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1. Introduction

Fixed point theory is an powerful tool of modern mathematics and may be viewed as a core
context of nonlinear analysis. Since this theory has many applications in computer science,
engineering, physics, economics, optimization theory, etc, a number of excellent books on it have
been published. The reader is referred to the books [1, 6, 10] for more details on fixed point theory
and applications. With the development of science, in recent years, the idea and techniques of fixed
point theory have been used to study the problem of finite-/fixed-time synchronization for
Clifford-valued recurrent neural networks with time-varying delays [4] and investigate control of a
symmetric chaotic supply chain system [17].

Probably the most well known result in fixed point theory is Banach’s contraction mapping
principle. For the convenience of describing it, we need some notations. Let (X, d) be a metric space,
F : X → X be a mapping and λ ∈ [0, 1] with

d(Fx, Fy) ≤ λd(x, y), for all x, y ∈ X. (1.1)
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If λ < 1 in (1.1), the mapping F is called a contractive mapping, and λ is called a contractive coefficient
of F, whereas if λ = 1, F is called a nonexpansive mapping. Let R denote the set of all real numbers
and N denote the set of all positive integer numbers. For simplification, for any x ∈ X and n ∈ N, we
define Fnx inductively by F1x = Fx and Fn+1x = F(Fnx). Moreover, we define F0x = x.

Banach’s contraction mapping principle is stated as follows.

Theorem 1.1. Let (X, d) be a complete metric space and F : X → X be a contractive mapping. Then
F has a unique fixed point u ∈ X. Furthermore, for any x ∈ X, the sequence {Fnx} converges to u.

In order to extend Banach’s contraction mapping principle, Geraghty [8] introduced a class of test
functions.

Definition 1.2. [8] Let R+ := {t ∈ R | t ≥ 0}. S is defined as the set of functions ψ : R+ → [0, 1] with
the properties:

(i) 0 ≤ ψ(t) < 1, for all t > 0,

(ii) lim
n→∞

ψ(tn) = 1 implies lim
n→∞

tn = 0.

Then using Definition 1.2, Geraghty [8] established the following result.

Theorem 1.3. Let (X, d) be a complete metric space, F : X → X be a mapping and ψ ∈ S. If

d(Fx, Fy) ≤ ψ(d(x, y))d(x, y), for all x, y ∈ X,

then F has a unique fixed point u ∈ X.

One can deduce that the function F in Theorems 1.1 and 1.3 is a uniformly continuous function. In
order to obtain a fixed point under weaker condition than Theorems 1.1 and 1.3, some useful concepts
are given by some researchers. Browder and Petryshyn [5] introduced the concept of asymptotical
regularity as follows.

Definition 1.4. Let (X, d) be a metric space, F : X → X be a mapping. F is said to be asymptotically
regular on X, if

lim
n→∞

d(Fnx, Fn+1x) = 0, for all x ∈ X.

Ćirić [7] introduced the definition of orbital continuity as follows.

Definition 1.5. [7] Let (X, d) be a metric space, F : X → X be a mapping. The set O(F, z) := {Fnz | n =

0, 1, 2, . . .} is called the orbit of F at the point z ∈ X. F is said to be orbitally continuous at y ∈ X if for
any sequence {xk} ⊂ O(F, x) for some x ∈ X, lim

k→∞
xk = y implies that lim

k→∞
Fxk = Fy. We say that F is

orbitally continuous on X if F is orbitally continuous at each point y ∈ X.

It is known that every continuous self-mapping is orbitally continuous, but the converse is not
true [7].

Pant and Pant [15] introduced the definition of q-continuity for a q ∈ N as follows.

Definition 1.6. [15] Let (X, d) be a metric space, F : X → X be a mapping and q ∈ N. F is said to be
q-continuous at y ∈ X, if for each sequence {xn} ⊂ X, lim

n→∞
Fq−1xn = y implies that lim

n→∞
Fqxn = Fy. We

say that F is q-continuous on X if F is q-continuous at each point y ∈ X.
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Clearly, 1-continuity is the same as continuity. It is known that q-continuity implies that q + 1-
continuity, but the converse is not true [15].

Recently, Bisht [2] weakened the conditions of Górnicki’s [9] result from continuity to q-continuity
or orbital continuity, and obtained the following result.

Theorem 1.7. Let (X, d) be a complete metric space, F : X → X be a mapping, q ∈ N, θ ∈ [0, 1) and
τ ≥ 0. Suppose that F is asymptotically regular, q-continuous or orbitally continuous on X, and satisfy

d(Fx, Fy) ≤ θd(x, y) + τ(d(x, Fx) + d(y, Fy)), for all x, y ∈ X.

