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1. Introduction

Nonlinear integro differential equations arise in various scientific phenomena in applied
mathematics, mathematical physics, and biology. The delayed integro differential equations of the
Volterra type are used to characterize the evolution of biological populations [1]. In physics, systems
of integro differential equations are used to study continuous medium-nuclear reactors [2]. Further,
some singular integral equations occur in the process of formulating mixed boundary value problems
in mathematical physics [3]. Constructing different techniques to study the solutions of nonlinear
integral equations dates back to the early 1980s [4].
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Analytical solutions for the majority of nonlinear equations do not have a closed form.
Consequently, there are many techniques such as the perturbation methods [5–7] and non-perturbation
method [8] to find the solution to these types of equations. Perturbation methods are commonly based
on transferring the nonlinear problem to an infinite number of linear sub-problems through the
perturbation parameters which are introduced to get approximate solutions [9]. The modify Adomian
decomposition method (MADM) [24] is a non-perturbation method that has became a remarkable
technique to find the exact and approximate solutions for a large class of linear and nonlinear integral
equations. Moreover, with this method, we provide a numerical algorithm based on the application of
the so-called Adomian polynomial to solve nonlinear equations.

The focus has primarily been on obtaining approximate solutions to nonlinear integro-differential
equations which are induced by converting initial and boundary value problems. In [10] Atkinson and
Potra applied the discrete Galerkin method for solving nonlinear integral equations and gave a general
framework and error analysis for the numerical method, while Yousefi and Razzaghi [11] used
Legendre wavelets method together with Gaussian integration method to evaluated the unknown
coefficients and found an approximate solution to nonlinear Volterra-Fredholm integral equations.
The nonexistence of global solutions of a nonlinear integral equation was studied in [12]. Maleknejad
et al. [13] proposed an orthogonal triangular function to approximate the solution of nonlinear
Volterra-Fredholm integral equations, and they used a collocation method to reduce it to the solution
of algebraic equations. In [14], the authors studied the mean square convergence of the series solution
for a stochastic integro-differential equation and evaluated the truncation error by using the Adomain
decomposition method (ADM). Mashayekhi et al. [15] proposed the hybrid of block-pulse functions
and Bernoulli polynomial for solving the nonlinear Volterr-Fredholm integral equation (NVFIE).
Deniz [16] presented an optimal perturbation iteration method and employed it for solving an NVFIE,
and he used new algorithms that were constructed for integral equations. Comparing their new
algorithms with those in some earlier papers proved the excellent accuracy of the newly proposed
technique. Abdou and Youssef [17] discussed the solvability of a nonlinear Fredholm
integro-differential equation (NFIE) with boundary conditions and they applied the MADM and Liaos
homotopy analysis method (HAM) [25] for solving the NFIE numerically. Also, in [18] they have
used the same methods for solving an NFIE of order n. Abed et al. [19] applied the MADM and
variational iteration method to investigate the numerical solution for an NVFIE with initial conditions.
In this paper, the existence and uniqueness of the analytical solutions of the NVFIE with boundary
conditions are investigated. We consider the solvability of a two-point boundary value problem for a
nonlinear integro-differential equation of the form

ωφ
′′

(x) + A(x)φ
′

(x) + B(x)φ(x) = f (x) + λ1

x∫
a

ψ(x, y)
[
φ(y)

]p dy

+ λ2

b∫
a

ψ(x, y)
[
φ(y)

]p dy, for x ∈ [a, b],

(1.1)

with the boundary conditions

φ(a) = η1, φ(b) = η2, η1, η2 ∈ R, (1.2)
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where p ≥ 0 is a non negative integer. The parameters {ω, λ1, λ2} are nonzero real numbers. The
functions A, B and f and the kernel ψ are known functions satisfying certain conditions, as is to be
stated in Section 3, while x 7→ φ(x) is the required function to be found in the space C2(I,R).

