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Abstract: Designing complex surfaces is one of the major problems in industries such as the
automotive, shipbuilding and aerospace industries. To solve this problem, continuity conditions
between surfaces are applied to construct the complex surfaces. The geometric and parametric
continuities are the two metrics that usually have been used in connecting surfaces. However,
the conventional geometric and parametric continuities have significant limitations. The existing
continuity conditions only allow the two surfaces to be joined at the end of the boundary point.
Therefore, if the designers want to connect at any arbitrary line of the first surface, the designers
must use the subdivision method to splice the surfaces. Nevertheless, this method is tedious and
involves a high computational cost, especially when dealing with a higher degree order of surfaces.
Thus, this paper presents fractional continuity of degree two (or F2) for generalized fractional Bézier
surfaces. The fractional parameter embedded in the generalized fractional Bézier basis functions will
solve the mentioned limitation by introducing fractional continuity. The generalized fractional Bézier
surface also has excellent shape parameters that can alter the shape of the surface without changing
the control points. Thus, the shape parameters enable the control of the shape flexibility of the
surfaces, while fractional parameters enable the control of the adjustability of the surfaces’ size. The
F2 continuity for generalized fractional Bézier surfaces can become an easier and faster alternative to
the subdivision method. Therefore, the fractional continuity for generalized fractional Bézier surfaces
will be a good tool to generate complex surfaces due to its flexibility and adjustability of shape and
fractional parameters.
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1. Introduction

In Computer Aided Geometric Design (CAGD) and Computer-Aided Manufacturing, the
development of curves and surfaces is crucial. Researchers studied the representation of free-form
curves and surfaces, applying them in numerous fields, such as engineering, manufacturing and
designing. In real-world problems, most curves and surfaces are complex to model. Therefore, having
a tool to create flexible and adjustable curves and surfaces becomes necessary to model any complex
shapes. However, finding a representation of desired complex curves and surfaces is difficult and
impractical [2, 3]. To tackle the problem of modeling the complex shapes, the curves and surfaces are
broken down into simpler curves and patches, joining them to form the complex curves or surfaces. To
join such curves or surfaces, a continuity concept is applied to the adjacent curves or surfaces.

Generally, the higher the order of continuity, the smoother the curves or surfaces are connected.
Therefore, connecting the curves or surfaces is important with a high degree of continuity. Two
standard metrics have been used in connecting these curves and surfaces: parametric and geometric
continuity. Parametric continuity of order r, or Cr continuity, is the simplest form of the continuity
concept. Nonetheless, parametric continuity has its restrictions. For example, when the surfaces are
connected by C1 continuity, they still need to possess a common tangent at their boundary points.
Hence, parametric continuity cannot be the only exact standard method in constructing smooth curves
or surfaces [4]. As a result, researchers have developed an upgraded version of parametric continuity
called geometric continuity, or Gr continuity. Gr continuity is the less restrictive form where scale
factors are embedded in the continuity. These scale factors overcome a common tangent for the curves
or surfaces.

For shape designing and geometric representation in CAGD, parametric curves and surfaces are
useful tools. Classical Bézier curves and surfaces are one of many parametric curves or surfaces.
The Bézier method has become one of the famous methods in modeling curves and surfaces due to
the simple formulation and excellent geometric properties [5]. However, there is a constraint in the
classical Bézier method; the shape of curves or surfaces cannot be changed without changing the
control points. To overcome this constraint, researchers have developed aesthetic Bézier curves and
surfaces that still preserve the excellent features of classical Bézier curves and surfaces but with added
flexibility and adjustability. Rational Bézier curve is one of the aesthetic curves that was introduced
earlier. The weight factors in rational Bézier curves and surfaces allow shape modification without
altering the control points [6]. However, compared to the classical Bézier curves and surfaces, the
rational Bézier curves and surfaces have considerably more difficult computation, convoluted integrals
and repeated differentiation, since rational functions define them [7].

To overcome the limitations of the rational Bézier, scholars have created several Bézier curves
and surfaces with shape parameters to preserve the benefits of the Bézier model and increase the shape
adjustability of curves and surfaces. With three shape parameters, [7] created enhanced classical Bézier
curves and surfaces dubbed the shape-adjustable generalized Bézier (or SG-Bézier for short). For
example, [8] presented a class of quasi-quintic trigonometric Bézier curves with two shape parameters.
Moreover, [9] produced quintic trigonometric Bézier basis functions with two shape parameters. The
generalized Hybrid-Trigonometric Bézier (GHT-Bézier) basis functions with embedding exponential
and trigonometric functions along with shape parameters have been formulated by [10]. On the other
hand, [11] proposed new cubic hyperbolic Bézier basis functions derived from hyperbolic functions.
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Researchers have used these aesthetic Bézier curves to develop complex curves and surfaces using
continuity. GC1 continuity conditions between adjacent rectangular and triangular Bézier surface
patches have been developed by [12]. On the other hand, G1 continuity of piecewise Bézier surfaces
has been discussed in [13]. Meanwhile, [14] discussed G2 continuity for conditions for generalized
Bézier-like surfaces with multiple shape parameters. Surface construction using C2 continuity for
quintic trigonometric Bézier curves is proposed in [15]. Furthermore, [16] proposed G2 continuity for
the biquintic trigonometric surface and modeled a few engineering surfaces. In addition, SG-Bézier
surfaces have been modeled up until G2 continuity in [17], while [18] constructed the GHT-Bézier
surfaces up until G2 continuity. Continuity also has been used in the modeling of the developable
surface, while developable λ-Bézier surfaces have been discussed with their geometric design and
continuity conditions up until G2 in [19]. Apart from that, [20] introduced the generalized developable
cubic trigonometric surface up to G2 continuity. Moreover, [21] developed a generalized developable
hybrid trigonometric surface up until G3 continuity.

Cr and Gr continuity enable modeling complicated curves and surfaces by joining several simple
curves and surfaces to form the desired curves and surfaces. Nevertheless, the existing continuity
has significant limitations, in which the curves or surfaces can only be connected at the endpoints or
boundary points. For example, if the designers want to connect the midpoint of the first curve to the
second curve, it can only be done by splicing the first curve using the subdivision method first. Then,
after the curve splicing, the new curve will join the second curve using continuity. The subdivision
method is good for splicing the curve or surfaces, but it has a high computational time when involving
a higher degree curve.

Recently, [22] has developed an improved version of geometric continuity dubbed fractional
continuity or Fr continuity and connects the curves up until F2. Here, the fractional continuity enables
the curves or surfaces to be connected at the endpoints or boundary points and any arbitrary point on the
first curve and arbitrary line (according to u or v direction) of the first surface as well. The fractional
parameter embedded in fractional continuity is the key to the development of fractional continuity.
This paper will discuss the F2 continuity for the generalized fractional Bézier surfaces. The fractional
parameter will become a key point in the fractional continuity. By varying the fractional parameter, the
common boundary between two surfaces can be adjusted along the first surface while preserving the
degree of continuity. Shape parameters are also included in the generalized fractional Bézier surface.
Hence, shape parameters will be added as an additional tool for the designer to change the shape of the
surface.

The work is organized as follows. The generalized fractional Bézier basis functions are defined
in Section 2. Section 3 discussed F2 continuity conditions between three consecutive curves. In
Section 4, the definition and the properties of the generalized fractional Bézier tensor product surface
are explained. Next, in Section 5, the F2 continuity conditions for the generalized fractional Bézier
surfaces are discussed. The procedures and some examples for the F2 continuity will be shown in
Section 6. Last but not least, in Section 7, some conclusions and recommendations for future work will
be addressed.

2. Generalized fractional Bézier basis functions

Generalized fractional Bézier basis functions
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Definition 2.1 (Riemann-Liouville fractional integral for f (t) = t). Let Re(w) > 0 and f (t) = t. Then,
for t > 0, the Riemann-Liouville fractional integral of f (t) = t of order w is as follows:

D−w
t (t) =

1
Γ(w)

∫ t

0
(t − x)w−1(x) dx =

1
Γ(w + 2)

tw+1. (2.1)

The general form and derivation of the definition can be seen in [1].

Definition 2.2 (Generalized fractional Bézier basis functions). For t ∈ [0, 1], ai ∈ R and w ≥ 0, the
following function is defined as the generalized fractional Bézier curve basis function of degree n with
n shape parameters:

f̄i,n(t) = fi,n(t)
(
1 +

ai

n − i + 1
(1 − D−w

t (t)) −
ai+1

i + 1
D−w

t (t)
)
,

−(n − i + 1) < ai < i, a0 = an+1 = 0, i = 0, 1, ..., n,
(2.2)

where fi,n(t) =
(

n
i

)
(1 − D−w

t (t))n−iD−w
t (t)i and D−w

t (t) = 1
Γ(w+2) t

w+1.

For n ≥ 2, the generalized fractional Bézier basis functions can be defined recursively as follows:

f̄i,n(t) = (1 − D−w
t (t)) f̄i,n−1(t) + D−w

t (t) f̄i−1,n−1(t). (2.3)

Theorem 2.1 (Generalized fractional Bézier basis function). The generalized fractional basis functions
with shape parameters have the following properties, such as degeneracy, non-negativity, a partition
of unity, symmetry and linear independence.