Then F has a unique fixed point u ∈ X and lim
n→∞

Fnx = u.

One can observe that a fixed point of F in fact is a coincidence point of F with the identity mapping I
on X. Therefore, replacing the identity mapping I by another self-mapping G of X to obtain a common
fixed point of F and G is natural. In 2020, Bisht and Singh [3] extended Theorem 1.7 from a single
self-mapping F to a pair of mappings F and G, and obtained the following theorem.

Theorem 1.8. Let (X, d) be a complete metric space, F, G : X → X be two mappings, θ ∈ [0, 1) and
τ ≥ 0. Suppose that F is asymptotically regular with respect to G, and F and G are (F,G)-orbitally
continuous and compatible. Further, F and G satisfy

d(Fx, Fy) ≤ θd(Gx,Gy) + τ(d(Fx,Gx) + d(Fy,Gy)), for all x, y ∈ X.

Then F and G have a unique common fixed point u ∈ X.

In 2020, unlike conditions given in Theorem 1.8, Khan and Oyetunbi [14] also extended Theorem
1.7 to a pair of self-mapping F and G, and obtained the following result.

Theorem 1.9. Let (X, d) be a complete metric space, F, G : X → X be two mappings, q ∈ N, θ ∈ [0, 1)
and τ ≥ 0. Suppose that F and G are asymptotically regular, q-continuous or orbitally continuous on
X, and satisfy

d(Fx,Gy) ≤ θd(x, y) + τ(d(x, Fx) + d(y,Gy)), for all x, y ∈ X. (1.2)

Then F and G have a unique common fixed point u ∈ X and lim
n→∞

Fnx = lim
n→∞

Gnx = u.

Very recently, the study of fixed point theory has received a growing interest and made great
progress. In 2020, Hassan et al. [12] introduced S ∗-iteration scheme for approximation of fixed point
of the nonexpansive mappings and proved that it is stable and faster than some iteration schemes
existing in the literature. They also established some convergence theorems for Suzuki’s generalized
nonexpansive mappings in uniformly convex Banach spaces. In 2021, Hammad, Agarwal and
Guirao [11] presented some tripled fixed point results for a pair of mappings under
(ϕ, ρ, ι)-contraction in ordered partially metric spaces. As applications, they also discussed the
existence and uniqueness of the solution to an initial value problem and a homotopy theory. In 2022,
Rasham et al. [16] established some theorems on common fixed points of set-valued mappings under
α∗ − ψ Ćirić type contraction in a complete modular like metric space. They also proved that a pair of
multi-graph dominated mappings with graph contractions have a common fixed point.

In Theorem 1.9, we observe that the contractive coefficient θ is fixed and less than 1. In Theorem
1.3, we also observe that the contractive coefficient θ in Theorem 1.1 can be replaced by a function
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ψ ∈ S. In this paper, motivated by the above observations, we extend Theorem 1.9 for a pair of self-
mappings F and G by replacing θ in (1.2) with a function ψ ∈ S or 1 in order to get common fixed
points for more mathematical models. Firstly, by replacing θ with a function ψ ∈ S, we obtain that
asymptotically regular, either orbitally continuous or q-continuous mappings F and G have a unique
common fixed point in a complete metric space. Secondly, by replacing θ with 1 and modifying
conditions of Theorem 1.9, we also obtain that F and G have a common fixed point on a nonempty,
closed convex subset of a Banach space. Some examples are given to illustrate our extensions.

2. Main results

The following lemma plays an important role in the proof of Theorems 2.2 and 2.5.

Lemma 2.1. [18] Let {un}, {vn} and {wn} be three real sequences with un ≥ 0 and vn ∈ (0, 1). Suppose
that

(i) un+1 ≤ (1 − vn)un + vnwn;

(ii)
∞∑

n=1
vn = ∞;

(iii) lim sup
n→∞

wn ≤ 0 or
∞∑

n=1
vnwn is convergent.

Then lim
n→∞

un = 0.

Now we establish our one main result.

Theorem 2.2. Let (X, d) be a complete metric space, and F and G be two asymptotically regular
self-mappings on X. Suppose that there exist a function ψ ∈ S and a constant τ ∈ [0,+∞) such that

d(Fx,Gy) ≤ ψ(d(x, y))d(x, y) + τ(d(x, Fx) + d(y,Gy)), for all x, y ∈ X, (2.1)

and that F and G are either orbitally continuous or q-continuous for some q ∈ N on X. Then F and G
have a unique common fixed point on X.

proof. Take any x ∈ X. Define xn = Fnx and yn = Gnx for all n ∈ N. By (2.1), we have

d(Fn+1x,Gn+1x) = d(F(Fnx),G(Gnx))
≤ ψ(d(Fnx,Gnx))d(Fnx,Gnx) + τ(d(Fnx, Fn+1x) + d(Gnx,Gn+1x)).

