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Abstract: In this paper, we present a 4D hyperchaotic Rabinovich system which obtained by adding
a linear controller to 3D Rabinovich system. Based on theoretical analysis and numerical simulations,
the rich dynamical phenomena such as boundedness, dissipativity and invariance, equilibria and their
stability, chaos and hyperchaos are studied. In addition, the Hopf bifurcation at the zero equilibrium
point of the 4D Rabinovich system is investigated. The numerical simulations, including phase
diagrams, Lyapunov exponent spectrum, bifurcations, power spectrum and Poincaré maps, are carried
out in order to analyze and verify the complex phenomena of the 4D Rabinovich system.
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1. Introduction

The concept of the hyperchaos was first put forward by Rossler [1] in 1979. Any system with at
least two positive Lyapunov exponents is defined as hyperchaotic. Compared to chaotic attractors,
hyperchaotic attractors have more complicated dynamical phenomena and stronger randomness and
unpredictability. Hyperchaotic systems have aroused wide interest from more and more researchers in
the last decades. A number of papers have investigated various aspects of hyperchaos and many
valuable results have been obtained. For instance, in applications, in order to improve the security of
the cellular neural network system, the chaotic degree of the system can be enhanced by designing 5D
memristive hyperchaotic system [2]. For higher computational security, a new 4D hyperchaotic
cryptosystem was constructed by adding a new state to the Lorenz system and well used in the
AMr-WB G.722.2 codec to fully and partially encrypt the speech codec [3]. In fact, hyperchaos has a
wide range applications such as image encryption [4], Hopfield neural network [S] and secure
communication [6] and other fields [7,8]. Meanwhile, there are many hyperchaotic systems have been
presented so far. Aimin Chen and his cooperators constructed a 4D hyperchaotic system by adding a
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state feedback controller to Lii system [9]. Based on Chen system, Z. Yan presented a new 4D
hyperchaotic system by introducing a state feedback controller [10]. By adding a controlled variable,
Gao et al. introduced a new 4D hyperchaotic Lorenz system [11]. Likewise, researchers also
formulated 5D Shimizu-Morioka-type hyperchaotic system [12], 5D hyperjerk hypercaotic
system [13] and 4D T hyperchaotic system [14] and so on.

In [15], a chaotic Rabinovich system was introduced

X=hy—ax+yz
y = hx — by — xz, (1.1)
Z=-cz+ Xy,

where (x,y,z)7 € R? is the state vector. When (h,a,b,c) = (0.04,1.5,-0.3,1.67), (1.1) has chaotic
attractor [15, 16]. System (1.1) has similar properties to Lorenz system, the two systems can be
considered as special cases of generalized Lorenz system in [17]. Liu and his cooperators formulated
a new 4D hyperchaotic Rabinovich system by adding a linear controller to the 3D Rabinovich
system [18]. The circuit implementation and the finite-time synchronization for the 4D hyperchaotic
Rabinovich system was also studied in [19]. Reference [20] formulated a 4D hyperchaotic Rabinovich
system and the dynamical behaviors were studied such as the hidden attractors, multiple limit cycles
and boundedness. Based on the 3D chaotic Rabinovich system, Tong et al. presented a new 4D
hyperchaotic system by introducing new state variable [21]. The hyperchaos can be generated by
adding variables to a chaotic system, which has been verificated by scholars [3,9-11, 14]. In [18-21],
the hyperchaotic systems were presented by adding a variable to the second equation of system (1.1).
In fact, hyperchaos can also be generated by adding a linear controller to the first equation and second
equation of system (1.1). Based on it, the following hyperchaotic system is obtained

X =hy —ax + yz + kou,
y = hx — by — xz+ mu,
Zz = —dz + xy,
i =—kx—ky,

(1.2)

where kg, h, a, b, d, k, kg, m are positive parameters. Like most hyperchaotic studies (see [14, 22—
24] and so on), the abundant dynamical properties of system (1.2) are investigated by divergence,
phase diagrams, equilibrium points, Lyapunov exponents, bifurcation diagram and Poincaré maps. The
results show that the new 4D Rabinovich system not only exhibit hyperchaotic and Hopf bifurcation
behaviors, but also has the rich dynamical phenomena including periodic, chaotic and static bifurcation.
In addition, the 4D projection figures are also given for providing more dynamical information.