The paper is structured as follows. In Section 2 some basic notations, definitions and theorems
regarding the existence, uniqueness, and convergent results in Banach Space are recalled. In Section 3
we show that the NVFIE has at least one continuous solution. Then we provide sufficient conditions for
which it has a unique solution. In Sections 4 and 5 the MADM and the HAM are applied respectively.
Then some analytical and numerical examples are provided in Section 6. Finally, Section 7 concludes
the paper.

2. Preliminaries

Before driving integro-differential equations to the Volterra-Fredholm integral equation, we review
some basic definitions and theorems, which have been given in [20–23]

Definition 2.1. (Contraction mapping) [20] Let (M, d) be a metric space and f : M → M be a
function, which has the property that there is some nonnegative real number 0 ≤ k < 1 such that for
all x, y ∈ M, d( f (x), f (y)) ≤ kd(x, y).

Theorem 2.1. (Banach contraction principle) [22] Let (M, d) be a metric space; then, each contraction
mapping τ : M → M has a unique fixed point x of τ in M.

Theorem 2.2. (Schauder fixed point Theorem) [23] Let X be a Banach space and A be a convex, closed
subset of X. Let T : A −→ A be a map such that the set Tu : u ∈ A is relatively compact in X. Then T
has at least one fixed point u∗ ∈ A i.e., Tu∗ = u∗.

Theorem 2.3. (Arzela-Ascoli theorem) [20] If a sequence { fn}
∞
n=0 in a closed and bounded

interval [a, b] is a bounded and equicontinuous, then it has a uniformly convergent subsequence.

Theorem 2.4. (Krasnoselskii fixed point theorem) [21] Let µ be a closed convex non-empty subset of
a Banach space X. Suppose that A and B map µ into X, and that

(1) A is continuous and compact,

(2) Ax + By ∈ µ for all x, y ∈ µ,

(3) B is a contraction mapping.

Then, there exists y in µ such that Ay + By = y.

3. Outcomes for existence and uniqueness

In order to prove all theorems we suppose the following postulates:

p.1 The functions A and B are elements in the space C(I,R).

p.2 The known free function f belongs to the space C2(I,R).
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p.3 For each y ∈ I the kernel (x, y) 7→ ψ(x, y) is continuous in x, with x taking values in R.
b∫

a

(ψ(x, y))2dy


1
2

≤ γ, for all x ∈ I, γ > 0. (3.1)

p.4 (α + (k1|λ1| + |λ2|)C∗(1)) ≤ |ω|, where α = (b − a) (||A||∞ + (b − a)||B||∞),

C∗(l) =

(
p
l

)
γ(b − a)2l+ 1

2 (d∗(l))
1
2

(2p − 2l + 1)
1
2

, (3.2)

and
d∗(l) =

{
η

2p−2l
2 + η

2p−2l−1
2 η1 + ... + η

2p−2l
1

}
. (3.3)

p.5 (α + (|λ1| + |λ2|)Λ) ≤ |ω|, where

Λ =

p∑
l=1

e(l)C∗(l)
(b − a)3l−3 , (3.4)

where I = [a, b], and the bounded constant k1 = 1.

Theorem 3.1. Let the conditions (p.1) to (p.3) be satisfied. Then the boundary value problems (1.1)
and (1.2) are equivalent to the following NVFIE,

ωu(x) +

b∫
a

[W(x, t) − λ1

x∫
a

R(x, y; 1)H2(y, t)dy − λ2

b∫
a

R(x, y; 1)H2(y, t)dy]u(t)dt

= F(x) + λ1

x∫
a

p∑
l=2

R(x, y; l)


b∫

a

H2(y, t)u(t)dt


l

dy

+ λ2

b∫
a

p∑
l=2

R(x, y; l)


b∫

a

H2(y, t)u(t)dt


l

dy,

(3.5)

where

u(x) := φ
′′

(x), (3.6)

W(x, t) :=
1

(b − a)
×

{
W1(x, t) = (t − a)(A(x) − (b − x)B(x)), a ≤ t ≤ x,
W2(x, t) = (t − b)(A(x) − (a − x)B(x)), x ≤ t ≤ b,

(3.7)

R(x, y; l) :=
(
p
l

)
ψ(x, y)

(b − a)p

[
η1(b − y) + η2(y − a)