(2.2)

Since 0 ≤ ψ(d(Fnx,Gnx)) ≤ 1, we can divide lim sup
n→∞

ψ(d(Fnx,Gnx)) into two cases.

Case I: lim sup
n→∞

ψ(d(Fnx,Gnx)) = 1.

In this case, there exists a subsequence {ψ(d(Fnk x,Gnk x))} of {ψ(d(Fnx,Gnx))} such that

lim
k→∞

ψ(d(Fnk x,Gnk x)) = 1. (2.3)

Since ψ is a function satisfying Definition 1.2, with (2.3), we conclude

lim
k→∞

d(Fnk x,Gnk x) = 0. (2.4)
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In the following, we will prove that {Fnk x} is a Cauchy sequence. Suppose to the contrary that {Fnk x}
is not a Cauchy sequence, then there exist a ε0 > 0 and two integer number sequences {nk̃(i)}, {nk(i)} of
{nk} with nk̃(i) > nk(i) > i such that

d(Fnk̃(i) x, Fnk(i) x) ≥ ε0, i = 1, 2, . . . . (2.5)

Consequently, we have

ε0 ≤ d(Fnk̃(i) x, Fnk(i) x)
≤ d(Fnk̃(i) x, Fnk̃(i)−1x) + d(Fnk̃(i)−1x, Fnk(i)−1x) + d(Fnk(i)−1x, Fnk(i) x).

(2.6)

Letting i→ ∞ in (2.6), by the asymptotical regularity of F, we obtain

lim inf
i→∞

d(Fnk̃(i)−1x, Fnk(i)−1x) ≥ ε0. (2.7)

Now, by (2.1), we have

d(Fnk̃(i) x, Fnk(i) x) ≤ d(Fnk̃(i) x,Gnk(i) x) + d(Gnk(i) x, Fnk(i) x)
≤ ψ(d(Fnk̃(i)−1x,Gnk(i)−1x))d(Fnk̃(i)−1x,Gnk(i)−1x)

+ τ
(
d(Fnk̃(i)−1x, Fnk̃(i) x) + d(Gnk(i)−1x,Gnk(i) x)

)
+ d(Gnk(i) x, Fnk(i) x)

≤ ψ(d(Fnk̃(i)−1x,Gnk(i)−1x))
(
d(Fnk̃(i)−1x, Fnk̃(i) x)

+d(Fnk̃(i) x, Fnk(i) x) + d(Fnk(i) x,Gnk(i) x) + d(Gnk(i) x,Gnk(i)−1x)
)

+ τ
(
d(Fnk̃(i)−1x, Fnk̃(i) x) + d(Gnk(i)−1x,Gnk(i) x)

)
+ d(Gnk(i) x, Fnk(i) x).

(2.8)

Dividing both sides of inequality (2.8) by d(Fnk̃(i) x, Fnk(i) x), with (2.5), we conclude

1 ≤ ψ(d(Fnk̃(i)−1x,Gnk(i)−1x))
(
d(Fnk̃(i)−1x, Fnk̃(i) x)
d(Fnk̃(i) x, Fnk(i) x)

+ 1 +
d(Fnk(i) x,Gnk(i) x)
d(Fnk̃(i) x, Fnk(i) x)

+
d(Gnk(i) x,Gnk(i)−1x)
d(Fnk̃(i) x, Fnk(i) x)

)
+ τ

d(Fnk̃(i)−1x, Fnk̃(i) x) + d(Gnk(i)−1x,Gnk(i) x)
d(Fnk̃(i) x, Fnk(i) x)

+
d(Gnk(i) x, Fnk(i) x)
d(Fnk̃(i) x, Fnk(i) x)

.

(2.9)

Letting i → ∞ in (2.9), by (2.4), (2.5), asymptotical regularity of F and G, and the fact 0 ≤ ψ(·) ≤ 1,
we deduce that

lim
i→∞

ψ(d(Fnk̃(i)−1x,Gnk(i)−1x)) = 1.