The rest of this paper is organized as follows: In the next section, boundedness, dissipativity and
invariance, equilibria and their stability of (1.2) are discussed. In the third section, the complex
dynamical behaviors such as chaos and hyperchaos are numerically verified by Lyapunov exponents,
bifurcation and Poincaré section. In the fourth section, the Hopf bifurcation at the zero equilibrium
point of the 4D Rabinovich system is investigated. In addition, an example is given to test and verify
the theoretical results. Finally, the conclusions are summarized in the last section.
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2. Dynamical analysis of (1.2)

2.1. Boundedness

Theorem 2.1. If ky > m, system (1.2) has an ellipsoidal ultimate bound and positively invariant set

hko + m ko
Q = {(x,y, z, Wmx* + koy* + (ko — m)[z — (ko )]2+ o
ko —m X
where
1 W2dP(m+ko)
# Gagrtp (0> 4>
m+
M =< 5 Gompbeay Ko >m, d > D), a1
m+kg)2h?
b2 (ko > m).

Proof. V(x,y,z,u) = mx* + koy* + (kg — m)[z — %]2 + % Differentiating V with respect to time
along a trajectory of (1.2), we obtain

V 2 2 2
w = —amx* — by’ko + dhmz + dhzko + dmz* — dZ’k.

When m = 0, we have the following ellipsoidal surface:

hm + hk dh*(ky + m)?
Y= >+ bkoy” +d(kg—m)(z - ————) = —————
(. v,z 0lams? + bhoy? +dko = m)(e = 5y = =
Outside X that is,
hm + hk dh*(ky + m)?
2 2 _ _ 02 0
amx” + bkoy~ + d(kg — m)(z ke —Zm) < 2o )
V < 0, while inside X, that is,
hm + hk dh*(ky + m)?
2 2 ko — _ 02
amx” + bkyy” + d(kog — m)(z 2k0—2m) > Ao —m)

V > 0. Thus, the ultimate bound for system (1.2) can only be reached on X. According to calculation,

. . 2 72 2
the maximum value of V on £ is V,uy = 1 %, (ko > m, d > a) and

1 KW (m + ko)? (m + ko)? h?
- k d>Db); Vyp=—"—""—
2 Go—m)b(btay Ko>md>bs v ko —m

Vmax = s (kO > m)

In addition, ¥ c Q, when a trajectory X(t) = (x(), y(¢), z(t), u(t)) of (1.2) is outside Q, we get
V(X(1)) < 0. Then, lim p(X(t, 1y, Xp), ) = 0. When X(f) € Q, we also get V(X(¢)) < 0. Thus, any
t—+00

trajectory X(¢) (X(¢) # Xo) will go into Q. Therefore, the conclusions of theorem is obtained. O
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2.2. Dissipativity and invariance

We can see that system (1.2) is invariant for the coordinate transformation
(x,y,2,u) = (=x, =y, 2, —u).
Then, the nonzero equilibria of (1.2) is symmetric with respect to z axis. The divergence of (1.2) is
ox dy 0z ou
VW=_—+_—+_—+_—=—-(a+b+d),
ox 0y 0z Ou (a )

system (1.2) is dissipative if and only if a + b+ d > 0. It shows that each volume containing the system
trajectories shrinks to zero as t — oo at an exponential rate —(a + b + d).

2.3. Equilibria

For m < kg, system (1.2) only has one equilibrium point O(0, 0, 0, 0) and the Jacobian matrix at O is

[ —a h 0 k|
h -b 0 m
J =
0 0 -d 0
| -k -k 0 O |
Then, the characteristic equation is
(d + DX + 5% + 511+ 5p), (2.2)

where
ss=a+b, sy =ab—h*+km+kky, sy=akm + bkky + hkm + hkk,.

According to Routh-Hurwitz criterion [25], the real parts of eigenvalues are negative if and only if

d>0,a+b>0,(a+b)ab— h?) + k(aky + bm — hm — hky) > 0. (2.3)

When m > ko, system (1.2) has other two nonzero equilibrium points E;(x7,y7,z},u;) and
Es>(=x, -y}, 2}, —uy), where

. \/d(am + bko + hm + hky) \/d(am + bky + hm + hkg)
X = s> Y1 =~ 5
m — kg m — ko

_am + bko + hm + hkg
m—k()

_a+b+2h\/d(am+bko+hm+hko)

3k
Z =
! m—k()

u, =
’ ! m—k()

The characteristic equation of Jacobi matrix at £; and E is

468 +6,2+61+6,=0,

where
x4

X
Sy=a+b+d, 52:d—12+ab+ad+bd—h2+km+kko,
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1
81 = E[x”{z(3 X% + ad — bd + kky — km) + k(m + ko)(d + h)] + abd + akm + bkky — dh?,
8o = 3 kko x}* = 3 kmx'* + akmd + bkko d + hkko d + hkmd.