]p−l , (3.8)

H2(y, t) :=
{

(b − y)(a − t), a ≤ t ≤ y,
(a − y)(b − t), y ≤ t ≤ b,

(3.9)

µ(x) :=
1

(b − a)
(η1[−A(x) + (b − x)B(x)] + η2[A(x) + (x − a)B(x)]) , (3.10)
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F(x) := f (x) − µ(x) + λ1

x∫
a

R(x, y; 0)dy + λ2

b∫
a

R(x, y; 0)dy. (3.11)

Proof. Let φ
′′

(x) = u(x), where the function x 7→ u(x) is an element in the space C(I,R). So, we have

φ
′

(x) = φ
′

(a) +

x∫
a

u(t)dt (3.12)

and

φ(x) = η1 + (x − a)φ
′

(a) +

x∫
a

(x − t)u(t)dt. (3.13)

Putting x = b in Eq (3.13) and then using the results of Eqs (3.12) and (3.13) gives

φ
′

(x) =
1

(b − a)

(η2 − η1) +

b∫
a

H1(x, t)u(t)dt

 , (3.14)

φ(x) =
1

(b − a)

η1(b − x) + η2(x − a) +

b∫
a

H2(x, t)u(t)dt

 , (3.15)

where

H1(x, t) :=
{

(t − a), a ≤ t ≤ x,
(t − b), x ≤ t ≤ b,

H2(x, t) :=
{

(b − x)(a − t), a ≤ t ≤ x,
(a − x)(b − t), x ≤ t ≤ b,

and

[φ(x)]p =
1

(b − a)p

p∑
l=0

(
p
l

) [
η1(b − x) + η2(x − a)

]p−l


b∫

a

H2(x, t)u(t)dt


l

. (3.16)

Substitution of Eqs (3.14)–(3.16) into Eq (1.1) gives

ωu(x) +
1

(b − a)

b∫
a

[A(x)H1(x, t) + B(x)H2(x, t)]u(t)dt − λ1

x∫
a

R(x, y; 1)H2(y, t)dy

− λ2

b∫
a

R(x, y; 1)H2(y, t)dy]u(t)dt

= F(x) + λ1

x∫
a

p∑
l=2

R(x, y; l)
 b∫

a
H2(y, t)u(t)dt

l

dy

+ λ2

b∫
a

p∑
l=2

R(x, y; l)
 b∫

a
H2(y, t)u(t)dt

l

dy.
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ωu(x) +

b∫
a

[W(x, t) − λ1

x∫
a

R(x, y; 1)H2(y, t)dy

− λ2

b∫
a

R(x, y; 1)H2(y, t)dy]u(t)dt

= F(x) + λ1

x∫
a

p∑
l=2

R(x, y; l)


b∫

a

H2(y, t)u(t)dt


l

dy

+ λ2

b∫
a

p∑
l=2

R(x, y; l)


b∫

a

H2(y, t)u(t)dt


l

dy,

(3.17)

where W(x, t), R(x, y; l), µ(x) and F(x) are defined as shown in Eqs (3.7), (3.8), (3.10) and (3.11)
respectively.

The following theorem tells if the NVFIE (3.17) satisfies the conditions (p.1)–(p.4); then, it has a
continuous solution.

Theorem 3.2. If the NVFIE (3.17) satisfies the conditions (p.1) to (p.4), then it has a continuous
solution.

Proof. Let Γr = {u ∈ C(I,R) : ‖u‖∞ = sup
x∈I
|u(x)| ≤ r}. The radius r is a finite positive solution for the

equation
p∑

l=2

(|λ1|kl
1 + |λ2|)C∗(l)rl) + [(α + k1|λ1| + |λ2|) C∗(1) − |ω|] r + ‖F‖∞ = 0, (3.18)

where k1 is an upper bound of |H2(x, t)|.
For u1, u2 ∈ Γr, we define the following two operators from Eq (3.5)

(Tu1)(x) =
1
ω

F(x) −
1
ω

b∫
a

[
W(x, t) − λ1

x∫
a

R(x, y; 1)H2(y, t)dy

−λ2

b∫
a

R(x, y; 1)H2(y, t)dy
]
u(t)dt. (3.19)

