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1. Introduction

Lorentzian a-Sasakian manifolds were introduced by Yildiz and Murathan in [1]. Then, many
researchers began to study properties of @-Sasakian manifolds, such as second order parallel
tensors [2], pseudosymmetric Lorentzian a-Sasakian manifolds [3], some special classes of
Lorentzian a-Sasakian manifolds [4-6], certain derivations [7], Ricci solitons [8, 9], Lorentzian
a-Sasakian manifolds admitting a quarter-symmetric metric connection [10], semi-symmetry type
a-Sasakian manifolds [11] and M-projectively semi-symmetric Lorentzian «@-Sasakian
manifolds [12]. Recently, Wang studied Gauss-Bonnet theorems in the BCV spaces and the twisted
Heisenberg group [13], the affine group and the group of rigid motions of the Minkowski plane [14]
by using the method of Riemannian approximations which first took by Balogh, Tyson and Vecchi to
prove a Heisenberg version of the Gauss-Bonnet theorem [15, 16]. Riemannian approximations can be
extended to the case for any Lie group equipped with left-invariant Lorentzian metric g, named
Lorentzian approximations. Some typical works of Lorentzian approximations in a Lorentzian
Heisenberg group are obtained in [17, 18]. Inspired by the above work, we proved Gauss-Bonnet
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theorems in the rototranslation group [19,20], Lorentzian Sasakian space forms [21] and the group of
rigid motions of the Minkowski plane with the general left-invariant metric [22]. However, very little
is known about the Gauss-Bonnet theorem in 3-dimensional Lorentzian a-Sasakian manifolds. This
paper attempts to solve this question by employing the method of the Lorentzian approximation
scheme.

We restrict our attention to Lorentzian a-Sasakian manifolds. As we know, in [8], a differentiable
manifold of dimension (2n + 1) is called a Lorentzian a-Sasakian manifold if it admits a (1, 1) tensor
field ¢, a vector field &, 1-form n and Lorentzian metric g which satisfy on M, respectively, that

¢ =1+n@&EnE) =-1,n0¢=0,0¢ =0,

8(@X, oY) = g(X, Y) + n(X)n(Y), g(X, &) = n(X),
Vxé = agX, (Vxn)Y = ag(¢X,Y),

where V denotes the operator of covariant differentiation with respect to the Lorentzian metric g on
M. Meanwhile, a Lorentzian a-Sasakian model of 3-dimensional Lorentzian a-Sasakian manifolds
was constructed in [8]. In this paper, we focus on Gauss-Bonnet theorems for the Lorentzian surfaces
and spacelike surfaces in the Lorentzian @-Sasakian model. We define the notions of the intrinsic
curvature for regular curves, the intrinsic geodesic curvature of regular curves on Lorentzian surfaces
and spacelike surfaces and the intrinsic Gaussian curvature of Lorentzian surfaces and spacelike
surfaces away from characteristic points. Furthermore, we derive the expressions of those curvatures
and prove Gauss-Bonnet theorems for the Lorentzian surfaces and spacelike surfaces in
the 3-dimensional Lorentzian a-Sasakian manifold.

The paper is organized in the following way. Basic notions on (S,,g) and the Lorentzian
approximants (S, g;) of the @-Sasakian manifold are given in Section 2. The sub-Lorentzian limit of
curvature of curves in (S,, g;) will be computed. In Sections 3 and 4, we compute sub-Lorentzian
limits of geodesic curvature of curves on Lorentzian surfaces and the intrinsic Gaussian curvature of
Lorentzian surfaces in (S,,g.). In Section 5, we prove the Gauss-Bonnet theorem for Lorentzian
surfaces. In Section 6, we prove the Gauss-Bonnet theorem for spacelike surfaces. Finally, we
summarize the conclusions and add an appendix section on length measure and surface measure.

2. Lorentzian approximants and curvature tensor

In this section, some basic notions on a Lorentzian a-Sasakian manifold will be introduced. First,
we recall the Lorentzian «@-Sasakian model of 3-dimensional Lorentzian a-Sasakian manifolds
constructed in [8]. Let & be some constant, and set S, = {(x,v,z) € R*z > 0} equipped with a
Lorentzian metric

1
g = e¥dx* + e¥(—dx + dy)* - ;dzg

Then, (S,,g) was called the Lorentzian a-Sasakian model of 3-dimensional Lorentzian @-Sasakian
manifold, where (x, y, z) are the standard coordinates of R?. Let E,, E, and E3 be the vector fields on
S, given by

0 0 0

E, = aa—z, E, = €_Z(a + a—y), E; = et— 2.1
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which are linearly independent at each point p of S,. Then,

. d a 1
— =¢%(Ey — E3), — =¢°E;, — = —E 2.2
Ox e(E 3)s 8y e L, 2 a 15 (2.2)

and span{E,, E,, E5} = T (S,). One can check the following brackets
[E1, E>] = —aE,, [Ey, E3] =0, [E, E3] = —ak;. (2.3)

Let H = span{E,, E,} be the horizontal distribution on § . If we let

1
0, = —dz,0, = é°dx, 0 = €*(—dx + dy),
a

then H = ker 6. To describe the Lorentzian approximants of S ,, let L > 0 and define a metric
8L = _91 ®91 +92®92 +L9®9,

so that Eq, E,, E = L‘%E3 are a pseudo orthonormal basis on 7T (S,) with respect to g;. Hereafter,
we denote the Lorentzian approximants to S, by (S,,g;) and write S£ instead of (S ,, g;). Note that
g = g1 is the Lorentzian metric on S,. A non-zero vector x € SZ is called spacelike, null or timelike
if (x,x) > 0, (x,x) = 0 or (x,x) < 0, respectively. We define the norm of the vector x € SZ by
| x lI= VI {(x, x) |. We assume that V* is the Levi-civita connection on S £ with respect to g;. Using the
Koszul formula and (2.3), we have

Proposition 2.1. The Levi-civita connection on S* relative to the coordinate frame E1, E,, E5 is given
by

Vi Ei =0, Vi E; =0, Vi E3 =0,
VLE| = aE,, Vi E, = aE), Vi E; =0, (2.4)
VL Ei = aEs, V3 E, =0, Vi E3 = aLE).