Based on Routh-Hurwitz criterion [25], the real parts of eigenvalues are negative if and only if
0o > 0, 03 > 0, 030, — 01 > 0, 030,01 — (5% - 5()(5% > 0. (24)

Therefore, we have:
Theorem 2.2. (I) When m < ky, system (1.2) only has one equilibrium point O(0,0,0,0) and O is
asymptotically stable if and only if (2.3) is satisfied.

(IT) when m > ko, system (1.2) has two nonzero equilibria E, E;, (2.4) is the necessary and sufficient

condition for the asymptotically stable of E; and E,.
3. Hyperchaos

When (b,d, h,a, ko, k,m) = (1, 1,10, 10,0.8,0.8,0.8), system (1.2) only has zero-equilibrium point
E(0,0,0,0,0), its corresponding characteristic roots are: —1, 0.230, 5.232, —16.462, E| is unstable.
The Lyapunov exponents are: LE,| = 0.199, LE, = 0.083, LE; = 0.000, LE, = —12.283, system (1.2)
is hyperchaotic. Figure 1 shows the hyperchaotic attractors on z — x — y space and y — z — u space. The
Poincaré mapping on the x — z plane and power spectrum of time series x(¢) are depicted in Figure 2.

x 10 0 , z 0 -10 y

Figure 1. Hyperchaotic attractors of (1.2), (I) z — x — y space and (II) y — z — u space.
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Figure 2. (I) Poincaré mapping on the x — z plane and (II) power spectrum of time series x(¢)
for system (1.2).
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In the following, we fix b = 1,d =1, h = 10, a = 10, ks = 0.8, m = 0.8, Figure 3 indicates the
Lyapunov exponent spectrum of system (1.2) with respect to k € [0.005, 1.8] and the corresponding
bifurcation diagram is given in Figure 4. These simulation results illustrate the complex dynamical
phenomena of system (1.2). When £ varies in [0.005, 1.8], there are two positive Lyapunov exponents,
system (1.2) is hyperchaoic as k varies.

0.4 -10 ' '
0.3f 1
211 1
[2] L
; 0.2 MWWWMMMWWWWWWWM ;
§ 0.1r §
[0
q>) 0 VA WA W, A E 8 -12 1
Qo c
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-0.3 —LE,| 1
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0.5 1 15 0.5 1 1.5
k k

Figure 3. Lyapunov exponents of (1.2) with m € [0.005, 1.8].

Figure 4. Bifurcation diagram of system (1.2) corresponding to Figure 3.

Assume b = 1,d = 1, h = 10, k = 0.8, kp = 0.8, m = 0.8, the different Lyapunov exponents
and dynamical properties with different values of parameter a are given in Table 1. It shows that
system (1.2) has rich dynamical behaviors including periodic, chaos and hyperchaos with different
parameters. The bifurcation diagram of system (1.2) with a € [0.5,5] is given in Figure 5. Therefore,
we can see that periodic orbits, chaotic orbits and hyperchaotic orbits can occur with increasing of
parameter a. When a = 1.08, Figure 6 indicates the (z, x, y, #) 4D surface of section and the location of
the consequents is given in the (z, x, y) subspace and are colored according to their u# value. The chaotic
attractor and hyperchaotic attractor on y — x — z space and hyperchaotic attractor on y — z — u space are
given in Figures 7 and 8, respectively. The Poincaré maps on x — z plane with @ = 2 and a = 4 are
depicted in Figure 9.
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Figure 5. Phase diagram of (1.2) with a € [0.55].
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Figure 6. Phase diagram of system (1.2) with a = 1.08.
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Figure 7. Phase diagram of system (1.2) with a = 2.
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Table 1. Lyapunov exponents of (1.2) with (b, d, h, k, kg, m) = (1,1,10,0.8,0.8,0.8).

a LE, LE, LE; LE, Dynamics
1.08 0.000 -0.075 -4.661 -2.538 Periodic

2 0.090 0.000 —-0.395 -3.696 Chaos

4 0.325 0.047 —-0.000 -6.373 Hyperchaos

z o -10 y
Figure 8. Phase diagrams of (1.2) witha =4 (I) y — x — z space, (II) y — z — u space.
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Figure 9. Poincaré maps of (1.2) in x — z plane with a = 2 and a = 4, respectively.