(Wu2)(x) =
λ1

ω

x∫
a

p∑
l=2

R(x, y; l)


b∫

a

H2(y, t)u(t)dt


l

dy

+
λ2

ω

b∫
a

p∑
l=2

R(x, y; l)


b∫

a

H2(y, t)u(t)dt


l

dy. (3.20)
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Now,

|(Tu1)(x)| ≤
1
|ω|
|F(x)| +

r
|ω|

b∫
a
|W(x, t)|dt

+
|λ1|r
|ω|

x∫
a

b∫
a
|R(x, y; 1)||H2(y, t)|dy

+ |λ2 |r
|ω|

b∫
a

b∫
a
|R(x, y; 1)||H2(y, t)|dy

≤ 1
|ω|
|F(x)| + αr

|ω|
+

k1|λ1|pr
|ω|(b − a)p−3

b∫
a

|ψ(x, y)|
|(η1 − η2)y + (η2b − η1a)|1−p dy

+
|λ2|pr

|ω|(b − a)p−3

b∫
a

|ψ(x,y)|
|(η1−η2)y+(η2b−η1a)|1−p dy

≤
1
|ω|
|F(x)| + αr

|ω|
+ (k1|λ1| + |λ2|)

p(b − a)
5
2 (d∗(1))

1
2 r

|ω|(2p − 1)
1
2

 b∫
a

(ψ(x, y))2dy)
 1

2

.

So

‖(Tu1)(x)‖∞ ≤
1
|ω|
‖F(x)‖∞ +

1
|ω|

(α + (k1|λ1| + |λ2|)C∗(1))r. (3.21)

Using similar arguments as we used above implies

|(Wu2)(x)| ≤
|λ1|

|ω|

x∫
a

p∑
l=2
|R(x, y; l)|

 b∫
a
|H2(y, t)u(t)|dt

l

dy

+ |λ2 |

|ω|

b∫
a

p∑
l=2
|R(x, y; l|)

 b∫
a
|H2(y, t)u(t)|dt

l

dy

≤ |λ1|
p∑

l=2

(
p
l

)
(b−a)2l+ 1

2 (d∗(l))
1
2 (k1r)l

|ω|(2p−2l+1)
1
2

 b∫
a

(ψ(x, y))2dy
 1

2

+|λ2|
p∑

l=2

(
p
l

)
(b−a)2l+ 1

2 (d∗(l))
1
2 rl

|ω|(2p−2l+1)
1
2

 b∫
a

(ψ(x, y))2dy
 1

2

.

That is,

‖(Wu2)(x)‖∞ ≤
1
|ω|

p∑
l=2

(
|λ1|kl

1 + |λ2|
)
C∗(l)rl. (3.22)
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Using Eqs (3.21) and (3.22) gives

‖T (u1) −W(u2)‖∞ ≤ ‖T (u1)‖∞ + ‖W(u2)‖∞

≤
1
|ω|
‖F(x)‖∞ +

r
|ω|

(α + (k1|λ1| + |λ2|)C∗(1)) r

+
1
|ω|

p∑
l=2

(|λ1|kl
1 + |λ2|)C∗(l)rl = r.

(3.23)

Therefore,
T (u1) + W(u2) ∈ Γr, ∀u1, u2 ∈ Γr.

Now, suppose x1 < x2 constitute two elements in [a, b]. The functions F, W1 and W2 are continuous
in x from applying the conditions (p.1)–(p.3) ; therefore, we have

|(Tu1)(x2) − (Tu1)(x1)| ≤
1
|ω|
|F(x2) − F(x1)|

+
r

|ω|(b − a)

x1∫
a

|W1(x2, t) −W1(x1, t)|dt

+
r

|ω|(b − a)

x1∫
a

|W2(x2, t) −W2(x1, t)|dt

+

x1∫
a

|W1(x2, t) −W2(x1, t)|dt

+
(k1|λ1| + |λ2|)pr
|ω|(b − a)p−3

×

b∫
a

|ψ(x2, y)| − ψ(x1, y)|
|(η1 − η2)y + (η2b − η1a)|1−p dy,

(3.24)