Proof. The proof for degeneracy, non-negativity, a partition of unity, and symmetry can be seen in [22].
The linear independence property will be proven as follows:
Linear independence:

∑n
i=0 f̄i,n(t)ci = 0 ⇐⇒ ci = 0, i = 0, 1, . . . , n; n ≥ 1. The sufficient condition is

clear, and the principle of mathematical induction will be used for the necessary condition.
Base step: n = 1.

1∑
i=0

f̄i,1(t)ci = 0, (2.4)

c0 f̄0,1(t) + c1 f̄1,1(t) = 0. (2.5)

Substituting Eq (2.2) into the above equation yields:

c0(1 − D−w
t (t))(1 − a1D−w

t (t)) + c1D−w
t (t)(1 + a1(1 − D−w

t (t)) = 0, (2.6)

c0

(
1 − D−w

t (t) − a1D−w
t (t) + a1(D−w

t (t))2
)

+ c1

(
D−w

t (t) + a1D−w
t (t) − a1(D−w

t (t))2
)

= 0, (2.7)

c0 +
(
(−c0 + c1) + (c0 + c1)a1

)
D−w

t (t) + (c0 + c1)a1(D−w
t (t))2 = 0. (2.8)

By comparing coefficients, the following is obtained:
c0 = 0,
(−c0 + c1) + (c0 + c1)a1 = 0,
(c0 + c1)a1 = 0.

(2.9)
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By simplifying the above equations, c0 = c1 = 0 is obtained. Hence, the base case is true. Now, the
inductive step will be proven:
Inductive step: n = k is true; show for n = k + 1.

Assume that
∑k

i=0 f̄i,k(t)ci = 0 ⇐⇒ ci = 0, i = 0, 1, . . . , k; k ≥ 1 is true. Consider
k+1∑
i=0

f̄i,k+1(t)ci = 0. (2.10)

Substituting Eq (2.3) in Eq (2.10) and rearranging it, the following is obtained:

(1 − D−w
t (t))

k+1∑
i=0

f̄i,k(t)ci + D−w
t (t)

k+1∑
i=0

f̄i−1,k(t)ci = 0. (2.11)

Since D−w
t (t) is an arbitrary value on interval t ∈ [0, 1],

k+1∑
i=0

f̄i,k(t)ci =

k∑
i=0

f̄i,k(t)ci + f̄k+1,k(t)ck+1 =

k∑
i=0

f̄i,k(t)ci = 0, (2.12)

k+1∑
i=0

f̄i−1,k(t)ci = f̄−1,k(t)c0 +

k+1∑
i=1

f̄i−1,k(t)ci =

k+1∑
i=1

f̄i−1,k(t)ci = 0. (2.13)

Note that f̄i,k(t) = 0 for i = −1 or i > k. Hence, from hypothesis, we obtain ci = 0, i = 0, 1, . . . , k
for Eq (2.12) and ci = 0, i = 1, 2, . . . , k + 1 for Eq (2.13). By the principle of mathematical induction,
linear independence is satisfied. It is clear that the generalized fractional Bézier basis functions span
any polynomial equation with at most degree n(w + 1) + 1. Therefore, the generalized fractional Bézier
basis functions are a basis for polynomial space with at most degree n(w + 1) + 1. �

(a) Quadratic w = 0 (b) Quadratic w = 0.5

(c) Quadratic w = 1

Figure 1. Quadratic fractional Bézier basis functions with multiple values of fractional and
shape parameters.
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Figure 1 illustrates the quadratic fractional Bézier basis functions with multiple spectrum values
of shape and fractional parameters. Figure 1 also indicates the same as the classical Bernstein basis
functions, especially when the values of the shape and fractional parameters are zero.

3. F2 continuity conditions for generalized fractional Bézier curve

3.1. Definition and properties of the generalized fractional Bézier curve

Definition 3.1 (Generalized fractional Bézier curve). The generalized fractional Bézier curve of n
degree with n shape parameters is defined as follows:

C(t; w, a1, a2, ..., an) =

n∑
i=0

f̄i,n(t; w, a1, a2, ..., an)Pi, t ∈ [0, 1], (3.1)

where Pi for i = 0, 1, ..., n is the set of control points in R2.

Theorem 3.1 (Properties of generalized fractional Bézier curve). The generalized fractional Bézier
curve has the following properties:

(1) Endpoint terminal. The generalized fractional Bézier curves are always interpolated their first
control points (t = 0) regardless the values of w. For the last control point, the curve will interpolated
the last control point (t = 1) when w = 0. However, for w > 0, the endpoint for t = 1 can still be
calculated using the given equation below:

C(0,w, a1, a2, ..., an) = P0,

C(1,w, a1, a2, ..., an) =
∑n

i=0 f̄i,n(1; w, a1, a2, ..., an)Pi,

C(1, 0, a1, a2, ..., an) = Pn.

(3.2)

(2) Endpoint tangent. The endpoint tangent for the generalized fractional Bézier curve at t = 0 is
independent of the w. However for t = 1, the endpoint tangent depends on w. The equations for
endpoint tangent are given as follows:

C′(0,w, a1, a2, ..., an) = (n + a1)(P1 − P0),
C′(1,w, a1, a2, ..., an) = d

dt

(∑n
i=0 f̄i,n(t; w, a1, a2, ..., an)Pi

)
t=1,

C′(1, 0, a1, a2, ..., an) = (n − an)(Pn − Pn−1).

(3.3)

(3) Shape adjustable property. The numbers of shape parameters of the generalized fractional Bézier
curve depend on the curve’s degree. These shape parameters allow local control of the curve’s shape.

(4) Fractional curve adjustable property. One fractional parameter is associated with the generalized
fractional Bézier curve. The fractional parameter allows the control of the curve’s length adjustability
along the u direction. Please refer Section 3.2 for more details.

Proof. The rest of the properties and their proofs can be seen in [22]. �
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3.2. The curve adjustability property via the fractional parameters

The fractional parameter provides the curve adjustable property, as in Theorem 3.1. In Eqs (3.2)
and (3.3), it is clear that for t = 0, the fractional parameter does not affect both equations. However, for
t = 1, both equations depend on the fractional parameter. This implies that at t = 1 and w > 0, the curve
does not interpolate at the last control point, Pn. However, the new endpoint (position/coordinate) can
be calculated using the equation below:

C(1,w, a1, a2, ..., an) =

n∑
i=0

f̄i,n(1; w, a1, a2, ..., an)Pi. (3.4)

Example 3.1. Figure 2 shows the curve adjustability of the fractional parameter, w1 for the cubic
fractional Bézier curve, C1(t; w1). In this figure, the shape parameters used are (a1, a2, a3) = (−1, 0, 1),
and the control points are represented by the red points. Each sub-figure has an arrow that is pointing
to the endpoints of the curve with their respective value. The arrow is pointing towards endpoint at
t = 1 with arbitrary value of w1. Note that the interval of t remains on the interval [0, 1] regardless of
the value of w1.

(a) w1 = 0 (b) w1 = 0.5

(c) w1 = 0.75 (d) w1 = 1

Figure 2. The curve adjustability via the fractional parameter w1.

3.3. F2 fractional continuity conditions

Let three consecutive generalized fractional Bézier curves be as follows:
C1(t; w1, a1, a2, ..., an) =

∑n
i=0 f̄i,n(t; v1, a1, a2, ..., an)Pi, t ∈ [0, 1], n ≥ 2,

C2(t; w2, b1, b2, ..., bm) =
∑m

j=0 f̄ j,m(t; w2, b1, b2, ..., bm)Q j, t ∈ [0, 1],m ≥ 2,
C3(t; w3, c1, c2, ..., cm) =

∑l
k=0 f̄k,l(t; w3, c1, c2, ..., cl)Rk, t ∈ [0, 1], l ≥ 2,

(3.5)

where
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(1) f̄i,n, f̄ j,m and f̄k,l are the generalized fractional Bézier basis functions of degree n, m and l,
respectively.

(2) Pi(i = 0, 1, ..., n), Q j( j = 0, 1, ...,m) and Rk(k = 0, 1, ..., l) are the control points.

(3) a1, a2, . . . , an, b1, b2, . . . , bm and c1, c2, . . . , cl are the shape parameters.

(4) w1, w2 and w3 are the fractional parameters.

Definition 3.2 (Fractional continuity for three consecutive generalized fractional Bézier curves, Fr).
Suppose three curves C1(t; w1), C2(t; w2) and C3(t; w3) are Fr continuous and will connect to each other
consecutively, i.e., C1 connects to C2, and C2 connects to C3. Fr continuity between three consecutive
curves can be achieved if the following conditions are satisfied:

C1(1; w1) = C2(0; w2 = 0)
C′1(1; w1) = φ1C′2(0; w2 = 0)
C′′1 (1; w1) = φ2

1C
′′
2 (0; w2 = 0) + φ2C′3(0; w3 = 0)

...