4. Hopf bifurcation

Theorem 4.1. Suppose that ab > h*> and ko(a — h) + m(b — h) < 0 are satisfied. Then, as m varies

and passes through the critical value k = %, system (1.2) undergoes a Hopf bifurcation at
0(0,0,0,0).

Proof. Assume that system (1.2) has a pure imaginary root A = iw, (w € R*). From (2.2), we get
2

0> —50=0, @ —s0=0,

AIMS Mathematics Volume 8, Issue 1, 1410-1426.
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then

w=wy = Vab — ? + k(ky + m),

ke k = (a + b)(h* — ab)
" kola—h) +m(b-h)

Substituting k = k, into (2.2), we have
A = iw, A = i(,(), Az = —d, Ay = —(a + b)

Therefore, when ab > h?, ko(a—h)+m(b—h) < 0 and k = k,, the first condition for Hopf bifurcation [26]
is satisfied. From (2.2), we have

h(ky + m) — aky — bm
Re(A’ k* —iwy —
(A (k)| =iy 22+ 50)

<0,

Thus, the second condition for a Hopf bifurcation [26] is also met. Hence, Hopf bifurcation exists. O

Remark 4.1. When ab—h?*+k(ky+m) < 0, system (1.2) has no Hopf bifurcation at the zero equilibrium
point.

Theorem 4.2. When ab > h? and ko(a — h) + m(b — h) < 0, the periodic solutions of (1.2) from Hopf
bifurcation at O(0, 0, 0, 0) exist for sufficiently small

~ (a+ b)(h* — ab)
ko(a—h) + m(b—h)"~

O0<lk—kl=1lk

And the periodic solutions have the following properties:

@) if 6;, > 0 (resp., (5;, < 0), the hopf bifurcation of system (1.2) at (0, 0, 0, 0) is non-degenerate and
subcritical (resp. supercritical), and the bifurcating periodic solution exists for m > m, (resp., m < m,.)
and is unstable (resp., stable), where

1
5; = m(—kzéolkoz + al’l501S1 + k601k051 - 2d603605 + 2d504506),

8 = wol(—ab + h*)(akky + hkko — hsy) + k(bm — hko)(ha + h* + kk)

— k(ak — hm)(a@* + ha — kko + s1)),

So1 = kwo(a’bm + a*hk — a*hky + abhm + ah’k — ah®>m — ah*ky + ak’ky — bkmky — i°m
— hkmky + hkky> + bms, — hkys,),

803 = wola*bkm — 2 a’bkky + a*hk* — a*hkky + abhkm + 2 abhkky + ah*k* — ah®km + ah®kk
— ak’ky + bk>mky — h*km — 2 WP kky + hk>mk
— hi*ky* + 2a’bs, — 2ah’s, — bkms, + hkkys,),

Sou = (—ab + h*)s,* + (@b — a*h* + abh® — 2 abkm + 2 abkky — ahk* + 2 ahkky — bhkm — h*
+ WPkm — WPkko)s) — a*k>ko + abk*mky — 2 abk*ky* — ahk’ky + ahk*mky — ahk*ky?
+ bhik*mkoy + W k*mko + W2 kko?,

1
005 = —8[2 (,Uo(—kkoawo + hkkoa)() - h(uosl) + d(—l’la)o2(l - k2k02 + kkoSl],
1

2d? + 8s

AIMS Mathematics Volume 8, Issue 1, 1410-1426.
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1
006 = —8[d(—kkoaw0 + hkkoa)() - hwosl) -2 wo(k2k02 + ahsl - kkoSl)].
S1

2d* +
(IT) The period and characteristic exponent of the bifurcating periodic solution are:
2n 2 4 2 4
T =—(1+1.e +0(€)), B=pe +0(c),
Wo
where € = % + O[(k — k,)’] and