dy approaches zero whereas x2 approaches x1. Also,

|(Wu2)(x2) − (Wu2)(x1)| ≤
p∑

l=2

kl
1|λ1| + |λ2|

|ω|

(
p
l

)
(b − a)3l−prl

×

b∫
a

|ψ(x2, y)| − ψ(x1, y)|
|(η1 − η2)y + (η2b − η1a)|2l−2p dy,

(3.25)

dy approaches zero whereas x2 approaches x1.
Hence, Tu1 and Wu2 are elements in the space C([a, b],R). Consequently, the operator T + W is a

self-operator on Γr. Let u and u∗ be any two functions in the set Γr. So,

‖T (u) − T (u∗)‖∞ ≤
1
|ω|

(α + (k1|λ1| + |λ2|)C∗(1))‖u − u∗‖∞. (3.26)
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Therefore, the operator T is a contraction operator on Γr according to the condition (p.4). Consider
the sequence {un}n∈N with un ∈ Γr such that un approaches u when n aproaches∞. It is clear that u ∈ Γr

and sup
x∈[a,b]

|un(x)| ≤ r,∀n ∈ N. Applying the Arzela convergence theorem implies

lim
n→∞
|(Wun)(x) − (Wu)(x)| ≤

p∑
l=2

(kl
1|λ1| + |λ2|)
|ω|

lim
n→∞

b∫
a

|R(x, y; l)|

× |


b∫

a

H2(y, t)un(t)dt


l

−


b∫

a

H2(y, t)u(t)dt


l

|

≤

p∑
l=2

(kl
1|λ1| + |λ2|)
|ω|

e(l)

b∫
a

|R(x, y; l)|

×


b∫

a

|H2(y, t)| lim
n→∞
|un − u|dt

 dy = 0,

(3.27)

where e(l) is a finite positive constant dependent on l. Therefore, the operator W is a sequentially
continuous operator on Γr; hence, it is continuous on Γr. It is clear from Eq (3.22) that

∀Wun ∈ sup
x∈[a,b]

|(Wu2)(x)| ≤
p∑

l=2

(kl
1|λ1| + |λ2|)
|ω|

C∗(l)rl,

hence, the set WΓr is uniformly bounded. Consider the sequence (Wun)n∈N with (Wun) ∈ WΓr.

Using similar steps as we followed in Eq (3.25) implies

|(Wu2)(x2) − (Wu2)(x1)| < ε, ∀n ∈ N when |x2 − x1| < δ.

Therefore, there exists a sub-sequence
{
Wunk

}
k∈N which converges uniformly in WΓr as a result of

applying the Arzela-Ascoli theorem; consequently, the set WΓr is compact. As a result, the operator W
is completely continuous. Now all conditions of the Krasnoselskii theorem are satisfied; therefore, the
operator T + W has at least one fixed point in the set Γr which is a solution for the NVFIE (3.17). The
proof is completed.

Theorem 3.3. If the NVFIE (3.17) satisfies the conditions (p.1), (p.2), ( p.3) and (p.5), then it has a
unique solution.

Proof. It is clear that the operator T + W is a self-operator on Γr. Using similar steps as we have used
in Eq (3.26) leads to

‖W(v) −W(v∗)‖∞ ≤
1
|ω|

(α + (|λ1| + |λ2|)
p∑

l=2

e(l)C∗(l)
(b − a)3l−3 )‖v − v∗‖∞, ∀v, v∗ ∈ Γr. (3.28)
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Using Eq (3.26) with the constant k1 = 1 and Eq (3.28) leads to

‖(T + W)(v) − (T + W)(v∗)‖∞ ≤ ‖(T )(v) − (T )(v∗)‖∞ + ‖(W)(v) − (W)(v∗)‖∞

≤
1
|ω|

(α + (|λ1| + |λ2|)C∗(1))‖v − v∗‖∞

+
p∑

l=2

1
|ω|

(α + (|λ1| + |λ2|)
e(l)C∗(l)
(b−a)3l−3 )‖v − v∗‖∞

≤
1
|ω|

(α + (|λ1| + |λ2|)Λ)‖v − v∗‖∞.