Since ψ satisfies Definition 1.2, we conclude

lim
i→∞

d(Fnk̃(i)−1x,Gnk(i)−1x) = 0. (2.10)

Since
d(Fnk̃(i)−1x, Fnk(i)−1x) ≤ d(Fnk̃(i)−1x,Gnk(i)−1x) + d(Gnk(i)−1x, Fnk(i)−1x),

by combining (2.4) and (2.10), we conclude

lim
i→∞

d(Fnk̃(i)−1x, Fnk(i)−1x) = 0,
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which contradicts (2.7). Therefore, {xnk} = {Fnk x} is a Cauchy sequence. Since X is complete, {xnk}

converges to a point u in X. Since

d(Gnk x, u) ≤ d(Gnk x, Fnk x) + d(Fnk x, u),

with (2.4), we deduce that {Gnk x} also converges to u.
Now, assume that F is orbitally continuous. Since {xnk} converges to u, the orbital continuity of F

implies that {Fxnk} converges to Fu. By asymptotical regularity of F, we have

lim
k→∞

d(xnk+1, xnk) = lim
k→∞

d(Fnk+1x, Fnk x) = 0,

resulting in
lim
k→∞

Fxnk = lim
k→∞

xnk+1 = lim
k→∞

xnk = u.

Uniqueness of limit implies that Fu = u.
Now, suppose that F is q-continuous. Since

d(xnk+ j, xnk) ≤ d(xnk+ j, xnk+ j−1) + · · · + d(xnk+1, xnk)
= d(Fnk+ jx, Fnk+ j−1x) + · · · + d(Fnk+1x, Fnk x), j = 1, 2, . . . , q,

using the asymptotical regularity of F, we conclude that

lim
k→∞

xnk+ j = lim
k→∞

xnk = u, j = 1, 2, . . . , q, (2.11)

especially,
lim
k→∞

Fq−1xnk = lim
k→∞

xnk+q−1 = u. (2.12)

Since F is q-continuous, with (2.12), we have

lim
k→∞

Fqxnk = Fu. (2.13)

However, from (2.11), we have
lim
k→∞

Fqxnk = lim
k→∞

xnk+q = u. (2.14)

Combining (2.13) and (2.14), we obtain Fu = u.
Since {Gnk x} also converges to u, similarly, orbital continuity or q-continuity of G implies that

Gu = u.
Now, u is a common fixed point of F and G. Assume that v is another common fixed point of F and

G with u , v. Since d(u, v) > 0, it follows from Definition 1.2 that 0 ≤ ψ(d(u, v)) < 1. By (2.1), we
have

d(u, v) = d(Fu,Gv) ≤ ψ(d(u, v))d(u, v) + τ(d(u, Fu) + d(v,Gv))
= ψ(d(u, v))d(u, v) < d(u, v),

which leads to a contradiction. Therefore, the common fixed point of F and G is unique.
Case II: lim sup

n→∞
ψ(d(Fnx,Gnx)) < 1.

In this case, there exists a σ ∈ (0, 1) such that 0 ≤ ψ(d(Fnx,Gnx)) < σ. With (2.2), we have

d(Fn+1x,Gn+1x) ≤ σd(Fnx,Gnx) + τ(d(Fnx, Fn+1x) + d(Gnx,Gn+1x)). (2.15)
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Let un := d(Fnx,Gnx), vn := 1 − σ, and

wn :=
τ(d(Fnx, Fn+1x) + d(Gnx,Gn+1x))

1 − σ
.

From (2.15), we have
un+1 ≤ (1 − vn)un + vnwn, for all n ∈ N.

Since F and G are asymptotically regular on X, we conclude that lim
n→∞

wn = 0. Moreover,

∞∑
n=1

vn =

∞∑
n=1

(1 − σ) = ∞.

By Lemma 2.1, we conclude
lim
n→∞

d(Fnx,Gnx) = 0.

Then for any subsequence {nk} of {n}, we have

lim
k→∞

d(Fnk x,Gnk x) = 0,

that is, (2.4) holds. From here, the proof is the same as previous Case I, so we omit it. The proof is
completed.

In the following, we give two examples to illustrate that Theorem 2.2 is an extension of Theorem
1.9. Or, more specifically, Theorem 2.2 can be applied to the two examples but Theorem 1.9 can not.

Example 2.3. Let X = [0, 1] be equipped with the metric d(x, y) = |x − y|, and F, G : X → X be
defined by

Fx = x −
1
4

x2, Gx = 0, for all x ∈ X.