C(r)
1 (1; w1) = φr

1C
(r)
2 (0; w2 = 0) + φr−1

2 C(r−1)
2 (0; w2 = 0) + ... + φrC′2(0; w2 = 0).

(3.6)



C2(1; w2) = C3(0; w3 = 0)
C′2(1; w2) = χ1C′3(0; w3 = 0)
C′′2 (1; w2) = χ2

1C
′′
3 (0; w3 = 0) + χ2C′3(0; w3 = 0)

...

C(r)
2 (1; w2) = χr

1C
(r)
3 (0; w3 = 0) + χr−1

2 C(r−1)
3 (0; w3 = 0) + ... + χrC′3(0; w3 = 0).

(3.7)

The range of the scale factor, φi, χi for i = 0, 1, ..., r depends on the degree of continuity, r.
Generally, for Fr continuity, the range for the scale factors are φ1, χ1 > 0 and φi, χi ∈ R for
i = 2, 3, ..., r.

Theorem 3.2 (Fractional continuity for generalized fractional Bézier curve, Fr). Consider three
generalized fractional Bézier curves as in Eq (3.5), and the necessary and sufficient conditions for
fractional continuity at the joint points are given as follows.

(1) F0 continuity:

Q0 =

n∑
i

f̄i,n(1; w1, a1, a2, ..., an)Pi, (3.8)

R0 =

m∑
j

f̄ j,n(1; w2, b1, b2, ..., bm)Qi. (3.9)

(2) F1 continuity: Q0 =
∑n

i f̄i,n(1; w1, a1, a2, ..., an)Pi,

Q1 = 1
φ1(m+b1)

(
d
dt

(∑n
i f̄i,n(t; w1, a1, a2, ..., an)Pi

)
t=1

)
+ Q0.

(3.10)
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558R0 =
∑m

j f̄ j,m(1; w2, b1, b2, ..., bm)Qi,

R1 = 1
χ1(l+c1)

(
d
dt

(∑m
j f̄ j,m(t; w2, b1, b2, ..., bm)Qi

)
t=1

)
+ R0.

(3.11)

(3) F2 continuity: 

Q0 =
∑n

i f̄i,n(1; w1, a1, a2, ..., an)Pi,

Q1 = 1
φ1(m+b1)

(
d
dt

(∑n
i f̄i,n(t; w1, a1, a2, ..., an)Pi

)
t=1

)
+ Q0,

Q2 = 1
mφ2

1(b2+m−1)

(
d2

dt2

(∑n
i f̄i,n(t; w1, a1, a2, ..., an)Pi

)
t=1

+
(
m((1 − m)φ2

1) + φ2) + (−2mφ2
1 + φ2)b1

)
Q0

+
(
(2mφ2

1 − φ2)b1 + m((−1 + m)2φ2
1 − φ2 + φ2

1b2

)
Q1

)
.

(3.12)



R0 =
∑m

j f̄ j,n(1; w2, b1, b2, ..., bm)Qi,

R1 = 1
χ1(l+c1)

(
d
dt

(∑m
j f̄ j,n(t; w2, b1, b2, ..., bm)Qi

)
t=1

)
+ R0,

R2 = 1
lχ2

1(c2+l−1)

(
d2

dt2

(∑n
i f̄ j,m(t; w2, b1, b2, ..., bm)Qi

)
t=1

+
(
l((1 − l)χ2

1) + χ2) + (−2lχ2
1 + χ2)c1

)
R0

+
(
(2lχ2

1 − χ2)c1 + l((−1 + l)2χ2
1 − χ2 + χ2

1l2

)
R1

)
.

(3.13)

Proof. The theorem can be proven as follows:
By using the endpoint terminal and tangent properties in Theorem 3.1, Theorem 3.2 can be derived.
From Eqs (3.2) and (3.3), the endpoint terminal and tangent for t = 0 are independent of w. This implies
that for the right-hand side of the equation of Definition 3.2, the value of the fractional parameter can be
set to zero to simplify the equations. Generally, if the curves C1,C2 . . . ,Cn are connected consecutively,
the fractional parameters w1,w2, . . . ,wn−1 (fractional parameters of the first curve, C1 until (n − 1)th
curve, Cn−1) are needed to satisfy the continuity conditions, while the last fractional parameter, wn, can
be used to control the curve adjustability of the last curve, Cn.

(1) F0 continuity condition is obtained by solving Q0 and R0 in C1(1; w1) = C2(0; w2 = 0) and
C2(1; w2) = C3(0; w3 = 0), respectively.

(2) F0 continuity must be achieved first. F1 continuity condition is obtained by solving for Q1 and
R1 in C′1(1; w1) = φ1C′2(0; w2 = 0) and C′2(1; w2) = χ1C′3(0; w3 = 0), respectively.

(3) F1 continuity must be satisfied first. F2 continuity condition is achieved by solving for Q2 and R2

in C′′1 (1; w1) = φ2
1C
′′
2 (0; w2 = 0)+φ2C′2(0; w2 = 0) and C′′2 (1; w2) = χ2

1C
′′
3 (0; w3 = 0)+χ2C′3(0; w3 =

0), respectively.

�

Example 3.2. Figures 3 and 4 depict the adjustment of the common point via w1 and the curve
adjustability of second curve via w2, respectively. Blue and orange curves with degree three are C1

and C2, respectively. The control points and shape parameters are the same as in Example 3.1. Q0,
Q1 and Q2 can be calculated by Theorem 3.2. Other control point, shape parameters and scale factors
are Q3 = (3,−5), (b1, b2, b3) = (0.5, 0, 0.5), φ1 = 0.75 and φ2 = −0.5, respectively. The values of Q0,
Q1 and Q2 for each sub-figure in Figure 3 are
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(1) Figure 3a:

Q0 = (3, 0), Q1 = (3.7619,−1.52381), Q2 = (3.52205,−4.59965).

(2) Figure 3b:

Q0 = (2.35078, 0.884407), Q1 = (3.69117,−0.306394), Q2 = (5.77607,−6.54795).

(3) Figure 3c:

Q0 = (1.92252, 1.16194), Q1 = (3.33641, 0.568314), Q2 = (6.50264,−4.93599).

(4) Figure 3d:

Q0 = (1.5, 1.25), Q1 = (2.83333, 1.25), Q2 = (6.56173,−2.30556).

From Figure 4, it is obvious that w2 did not affect the control points of C2. This means that the common
point or joined point between C1 and C2 is independent of w2.

Example 3.3. Figure 5 shows three consecutive cubic generalized fractional Bézier curves with F2

continuity. Blue, orange and green curves are C1, C2 and C3, respectively. The control points and shape
parameters are the same as in Example 3.2. Q0, Q1, Q2, R0, R1 and R2 can be obtained by Theorem 3.2.
Other control point, shape parameters and scale factors are R3 = (0,−2), (c1, c2, c3) = (−1.5, 0, 1.5),
χ1 = 1.25 and χ2 = −0, respectively. The values of Q0, Q1, Q2, R0, R1 and R2 for each sub-figure in
Figure 5 are

(1) Figure 5a:

Q0 = (3, 0), Q1 = (3.7619,−1.52381), Q2 = (3.52205,−4.59965),
R0 = (3,−5), R1 = (2.02551,−5.74733), R2 = (2.1651,−3.78947).

(2) Figure 5b:

Q0 = (2.35078, 0.884407), Q1 = (3.69117,−0.306394), Q2 = (5.77607,−6.54795),
R0 = (3,−5), R1 = (−2.182,−2.11049), R2 = (−3.59036, 1.92539).

(3) Figure 5c:

Q0 = (3, 0), Q1 = (3.7619,−1.52381), Q2 = (3.52205,−4.59965),
R0 = (3.19263,−4.74017), R1 = (2.33428,−6.48591), R2 = (2.32423,−4.16135).

(4) Figure 5d:

Q0 = (2.35078, 0.884407), Q1 = (3.69117,−0.306394), Q2 = (5.77607,−6.54795),
R0 = (3.89875,−5.30721), R1 = (0.525349,−5.29025), R2 = (−1.91411,−0.038501).
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(5) Figure 5e:

Q0 = (2.35078, 0.884407), Q1 = (3.69117,−0.306394), Q2 = (5.77607,−6.54795),
R0 = (4.4075,−4.99986), R1 = (3.06888,−7.704), R2 = (0.413905,−2.68839).

(6) Figure 5f:

Q0 = (1.5, 1.25), Q1 = (2.83333, 1.25), Q2 = (6.56173,−2.30556),
R0 = (4.64757,−2.76389), R1 = (3.61053,−7.91349), R2 = (−0.442755,−6.46024).

Figure 6 illustrates the curve adjustability for the third curve via w3. Based on Figure 6, clearly w3 did
not affect the control points of C3. This means that the common point or joined point between C2 and
C3 is independent of w3.

(a) w1 = 0 (b) w1 = 0.5

(c) w1 = 0.75 (d) w1 = 1

Figure 3. F2 continuity between two consecutive cubic fractional Bézier curves with
variation of fractional parameter of w1.
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(a) w2 = 0.5
(b) w2 = 0.75

(c) w2 = 1 (d) w2 = 1.25

Figure 4. The curve adjustability of C2 via the fractional parameter w2 in F2 continuity
between two curves.
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(a) w1 = w2 = w3 = 0

(b) w1 = 0.5 and w2 = w3 = 0

(c) w2 = 0.25 and w1 = w3 = 0
(d) w1 = 0.5, w2 = 0.25 and w3 = 0

Figure 5. Continue.
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(e) w1 = w2 = 0.5 and w3 = 0 (f) w1 = 1, w2 = 0.5 and w3 = 0

Figure 5. F2 continuity between three consecutive cubic fractional Bézier curves with
variation of fractional parameters of w1 and w2.