‖(T + W)(v) − (T + W)(v∗)‖∞ ≤ ‖v − v∗‖∞. (3.29)

So, the operator T + W is a contraction on Γr according to the condition (p.5), consequently, the
NVFIE (3.17) possesses a unique continuous solution in Γr based on application of the Banach fixed
point theorem. The proof is completed.

4. MADM for the NVFIE

This section is devoted to using the MADM to find an approximate solution to the NVFIE (3.17)
which is subject to satisfying the conditions of Theorem 3.3. Assume the unknown function u(x) of
Eq (3.17) can be approximated by using the formula

u(x) =

∞∑
n=0

un(x). (4.1)

Let F(x) = F1(x) + F2(x). Then

u0(x) =
1
ω

F1(x), (4.2)

u1(x) =
1
ω

F2(x) −
1
ω


b∫

a

W(x, t) − λ1

x∫
a

R(x, y; 1)H2(y, t)dy − λ2

b∫
a

R(x, y; 1)H2(y, t)dy

 u0(t)dt


+
λ1

ω

x∫
a

p∑
l=2

R(x, y; l)A0(y, t)dy +
λ2

ω

b∫
a

p∑
l=2

R(x, y; l)A0(y, t)dy,

(4.3)

un(x) = −
1
ω


b∫

a

W(x, t) − λ1

x∫
a

R(x, y; 1)H2(y, t)dy − λ2

b∫
a

R(x, y; 1)H2(y, t)dy

 un−1(t)dt


+
λ1

ω

x∫
a

p∑
l=2

R(x, y; l)An−1(y, t)dy +
λ2

ω

b∫
a

p∑
l=2

R(x, y; l)An−1(y, t)dy ∀n ≥ 2,

(4.4)

where the Adomain polynomial, An for n = 0, 1, 2, . . . is evaluated by using the equation as follows:

An(u0(x), u1(x), . . . , un(x), y; l) =
1
n!

 dn

dρn


b∫

a

H2(y, t)
∞∑

i=0

ρiui(t)dt


l
|ρ=0

. (4.5)
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Theorem 4.1. The approximate solution determined by Eqs (4.2)–(4.4) for the NVFIE (3.17) converges
to the exact solution u(x) while satisfying the conditions of Theorem 3.3.

Proof. Let {S k(x)} be a sequence of partial sums where

S k(x) =

k∑
i=0

ui(x). (4.6)

Let n,m ∈ Z+ such that n > m ≥ 1. Then

‖S n(x) − S m(x)‖∞ = |

n∑
i=m+1

ui(x)|

≤
1
|ω|

b∫
a

|W(x, t)
n−1∑
i=m

ui(t)|dt +
|λ1|

|ω|

b∫
a

x∫
a

|R(x, y; 1)H2(y, t)
n−1∑
i=m

ui(t)|dydt (4.7)

+
|λ2|

|ω|

b∫
a

b∫
a

|R(x, y; 1)H2(y, t)
n−1∑
i=m

ui(t)|dydt

+
|λ1|

|ω|

x∫
a

p∑
l=2

|R(x, y; l)
n−1∑
i=m

An−1(y, t)|dydt

+
|λ2|

|ω|

b∫
a

p∑
l=2

|R(x, y; l)
n−1∑
i=m

An−1(y, t)|dydt

≤
α

ω
‖S n−1 − S m−1‖∞ +

|λ1|

|ω|
(b − a)3

b∫
a

|R(x, y; 1)
n−1∑
i=m

ui(t)|dt

+
|λ2|

|ω|
(b − a)3

b∫
a

|R(x, y; 1)
n−1∑
i=m

ui(t)|dt +
|λ1| + |λ2|

|ω|
(b − a)3e(l)

≤
1
|ω|

(α + (|λ1| + |λ2|)Λ)‖S n−1 − S m−1‖∞. (4.8)

Let θ =
(α + (|λ1| + |λ2|)Λ)

|ω|
and θ < 1. Then

‖S n(x) − S m(x)‖∞ ≤ θ‖S n−1(x) − S m−1(x)‖∞. (4.9)

Take n = m + 1; then,

‖S m+1 − S m‖∞ ≤ θ‖S m(x) − S m−1(x)‖∞
≤ θ2‖S m−1(x) − S m−2(x)‖∞
≤ · · · ≤ θm‖S 1(x) − S 0(x)‖∞
= θm‖u1‖∞.

