation is given as

S
[
wm(ζ, τ) − kmwm−1(ζ, τ)

]
= ℏℜm(w⃗m−1). (5.47)

The inverse Shehu transform of (5.47), we get

wm(ζ, τ) = kmwm−1(ζ, τ) + ℏS −1 [
ℜm(w⃗m−1)

]
. (5.48)

For m = 1, 2, 3, · · · , simplifying the above Eq (5.48), we get

w1(ζ, τ) = ℏζ
τη

Γ(η + 1)
,

w2(ζ, τ) = ℏ (ℏ + n) ζ
τη

Γ (η + 1)
+ 2ℏ2ζ

τ2η

Γ (2η + 1)
,

w3(ζ, τ) = ℏ (ℏ + n)2 ζ τη

Γ(η+1) + 2ℏ(ℏ + n)2ζ τ2η

Γ(2η+1) + 4ℏ3ζ τ3η

Γ(3η+1)

+ℏ3ζ τ3η

Γ(3η+1)
Γ(2η+1)

(Γ(η+1))2 ,
...

(5.49)

Iterating in this procedure, the components of wm(ζ, τ),m > 3, can be easily computed and the series
solutions are determined by

w(ζ, τ) = w0(ζ, τ) +
∞∑

m=1

wm(ζ, τ)(1/n)m. (5.50)

If we select ℏ − 1, n = 1 and η = 1, then the solution series (5.53) convert to w(ζ, τ) = ζ − τζ + τ2ζ −

τ3ζ + τ4ζ − · · · + (−1)rτrζ + · · · = ζ (1 + τ)−1, which is exactly same as obtained by VIM [15].
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Case 2: RDTA solution
Now we apply the RDTA to Eq (5.42), we get the following recurrence relation

Γ(mη + η + 1)
Γ(mη + 1)

Wm+1 = −

m∑
i=0

Wi
∂Wm−i

∂ζ
, (5.51)

apply the RDTA with the initial condition (5.43), we get

W0(ζ) = ζ. (5.52)

Apply Eq (5.52) in Eq (5.51), we get the components of Wm(ζ), for m = 0, 1, 2, 3, · · · , as

W1(ζ) = −ζ
1

Γ(η + 1)
,W2(ζ) = 2ζ

1
Γ (2η + 1)

,W3(ζ) = −ζ
Γ (2η + 1)

Γ (3η + 1)Γ (η + 1)2 − 4ζ
1

Γ (3η + 1)
,

W4(ζ) = 2ζ Γ(2η+1)
Γ(4η+1)Γ(η+1)2 + 4ζ Γ(3η+1)

Γ(η+1)Γ(2η+1)Γ(4η+1) + 8ζ 1
Γ(4η+1) ,

...
(5.53)

In this processes, the components of wm(ζ, τ),m > 4, can be easily found and the RDTA approximate
solution deduced as

w (ζ, τ) =
∞∑

m=0

Wm(ζ) τmη = W0(ζ) +W1(ζ) τη +W2(ζ)τ2η +W3(ζ) τ3η +W4(ζ) τ4η + · · ·

= ζ − ζ
τη

Γ(η + 1)
+ 2ζ

τ2η

Γ (2η + 1)
− ζ

Γ (2η + 1) τ3η

Γ (3η + 1)Γ (η + 1)2 − 4ζ
τ3η

Γ (3η + 1)

+2ζ
Γ (2η + 1) τ4η

Γ (4η + 1)Γ (η + 1)2 +4ζ
Γ (3η + 1) τ4η

Γ (η + 1)Γ (2η + 1)Γ (4η + 1)
+8ζ

τ4η

Γ (4η + 1)
−· · · . (5.54)

Which is the coincident with the solution series deduced by q-HASTA (ℏ = −1, n = 1) and obtained
by VIM [15] at η = 1. The solution series (5.54),

∑∞
m=0 Wm(ζ) τmη convert to exact solution at η = 1,

given as

w (ζ, τ) = ζ (1 + τ)−1. (5.55)

The numerical results of (5.42) deduced from the q-HASTA and the RDTA, and the exact
solution (5.55) are depicted in Figures 17–22 and in Table 3.
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Figure 17. The surface shows the exact solution w(ζ, τ) v/s space variable ζ and time
variable τ.

Figure 18. The nature of RDTA (q-HASTA, ℏ = −1, n = 1) solution w(ζ, τ) v/s space
variable ζ and time variable τ at η = 1.
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Figure 19. The surface shows the absolute error E4(w) =
∣∣∣wex. − wapr.

∣∣∣ v/s space variable ζ
and time variable τ at ℏ = −1, n = 1, η = 1.

Figure 20. Comprehensive nature b/w exact solution, RDTA solution (ℏ = −1) and the
family of q-HASTA solutions v/s time variable τ at space variable ζ = 1.5 and n = 1.
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Figure 21. ℏ − curves comparative behave of q-HASTA for varies η at ς = 0.5, τ = 0.002
and n = 1.

Figure 22. ℏ − curve for q-HASTA solution at ζ = 0.5, τ = 0.002, n = 10 and η = 1.
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Table 3. Comparative study for q-HASTA at ζ = 0.5, η = 1.
τ Exact

solution
q-HASTA (ℏ = −1, n = 1) q-HASTA ℏ = −1, n = 2

Approximate
solution

Absolute error Approximate
solution

Absolute error

0 0.5 0.5 0 0.5 0
0.01 0.4950495050 0.4950495000 0.5000000×10−9 0.4849995000 1.0050005×10−2

0.02 0.4901960784 0.4901960000 7.8400000×10−8 0.4699960000 2.0200078×10−2

0.03 0.4854368932 0.4854365000 3.9320000×10−7 0.4549865000 3.0450393×10−2

0.04 0.4807692308 0.4807680000 1.2308000×10−6 0.4399680000 4.0801230×10−2

0.05 0.4761904762 0.4761875000 2.9762000×10−6 0.4249375000 5.1252976×10−2

6. Results and discussion

We observed from the numerical results and from graphically representations (Figures 1–22) of the
fractional Cauchy problems v/s space variable ζand time variable τ with order of fractional
derivatives. The q-HASTA control the convergence of the solution series by using the appropriate
values of auxiliary parameters ℏ and n at large admissible domain. ℏ − curves show that the validated
convergence range and also the horizontal line segments denoted the range for convergence of
solution series. We observe that the convergence region directly proportional to auxiliary parameter n
have the advantage of the q-HASTA to the HAM, which is depicted in Figures 16 and 22. We also
observed that the HAM (q-HASTA, n = 1) and RDTA, VIM (q-HASTA, ℏ = −n) are special cases of
q-HASTA. Maple plotting represents the comparative approximate solutions behavior of the RDTA
and the q-HASTA v/s exact and existing solutions.

7. Conclusions

In this paper, we successfully applied computational algorithm namely q-HASTA and compared
with the RDTA for solving the time fractional Cauchy equations and found the approximate solution
series, closed to the exact solution. We observed that the RDTA is special condition of the q-HASTA.
The q-HASTA is provide many more options for the interest of the convergence region by taking
the number of parameters and auxiliary functions, whereas the RDTA algorithm provides solution
series components from recursive relation, easy computational work, coming complex calculations
and reducing the time and size of calculations.
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