Proof. It follows from a direct application of the Koszul identity, which here simplifies
AVLE; E), = (|EnEj|. Ex), = (|EiEx|. Ei), + (IEw Ei L Ej), 2.5)
where i, j,k=1,2,3. O

For a Lorentzian @-Sasakian manifold M, one can compute the curvature tensor of the connection
V% by the formula R*(X, Y)Z = V{V{Z - Vi{VLZ - VI, Z or "X, Y)Z = &’[g(Y,2)X — g(X,Z)Y].
Then, we get the following proposition.

Proposition 2.2. The curvature tensor of St is given by

RY(E\,E))E, = &E,, R*(E|,E)) E; = @”E), R (E|,Ey)) E; = 0,
RY(E\,E3)E, = &’E3, R“(E\,E3) E, = 0, R“(E\, E3) E3 = &’LE|, (2.6)
RY(Ey, E3)E, =0, R"(E,, E3) E, = —a°E;3, R*(Ey, E3) E3 = &’°LE,.
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Proof. We take RE(X, Y)Z = o*[g(Y,Z)X — g(X,Z)Y] to compute curvature tensor of S (Ll Taking
R*(E\,E)) E, = &’[g(E», EVE — g(E1, E\)Es),

for example, we compute
g(Esr, E\)E; =0,8(E, E1)E, = —E),

and hence
RY(E|,Ey))E,| = &E,.

3. Curvature for curves in S and sub-Lorentzian limit

In this section, we will compute the sub-Lorentzian limit of curvature for curves in S £. Our approach
is to define sub-Lorentzian objects as limits of horizontal objects in S, where a family of metrics g; is
essentially obtained as an anisotropic blow-up of the Lorentzian metric g. At the heart of this approach
is the fact that the intrinsic horizontal geometry does not change with L. Let 8 : I — S be a regular
curve, where I is an open interval in R. The regular curve (3 is called a spacelike curve, timelike curve
or null curve if B(¢) is a spacelike vector, timelike vector or null vector at any ¢ € I, respectively.

Definition 3.1. Let 3 : [ — SE be a C' smooth curve, and we say that f3 is regular if  # O for every
t € I. Moreover we say that 5(t) is a horizontal point of B if

0(B(1) = & (Ba(t) = i (1) = O,
where (1) = (B1(1), B2(1), B3(1))-

As is well known, if B is a curve with arc length parametrization, then the standard definition of

curvature for § in Riemannian geometry is K’é = HV;[}HL If B is a curve with an arbitrary

parametrization, then we give the definitions as follows:

Definition 3.2. Let 5 : I — St be a C*-smooth regular curve.

(1) If Vg,B is a spacelike vector, we define the curvature K'é of B at 5(t) by

. . 2
|l (mea),

SENE A (3.1)
(2) If VE,B is a timelike vector, we define the curvature k; of 8 at () by
LR VLG 2
(=, (), 52

. + — .
N e e
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Proposition 3.3. Suppose that : I — St is a C*-smooth regular curve.

(1) If Vé,B is a spacelike vector, then

K5 :{{—[é& + e} + aL(OB0)) + [28:51” + B
+ LIB0B()) + %wwr»)}z}
X [+ P+ LOBO) T
- {—éﬂs[éﬁs + e B + aLOB0)*] + B 21 + P
+ LOGBOB0O) + OB

1. ) A
X [~ + e+ LOG)T).
In particular, if B(t) is a horizontal point of S,

1. . . .. d .
ks =U=[=Bs + @RI + 241" + S BT + LI (0BONT)
X [—%B% +eP
1. 1. . . ..
— (=Bl =ps + acP Bl + SRi2Bspre” + BN

1. 21-3, 1
X [+ PRI,

(2) If V[L;,B is a timelike vector, then

s =l + acP R+ QLB + 2B + BT
+ LIGOBOD + OGN
x [—%ﬁ% + BT+ LOB0))°]7
+ {—é&[éﬁa + ae B + aL(OB1))] + & Bi[2B:p1€” + 1]
+ LOGNBAB0) + GBI

1. , . 1
X [—@6’% + BT+ LIOB(1)))*]7)2.
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In particular, if B(t) is a horizontal point of 5,

1. . . .. d .
Ky =(—=[=Ps + e BT + [2B3p16” + P BiT” + LI (OBO))T)

L. :
X (=3B + DB

1. 1. . s . (3.6)
+ {—5,33[5,33 + ae® Bl + P Bi2Bp1e” + LY
1. . i
X [=—5B3 + ePBi7)
Proof. By (2.2), we have
. 1. . .
B(1) = PBEn+ P BIE; + 6 (B(1)E3. (3.7)
By Proposition 2.1 and (3.7), we obtain
VgEl = ae” B E; + a0(B(1))E;,
V,BLEZ = aeﬁ3ﬁ1E1,
V§E3 = aLO(B(1))E,. (3.8)
Coming by (3.7), we have
Vb= [éﬁg + ae® i + aLw(ﬁ(t)»z] E,
+ 281" + PP B (3.9)
. d .
+(B30(B(1) + E(H(ﬁ(f)))] Es.
By (3.7), (3.9), and the definition of k%, we get Proposition 3.3. O

Definition 3.4. Let B : I — SE be a C*-smooth regular curve. We define the intrinsic curvature kg of

B at B(t) to be

o . 12 L
Kg 1= lim Kg,

L—oo

if the limit exists.

We introduce the following notation : For continuous functions fi, f> : (0,4+c0) - R,

L
AL~ L), asL—>+°°‘:’Lﬁi?<>2EL; -

Proposition 3.5. Suppose that B : I — St is a C*-smooth regular curve in the Lorentzian a-Sasakian
manifold.
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(1) If VE,B is a spacelike vector, then k' does not exist, if 0(B(1)) # 0.

G =T + P B + DB + PBIT)
x [—éﬁ% + PR
el 0P+ PRI + PR
x [—%B% + PR,
if 0B(1) = 0and G(0(B(1)) = 0.