We first prove that F and G do not satisfy inequality (1.2). Suppose to the contrary that F and G satisfy
inequality (1.2):

d(Fx,Gy) ≤ θd(x, y) + τ(d(x, Fx) + d(y,Gy)), for all x, y ∈ X. (2.16)

Taking x = 1
n , y = 0 in (2.16) for all n ∈ N, we have∣∣∣∣∣1n − 1

4n2

∣∣∣∣∣ ≤ θ1
n

+ τ
1

4n2 ,

and so ∣∣∣∣∣1 − 1
4n

∣∣∣∣∣ ≤ θ + τ
1

4n
. (2.17)

By sending n→ ∞ in (2.17), we obtain 1 ≤ θ, which contradicts θ ∈ [0, 1). Therefore, F and G do not
satisfy conditions of Theorem 1.9.

Now, define ψ : R+ → [0, 1] by

ψ(t) =


1 −

1
2

t, for all t ∈ [0, 1],

1
2
, for all t ∈ (1,+∞).
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Then ψ ∈ S. For any x, y ∈ X, since |x − y| ≤ 1, we have

ψ(d(x, y))d(x, y) + (d(x, Fx) + d(y,Gy)) − d(Fx,Gy)

=

(
1 −

1
2
|x − y|

)
|x − y| +

1
4

x2 + y −
(
x −

1
4

x2
)

= |x − y| −
1
2

(x − y)2 +
1
2

x2 + y − x

=


1
2

x2 −
1
2

(x − y)2, if x ≥ y,

2(y − x) −
1
2

(y − x)2 +
1
2

x2, if x < y,

≥ 0.

Therefore, F and G satisfy (2.1) with τ = 1. Clearly, F and G are continuous on X and G is
asymptotically regular on X. For any x ∈ X, since

0 ≤ Fn+1x = Fnx −
1
4

(Fnx)2 ≤ Fnx,

we conclude that {Fnx} is a decreasing sequence with a lower bound 0. Hence, {Fnx} converges to a
point in X. This implies that F is an asymptotically regular mapping. All conditions of Theorem 2.2
are satisfied, so F and G have a unique common fixed point. In fact, 0 is the unique common fixed
point of F and G.

Example 2.4. Let X = [−1, 1] be equipped with the metric d(x, y) = |x − y|, and F, G : X → X be
defined by

Fx =


x

1 + x
, 0 ≤ x ≤ 1,

1
2
, −1 ≤ x < 0,

(2.18)

Gx =

0, 0 ≤ x ≤ 1,
1, −1 ≤ x < 0.

We first prove that F and G do not satisfy inequality (1.2). Suppose to the contrary that F and G satisfy

d(Fx,Gy) ≤ θd(x, y) + τ(d(x, Fx) + d(y,Gy)), for all x, y ∈ X. (2.19)

Taking x = 1
n and y = 0 in (2.19) for all n ∈ N, we obtain

n
n + 1

≤ θ + τ
1

n + 1
. (2.20)

By sending n → ∞ in (2.20), we have 1 ≤ θ, which contradicts θ ∈ [0, 1). Therefore, F and G do not
satisfy conditions of Theorem 1.9.

Now, define ψ : R+ → [0, 1] by

ψ(t) =
1

1 + t
, for all t ∈ [0,+∞).
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Then ψ ∈ S. In the following, we will prove that for any x, y ∈ X,

Ψ := ψ(d(x, y))d(x, y) + 4(d(x, Fx) + d(y,Gy)) − d(Fx,Gy) ≥ 0. (2.21)

To prove inequality (2.21), we divide x and y into four cases.
Case 1: x ≥ 0 and y ≥ 0. In this case,

Ψ =
|x − y|

1 + |x − y|
+ 4

x2

1 + x
+ 4y −

x
1 + x

≥


|x − y|

1 + |x − y|
+ 4

x2

1 + x
+ 4x − x, if y ≥ x,

x − y
1 + x

+ 4
x2

1 + x
+ 4y −

x
1 + x

, if y < x,

≥ 0.

Case 2: x ≥ 0 and y < 0. In this case,

Ψ =
|x − y|

1 + |x − y|
+ 4

x2

1 + x
+ 4|y − 1| −

∣∣∣∣∣ x
1 + x

− 1
∣∣∣∣∣

=
|x − y|

1 + |x − y|
+ 4

x2

1 + x
+ 4|y| + 4 +

x
1 + x

− 1 ≥ 0.

Case 3: x < 0 and y < 0. In this case,

Ψ =
|x − y|

1 + |x − y|
+ 4

∣∣∣∣∣x − 1
2

∣∣∣∣∣ + 4(|y| + 1) −
1
2
≥ 0.

Case 4: x < 0 and y ≥ 0. In this case,

Ψ =
|x − y|

1 + |x − y|
+ 4

∣∣∣∣∣x − 1
2

∣∣∣∣∣ + 4|y| −
1
2

=
|x − y|

1 + |x − y|
+ 4|x| + 2 + 4|y| −

1
2
≥ 0.