(a) w1 = 1, w2 = 0.5 and w3 = 0.5
(b) w1 = 1, w2 = 0.5 and w3 = 0.75

(c) w1 = 1, w2 = 0.5 and w3 = 1

Figure 6. The curve adjustability of C3 via the fractional parameter w3 in F2 continuity
between three curves.
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In Figure 5b, when the value of the fractional parameter w1 varies, it will cause the control points
Q0,Q1,Q2,R1, and R2 to change their positions to maintain F2 continuity between the curves C1 and
C2 without affecting the convex hull of the curve, C1, and the control points Q3 and R0.

In Figure 5c, when the fractional parameter w2 differs, the coordinates of the control points R0,R1,

and R2 are moved to maintain the F2 continuity between the curves C2 and C3 without changing the
convex hull of the curves C1 and C2 and the control point R3.

Figure 5d–5f illustrates that the convex hulls of the curves C2 and C3 are shifted when the values
of the fractional parameters w1 and w2 are altered. Figure 6 depicts that changing the value of the
fractional parameter w3 does not affect the convex hull of all curves, but the fractional parameter w3

can be used to adjust the curve adjustability of the curve C3.

4. Generalized fractional Bézier tensor product surface

Definition 4.1 (Generalized fractional Bézier tensor product surface). Suppose Pi, j, where i =

0, 1, . . . ,m and j = 0, 1, . . . , n are the control points. The generalized fractional Bézier tensor product
surface is defined as follows:

S (u, v; w1,w2, a1, a2, . . . , am, b1, b2, . . . , bn)

=

m∑
i=0

n∑
j=0

f̄i,m(u; w1, a1, a2, . . . , am) f̄i,n(v; w2, b1, b2, . . . , bn)Pi, j, (u, v) ∈ [0, 1] × [0, 1], (4.1)

where ai and b j are the shape parameters for i = 1, . . . ,m and j = 1, . . . , n, while w1 and w2 are
the fractional parameters. Moreover, f̄i,m(u; w1, a1, a2, . . . , am) and f̄i,n(v; w2, b1, b2, . . . , bn) are the
generalized fractional Bézier basis functions. Also, note that a0 = am+1 = b0 = bn+1 = 0. Hence, the
generalized fractional Bézier tensor product surface has m + n shape parameters with an additional
two fractional parameters.

Remark 1. The tensor product generalized fractional Bézier surfaces (see Eq (4.1)) inherited almost
all the properties of the classical tensor product Bézier surfaces, such as geometric and affine
invariance, convex hull, endpoint interpolation (when the fractional parameters are zero), degeneracy
and symmetry properties.

Remark 2. The generalized fractional Bézier tensor product surface has two additional properties:
local shape flexibility and surface patch adjustability. Shape parameters give flexibility in changing
the shape of the surface locally without changing the control points. The fractional parameters enable
the adjustability of the surface patch. By varying the values of the fractional parameters, the fraction
of the surface can be generated.

4.1. Geometric effect of the shape parameters on the surface

A classical Bézier tensor product surface has a lack of flexibility in changing shape. This is because
the surface can be changed only by altering its control points. Moving the control points can cause the
whole surface to change. Some of the modeling surfaces preferred only the local part of the surface to
change. Hence, the implementation of shape parameters enables the shape to change locally or globally
by simply changing the spectrum value of the shape parameters.
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The generalized fractional Bézier tensor product surface has excellent local dynamic shape
parameters. This shape parameter can be used to change the shape of the surface. This section will
demonstrate the geometric effect of the shape parameters on the surface.

Proposition 4.1. On the premise that the generalized fractional Bézier surface’s control points and
fractional parameters remain unchanged, the following holds:

(1) Based on Eq (4.1), the number of shape parameters is m + n. The corner points, P0,0, Pm,0, P0,n

and Pm,n will be associated with two shape parameters. Control points Pk,0, P0,l, Pk,n, and Pm,l

where k = 1, 2, . . . ,m−1 and l = 1, 2, . . . , n−1 corresponded to three shape parameters. The rest
of the control points will have four shape parameters. For a clear visual, Figure 7 shows each
control point in the control mesh corresponding to their respective shape parameters.

(2) Increasing the value of ai causes the surface to move closer to the control point Pi, j but further
from Pi−1, j. Conversely, if the value of ai decreases, the surface will move further from the control
point Pi, j. For b j, increasing the value will cause the surface to move closer to the control point
Pi, j but further from Pi, j−1. Meanwhile, decreasing the value of bi causes the surface to move
further from the control point Pi, j.

(3) Hence, to generate the surface that is as close as possible to the control point Pi, j, the shape
parameters need to be closer to the following values:

(a) sup(ai), sup(ai−1), . . . , sup(a1).

(b) sup(b j), sup(b j−1), . . . , sup(b1).

(c) inf(ai+1), inf(ai+2), . . . , inf(am).

(d) inf(b j+1),min(b j+2), . . . , inf(bn).

Conversely, to generate the shape of a surface that is as far as possible from the control point of
Pi, j, the shape parameters need to be closer to the following values:

(a) inf(ai), inf(ai−1), . . . , inf(a1).

(b) inf(b j), inf(b j−1), . . . , inf(b1).

(c) sup(ai+1), sup(ai+2), . . . , sup(am).

(d) sup(b j+1), sup(b j+2), . . . , sup(bn).

Remark 3. The terms sup and inf used in Proposition 4.1 are based on Definition 2.2. Since the range
of the shape parameters is open range, the value of shape parameters can only be close to the extreme
values. Therefore, sup and inf are used to indicate that the shape parameter values can only approach
the extreme values.

Example 4.1. Figure 8 indicates the biquartic fractional Bézier surface with zero shape parameters.
This example shows how to control the shape of the surface to get as close as possible to the control
point P2,2. Here, the shape parameters are (a1, a2, a3, a4, b1, b2, b3, b4).

Example 4.2. The shape-changing process of the biquartic fractional Bézier surface to get as far as
possible from point P2,2 is illustrated in Figure 8. The control points are the same as in Example 4.1.
At the same time, the fractional parameters are zero.
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From Figures 8 and 9, designers can manipulate these shape parameters to adjust the shape of the
surface to their liking. To change the shape locally, the designer can manipulate one of the shape
parameters. To change the shape globally, the designers need to change ai (i = 1, . . . ,m) or change b j

( j = 1, . . . , n).

Figure 7. Shape parameters that correspond to respective control points.
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(a) Shape parameters are (0, 0, 0, 0, 0, 0, 0, 0) (b) Shape parameters are (0, 1.99,−1.99, 0, 0, 0, 0, 0)

(c) Shape parameters are (0, 1.99,−1.99, 0, 0,
1.99,−1.99, 0)

(d) Shape parameters are (0.99, 1.99,−1.99,−0.99,
0.99, 1, 99,−1.99,−0.99)

Figure 8. The changing process of surface shape to move as close as possible to point P2,2

for biquartic fractional Bézier surface.
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(a) Shape parameters are (0, 0, 0, 0, 0, 0, 0, 0) (b) Shape parameters are (0,−2.99, 2.99, 0, 0, 0, 0, 0)

(c) Shape parameters are (0,−2.99, 2.99, 0,
0,−2.99, 2.99, 0)

(d) Shape parameters are (−3.99,−2.99, 2.99, 3.99,
−3.99,−2.99, 2.99, 3.99)

Figure 9. The changing process of surface shape to move as far as possible from point P2,2

for biquartic fractional Bézier surface.

4.2. Geometric effect of fractional parameter on the surface

The generalized fractional Bézier surface has another kind of parameter called the fractional
parameter. This fractional parameter gives a surface patch adjustability property to the surface. The
surface patch adjustability property means the surface can adjust its length in u and v directions
according to the respective fractional parameter.
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Any degree of the surfaces will have two fractional parameters, w1 and w2. Here, w1 is used to adjust
the surface patch in u direction while w2 controls the length of surface generated in the v direction. By
observing the geometric behavior of each fractional parameter, it is possible to derive the fractional
continuity either in u, v or both directions (will be discussed further in Section 5).

Example 4.3. Figures 10 and 11 illustrate the surface patch adjustability using the fractional
parameters. The control points and the value of the shape parameters for Figures 10 and 11 are
the same as in Figures 8d and 9d, respectively.

Remark 4. There will be several figures of surfaces that have been created with reduced opacity
color from this part till the end of the section. These surfaces with a lower opacity color depict
the constructed surfaces when fractional parameters are set to zero. This type of modeling makes
a comparison between surfaces with zero fractional value parameters and surfaces with non-zero
fractional value parameters easier.