(4.10)
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Substituting the inequality of Eq (4.10) into the inequality of Eq (4.9), after applying the triangle
inequality and setting n > m > N ∈ N, we get

‖S n − S m‖∞ ≤
θn

1 − θ
‖u1‖∞ = ε,

where

lim
n−→∞

θn = 0.

Therefore,

‖S n − S m‖∞ < ε, ∀n,m ∈ N.

So, the sequence S n(x) is a Cauchy sequence in the Banach space C(I,R).

Therefore,

lim
n−→∞

S n(x) = u(x).

5. HAM for the NVFIE

This section is devoted to applying the HAM to the NVFIE (3.17) while satisfying the conditions
of Theorem 3.3 from Eq (1.2) as follows:

u(x) +
1
ω

(

b∫
a

[W(x, t) − λ1

x∫
a

R(x, y; 1)H2(y, t)dy

− λ2

b∫
a

R(x, y; 1)H2(y, t)dy]u(t)dt)

−
1
ω

F(x) −
λ1

ω

x∫
a

p∑
l=2

R(x, y; l)


b∫

a

H2(y, t)u(t)dt


l

dy

−
λ2

ω

b∫
a

p∑
l=2

R(x, y; l)


b∫

a

H2(y, t)u(t)dt


l

dy = 0.

(5.1)
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We define the nonlinear operator N by

N[u(x)] = u(x) +
1
ω

(

b∫
a

[W(x, t) − λ1

x∫
a

R(x, y; 1)H2(y, t)dy

− λ2

b∫
a

R(x, y; 1)H2(y, t)dy]u(t)dt)

−
1
ω

F(x) −
λ1

ω

x∫
a

p∑
l=2

R(x, y; l)(

b∫
a

H2(y, t)u(t)dt)ldy

−
λ2

ω

b∫
a

p∑
l=2

R(x, y; l)(

b∫
a

H2(y, t)u(t)dt)ldy.

(5.2)

From Eqs (5.1) and (5.2) we have

N[u(x)] = 0,∀x ∈ I. (5.3)

We define the homotopy of the unknown function u(x) as below

χ∗[φ(x; ~, ι)] = (1 − ι)L(φ(x; ~, ι) − u0(x)) − ι~N[φ(x; ~, ι)], (5.4)

where

(1) the function u0(x) is the initial approximation of the unknown solution u(x);

(2) the parameter ~ ∈ R − 0 is used as a control tool to manage the convergence of the proposed
technique;

(3) the parameter ι ∈ [0, 1] is an embedding in Eq (5.4) and called the homotopy parameter;

(4) the operator L is an auxiliary linear operator satisfying the property L[ι(x)] = 0 when ι(x) = 0;

(5) the operator N denotes Eq (5.2), that is

AIMS Mathematics Volume 8, Issue 1, 463–483.



476

N[φ(x; ~, ι)] = φ(x; ~, ι) +
1
ω

(

b∫
a

[W(x, t) − λ1

x∫
a

R(x, y; 1)H2(y, t)dy

− λ2

b∫
a

R(x, y; 1)H2(y, t)dy]φ(t; ~, ι)dt) −
1
ω

F(x)

−
λ1

ω

x∫
a

p∑
l=2

R(x, y; l)


b∫

a

H2(y, t)φ(t; ~, ι)dt


l

dy

−
λ2

ω

b∫
a

p∑
l=2

R(x, y; l)


b∫

a

H2(y, t)φ(t; ~, ι)dt


l

dy.