From the above four cases, we deduce that (2.21) holds. Therefore, F and G satisfy (2.1) with τ = 4.
Clearly, F is 2-continuous at all points in X \ {0} since F is continuous at these points. Now, assume

that lim
n→∞

Fxn = 0. By (2.18), we have 0 ≤ xn ≤ 1 and 0 ≤ Fxn ≤ 1 when n sufficiently large. Thus,

lim
n→∞

F2xn = lim
n→∞

Fxn

1 + Fxn
= 0 = F0.

Therefore, F is 2-continuous at 0. Similarly, we can also prove that G is 2-continuous on X.
Since for any x ∈ X,

lim
n→∞

d(Fnx, Fn+1x) = lim
n→∞


∣∣∣∣∣ x
1 + nx

−
x

1 + (n + 1)x

∣∣∣∣∣ , if 0 ≤ x ≤ 1,∣∣∣∣∣ 1
1 + n

−
1

2 + n

∣∣∣∣∣ , if − 1 ≤ x < 0,
= 0,
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we deduce that F is asymptotically regular on X. Similarly, we can also prove that G is asymptotically
regular on X.

We have verified that F and G satisfy all conditions of Theorem 2.2, and hence, they have a unique
common fixed point on X. In fact, 0 is the unique common fixed point of F and G.

Now, we establish our another main result.

Theorem 2.5. Let X be a Banach space, D be a nonempty closed convex subset of X, F, G : D → D
be two mappings, r ∈ (0, 1), τ ∈ [0,+∞), z ∈ D and

F̄x := rFx + (1 − r)z, Ḡx := rGx + (1 − r)z, for all x ∈ D.

Suppose that the following conditions hold:
(i) ‖Fx −Gy‖ ≤ ‖x − y‖ + τ(‖x − Fx‖ + ‖y −Gy‖), for all x, y ∈ D;

(ii) F̄ and Ḡ are asymptotically regular on D;

(iii) lim
n→∞

∥∥∥F̄nx − F(F̄nx)
∥∥∥ = 0, lim

n→∞

∥∥∥Ḡnx −G(Ḡnx)
∥∥∥ = 0, for all x ∈ D;

(iv) F and G are continuous on D.

Then F and G have a common fixed point on D.

proof. Since the proof is similar with the proof Theorem 2.2, we just give a sketchy proof here.
Take any x ∈ D. For all n ∈ N, by condition (i), we have∥∥∥F̄n+1x − Ḡn+1x

∥∥∥ = r
∥∥∥F(F̄nx) −G(Ḡnx)

∥∥∥
≤ r

∥∥∥F̄nx − Ḡnx
∥∥∥ + τr

(∥∥∥F̄nx − F(F̄nx)
∥∥∥ +

∥∥∥Ḡnx −G(Ḡnx)
∥∥∥) . (2.22)

Let un :=
∥∥∥F̄nx − Ḡnx

∥∥∥, vn := 1 − r, and

wn :=
τr

(∥∥∥F̄nx − F(F̄nx)
∥∥∥ +

∥∥∥Ḡnx −G(Ḡnx)
∥∥∥)

1 − r
.

With Lemma 2.1, condition (iii) and (2.22), we conclude

lim
n→∞

∥∥∥F̄nx − Ḡnx
∥∥∥ = 0. (2.23)

Now, we prove that {F̄nx} is a Cauchy sequence. Suppose to the contrary that {F̄nx} is not a Cauchy
sequence, then there exist a ε0 > 0 and two integer number sequences {ñ(i)}, {n(i)} with ñ(i) > n(i) > i
such that ∥∥∥F̄ ñ(i)x − F̄n(i)x

∥∥∥ ≥ ε0, i = 1, 2, . . . . (2.24)