(a) w1 = 0.5 and w2 = 0 (b) w1 = 0.5 and w2 = 0.5

(c) w1 = 0.65 and w2 = 0.5 (d) w1 = 0.65 and w2 = 0.75

Figure 10. Biquartic fractional Bézier surface with multiple values of fractional parameters.
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(a) w1 = 0.5 and w2 = 0 (b) w1 = 0.5 and w2 = 0.5

(c) w1 = 0.65 and w2 = 0.5 (d) w1 = 0.65 and w2 = 0.75

Figure 11. Biquartic fractional Bézier surface with multiple values of fractional parameters.

Figures 10 and 11 depict that w1 is used to control the surface length in the u direction while w2 is
for controlling the surface length in the v direction.

5. F2 continuity conditions for generalized fractional Bézier surface

Previously, if the designers wanted to connect the second surface to the first surface’s mid-line, the
first surface must be spliced using the subdivision approach and then combined to the second surface.
This method is time-consuming and expensive to compute, especially with high surface degrees. A
new sort of continuity needs to be developed to address these restrictions.

Fractional continuity is an upgraded version of geometric continuity, where its definitions and
theorems for curves up to degree two are discussed meticulously in [22]. By referring to Figures 10–12
in [23], the behavior of the fractional continuity can be seen clearly with the help of visualization of the
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curvature plot and comb. The same paper also shows that the degree of continuity is still maintained
regardless of the position of the common point and the values of fractional parameters. Any part of
the first curve can be connected to the second curve as the method of cut and combine is introduced
in [24]. Using the cut and combine technique in [24], it is possible to construct outline of the real-life
objects and animations with low curvature profile.

Although parametric and geometric continuities only allow two surfaces to be joined at the boundary
ends, fractional continuity, on the other hand, allows two surfaces to be connected at any arbitrary line
along the first surface in either u or v directions. The fractional parameter plays an essential role
in making the fractional continuity feasible. This is due to the surface patch adjustability from the
fractional parameter that makes the surfaces can be joined along any line of the first surface either in u
or v direction. Hence, the fractional continuity is a good substitution for the subdivision method since
the same result can be obtained by simply varying the fractional parameter.

Remark 5. Note that it is recommended for the readers to go through the definitions, theorems and
analysis of the fractional continuity in [22–24].

Before deriving the F2 continuity conditions, two adjacent generalized fractional Bézier surfaces
must be defined first to facilitate the proving and derivation of the following theorems. Suppose there
are two adjacent generalized fractional Bézier surfaces as follows:

S 1(u, v; w1,1,w1,2, a1,1, a1,2, . . . , a1,m1 , b1,1, b1,2, . . . , b1,n1)
=

∑m1
i=0

∑n1
j=0 f̄i,m1(u; w1,1, a1,1, a1,2, . . . , a1,m1) f̄i,n1(v; w1,2, b1,1, b1,2, . . . , b1,n1)Pi, j,

S 2(u, v; w2,1,w2,2, a2,1, a2,2, . . . , a2,m2 , b2,1, b2,2, . . . , b2,n2)
=

∑m2
i=0

∑n2
j=0 f̄i,m2(u; w2,1, a2,1, a2,2, . . . , a2,m2) f̄i,n2(v; w2,2, b2,1, b2,2, . . . , b2,n2)Qi, j.

(5.1)

The first and second surfaces will be denoted as S 1(u, v; w1,1,w1,2) and S 2(u, v; w2,1,w2,2),
respectively, to make the notation simpler for derivation and proving since the original notation is
too long.

Definition 5.1 (Fractional continuity for generalized fractional Bézier surface, Fr). Consider two
generalized fractional Bézier surfaces S 1(u, v; w1,1,w1,2) and S 2(u, v; w2,1,w2,2) on (u, v) ∈ [0, 1]×[0, 1].
The two surfaces are Fr continuous in the u direction if the following condition is satisfied:

S 1(u, 1; 0,w1,2) = S 2(u, 0; 0, 0),
∂

∂v
S 1(u, 1; 0,w1,2) = φ

∂

∂v
S 2(u, 0; 0, 0),

∂2

∂v2 S 1(u, 1; 0,w1,2) = φ2 ∂
2

∂v2 S 2(u, 0; 0, 0),

...

∂r

∂vr S 1(u, 1; 0,w1,2) = φr ∂
r

∂vr S 2(u, 0; 0, 0).

For the v direction, the following condition must be satisfied:

AIMS Mathematics Volume 8, Issue 1, 550–589.



572

S 1(1, v; w1,1, 0) = S 2(0, v; 0, 0),
∂

∂u
S 1(1, v; w1,1, 0) = φ

∂

∂u
S 2(0, v; 0, 0),

∂2

∂u2 S 1(1, v; w1,1, 0) = φ2 ∂
2

∂u2 S 2(0, v; 0, 0),

...

∂r

∂ur S 1(1, v; w1,1, 0) = φr ∂
r

∂ur S 2(0, v; 0, 0).

For u and v directions, the following condition must be satisfied:

S 1(u, 1; 0,w1,2) = S 2(0, v; 0, 0),
∂

∂v
S 1(u, 1; 0,w1,2) = φ

∂

∂u
S 2(0, v; 0, 0),

∂2

∂v2 S 1(u, 1; 0,w1,2) = φ2 ∂
2

∂u2 S 2(0, v; 0, 0),

...

∂r

∂vr S 1(u, 0; 0,w1,2) = φr ∂
r

∂ur S 2(0, v; 0, 0).

Generally, for Fr continuity, φ > 0 and φ ∈ R.

5.1. F2 continuity in the u direction

Theorem 5.1. If the two adjacent generalized fractional Bézier surfaces S 1(u, v; w1,1,w1,2) and
S 2(u, v; w2,1,w2,2) satisfy all the following conditions:

w1,1 = w2,1, m1 = m2, a1,k = a2,l, (k = 0, 1, . . . ,m1; l = 0, 1, . . . ,m2),
For i = 0, 1, . . . ,m1,

Qi,0 =
∑n1

j f̄ j,n1(1; w1,2, b1,1, b1,2, . . . , b1,n1)Pi, j,

Qi,1 = 1
φ(n2+b2,1)

(
d
dv

(∑n1
j f̄ j,n1(v; w1,2, b1,1, b1,2, . . . , b1,n1)Pi, j

)
v=1

)
+ Qi,0,

Qi,2 = 1
n2φ2(b2,2+n2−1)

(
d2

dv2

(∑n1
j f̄ j,n1(v; w1,2, b1,1, b1,2, . . . , b1,n1)Pi, j

)
v=1

+
(
n2((1 − n2)φ2)) + (−2n2φ

2)b2,1

)
Qi,0

+
(
(2n2φ

2)b2,1 + n2((−1 + n2)2φ2 + φ2b2,2)
)
Qi,1

)
,

(5.2)

then F2 continuity will be achieved for the u direction with φ > 0.

Proof. To obtain F2 continuity, F1 continuity at the joints must be accomplished first where for every
point on the same boundary, the two surfaces must have a shared tangent plane. Similarly, to obtain
F1 continuity, the F0 continuity condition must be satisfy first by having the same common boundary
of the two surfaces. Note that w1,1, w2,1 and w2,2 are set to zero to simplify the equation. This is due to
the fractional surface adjustability property since w1,2 is the only fractional parameter responsible for
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changing the boundary point for S 1(u, 1) in the u direction. Hence, it can be written in the equation
form as

S 1(u, 1; 0,w1,2, a1,1, a1,2, . . . ,a1,m1 , b1,1, b1,2, . . . , b1,n1)
= S 2(u, 0; 0, 0, a2,1, a2,2, . . . , a2,m2 , b2,1, b2,2, . . . , b2,n2).

Using the boundary properties of the surfaces in Theorem 2.1, the previous equation can be written
as

m1∑
i

f̄i,m1(u; w1,2, b1,1, b1,2, . . . , b1,n1)Pi,n1 =

m2∑
i

f̄i,m2(u; 0, b2,1, b2,2, . . . , b2,n1)Qi,0. (5.3)

Since the basis functions in (5.3) are linearly independent, it can be simplified by comparing the
coefficients as follows:

w1,1 = w2,1 m1 = m2, a1,k = a2,l (k = 0, 1, . . . ,m1; l = 0, 1, . . . ,m2),
For i = 0, 1, . . . ,m1,

Qi,0 =
∑n1

j f̄ j,n1(1; w1,2, b1,1, b1,2, . . . , b1,n1)Pi, j.

(5.4)

By F1 continuity definition, the two surfaces must have a common tangent at any point at their
common boundary. Thus, the following equation needs to be satisfied:

∂

∂v
S 1(u, 1; 0,w1,2, a1,1, a1,2, . . . , a1,m1 , b1,1, b1,2, . . . , b1,n1)

×
∂

∂u
S 1(u, 1; 0,w1,2, a1,1, a1,2, . . . , a1,m1 , b1,1, b1,2, . . . , b1,n1)

= φ(u)
∂

∂v
S 2(u, 0; 0, 0, a2,1, a2,2, . . . , a2,m2 , b2,1, b2,2, . . . , b2,n2)

×
∂

∂u
S 2(u, 0; 0, 0, a2,1, a2,2, . . . , a2,m2 , b2,1, b2,2, . . . , b2,n2), (5.5)

where φ(u) is the scaling factor between the normal vectors at the joint and φ(u) > 0. To simplify the
calculation, the Faux method will be used, in which Eq (5.5) can be simplified as follows:

∂

∂v
S 1(u, 1; 0,w1,2, a1,1, a1,2, . . . , a1,m1 , b1,1, b1,2, . . . , b1,n1)

= φ
∂

∂v
S 2(u, 0; 0, 0, a2,1, a2,2, . . . , a2,m2 , b2,1, b2,2, . . . , b2,n2), (5.6)

where φ is a positive real constant. Here, Eq (5.6) shows that the tangent vector of the cross-border at
their common boundary should be continuous.