N IO G0
VL B+ e

i OB = 0 and. OB # 0.

(2) If Vgﬁ is a timelike vector, then
Ky =l a,if 6(3(1)) # 0.
K5 ={—{—[é,5’3 + aeP BT + [2B3B1€% + & BiT7)
x [—éﬁ% e
+ Féﬁs[é& +ae® B + P Bi2Bsp1 e + Bl
X [—%B% + PR,

if 03(1) = 0 and (6(B(1))) = 0.

& LEEEO)P

lim — = . :
R G Rl

Lif 0(B(1)) = 0 and %(H(B(t))) # 0.

Therefore, this situation does not exist.

Proof. (1) If VE,B is a spacelike vector, we have

(ViB, ViBL ~ =’ L*(B(B(1)))* as L — oo,

BB~ LIOGUNT. (VB.B). ~ O(L2) as L — +oo.

Thus,
L L

1.

— —a?as L — +00,

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)
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2

(vig.5)
% — 0as L — +oo,
BB
kg = N—a?.

So, using (3.1), we know & does not exist, if 6(3(r)) # 0. If 6(3(r)) = 0 and 20(B(1)) = 0, we get
(3.10). If 6(B(1)) = 0 and “(6(3(1))) # 0, then
d . T
(ViB. VB ~ L[d—t(H(ﬁ(t)))] as L — +oo,
. 1. .
B.BL = e 32 + €2ﬁ3ﬁ12,
(VB.B), ~ O(1) as L — +oo.
By (3.1), we get (3.11).
) If Véﬁ is a timelike vector, we have
(ViB. ViBL ~ @*L*(0(B(1)))* as L — oo,
BB ~ LGOI, (ViB.B) ~ O (L) as L — +o,
Kg’ = Va2 =la].
We get (3.12). If 6(B(1)) = 0 and £(6(3(1))) = 0, we get (3.13). If 6(B(1)) = 0 and 4 (8(B(1))) # 0,
. K_[{; _ \/—[%(H(B(r)))]z’
PNL T [ ]

and then, the situation does not exist. m]

4. Geodesic curvatures of curves on Lorentzian surfaces in S

In this section, we will compute the expressions of intrinsic geodesic curvatures of curves on
Lorentzian surfaces in S£. We will say that a surface S is regular if S is a C*-smooth compact and
oriented surface. In particular we will assume that there exists a C2-smooth function / : St — R such
that

S ={(x1,%2,%3) € S h(x1, %2, x3) = 0},
and Vgih = hy 0y, + hy,0y, + hy,0,, # 0. Let Vygh = E\(WE, + Ex(h)E,. A point x € S is called
characteristic if Vgh(x) = (0,0). Our computations will be local and away from characteristic points
of §. Let us define first p := Ejh,q := E;h, and r := Ezh. Since —p* + ¢> > 0, we say S C Skisa
horizontal spacelike surface. When L — +o0, —p? + ¢* + r* > 0. Then, we define

_ p
L= N=-p*+¢* 1l = N-p>+q¢*>*+r*p:=

I
R R
. la L - lL’ L - lL, L - lL'

4.1)
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In particular, —p* + g*> = 1. These functions are well defined at every non-characteristic point. Let
— ] —
Np=—-pLE\ + qLE, + TLE5, Fy = GE| — pEy, F> = 7 pEy — 71.GE; + l—Ea- (4.2)
L

Then, N, is the unit spacelike normal vector to S, and F; is a unit timelike vector, while F, is a
unit spacelike vector of S. {Fy, F,} is the orthonormal basis of S. Let 8 = aF, + bF,. We define
Ji(B) = aF, + bF, if 8 is a C?>-smooth spacelike curve, and we define J;(8) = —aF, — bF, if B is
a C%-smooth timelike curve. Then, g.(3, J.(8)) = 0 and (B, J.(B8)) have the same orientation with
{F1, F»}.
For every U,V € TS, we define V3"V = nV5V where 7 : TSL — TS is the projection. Then, V5
is the Levi-Civita connection on § with respect to the metric g;. By (3.9), (4.2) and
V;’L' = —<V;;,3, Fi) by + (VEB, Fao) Fa, (4.3)

we have
V/S;L =- {_‘?[5133 + @B + aL(OB(1)))*] - pl2B3f1e” + BV F
+ {—F_LP[E,Bs + e BT + aLOB1))*] - 7Lq[2B:51€” + 1] (4.4)

[ . . d .
+ Z—U[ﬂ39(ﬂ(t)) + d—(H(B(t)))]}Fz-
L t
Therefore, when 6(3(1)) = 0, we have

Vo B =(al—ps + ae®Bi1 + p2pspie” + S BF)
TPy + ae B - TLq12p31¢" + &P (4.5)

I 1d .
+ ZL d—t(g(ﬂ(f)))}Fz-

Definition 4.1. Let S C SE be a Lorentzian regular surface, B : I — S be a C*-smooth regular curve.

(1) If V;’L,B is a spacelike vector, the geodesic curvature K/I;’S of B at B(t) is defined as

IV Bl5. (VBB
L P :B - ﬁ > 4 6
55 = — g (4.6)
||:8||5’L <,3’:3>5,L
(2)If V‘;’LB is a timelike vector, the geodesic curvature KE’S of B at 5(t) is defined as
IV5BIG. (V3 B.B)%.
L ._ B -, _F : 4.7
BS - . 4 . . 3 . .
1Blls . BB 1,
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Definition 4.2. Let S C St be a Lorentzian regular surface, 8 : I — S be a C*-smooth regular curve.
We define the intrinsic geodesic curvature Kg's of B at B(t) to be

o) . L
Koo = lim «
B.S Lo+ BS?

if the limit exists.

Proposition 4.3. Let S C SE be a Lorentzian regular surface, 8 : I — S be a C*-smooth regular curve.

(1) If V‘;’LB is a spacelike vector, then Ky does not exist, if 6(B(1)) # 0.

. d .
K55 = 0. if0B(0) = 0 and = (OB = 0.