(ReCi(0)  (s55+s)4,
@)  h(ko +m) — aky — bm’

H2 =

63 Oy(amsy + bkosy + hmsy + hkosy + ms; + kosy)

T2«

wo s1(h(ky + m) — aky — bm) ’
B> = 6.,
1
(5&2, = 4Tdé‘(—kzﬁmkoz + Clh(S()le + k502k0S1 -2 503506d -2 5()45050’).
(IIT) The expression of the bifurcating periodic solution is
[ x] | —kkoe cos (%) — hwye sin (%)
21 . 21
y _ (kko]; 2)6 CT (Tt) — awge sin (Tt) + 0.
z €[ SRS 4 G5 — G sin( 4]
Lu ] | —k(a+ h)e cos(Z) + kwoe sin(ZL) |
Proof. Let k = k., by straightforward computations, we can obtain
il’lwo - kk() 0 [ ak() —hm |
kko — 51 + 1awy 0 bm — hkg
t] = ) t3 = s t4 = s
0 1 0
| —(lwg + a + h)k | 0 | h?*—ab |

which satisfy

Jt = lwoty, Ji = —dt, Jt, = —(a+ b)l4.

Now, we use transformation X = QX;, where X = (x,y,z,u)", X; = (x1,y1,21, )", and

—kk —hwy 0 ak—hm |
kko —s; —awg 0 bm — hk
0 0 1 0
| —k(a+h) kwy 0 h—ab |

AIMS Mathematics Volume 8, Issue 1, 1410-1426.
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then, system (1.2) is transformed into

X1 = —woyr1 + F1(x1,y1,21, 1),

V1 = woxy + Fo(xi, 1,21, 41), “4.1)
Z1 = —dzy + F3(x1,y1,21, U1), .
iy = —(a+ b)uy + Fy(x1,y1,21, U1),

where
8 = wol(—ab + h?)(akky + hkky — hs,) + k(bm — hky)(ha + h? + kko) — k(ak — hm)(a® + ha — kko + s1)],

Fi(xi,ynzi,w) = s21(fiixy + foy + fisun),

fi1 = —kkowo(abh — ak? — h® + hkm) + (kky — s1)wo(a’b — ah® — bkm + hkky),

fia = —kkowo(abh — ak? — h* + hkm) + (kko — s1)wo(a’b — ah® — bkm + hkky),

fiz = —kkowo(abh — ak? — h* + hkm) + (kky — s1)wo(a’b — ah® — bkm + hkky),

Fy(xp,y1.21,u1) = =321 (farxt + faoyr + fosur),

fo1 = (=ab + h*)(2 K2ko? — 2 kkosy + 512) — k(a + h)(ak*ky — bkmky — hkmko + hkky> + bms, — hkys,),

for = —awo[abk(m — ko) — hk(aky — bm)] + abs, — h*s,] — hwo[ak(ak + bky + hk — hm) — h*k(m + k)],

fr3 = (h* — ab)[hkky(m — ko) — kko(ak — bm) — s1(bm — hky)] + k(a + h)[ak(ak — 2 hm)
+bm(bm — 2 hkg) + h*(m* + ko)1,

F3(x1, y1,21,wm) = [—kkox) — hwoyy + (ak — hm)u, J[(kko — s1)x1 — awoyy + (bm — hko)u],

Fay(xi,y1,21,w) = s21(far Xy + faoy + fasun),

far = kko(hwoka + h2wok + k*kowy) — (kko — s1)kwo(a® + ah — kko + s1),

fir = AP wo’k + a*wo’kh + h*wy*ka — ak*kowy? + WP we*k + KPkohwy? + akwy’ s,

fi3 = —a’bkmwy — a*hk*wy + a*hkkowy — abhkmwy — ah*k*wy + ah*kmwg + ah*kkowy — ak’kowy
+bk2mkgwo + WPkmwy + hiEmkywy — hk2ko>wy — bkmwys; + hkkowys.

Furthermore,

1 0°F, 6°F, O°F, O°F,

gnu=-l + +i +
4" ox2  0y? axt  oy?