Using the boundary tangent property in the v direction and substituting in the previous equation, it
can be expressed as follows:

d
dv

( m1∑
i

f̄i,m1(v; w1,2, b1,1, b1,2, . . . , b1,n1)Pi,n1

)
v=1

= φ
d
dv

( m2∑
i

f̄i,m2(v; 0, b2,1, b2,2, . . . , b2,n1)Qi,0

)
v=1
. (5.7)
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Since the fractional parameters w1,1, w2,1 and w2,2 are independent in Eq (5.7), it can be further
simplified to

d
dv

( m1∑
i

f̄i,m1(1; w1,2, b1,1, b1,2, . . . , b1,n1)Pi,n1

)
v=1

= φ

m2∑
i

(Qi,1 − Qi,0)(n2 + b2,1). (5.8)

Combining the results from Eqs (5.4) and (5.8) can be simplified by taking Qi,1 as a subject, which
yields

Qi,1 =
1

φ(n2 + b2,1)

( d
dv

( n1∑
j

f̄ j,n1(v; w1,2, b1,1, b1,2, . . . , b1,n1)Pi, j

)
v=1

)
+ Qi,0, (i = 0, 1, . . . ,m1). (5.9)

In pursuance of F2 smooth continuity, the two surfaces need to hold the same normal curvature at
any point on the common boundary; hence, they need to satisfy

∂2

∂v2 S 1(u, 1, 0,w1,2, a1,1, a1,2, . . . , a1,m1 , b1,1, b1,2, . . . , b1,n1),

= φ2 ∂
2

∂v2 S 2(u, 0; 0, 0, a2,1, a2,2, . . . , a2,m2 , b2,1, b2,2, . . . , b2,n2),

+ 2φχ(u)
∂2

∂u∂v
S 2(u, 0; 0, 0, a2,1, a2,2, . . . , a2,m2 , b2,1, b2,2, . . . , b2,n2),

+ χ2(u)
∂2

∂u∂v
S 2(u, 0; 0, 0, a2,1, a2,2, . . . , a2,m2 , b2,1, b2,2, . . . , b2,n2),

+ ψ
∂

∂v
S 2(u, 0; 0, 0, a2,1, a2,2, . . . , a2,m2 , b2,1, b2,2, . . . , b2,n2),

+ ω(u)
∂

∂u
S 2(u, 0; 0, 0, a2,1, a2,2, . . . , a2,m2 , b2,1, b2,2, . . . , b2,n2), (5.10)

where χ(u) and ω(u) are linear functions of u, while ψ and φ are the arbitrary constants. In practical
applications, χ(u) = ω(u) = ψ = 0 are set to simplify the previous equation, which can be written as
follows:

∂2

∂v2 S 1(u, 1; 0,w1,2, a1,1, a1,2, . . . , a1,m1 , b1,1, b1,2, . . . , b1,n1)

= φ2 ∂
2

∂v2 S 2(u, 0; 0, 0, a2,1, a2,2, . . . , a2,m2 , b2,1, b2,2, . . . , b2,n2). (5.11)

The second-order derivatives of the generalized fractional Bézier basis functions (i = 0, 1, . . . , n; n ≤ 2)
at terminal point u = 0 are given by

f̄ ′′i,n(0; w, a1, a2, . . . , an) =


n(2a1 + n − 1), i = 0,
−n(2a1 + a2 + 2n − 2), i = 1,
−n(a2 + n − 1), i = 2,
0, i = 3, 4, . . . , n,

(5.12)
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f̄ ′′i,n(1; w, a1, a2, . . . , an) =
d2

du2

(
f̄i,n(u; w, a1, a2, . . . , an)

)
u=1
. (5.13)

Equation (5.12) shows that the fractional parameter, w, is independent for any derivative at terminal
points u = 0. Thus, w = 0 is set to simplify the calculation. However, for terminal point u = 1, the
second derivative becomes the linear combination of function u [22].

Thus, from Eqs (5.12) and (5.13), we have



∂2

∂v2 S 1(u, 1; 0,w1,2, a1,1, a1,2, . . . , a1,m1 , b1,1, b1,2, . . . , b1,n1),

=
d2

dv2

( n1∑
j

f̄ j,n1(u; w1,2, b1,1, b1,2, . . . , b1,n1)Pi, j

)
,

∂2

∂v2 S 2(u, 0; 0, 0, a2,1, a2,2, . . . , a2,m2 , b2,1, b2,2, . . . , b2,n2)

=

n2∑
i

(
n2(2b2,1 + n2 − 1)Qi,0,

− n2(2b2,1 + b2,2 + 2n2 − 2)Qi,1 − n2(b2,2 + n2 − 1)Qi,2

)
.

(5.14)

Substituting Eq (5.14) in Eq (5.11) yields

d2

dv2

( n1∑
j

f̄ j,n1(v; w1,2, b1,1, b1,2, . . . , b1,n1)Pi, j

)
v=1

= φ2
n2∑
i

(
n2(2b2,1 + n2 − 1)Qi,0

− n2(2b2,1 + b2,2 + 2n2 − 2)Qi,1 − n2(b2,2 + n2 − 1)Qi,2

)
. (5.15)

Finally, combining the F0 and F1 continuity conditions of Eqs (5.4) and (5.9) with Eq (5.15), F2

continuity conditions can be obtained as follows:

Qi,2 =
1

n2φ2(b2,2 + n2 − 1)

( d2

dv2

( n1∑
j

f̄ j,n1(v; w1,2, b1,1, b1,2, . . . , b1,n1)Pi, j

)
v=1

+
(
n2((1 − n2)φ2)) + (−2n2φ

2)b2,1

)
Qi,0 +

(
(2n2φ

2)b2,1 + n2((−1 + n2)2φ2 + φ2b2,2)
)
Qi,1

)
. (5.16)

To conclude, if the S 1(u, v; w1,1,w1,2) and S 2(u, v; w2,1,w2,2) satisfy Eqs (5.4), (5.9) and (5.15), the
surface will be connected with F2 continuity in the u direction at the joint. Hence, Theorem 5.1 is
proven. To achieve F1 continuity in the u direction at the joint, the two surfaces need to satisfy only
Eqs (5.4) and (5.9). �
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5.2. F2 continuity in u and v directions

Theorem 5.2. If the two adjacent generalized fractional Bézier surfaces S 1(u, v; w1,1,w1,2) and
S 2(u, v; w2,1,w2,2) satisfy all the following conditions:

w1,1 = w2,2, m1 = n2, a1,k = b2,l, (k = 0, 1, . . . ,m1; l = 0, 1, . . . , n2),
For i = j = 0, 1, . . . ,m1, and φ > 0,
Q0, j =

∑n1
j f̄ j,n1(1; w1,2, b1,1, b1,2, . . . , b1,n1)Pi, j,

Q1, j = 1
φ(m2+a2,1)

(
d
dv

(∑n1
j f̄ j,n1(v; w1,2, b1,1, b1,2, . . . , b1,n1)Pi, j

)
v=1

)
+ Qi,0,

Q2, j = 1
m2φ2(a2,2+m2−1)

(
d2

dv2

(∑n1
j f̄ j,n1(v; w1,2, b1,1, b1,2, . . . , b1,n1)Pi, j

)
v=1

+
(
m2((1 − m2)φ2)) + (−2m2φ

2)a2,1

)
Q0, j

+
(
(2m2φ

2)a2,1 + m2((−1 + m2)2φ2 + φ2a2,2)
)
Q1, j

)
,

(5.17)

then F2 continuity will be achieved for u and v directions.

Proof. Suppose that S 1(u, v; w1,1,w1,2) in the u direction wants to be connected at F2 continuity with
S 2(u, v; w2,1,w2,2) in the v direction. The derivation is similar to Theorem 5.1, where the two surfaces
must achieve F1 continuity conditions in the u and v directions. Hence,

w1,1 = w2,2, m1 = n2, a1,k = b2,l, (k = 0, 1, . . . ,m1; l = 0, 1, . . . , n2),
For i = j = 0, 1, . . . ,m1, and φ > 0,
Q0, j =

∑n1
j f̄ j,n1(1; w1,2, b1,1, b1,2, . . . , b1,n1)Pi, j,

Q1, j = 1
φ(m2+a2,1)

(
d
dv

(∑n1
j f̄ j,n1(v; w1,2, b1,1, b1,2, . . . , b1,n1)Pi, j

)
v=1

)
+ Qi,0.