<5 |5(0B0)] . d, .
BS dt : —
Am ﬁ = (ééﬁ% PPETRCK if 0(B(¢)) = 0 and dt(@(,B(t))) # 0. (4.8)
(2)If V;’L,B is a timelike vector, then
KSs =l g |, if 6B)) # 0, (4.9)

. d .
kgs =0, if 0(B(1) = 0 and Jt(e(ﬂ(t))) =0,
Ll_i)l}rioo K’g—\‘fz does not exist, if 0(B3(t)) = 0 and %(G(ﬁ(t))) # 0.

Proof. (1) If V;’LB is a spacelike vector, by (3.7) and 8 € TS, we have

,B(t) =alF, + bF2

bl _,
= (ag + br.p)E, + (-ap = brig)Es + L2 Es.
L
Thus, .
aq+ bﬁﬁ = éﬁ37 )
_aﬁ - bﬁc_] = €ﬁ3ﬂ1,
1173 = 03),
and we have ) )
{ a = 1p3q+ B,
b = LL20(B(1)).
Thus,
. 1. . L 1 .
B = (=f34 + SPPF + 7 L2 0B@O)F. (4.10)

By (4.4), we have
(VB Bl = - {—é[éﬁ% + e B + aLOB0))’] - pl2Bsbie” + Bl
+ {—ﬁﬁ[éﬁz + @B} + aL(O(B1)))*] - TLg[2B3p1€” + &1 (4.11)
L BOBO) + OB
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Similarly, we have that when 6(3(7)) # 0,

. 1, : I .
B.Prse=~(=psq + P Bip) + (TL)ZL(G(ﬁ(t)))2
~ L(O(B(1)))* as L — +co.

(4.12)

By (4.4) and (4.9), we have
(Vy'B.B)s. ~ MoL, (4.13)

where M, does not depend on L. By Definition 4.1, (4.11)-(4.13), KZS does not exist, if 6(3(1)) # 0.
When 6(3(1)) = 0 and 4(8(3(1))) = 0, then
V"BV Brs = ~(=al—Ps + a1 = pLppre? + P pil)?

+ {—EP[E,B,z + aePBl] - TLg(2Bp1e” + i1 (4.14)
~ —{—51[5,33 + aeP ] - pl2Bspie” + By as L — +oo,

and .
B.B)s. = —(;ﬁéé +éPB1p)* as L — +oo, (4.15)

. 1. . 1. , . .
(Vy'B.B)s1 = (—fsq + & BIpI=al—ps + ac Bil = pl2pspre” + ), (4.16)

where A = —g[ 1535 + ae®®B2] - p[2B:B1¢% + €B1] and B = 155G + ¥, p. By (4.14)~(4.16) and (4.6),
we get

When 6(3(1)) = 0, and 4(0(B(1))) # 0, we have
) ) d .
(V"B V3 Brsa ~ LI OBONT,

(Vy'B.Bs. ~ O(L).
Therefore, (4.8) holds.

) If V;’LB is a timelike vector, by similar calculation, we get (2). O

Definition 4.4. Let S C SL be a Lorentzian regular surface, B : I — S be a C*-smooth regular curve.
The signed geodesic curvature Kgg of B at B(t) is defined as

AV B IB)s 1

K, :=
N ;
g 18113,
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Definition 4.5. Let S C St be a Lorentzian regular surface, 8 : I — S be a C*-smooth regular curve.
We define the intrinsic geodesic curvature Kg's of B at the non-characteristic point 5(t) to be

0,C . L,c
Koo = lim k;
B.S Lotoo BS?

if the limit exists.

Proposition 4.6. Let S C St be a Lorentzian regular surface.

(1)IfB : I — S is a C*-smooth regular spacelike curve, then
Kys = —aq, if 0B1) # 0, @.17)
00, . . d .
Kgs = 0. if 6(B(®) = 0 and —(6(B(1) =0,

o ks G060
i VL =(3Bs + P b1

(2)IfB : I — S is a C*-smooth regular timelike curve, then

if 0(3(t)) = 0 and d%(e(ﬁ(r))) # 0. (4.18)

K;’f = ag, if 0B()) # 0, (4.19)

Kgs =0, if 6(B(1) = 0 and %(G(B(t))) =0,

kg 4OBD)) . d .
. BS dt . _ -
Ll_lgloo ﬁ = (él?,@ B if 0(B(t)) =0 and dt(@(,b’(t))) # 0. (4.20)
Proof. For (4.1), by (4.10), we have
, Ip 1 . 1. .
JL(B) = 7LL79(,3(I))F1 + (5,3351 + & B1p)Fs. 4.21)

By (4.4) and (4.21), we have
, . L 1 . 1. . . . .
(V3 B ILB))s. = L2 6FON-a1—Ps + ae® i} + aLOBO))] - pl2Bspre™ + &1}
1. . 1.. . .
+ (=53 + &I PI-TLPI s + e + aLOB®))’]
. .. o . . d .
— F1q[2B:P1€” + P B + L IB0B0) + 2 6B
~ — aL(0(B(1)))*G as L — +oo,
. 1. . I 1 .
1815, = ~(—psa + & Brp)’ + [T L 6B
~ L(O(B(1)))* as L — +oo.
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Thus, if 6(3(1) # 0, (4.17) holds. When 6(3(1)) = 0 and £(6(3(1))) = 0, we get

, , 1. . 1. ,
(V"B JuBs = (—fsa + &*BIpH-TLpl s + ae? By
— T2q[2B:51€” + &1}
~O(L?)as L — +o0.

So, KZ&C = 0. When 6(3(¢)) = 0 and d%(Q(B(t))) #+ 0, we have

. . 1 o _od .
(V"B Ju)s ~ L2 (=Bsg + 1) (0(B(1)) as L — +oo.