Now, by condition (i), we have∥∥∥F̄ ñ(i)x − F̄n(i)x
∥∥∥ ≤ ∥∥∥F̄ ñ(i)x − Ḡn(i)x

∥∥∥ +
∥∥∥Ḡn(i)x − F̄n(i)x

∥∥∥
= r

∥∥∥F(F̄ ñ(i)−1x) −G(Ḡn(i)−1x)
∥∥∥ +

∥∥∥Ḡn(i)x − F̄n(i)x
∥∥∥

≤ r
∥∥∥F̄ ñ(i)−1x − Ḡn(i)−1x

∥∥∥
+ rτ

(∥∥∥F̄ ñ(i)−1x − F(F̄ ñ(i)−1x)
∥∥∥ +

∥∥∥Ḡn(i)−1x −G(Ḡn(i)−1x)
∥∥∥) +

∥∥∥Ḡn(i)x − F̄n(i)x
∥∥∥

≤ r
(∥∥∥F̄ ñ(i)−1x − F̄ ñ(i)x

∥∥∥ +
∥∥∥F̄ ñ(i)x − F̄n(i)x

∥∥∥ +
∥∥∥F̄n(i)x − Ḡn(i)x

∥∥∥ +
∥∥∥Ḡn(i)x − Ḡn(i)−1x

∥∥∥)
+ rτ

(∥∥∥F̄ ñ(i)−1x − F(F̄ ñ(i)−1x)
∥∥∥ +

∥∥∥Ḡn(i)−1x −G(Ḡn(i)−1x)
∥∥∥) +

∥∥∥Ḡn(i)x − F̄n(i)x
∥∥∥ .

(2.25)
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Dividing both sides of inequality (2.25) by
∥∥∥F̄ ñ(i)x − F̄n(i)x

∥∥∥, and with (2.24), we have

1 ≤ r


∥∥∥F̄ ñ(i)−1x − F̄ ñ(i)x

∥∥∥
ε0

+ 1 +

∥∥∥F̄n(i)x − Ḡn(i)x
∥∥∥

ε0
+

∥∥∥Ḡn(i)x − Ḡn(i)−1x
∥∥∥

ε0


+ rτ

∥∥∥F̄ ñ(i)−1x − F(F̄ ñ(i)−1x)
∥∥∥ +

∥∥∥Ḡn(i)−1x −G(Ḡn(i)−1x)
∥∥∥

ε0
+

∥∥∥Ḡn(i)x − F̄n(i)x
∥∥∥

ε0
.

(2.26)

Letting i → ∞ in (2.26), by using (2.23), conditions (ii) and (iii), we deduce that 1 ≤ r. This is a
contradiction since r < 1. Consequently, {F̄nx} is a Cauchy sequence. Since D is a closed set, {F̄nx}
converges to a point u in D. This and (2.23) imply that {Ḡnx} also converges to u. From condition (iv),
F and G are continuous on D, and with condition (iii) we get

Fu = u = Gu.

Hence u is a common fixed point of F and G.

Remark 2.6. In the following, we will give two examples to illustrate that Theorem 2.5 is an extension
of Theorem 1.9, and the common fixed point of F and G which satisfy the conditions of Theorem 2.5
probably is not unique.

Example 2.7. Let X = R be equipped with the norm ‖x‖ = |x|, D = [−1, 1], and F, G : D → D be
defined by

Fx = x, for all x ∈ D,

and

Gx =

0, x ∈ [0, 1],
x, x ∈ [−1, 0).

Obviously, the metric induced by the norm is

d(x, y) = |x − y|, ∀ x, y ∈ X.

We first prove that F and G do not satisfy inequality (1.2) on D. Suppose to the contrary that F and G
satisfy inequality (1.2):

d(Fx,Gy) ≤ θd(x, y) + τ(d(x, Fx) + d(y,Gy)), for all x, y ∈ D. (2.27)

Taking x = 1 and y = 0 in (2.27), we obtain 1 ≤ θ, which contradicts θ ∈ [0, 1). Therefore, F and G do
not satisfy conditions of Theorem 1.9.

For any x, y ∈ D, we have

|x − y| + (|x − Fx| + |y −Gy|) − |Fx −Gy|

=

|x − y| + |y| − |x|, if y ≥ 0,
|x − y| − |x − y|, if y < 0,

≥ 0,
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where the last inequality holds by the triangle inequality of | · |. Therefore, F and G satisfy condition
(i) of Theorem 2.5 with τ = 1. Let F̄x := 1

2 Fx + 1
20 = 1

2 Fx, Ḡx = 1
2Gx. Then we can calculate that for

all x ∈ D,

lim
n→∞

∥∥∥F̄nx − F̄n+1x
∥∥∥ = lim

n→∞

∣∣∣∣∣ 1
2n x −

1
2n+1 x

∣∣∣∣∣ = 0,

lim
n→∞

∥∥∥Ḡnx − Ḡn+1x
∥∥∥ = lim

n→∞


0, if x ≥ 0,∣∣∣∣∣ 1
2n x −

1
2n+1 x

∣∣∣∣∣ , if x < 0,
= 0.

lim
n→∞

∥∥∥F̄nx − F(F̄nx)
∥∥∥ = lim

n→∞

∣∣∣∣∣ 1
2n x −

1
2n x

∣∣∣∣∣ = 0,

lim
n→∞

∥∥∥Ḡnx −G(Ḡnx)
∥∥∥ = lim

n→∞


0, if x ≥ 0,∣∣∣∣∣ 1
2n x −

1
2n x

∣∣∣∣∣ , if x < 0,
= 0.