(5.18)

When F1 continuity conditions have been fulfilled, the two surfaces need to get the same normal
curvature at any point on their common boundary. This can be written in the equation as follows:

∂2

∂v2 S 1(u, 1;0,w1,2, a1,1, a1,2, . . . , a1,m1 , b1,1, b1,2, . . . , b1,n1)

= φ2 ∂
2

∂u2 S 2(0, v; 0, 0, a2,1, a2,2, . . . , a2,m2 , b2,1, b2,2, . . . , b2,n2),
(5.19)

where φ is similar in Eq (5.18).
Using the same method in Theorem 5.1, i.e., using the second-order cross-border tangent vector in

Eq (5.19), the following equation can be obtained:

d2

dv2

( n1∑
j

f̄ j,n1(v; w1,2, b1,1, b1,2, . . . , b1,n1)Pi, j

)
v=1

= φ2
m2∑
i

(
m2(2a2,1 + m2 − 1)Q0, j

− m2(2a2,1 + a2,2 + 2m2 − 2)Q1, j − m2(a2,2 + m2 − 1)Q2, j

)
. (5.20)

Since a1,k = b2,l for k = 0, 1, . . . ,m1 and l = 0, 1, . . . , n2, it can be simplified further as follows:
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Q2, j =
1

m2φ2(a2,2 + m2 − 1)

( d2

dv2

( n1∑
j

f̄ j,n1(v; w1,2, b1,1, b1,2, . . . , b1,n1)Pi, j

)
v=1

+
(
m2((1 − m2)φ2)) + (−2m2φ

2)a2,1

)
Q0, j +

(
(2m2φ

2)a2,1 + m2((−1 + m2)2φ2 + φ2a2,2)
)
Q1, j

)
. (5.21)

To sum up, when the surfaces S 1(u, v; w1,1,w1,2) and S 2(u, v; w2,1,w2,2) satisfy the conditions in
Eqs (5.19) and (5.21), then the two surfaces achieve the F2 continuity in the direction of u and v at the
joint. Thus, Theorem 5.2 is proven. �

5.3. F2 continuity in the v direction

Theorem 5.3. If the two adjacent generalized fractional Bézier surfaces S 1(u, v; w1,1,w1,2) and
S 2(u, v; w2,1,w2,2) satisfy all the following conditions:

w1,2 = w2,2, n1 = n2, b1,k = b2,l, (k = 0, 1, . . . , n1; l = 0, 1, . . . , n2),
For j = 0, 1, . . . , n1,

Q0, j =
∑m1

i f̄i,m1(1; w1,1, a1,1, a1,2, . . . , a1,n1)Pi, j,

Q1, j = 1
φ(m2+a2,1)

(
d

du

(∑m1
i f̄i,m1(u; w1,1, a1,1, a1,2, . . . , a1,m1)Pi, j

)
v=1

)
+ Q0, j,

Q2, j = 1
m2φ2(a2,2+m2−1)

(
d2

du2

(∑m1
i f̄i,m1(u; w1,1, a1,1, a1,2, . . . , a1,m1)Pi, j

)
u=1

+
(
m2((1 − m2)φ2)) + (−2m2φ

2)a2,1

)
Q0, j

+
(
(2m2φ

2)a2,1 + m2((−1 + m2)2φ2 + φ2a2,2)
)
Q1, j

)
,

(5.22)

then F2 continuity will be achieved for v direction with φ > 0.

Proof. The proof is similar to Theorem 5.1, implying that it will not be covered. Note that the fractional
parameter w1,1 will be the only fractional parameter contributing to F2 continuity in the v direction.
Hence, the other fractional parameters can be set to zero to simplify the calculations in the proof. �

The F2 continuity can be reverted to G2 continuity by simply setting all the fractional parameters to
zero.

6. Procedures and examples of F2 continuity between generalized fractional Bézier surfaces

6.1. The procedure of F2 continuity between generalized fractional Bézier surface

Fractional continuity for generalized fractional Bézier surfaces is a key in constructing numerous
complex surfaces. In addition, shape flexibility and length adjustability are the main features of
versatile surface designing. This section will show procedures for F2 continuity of two generalized
fractional Bézier surfaces. On account of Theorem 5.1, the procedures are as follows:

(1) The following requirement must be fulfilled first: the order m1, n1 of S 1(u, v; w1,1,w1,2) and its
control points, Pi, j as well as shape parameters a1,i and b1, j (i = 0, 1, . . . ,m1; j = 0, 1, . . . , n1) and
fractional parameters w1,1 and w1,2 are set to any arbitrary values within their respective ranges.
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(2) Suppose w1,1 = w2,1, m1 = m2, a1,k = a2,l (k = 0, 1, . . . ,m1; l = 0, 1, . . . ,m2) and Qi,0 (i =

0, 1, . . . ,m1); this enables S 1(u, v; w1,1,w1,2) and S 2(u, v; w2,1,w2,2) to achieve F0 continuity.

(3) Set the values of shape parameters b2, j ( j = 0, 1, . . . , n2), the constant φ > 0, the fractional
parameter w2,2 and the order of n2 for the S 2(u, v; w2,1,w2,2). Then, calculate for Qi,1 (i =

0, 1, . . . ,m1) of S 2(u, v; w2,1,w2,2).

(4) After calculating Qi,1, then proceed for Qi,2 (i = 0, 1, . . . ,m1) calculation.

(5) The remaining n2−2 control points of S 2(u, v; w2,1,w2,2) are up to the designers’ discretion. Hence,
F2 continuity between two generalized fractional Bézier surfaces in the u direction is achieved.

The procedures above can be repeated to connect multiples of generalized fractional Bézier surface
with F2 continuity.

6.2. Examples of F2 continuity between generalized fractional Bézier surface

To demonstrate the F2 continuity, some examples will be shown. In this section, F0 and F1

continuity will be shown first to compare different values of fractional parameters. Then, for F2

continuity, some examples are given with different values of fractional parameters, shape parameters
and scale factors.

Remark 6. The remaining control points for Examples 6.1 – 6.6 are up to the designer’s discretion to
choose, due to the fact that the remaining control points do not involve as a constraint in continuity
conditions.

6.2.1. Influence of fractional parameters on the F2 continuity

The fractional parameter plays an essential role in fractional continuity. By varying the fractional
parameter, the designer can control the boundary line between two surfaces while maintaining
continuity.

Example 6.1. Figure 12 shows the F0 continuity in the u direction between two biquartic fractional
Bézier surfaces with different values of fractional parameters. w1,2 is for controlling the connection
line between the two surfaces in the u direction. Meanwhile, w2,2 is for controlling the length of the
second surface in the u direction. Moreover, w1,1 = w2,1 are for controlling the length of both surfaces
in v direction.

Example 6.2. Figures 13 and 14 depict the F1 continuity and F2 continuity in the u direction between
two biquartic fractional Bézier surfaces with different values of fractional parameters, respectively.
The scale factor, φ = 1.25, is used in this example, and the control points are the same as in
Example 6.1.
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(a) w1,1 = w1,2 = w2,1 = w2,2 = 0 (b) w1,1 = w2,1 = 0, w1,2 = 0.5 and w2,2 = 0

(c) w1,1 = w2,1 = 0, w1,2 = 0.5 and w2,2 =

0.5
(d) w1,1 = w2,1 = 0, w1,2 = 0.75 and w2,2 =

0.5

(e) w1,1 = w2,1 = w2,2 = 0.5 and w1,2 =

0.75
(f) w1,1 = w2,1 = w1,2 = 0.75 and w2,2 =

0.5

Figure 12. F0 continuity between two biquartic fractional Bézier surfaces with variation of
fractional parameters.
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(a) w1,1 = w1,2 = w2,1 = w2,2 = 0 (b) w1,1 = w2,1 = 0, w1,2 = 0.5 and w2,2 = 0

(c) w1,1 = w2,1 = 0, w1,2 = 0.5 and w2,2 =

0.5
(d) w1,1 = w2,1 = 0, w1,2 = 0.75 and w2,2 =

0.5

(e) w1,1 = w2,1 = w2,2 = 0.5 and w1,2 =

0.75
(f) w1,1 = w2,1 = w1,2 = 0.75 and w2,2 =

0.5

Figure 13. F1 continuity between two biquartic fractional Bézier surfaces with variation of
fractional parameters.
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(a) w1,1 = w1,2 = w2,1 = w2,2 = 0 (b) w1,1 = w2,1 = 0, w1,2 = 0.5 and w2,2 = 0

(c) w1,1 = w2,1 = 0, w1,2 = 0.5 and w2,2 =

0.5
(d) w1,1 = w2,1 = 0, w1,2 = 0.75 and w2,2 =

0.5

(e) w1,1 = w2,1 = w2,2 = 0.5 and w1,2 =

0.75
(f) w1,1 = w2,1 = w1,2 = 0.75 and w2,2 =

0.5

Figure 14. F2 continuity between two biquartic fractional Bézier surfaces with variation of
fractional parameters.
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6.2.2. Influence of shape parameters on the F2 continuity

The shape parameter gives an advantage to the aesthetic curve in terms of flexibility. This is due to
the shape parameter enabling the shape of the surface to change without changing the control points.
The shape parameter also allows the shape of the surface to change locally. To change shape locally,
the designers need to change one of the shape parameters. To change shape globally, the designers
need to change ai (i = 0, 1, . . . ,m) or change b j ( j = 0, 1, . . . , n).