We get
L, d ;
i kﬁ_,s _ E'(H(B(t))) -
Lot NI —(LGBs + €% pp1)?
(2)If B : I — S is a C>-smooth regular timelike curve, by similar calculation, we get (2). O

5. Lorentzian surface and a Gauss-Bonnet theorem in S~

In this section, we will compute the expression of the sub-Lorentzian limit of the Gaussian curvature
of Lorentzian surfaces in S%. Then, we will prove a Gauss-Bonnet theorem for Lorentzian surfaces in
SL. To do this, we define the second fundamental form /1* of the embedding of S into S by

o (<V§1 NLF)o (VE N, F2>L) |
(VENLF\) (VENL Fo)

We have the following theorem.

Theorem 5.1. For the embedding of S into SL | the second fundamental form II" of the embedding of
S is given by

hi hlz)
I = ,
(h21 has

where

l
hy = Z_[E‘(ﬁ) - Ex(@)] + apy,
L
I _
hip = 7<F1,VHrL>La

l
hy = 7L<F1, Vo + 2 VL,

hy = =(F2, V(5 ) = —FLE3() + (= Es(7) — apy.
lL l lL lL lL
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Proof. Since (Fi,N.); = 0,{F,,N.); =0, we have
(VENL, Fi)p = (Vi Fi, N, (Vi N, Fa)p = —(VE Fa, Np)p.
Using the definition of the connection, the identities in (2.4) and grouping terms, we have
Vi F1 =Vi, pr,dEr - PE2
=[gE1(q) ~ PE»@) + ap’|E\ ~ [GE\(p) ~ PE2(P) + apglEs.

Since —p* + 3> = 1, we have —pE;p + GE;q = 0,i = 1,2,3. Thus, GE\G = pE\p, GE»,§ = pE,p. Next,
we compute the inner product of this with N, and we have

[

(Vi F1 Ny = ~7LEV(P) — Ex(@)] - ap.
L

We get

l _ _ _
hiy == (Vi Fi,Np)y = Z—[El(P) - Ex(@)] + apy.
L
To compute A, using the definition of the connection, we obtain

Vi Fy =VE

aE-pE,TLPET — TLGE> + éE
=[gE\(7Lp) — PE2(FLD) + aripGlE, — [GE1(FLg) — PE(71q) + aipp°1E,
+ [QEl(é - PEz(é)]E.
We get
(Vi Fa, Ny = —%(Fl, VERL,
and therefore

[
hiz = —<V1LVIF2,NL>L = 7L<F1,V,€17’_L>L-

To compute h,;, using the definition of the connection, we obtain

VézFl :VL QEl - pEz

FLPE\~71GEx+ - E3

We get
)
(Vi,Fi,Np) = —7L<F1, Vuri — i VL.

Therefore,

I

hy = 7<F1, Vurs) + it VL.
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Since (Vp, Ny, Fp)r = —(Vg,F>,Np)1, we use the definition of connection, the identities in (2.4) and
grouping terms. Taking the inner product with N; and under some simplifications similar to Theorem
4.3 1in [23], we have

P l

] [ —
—(F>, VH(;»L + —’”_LE3(I—) - (1—)2E3(’”_L) +apyp,
L L

(V£ Fa Ny = —=
2 I

and then we get

h22 = <VF2F29NL>L

P r I _— 1 I o~ _ _
= > (F2, Vu(5)r — 7 rLE3(7-) + () E3(rL) — apr.
s l I I I
O
We define the mean curvature H; of S by
7_{L = II’(IIL) = hyy + hoo.
Let
KHF 1, Fp) = —(R¥" (F\, F») Fy, Fa)s 1, K"(Fy, F5) = =(R"(Fy, F2) F1, F2)y.
By the Gauss equation, we have
KSH(F, Fy) = KH(Fy, Fa) + det(11"). (5.1)

Proposition 5.2. The horizontal mean curvature Hy, of S C S, away from characteristic point is given

in the following form:
Ho = lim Hy = Ei() - Ex@). (5.2)

Proof. By

%(Fz, Vyry) = ripE(rL) — rLgEx (1)
=2 g0 - Lem
~O(L™3),
E5(7) = 0, p1 > b,
FIEP) - E@) — Ep) - Ex@),
we get (5.2). O
Proposition 5.3. Away from characteristic points, we have
KSHF, F) — A+ OL™") as L — +oo, (5.3)
where
A= —az(éf - éap‘L[El(p) - Ex@)] - &’ (5.4)
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Proof. We compute

L oo 2 L=
R (F\, F2) Fy = &’ 7 pE) — &*11GEs + @ ; Ej,
L

and then
(RM(F1,Fy) Fi, Fy) = =i °p° + &*F G + az(éﬁ (5.5)
By Proposition 2.2, we find
K" (F1. Fy) = &’ ’p* = &’ - a%é)z

I
= —oﬂ(l—)2 as L — oo. (5.6)
L

Esh
[Vihl

By the second fundamental form and Vg (7)) = L‘%VH ( ) +0 (L‘l) as L — +oo, we get

det (IIL) = hy1hyy — hiaho (5.7)
2

l /
= {E[El(ﬁ) - Ex@]+ CYP_L}{ (Fz, Vu(= ))L - ZEs( ) + ( ) Es(7) — apL)

l l
- 7L<F1»VHfL>L{7L<F1’ Vur) + i \/Z}

[
~ —l—aP_L[El(P) — Ex(@)] — a?p.* as L — +oo.
L
By (5.1), (5.6) and (5.7), we get the desired equation. O

We get a Gauss-Bonnet theorem for Lorentzian surface in St as follows.