)1=0,

1 0°F, O0*F, 20°F, _O0*F, O&*F, 20°F,
82=7l"73 ~ 73 tilo ——7=5 + )] =0,
4" Ox; dy;  0x10y 0x; dy;  0x10n

| &F, 0°F, 20°F, 0°F, &'F, 20°F, _

=— - + +1 - - =0,
S0= 2592 T a7 T amdy o2 8y oxidy,

1 &F, 0°F, &F, ’F, OF, 0F, O'F, O°F,
-8 00 tos T st oo, o o 2 9,2 =0.
ox; dy;  Ox0y;  0x70y, Ox; dy;  Ox0y;  0xi0y,

21

AIMS Mathematics Volume 8, Issue 1, 1410-1426.



1421

By solving the following equations

Wy, - hi, —d — 2iwy 0 Wy o hy,
W, w2, | 0 —(a+b) = 2iwy || o2 w2, |

Wy

-d 0
0 —(a+b)
where |
hi, = [y + a)sy ko1,

1 *°F, O*F
Z( 4 4

o= —(—
i Ox7 dy:

) =0,

1
hh, = §[—kzkoz — hsia + kkosy + (hkkowo — kkoawy — hws, )i,

1 0’°Fy O°F, 0*F,
"y =~ -~ ~2i =0,
20 4( Ox? dy? l@xlayl)

one obtains

(,()l

L= ﬁ[hsla — kko(kko — s1)], w?, =0, wl, =0,

1
wyy = 2d2—+8s1{2a)0(—kk0aa)0 + hkkowo — hwosy) + d(—hwo*a — Kko* + kkos,)

+[d(—kkoaw, + hkkowy — hwost) — 2 wo(kKke® + ahs; — kkosy)]i},

1. 8*F, O*F, O*F, O*F, 1
Gio== + +i —~ = —(8o1 + 020,
1o 2[(3x15Z1 a)’1(9Z1 ) l(axw?m 5}’1321 2 25( o o2t)
where
801 = kwo(a*bm + a*hk — a*hky + abhm + ah*k — ah*m — ah*ky + ak*ky — bkmky — i>m
— hkmky + hkky> + bms, — hkysy),
Sop = (ab — h*)s;% + (a°b — a*h* + abh? — 2 abkky — ahk® + bhkm — h* + h*km + h*kko)s,
+ k*ko(a*k — bma + 2 abky + ahk — ahm + ahko — bhm — h>m — h’ky),
1 6*F O*F O*F O*F
Gy = =l + ) (e — )] = 0,
2 8)61(91/!1 8y1(9u1 Bxlaul (9y1(9u1
1. 0*F, O*F, O*F, O*F, 1
Gl == - +i + = ——[S03 + Goail,
1= 9 [(0x18z1 0y102, : 0x10z;  0y,07; )] 26[ 03+ Oou]
where

803 = wo(a*bkm — 2 a’bkky + a*hk* — a*hkky + abhkm + 2 abhkky + ah*k* — ah®km + ah®kk
— ak’ky + bl*mky — Bkm — 2 Wkky + hk*mk,
— hi*ky? + 2 a°bsy, — 2 ah®s, — bkms, + hkkys:),

Sos = (—ab + h*)si? + (a°b — a*h* + abh* — 2 abkm + 2 abkky — ahk* + 2 ahkky — bhkm — h*
+ P km — Wkko)s, — a’k’ky + abk*mky — 2 abk’ky* — ahk’ky + ahk*mky — ahk*ky*
+ bhk*mky + h*k*mko + h*k*ky?,
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1 6°F, O’F, . 0°F, O*F,

G, == - =
101 2[(0X101/l1 8y18u1 T 6)6161/{1 - aylaul

2

~ TN P RN ISR

&1 =Go + Z(anowu + Gy wy) = 0, + 0,
=1

where {
651, = 4Td6(_k2601k02 + ah50151 + k501k0S1 - 2d503605 + 2d504506),
1
5; = 4Td6(—k2502k02 + (lh50251 + k502k0S1 -2 603506d -2 5046050’),
1
0ps = ———[2 wo(—kkoaa)o + hkkoa)o - hwosl) + d(—hwoza - k2k02 + kkosl)],
2d?* + 851
1
006 = 2dz—+8s1[d(—kkoawo + hkkowy — hwysy) — 2 wo(k2k02 + ahs, — kkysy)].