Proposition 4.1 gives some insight into controlling the shape using shape parameters. The control
points and convex hull will guide how to control the surface shape at a specific point.

Example 6.3. The F2 continuity between two biquartic fractional Bézier surfaces in u direction with
the variation of shape parameters is depicted in Figure 15. Here, w1,1 = w2,1 = w2,2 = 0, w1,2 = 0.75
and φ = 1.25 are chosen. The shape parameters used for each sub-figure are

a. (a1,1, a1,2, a1,3, a1,4, b1,1, b1,2, b1,3, b1,4, b1,1, b1,2, b1,3, b1,4) = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0).

b.

(a1,1, a1,2, a1,3, a1,4, b1,1, b1,2, b1,3, b1,4, b1,1, b1,2, b1,3, b1,4)
= (−2,−1, 1, 2, 0.5, 1.5,−1.5,−0.5, 0,−2, 2, 0).

c.

(a1,1, a1,2, a1,3, a1,4, b1,1, b1,2, b1,3, b1,4, b1,1, b1,2, b1,3, b1,4)
= (0.5, 0.5,−0.5,−0.5,−1,−1.5, 1.5, 0.5,−1,−1, 0.5, 1).

d.

(a1,1, a1,2, a1,3, a1,4, b1,1, b1,2, b1,3, b1,4, b1,1, b1,2, b1,3, b1,4)
= (−1,−2, 2, 1, 0.5, 1.5,−1.5,−0.5, 0.5, 1.5,−1.5, 0.5).

6.2.3. Influence of scale factor on the F2 continuity

Example 6.4. Figure 16 illustrates the F2 continuity in the u direction between two biquartic fractional
Bézier surfaces with different scale factor values, φ. The control points, shape and fractional
parameters are similar to Figure 15a.

6.2.4. Example of F2 continuity for three consecutive surface patches.

The F2 continuity conditions can also be applied to generate three consecutive surfaces either in u
or v directions. The third generalized fractional Bézier tensor surface will be defined as follows:

S 3(u, v; w3,1,w3,2, a3,1, a3,2, . . . , a3,m3 , b3,1, b3,2, . . . , b3,n3)

=

m3∑
i=0

n3∑
j=0

f̄i,m3(u; w3,1, a3,1, a3,2, . . . , a3,m3) f̄i,n3(v; w3,2, b3,2, . . . , b3,n3)Ri, j. (6.1)
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(a) (b)

(c) (d)

Figure 15. F2 continuity of two biquartic fractional Bézier surfaces in u direction with
multiple values of shape parameters.
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(a) φ = 1 (b) φ = 0.9

(c) φ = 1.5 (d) φ = 2

Figure 16. F2 continuity of two biquartic fractional Bézier surfaces in u direction with
multiple values of scale factor.

Example 6.5. Figure 17 depicts the Möbius strip generated by three consecutive surfaces with F2

continuity in u direction with different fractional parameters. The green surface is the third surface
defined by Eq (6.1). The F2 continuity is between magenta and orange surfaces with orange and green
surfaces. Green and magenta surfaces are connected by simple C0/G0 continuity; hence the value of
w3,2 = 0 is set and cannot be changed, or else they will be disconnected. w1,1 = w2,1 = w3,1 = w3,2 = 0
are set.
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6.2.5. Application of F2 continuity in the modeling of the ruled surface.

In this section, the application of F2 continuity will be shown in modeling of one of the engineering
surfaces known as the ruled surface. Assume four generalized fractional Bézier space curves given as
follows:


x1,1(u; w1,1, a1,1, a1,2, ..., a1,n1) =

∑n1
j=0 P1, j f̄ j,n1(u), for u ∈ [0, 1],

x1,2(u; w1,2, b1,1, b1,2, ..., b1,m1) =
∑m1

j=0 P2, j f̄ j,m1(u), for u ∈ [0, 1],
x2,1(u; w2,1, a2,1, a2,2, ..., a2,n2) =

∑n2
j=0 Q1, j f̄ j,n2(u), for u ∈ [0, 1],

x2,2(u; w2,2, b2,1, b2,2, ..., b2,m2) =
∑m2

j=0 Q2, j f̄ j,m2(u), for u ∈ [0, 1].

(6.2)

By using Eq (6.2), two ruled surfaces will be defined as follows:

Definition 6.1 (Two generalized fractional Bézier ruled surface). Suppose
x1,1(u; w1,1, a1,1, a1,2, ..., a1,m1), x1,2(u; w1,2, b1,1, b1,2, ..., b1,n1), x2,1(u; w2,1, a2,1, a2,2, ..., a2,m2) and
x2,2(u; w2,2, b2,1, b2,2, ..., b2,n2) with m1, n1, m2 and n2 degree are the generalized fractional Bézier
space curves, respectively. Two ruled surfaces are defined as follows:

S r1(u, v; w1,1,w1,2, a1,1, a1,2, ..., a1,m1 , b1,1, b1,2, ..., b1,n1)
= (1 − v)x1,1(u; w1,1, a1,1, a1,2, ..., a1,m1) + vx1,2(u; w1,2, b1,1, b1,2, ..., b1,n1), (6.3)

S r2(u, v; w2,1,w2,2, a2,1, a2,2, ..., a2,m2 , b2,1, b2,2, ..., b2,n2)
= (1 − v)x2,1(u; w2,1, a2,1, a2,2, ..., a2,m2) + vx2,2(u; w2,2, b2,1, b2,2, ..., b2,n2). (6.4)

Example 6.6. Figure 18 shows the F2 continuity between two bicubic fractional Bézier ruled surfaces
with a variation of fractional parameters. The control points, shape parameters and scale factors are
as follows:

P1,0 = (1, 1, 1) P1,1 = (2, 1.5,−1) P1,2 = (3, 0, 1) P1,3 = (4, 1.5, 1)
P2,0 = (1.5, 1, 1) P2,1 = (2.5, 7, 1.25) P2,2 = (3.5, 7, 1, 5) P2,3 = (4.5, 8, 1)
Q1,3 = (8, 2,−1) Q2,3 = (8, 8,−1.5) a1,1 = −0.5 a1,2 = 0
a1,3 = 0.5 b1,1 = −1.5 b1,2 = 0 b1,3 = 1.5
a2,1 = −0.5 a2,2 = 0 a2,3 = 0.5 b2,1 = −2
b2,2 = 0 b2,3 = 2 φ1,1 = 0.75 φ1,2 = 1.25

φ2,1 = 0.5 φ2,2 = −0.5

The control points Qi, j for i = 1, 2 and j = 0, 1, 2 are obtained by F2 continuity conditions as in [23].
The red, blue, green and pink curves are x1,1(u), x1,2(u), x2,1(u) and x2,2(u), respectively. In order to
connect two ruled surfaces with F2 continuity, x1,1(u) and x1,2(u) must be connected with F2 continuity
with x2,1(u) and x2,2(u), respectively.
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(a) w1,2 = w2,2 = 0 (b) w1,2 = 0.5 and w2,2 = 0

(c) w1,2 = 0.5 and w2,2 = 0.6 (d) w1,2 = 0.8 and w2,2 = 0.6

(e) w1,2 = w2,2 = 0.8 (f) w1,2 = w2,2 = 1

Figure 17. Möbius strip of F2 continuity between three consecutive biquartic fractional
Bézier surfaces with the variation of fractional parameters.

AIMS Mathematics Volume 8, Issue 1, 550–589.



587

(a) w1,1 = w1,2 = w2,1 = w2,2 = 0 (b) w1,1 = 0.5 and w1,2 = w2,2 = w2,2 = 0

(c) w1,1 = 0.5, w1,2 = 0.75 and w2,2 =

w2,2 = 0
(d) w1,1 = 0.5, w1,2 = 0.75, w2,2 = 0.6 and
w2,2 = 0

(e) w1,1 = 0.5, w1,2 = 0.75, w2,2 = 0.6 and
w2,2 = 1

(f) w1,1 = 0.6, w1,2 = 0.8, w2,2 = 0.7 and
w2,2 = 1.25

Figure 18. F2 continuity between two bicubic fractional Bézier ruled surfaces with variation
of fractional parameters.

7. Conclusions

This paper discusses the F2 smooth continuity conditions for generalized fractional Bézier surfaces.
The benefit of this work is that fractional continuity overcomes the conventional parametric and
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geometric continuity in the aspect of connecting surfaces at any arbitrary boundary along the first
surface. Hence, fractional continuity simplifies two different processes (subdivision method and
continuity conditions) into one process (continuity conditions) by simply varying the fractional
parameters. The generalized fractional Bézier basis functions have complex formulation compared
to the classical Bernstein basis functions, which becomes our limitation of study. Future research
recommends expanding the basis functions in constructing developable surfaces and optimizing the
shape and fractional parameters in modeling smart surface manufacturing for the industry.
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conditions and applications to curve and surface modeling, Mathematics, 8 (2020), 924.
https://doi.org/10.3390/math8060924

12. D. Liu, J. Hoschek, GC1 continuity conditions between adjacent rectangular and triangular
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