Theorem 5.4. Let S C St be a regular Lorentzian surface with finitely many boundary components
(0S);,i € {1,---,n}, given by Euclidean C?-smooth regular and closed spacelike curves B; : [0,2n] —
(0S);. Let A be Gaussian curvature of X in Proposition 5.3 and K;§ the sub-Lorentzian signed geodesic
curvature of 3; relative to X in Proposition 4.6. Supposing that the characteristic set C(S') be the empty
set, dos is defined by (8.5), and ds is defined by (8.1) in Appendix A. Then,

fAdO'S+Zf °°‘ds—

Proof. By the discussions in [15], suppose that all points satisfy 6(3(t)) # 0 on ;. Therefore, using
Proposition 4.6, we obtain

ks =Ks +O(L7). (5.8)

According to the Gauss-Bonnet theorem (see [4], page 90 Theorem 1.4), we get

f«u_d(rsHZf G5 dsL—O (5.9)

Therefore, by (5.8), (5.9), (8.6), (5.3) and (8.4), we get

(fAdaS+Zf °°Cds]+0 ) =0. (5.10)

Let L go to infinity and use the dominated convergence theorem, and we get the desired result. O
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6. Spacelike surface and a Gauss-Bonet theorem in S

In this section, we will prove a Gauss-Bonet theorem for spacelike surface in SZ. Let
p:=Eh,qg:= Eh, andr := Eh
Let p*> — ¢ > 0, when L — 400, and we have p? — ¢> — > > 0. We define

_ b
l:=p?=q* 1l = \Np>*—q¢* -2, p = 7
q _

S R P
. l’ L - lLa L - lL’ L - lL'

In particular, p> — g* = 1. These functions are well defined at every non-characteristic point. Let

(6.1)

_ ] —
Ny =-pLE\ +qrLE, + 7 B, Fy = gE| — pEy, Fy = 7 pE| — FL.gE, + Z_E3’ (6.2)
L

and then N, is the unit timelike normal vector to S, F; and F, are the unit spacelike vector of §.
{F1, F»} is the orthonormal basis of §. We call § a spacelike surface in Lorentzian a-Sasakian space.
We define a linear transformation on 7S by J; : TS — TS, and the transformation is well defined:

Jiu(Fy) = Fo, Ji(Fy) = —F). (6.3)

For every U,V € TS, we define Vf]’LV = nVEV where 7 : TSL — TS is the projection. Then, V5 is
the Levi-Civita connection on § with respect to the metric g;. By (3.9), (6.2) and

Vi'B = (ViB. FOLF 1 + (V3B Fo)LFa, (6:4)

we have
v,'B :{—c‘z[éﬁs + @Bl + aLOBO)] - pl2pspre™ + S BIF,
+ (TPl s + ae B + aL(OBO)] - LB + ] 6.5)
+ L BOB0) + S OBONF
Therefore, when 6(3(¢)) = 0, we have
v,'B ={—é[é,33 +ae®Bi] - pI2Bspie” + Bl Fy
+ TPl + aeP )~ TLALB + ) (6.6)
+ éLé%(Q(B(f)))}Fz-

Definition 6.1. Let S C SE be a regular spacelike surface, B : I — S be a C*-smooth regular curve.

We define the geodesic curvature K‘é’s of B at 5(t) by

IVSEBIZ . (VBB
Lo ::J d S . 6.7)

18IS . BB
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Definition 6.2. Let S C SL be a regular spacelike surface, B : I — S be a C*-smooth regular curve.

The intrinsic geodesic curvature Kgs of B at B(t) is defined as

0 . L
Koo := lim «
ps = MM Kgs

if the limit exists.

Proposition 6.3. Let S C SE be a regular spacelike surface, B : I — S be a C*-smooth spacelike

curve, and then we have the following assertions:
Kys =l ag |, if 6(B(1)) # 0,

. d ,
Kkgs =0, if 0(B(1)) = 0 and d—t(é’(ﬁ(t))) =0,
. K;E_,s _ 1LO(B)))|
v VL (3P + P pp)Y
Proof. By (3.7) and 8 € TS, we have

iFOB0) = 0 and (OB % 0.

1. . Iy 1 .
@) = (=53 + i p)F: + TLUH(,B(I))Fz-
By (6.5), we have
(V" BV Brs. ==l =Bs + ae® B + aLOB1))’] - pL2Bp1e" + Bl
TPl + ae B + aLOBO)] - 71q(2B3p1e" + & pi]
L o . . d .
+ L2 IB0B®) + OO,
L t
Similarly, if 8(3(¢)) # 0,
. 1. . l .
B.B)s. = (=53 + " Bip) + (TL)ZL(H(B(t)))Z
~ L(O(B(1)))* as L — +oo.

By (6.5) and (6.10), we have
(V3B Byse ~ MoL,

(6.8)

(6.9)

(6.10)

(6.11)

(6.12)

(6.13)

where M, does not depend on L. By (6.7) and (6.11)-(6.13), (6.8) holds. When 6(3(¢)) = 0 and

FOB®) =0,
(V' BV Brs. = (=al=pBs + ae® i1 = pl2Bspre” + By
+ (TLpl=ps + ae® B] = Fig(2pspre” + P Bh)’

~{=al=ps + a3 — (2B + @B 1) as L — +oo

(6.14)
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and |
B.BYs.1 = (;ﬂ'sé +éPB1p)* as L — +oo. (6.15)

. 1. . 1.. . . ..
<V;’L,8,B>S,L = ‘(5ﬁ3‘_f + 653,3113){—5[5[33 + aePB1] - pl2Bspre” + 711}, (6.16)
By (6.14)-(6.16) and (6.7), we get
Kkgs = 0.

When 6(3(1)) = 0, and 4(6(B())) # 0, we have
. . d .
V"BV Brs. ~ LI OO,
(V3B Brs. ~ OD).
Therefore, (6.9) holds. O

Proposition 6.4. Let S C SL be a regular spacelike surface. B : I — S is a C*-smooth regular
spacelike curve, and then

Ko = aq, if 0(B(1)) = 0; (6.17)
Kys =0, if 0(B(1) = 0 and %(0([5’0))) =0;
YA/ (5))
lim — = - —,
e VL (@B + e ph)
Proof. By (6.3) and (6.10), we have

if 03(t)) = 0 and %(Q(B(I))) # 0. (6.18)

Ju(B) = —%Lie«‘z(r))ﬂ - (éﬁéé + P BIP)F>. (6.19)
By (6.5) and (6.19), we have
(V' B ILBse = - %Léew(m{—q%& + e B+ aL(OBW))’] - pl2Bspre” + P Bil)
~ GG+ EBPITIPL s + 0B + aL OB
— FLal2pBre” + Pl + éLi [B:0(3(1)) + %w(ﬁ(t)»]}