Therefore, conditions (ii) and (iii) of Theorem 2.5 are satisfied. Obviously, F and G are continuous.
All conditions of Theorem 2.5 are satisfied. Hence, F and G have a common fixed point. In fact, all
points in [−1, 0] are common fixed points of F and G.

Example 2.8. Let X = R be equipped with the usual norm | · |, D =
[
0, 1

2

]
, and F, G : D → D be

defined by
Fx = x, G(x) = x2, for all x ∈ D.

Obviously, the metric induced by the norm is

d(x, y) = |x − y|, ∀ x, y ∈ X.

We first prove that F and G do not satisfy inequality (1.2) on D. Suppose to the contrary that F and G
satisfy

d(Fx,Gy) ≤ θd(x, y) + τ(d(x, Fx) + d(y,Gy)), for all x, y ∈ D. (2.28)

Taking x = 1 and y = 0 in (2.28), we obtain 1 ≤ θ, which contradicts θ ∈ [0, 1). Therefore, F and G do
not satisfy the conditions of Theorem 1.9.

For any x, y ∈ D, we have

|x − y| + (|x − Fx| + |y −Gy|) − |Fx −Gy| = |x − y| +
∣∣∣y − y2

∣∣∣ − ∣∣∣x − y2
∣∣∣ ≥ 0.

Thus F and G satisfy condition (i) of Therem 2.5 with τ = 1. Let

F̄x :=
3
4

Fx +
1
4

0 =
3
4

x, Ḡx :=
3
4

Gx +
1
4

0 =
3
4

x2, for all x ∈ D.

Then we can calculate that for all x ∈ D,

lim
n→∞

∥∥∥F̄nx − F̄n+1x
∥∥∥ = lim

n→∞

∣∣∣∣∣∣3n

4n x −
3n+1

4n+1 x

∣∣∣∣∣∣ = 0,

lim
n→∞

∥∥∥Ḡnx − Ḡn+1x
∥∥∥ = lim

n→∞

∣∣∣∣∣∣32n−1

42n−1 x2n
−

32n+1−1

42n+1−1
x2n+1

∣∣∣∣∣∣ = 0.
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lim
n→∞

∥∥∥F̄nx − F(F̄nx)
∥∥∥ = lim

n→∞

∣∣∣∣∣3n

4n x −
3n

4n x
∣∣∣∣∣ = 0,

lim
n→∞

∥∥∥Ḡnx −G(Ḡnx)
∥∥∥ = lim

n→∞

∣∣∣∣∣∣∣32n−1

42n−1 x2n
−

(
32n−1

42n−1 x2n

)2
∣∣∣∣∣∣∣ = 0.

Therefore, F and G satisfy conditions (ii) and (iii) of Theorem 2.5. Clearly, F and G satisfy condition
(iv) since they are continuous on D. Now, all conditions of Theorem 2.5 are satisfied, and so F and G
have a common fixed point. In fact, u = 0 is the unique common fixed point of F and G on X.

3. Conclusions

In this paper, following the argument of [14], we studied the common fixed point of two self-
mappings. In this direction, most of results in the literature required that the contractive coefficient is
constant and in interval [0, 1). However, in some mathematical models, a fixed contractive coefficient
in [0, 1) does not exist. In order to overcome this difficulty, we replaced the contractive coefficient
with a contractive function with its range in [0, 1]. By using the concepts of asymptotical regularity,
orbital continuity and q-continuity, and some techniques of mathematical analysis, a unique common
fixed point theorem for two self-mappings has been established in a metric space. Furthermore, for
a pair of nonexpansive mappings, by constructing two approximate mappings of them, the concepts
of asymptotical regularity and continuity, a common fixed point has been derived. We also presented
some examples to illustrate that our results extended the main result in [14]. The obtained results will
bring potential applications in the existence of solution of some mathematical models.

In future studies, we will extend our results to more general enriched Banach contractions mappings
in a Banach space, and obtain an iterative sequence, which converges to a common fixed point of
them. Moreover, following the idea of our previous work [13], we will consider the common fixed
point of finite self-mappings without contraction conditions in a Banach space, and its applications in
variational inequalities.
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6. S. Carl, S. Heikkilä, Fixed point theory in ordered sets and applications, Springer, 2011.
https://doi.org/10.1007/978-1-4419-7585-0
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