Based on above calculation and analysis, we get

] 1 1 1
Ci(0) = E(gzogn —2lgnl* - §|802|2) + 821 = 582
0

2
_ ReCi(0) _ (53 + 51)3,
H2=7700) ~  hike + m) — ako — bm’
(552, 6;(amsz + bkysy + hmsy + hkos, + msy + kysq)
2= s1(h(ko + m) — ako — bm) ’
where
, wolams, + bkysy + hms, + hkos, + msy + kosq)
W' (0) = = :
§185 + 87
h(ky + m) —ako — b
o) = Mot m —ako = bm g Rec,(0) = 5.

2(S% + 59)

Note o’(0) < 0. From ab > h* and ko(a — h) + m(b — h) < 0, we obtain that if 6, > 0 (resp., 6, < 0),
then u, > 0 (resp., u, < 0) and B, > 0 (resp., B2 < 0), the hopf bifurcation of system (1.2) at (0,0, 0, 0)
is non-degenerate and subcritical (resp. supercritical), and the bifurcating periodic solution exists for

k > k. (resp., k < k,) and is unstable (resp., stable).
Furthermore, the period and characteristic exponent are

2
T = (1 + 12,8 + O("), B =pré +O0(eh),
wWo

where € = k;—f + O[(k — k.)*]. And the expression of the bifurcating periodic solution is (except for an

arbitrary phase angle)
X=xyz U)T = Q@1,§2,§3,§4)T = QY,
where
i =Rep, 3y =Imy, (355,5475)" = wnlul’ + Re(wxu?) + O(lu),
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and
2itn L€ 2 4t

u=cee’T + 6—[g()2€ T — 3g20€4i% + 6g11] + 0(63) —eeT + 0(63).
wo

By computations, we can obtain

x 1 | —kkoe cos (%) — hwye sin (%)
y (kkog — 1) € cos () — awye sin (&L
) ( x ) T ) +0(€).
z [ M TING 4 505 — So sin(2E)]
L] 1 —k(a + e cos(F) + kwpe sin(F) |

Based on the above discussion, the conclusions of Theorem 4.2 are proved.
In order to verify the above theoretical analysis, we assume

d=2,h=1,ky=1,m=2,b=15,a=025.

According to Theorem 4.1, we get k. = 1. Then from Theorem 4.2, yu, = —4.375 and 5, = -0.074,

which imply that the Hopf bifurcation of system (1.2) at (0, 0, 0, 0) is nondegenerate and supercritical,

a bifurcation periodic solution exists for k < k., = 1 and the bifurcating periodic solution is stable.
Figure 10 shows the Hopf periodic solution occurs when k = 0.999 < k, = 1.

0.015

0.01

0.005 - 2

> 0+

-0.005 | -0.01

-0.01

-0.015 —_— .

0.01 0 i ]
. -0.010.01 Oy X 0.01 001 0.005 ,

Figure 10. Phase portraits of (2.1) with (d, h, kg, m, b,a, k) = (2,1,1,2,1.5,0.5,0.999).

0.01

5. Conclusions

In this paper, we present a new 4D hyperchaotic system by introducing a linear controller to the
first equation and second equation of the 3D Rabinovich system, respectively. If ky = 0, m = 1 and the
fourth equation is changed to —ky, system (1.2) will be transformed to 4D hyperchaotic Rabinovich
system in [18, 19]. Compared with the system in [18], the new 4D system (1.1) has two nonzero
equilibrium points which are symmetric about z axis when m > ky and the dynamical characteristics
are more abundant. The complex dynamical behaviors, including boundedness, dissipativity and
invariance, equilibria and their stability, chaos and hyperchaos of (1.2) are investigated and analyzed.
Furthermore, the existence of Hopf bifurcation, the stability and expression of the Hopf bifurcation at
zero-equilibrium point are studied by using the normal form theory and symbolic computations. In
order to analyze and verify the complex phenomena of the system, some numerical simulations are
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carried out including Lyapunov exponents, bifurcations and Poincaré maps, et al. The results show
that the new 4D Rabinovich system can exhibit complex dynamical behaviors, such as periodic,
chaotic and hyperchaotic. In the real practice, the hyperchaotic Rabinovich system can be applied to
generate key stream for the entire encryption process in image encryption scheme [27]. In some
cases, hyperchaos and chaos are usually harmful and need to be suppressed such as in biochemical
oscillations [8] and flexible shaft rotating-lifting system [28]. Therefore, we will investigate
hyperchaos control and chaos control in further research.
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