~aL? (0(3(1)))’G as L — +oo,

) 1. . Lo .
1815, = (—fsq +fip)* + [TLLfH(ﬁ(t))F

~ L(O(B(1)))* as L — +co.
Therefore, if 6(3(1)) # 0, (6.17) holds. When 6(3(1)) = 0 and 4(6(3(1))) = 0, we get

. . I . . I.. .
(V"B JBrs = (=g + P Pip)-Tipl—Ps + ac® 1]
- 7242851 + i1}
~ O(L %) as L — +co,
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So, k35 = 0. When 0(3(1)) = 0 and £(6(B(1))) # 0, we have

, , 1. N
(V" Bo L B)rs ~ =L (g + B1p) - (OB1) as L — +oo.
We get
B Y11 5))
lim — = - —.
Loveo NI (Bs + PP )

O

In the following, we investigate the sub-Lorentzian limit of the Gaussian curvature of spacelike

surfaces in S£. The second fundamental form /7* of the embedding of S into S% is defined as

1L = ((Vfrl N, Fi). (Vi Ni, F2>L) _
(VENL Fi)r (Vi N Fo)y

Similar to Theorem 4.3 in [23], we have the following.

Theorem 6.5. For the embedding of S into SL | the second fundamental form II" of the embedding of

hll h12
I1- = ,
(h21 hzz)

S is given by

where ;
hy = 77

L

[Ei(p) — E2(@)] — apy,

I, 2
hi, = (—L - —XF1, Vyrp),
[ I

21 ]
hyy = (l_ - 7L)<F1, Vurid — 72 VL = 2ar.4;,
L
l 21 [ ,— r 21— 1 _
hy = (= = =XFa, Vi) = (—)Es(=) = —i,E3(—) + apy.
[ lL lL l lL lL
Proof. We combine
_ ] —
Np=-piE\+qLE, + i Es, Fy = gE| — pEy, Fy, = FppEy — 11qE, + l—E3, (6.20)
L

and (VfV[_NL, Fir= —(V;l_FJ-,NQL, i, j = 1,2. By direct calculation, we obtain
Vi Fi = [GE((§) — PE2(q) — ap’|E) — [GE1(P) — PE2(P) + apglE,.

Since p*> — 3> = 1, we have pE;p — GE;g = 0,i = 1,2. Then, gE,g = pE,p, GE.§ = pE»p. Next, we
compute the inner product of this with N;, and we have

[
(Vi Fi,Np) = E[El(p) — Ex(@)] + apy.
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We obtain
[
hl] = — <V%IF1,NL>L = _l_[El(l_)) - EZ(q)] - af)L'
L
Similarly, we have

[ 21
hiy = —<Vlﬁ1F2’NL>L = (TL - l—)<F1,VH7’_L>L,
L

2l 1
hyy = —(Vi, Fi, Ny = (l_ - TL)<F1, Vi — 2 VL - 2ar 41,
L

I, 21 I o—r  2l_— 1
hyy = _<V1L:2F2,NL>L = (= = =), Vi — (=) Es(=) — = Es(—) + ap;.
[ lL lL ) lL lL

Thus, Theorem 6.5 holds. O
By the Gauss equation, we have
KSL(F,, Fy) = KL(Fy, Fy) — det(I1%). (6.21)

Proposition 6.6. The horizontal mean curvature H,, of S C S, away from characteristic point is given
in the following form:

H, = Ll_i>r+nm H = —E(p) + Ex(g). (6.22)
Proof. By
I, 2
(7L = THF2, Viry) = 7 pE () = g Ea(r)
L
pr qgr
- B e - LB
~ O(L™Y),
Ex(r) — 0, pL — P,
[
l—[El(ﬁ) - Ex(@)] — E(p) — E2(9),
L
we get (6.22). O

Proposition 6.7. Away from characteristic points, we have

KSL(F,, Fy) — C+O(L™"Y as L — +co, (6.23)
where
YL T N 22
C:=a (z ) 3 apLlE\(p) — Ex(l +a pL”. (6.24)
L L
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Proof. We compute

) I —~
R*(F\,Fy) Fy = —a*fLpE, + &’FLGE, — &” —E5,

Ir
and then
(RU(FI,F2) F1, Fy), = &7’ = o773 ~ az(éy. (6.25)
So,
K" (F1, F2) = —(R"(F1, F2) Fi, Fo), (6.26)
= a7 P + PR+ az(é)2 as L — +oco.
By the second fundamental form and Vg (7,) = ZVH (|€3];l|) +0 (L‘l) as L — 400, we get
det (I1") = hihy = hioh (6.27)
~ —é@P_L[El(ﬁ) - Ex@)] - a’p,” as L — +oo.
By (6.21), (6.26) and (6.27), we get the desired equation. O

Theorem 6.8. Let S C SE be a regular spacelike surface with finitely many boundary components
(0S)i,i € {1,--- ,n}, given by Euclidean C*-smooth regular and closed spacelike curves B; : [0,2n] —
0S);. Suppose that C is defined by (6.24), dos is defined by (8.8) and K s IS the sub-Lorentzian signed
geodesic curvature of B3; relative to S. If the characteristic set C(S) is the empty set, then

dea'5+Zf °°‘ds—

Proof. By the discussions in [15], we may assume that there are no points satisfying 6(8(f)) = 0 and
dﬁt(Q(ﬁ(t))) # 0 on B;. Therefore, using Proposition 6.3, we obtain
L,c ©0,C
K =Kks+0(L7), (6.28)

According to the Gauss-Bonnet theorem , we get

X(S
f K5 L_do's L+ Z f KES \/_dsL = 2n% (6.29)
Therefore, by (6.28), (6.29), (8.9), (6.23), (8.3) and (8.4), we get
S Iy X(S)
[ fs Cdos + Z fﬁ Kﬂi’sds] +0(L7) = = (6.30)

Let L go to infinity and use the dominated convergence theorem, and we get the desired result. O
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7. Conclusions

This paper proved two Gauss-Bonnet theorems for the Lorentzian surfaces and spacelike surfaces in
a Lorentzian a-Sasakian manifold by using the method of the Lorentzian approximation scheme. For
Lorentzian surfaces, we derive the expressions of the intrinsic curvature for regular curves, the intrinsic
geodesic curvature of regular curves on Lorentzian surfaces and the intrinsic Gaussian curvature of
Lorentzian surfaces away from characteristic points in the Lorentzian @-Sasakian manifold. Similarly,

we get the corresponding results for the spacelike surface.

Appendix

To prove Gauss-Bonnet theorems, we need to define the Lorentzian length measure and the
Lorentzian surface measure. Let us first consider the case of a regular spacelike curve g : I — SE, and

we define the length measure ds; = ||5||.dt.

Lemma 7.1. Let B : I — SL be a C*-smooth spacelike curve. Let

NERYYY: —._l 1 _l'z 283 ;2
ds := |0(B(0)\dt, d5 = 2|6(,8(t))|( B+ e B)dt.

1 ’
LEIPwﬁj;dSL_‘L‘ds.

1
—ds; =ds+dsL™" + O(L_z) as L — +oo.

VL
With the situation of 6(3(t)) = 0, we have

Then,

When 6(3(t)) # 0, we have

1 1 1 . .
ﬁdSL = ﬁ \/—gﬁg + €2ﬁ3,8%dt.

Proof. We know that

) 1 . . )
Bl = \/ —— B3 + 7 + LOB0)),
a

and similar to the proof of Lemma 6.1 in [15], we can prove

o1 (S B
AT deSL— f A, POt

b 1 1. . .
_ f lim ﬁ\/—?ﬁ§+ezﬁ3ﬁf+L(9(,8(t)))dt

L—+o0

b
:fds,

(7.1)

(7.2)

(7.3)

(7.4)
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so we get (8.2). When 6(3(1)) # 0, we have

%d& = \/L—l(—éﬁg + e%3) + (B(1))dr.

Using the Taylor expansion, we can prove

1
—ds; =ds+dsL™" + O(L_z) as L — +oo.

VL

From the definition of ds; and 8(3(1)) = 0, we get

1 1 1 . .
e =\t b
O

Proposition 7.2. Let S C St be a regular Lorentzian C*-smooth surface. Let dos ;, denote the surface
measure on S with respect to the Lorentzian metric g;. Let

Esh Esh)*
dos := —(p0y — G)) A 6, dors := —%91 A6, + %(paz — GO A 6. (7.5)
Then, |
—dog, =dog +dasL™" + O(L™), as L — +co. (7.6)

VL
IfS = f(D)with f = f(hi,h) = (fi, fo. f3) : D CR? - SL, then

1
lim — de's,L = f{—€4z[(f1)h1 iy = O P = G By + U (Fdn 1
s D

L—+oc0 \/Z

1 |
- ?ezz[(‘fé)hl (e = I s = B Py + 3 Fn 1P} dydhs.
Proof. 1t is well known that

gL(El’ ) = =0, gL(EZ’ \) = 60, gL(E3, ) = L6.
We define F* := g1 (F1,-), F»* := gr(F>,-), and then

*

l
Fik = —q@l —ﬁez, F2 = —FLpHI - FLQHZ + I—L%Q
L

Therefore,

1 T A 1
—dO'S’L:—Fl/\F2:—Z(p92+q91)/\9+ﬁ7[91/\92.

VL VL

Recall 1
(Ezh) L™

L =
J-P? + @+ LEhY
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and the Taylor expansion

1 1 1
=7 5p Esh’ L+ O(L7) as L— +oo,
L

and we get (8.6). By (2.2), we have
T = (D, 0x + (f2)y, Oy + (f3)y, 0z
1
= (fy, [e(Er — E3)] + (f2)), €°E3 + p (3, En

1 —
=~ (fihy Br + € (fi)y, B2+ VLE (= (f)y, + () Ess

and

Sy = (fD)p, 0x + (f2)4,0y + (f3),02
1 —
= — (o, B+ € (i, Ex + VL (= (f, + () EBs.

Let

~E E, E;
L(fy, €, VL& é— (fom + (fzmg
LB €U, VLE (= (D, + (P,
= — VL* [ (Pny = GOy Oy = SO (i + )iy (fi)m | Eq
VL
o

1 —
+ aez [ (fDn = O (f3)n, ] E3.

N, = (7.7)

eI = I (Fdn = B (i + (i (fidn | E>

We know that dos ; = +/det (8i7)dhidhs, gi; = gi(fi- fi,) - and

det (gij) = (N1, Np)r
= — Le* [(Fm Fn = m Fdny = G iy + FmFm I
L
+ Eezz [n Fdny = B i = U (D + () (Fm)]

1
= [ (i, - Fom Fm]*

so by the dominated convergence theorem, we get

1
lim — de'S,L = f{_e4z[(ﬁ)h1(f2)hz — (Fm Fdn) = By + Fm (Fr) I
L—+c0 \/Z S D

1 |
+ Eezz[(ﬁ)hl(ﬁ)hz — (D ) = B By + (D (i) 12} 2 d By

O
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Proposition 7.3. Let S C SE be a spacelike C*-smooth surface. Let dos ; denote the surface measure
on S with respect to the metric g;. Suppose that

E;h E3h)?
dos = (p6, — G0 A 6, dors := %el N %(ﬁ@z — b)) A 6. (7.8)
Then, .
—dog, =dog +dasL™" + O(L™), as L — +co. (7.9)

VL

Proof. It is well known that

8i(Ey, ") = =01, gi1(Ey,-) = 0,, g1(E3,-) = L6.

Then,
F=—g6, — pby, Fi = —F,pb; — 71365 + éLﬁe.
Therefore,
ders L= LF}‘ NF; = —i (PO, + q6) N6 — LfLel A 0,.
VLML L VI
Recall

(E3h) L2

L =
P - ¢ - LV Ey

and the Taylor expansion

1 1 1 2 -1 -2
E:7+ﬁ(E3h) L +O(L )asL—>+oo,

and we get (8.9). O
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