(5.5)

χ∗[φ(x; ~, ι)] = 0. (5.6)

Solving Eq (5.6) yields
(1 − ι)L[φ(x; ~, ι) − u0(x)] = ι~N[φ(x; ~, ι)].

u(x) = u0(x) +

∞∑
k=1

uk(x) =

∞∑
k=0

uk(x) (5.7)

where

uk(x) =
1
k!
∂kφ(x; ~, ι)

∂ιk
|ι=0, (5.8)

u1(x) = ~R1[u0(x)], (5.9)
un(x) = u(n−1)(x) + ~Rn[u(n−1)(x)], ∀n ≥ 2, (5.10)

u(n−1)(x) = (u0(x), u1(x), . . . , un−1(x)), (5.11)

Rn[un−1(x)] =
1

(n − 1)!

 ∂n−1

∂ιn−1 N

 ∞∑
i=0

ui(x)ιi
 |ι=0

 . (5.12)

6. Numerical examples

In this section, several examples demonstrate the accuracy and efficiency of the proposed methods
under the conditions of Theorems 3.2 and 3.3. All of them were performed on a computer using
programs written in Matlab. It also contains a numerical comparison of the MADM and HAM. We
report in tables the values of the exact solutions, approximate solutions and the ∞−norm of the error
that was calculated at certain considered points; some figures might be included with each example for
clarification.
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Example 6.1. Consider the following boundary value problem:

4ψ′′(x) + 2xψ′(x) + ψ(x) =
−1
100

(
(1 + x)(1 + x10)

10

)
+ 48x2 + 9x4

+ 0.01

x∫
0

(t + tx)ψ2(t)dt + 0.01

1∫
0

(t + tx)ψ2(t)dt,
(6.1)

where x ∈ [0, 1], ψ(0) = 0, and ψ(1) = 1 and the exact solution is ψ(x) = x4.

Applying u(x) = ψ′′(x), we get an NVFIE with the form of Eq (3.5). Since the kernel k(x, t) = t + tx

is a real valued continuous function in x∀t ∈ [0, x] and
 1∫

0
(t + tx)2dt

 1
2

= 1+x
√

3
≤ 2
√

3
∀x ∈ [0, 1], it is

clear that (α + (|λ1| + |λ2|)C∗(1)) = 3.266. So Eq (3.5) has a solution from Theorem 3.2.
Table 1 presents the∞−norm of the absolute errors between the exact solution and the approximate

solutions obtained by using the MADM and HAM with ~ = −0.089609, −0.089608 and −0.089607

where the initial value of u0 is
x4 − x2

100
.

Table 1. Exact solution ue of Example (6.1) along with the approximate solution S 4(x)

obtained by using the MADM; uM, and HAM; uH, where S n(x) =
n∑

i=0
ui(x) as in Theorem 3.3.

Here uM corresponds to an approximate solution u(x) obtained by using the MADM and uH

corresponds to an approximate solution u(x) obtained by using the HAM with varying values
of ~.

x ue uM uH uH uH ‖ue − uM‖ ‖ue − uH‖

~ = −0.089609 ~ = −0.089608 ~ = −0.089607 ~ = −0.089607

0 0 -0.000080410 -0.000223803 -0.000223800 -0.000223798 0.000080410 0.000223798
0.2 0.48 0.483369160 0.307489406 0.307485869 0.307482332 0.003369160 0.172517667
0.4 1.92 1.925978977 1.517787774 1.517770649 1.517753524 0.005978977 0.402246475
0.6 4.32 4.325333773 3.739156228 3.739114352 3.739072477 0.005333773 0.580927522
0.8 7.68 7.671674552 7.150736302 7.150656697 7.150577092 0.008325447 0.529422907
1 12 11.939887850 12.000329477 12.000196681 12.000063885 0.060112149 0.000063885

Figure 1 illustrates the absolute errors of the MADM and HAM, where ~ = −0.089607,
corresponding to the exact solution at any considered point in Table 1.
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Figure 1. Comparison of exact and approximate solutions of Example (6.1).

The values of ~ that ensure the convergence of the approximate solution are represented in Figure 2.

Figure 2. Illustration of the optimal value of the control parameter ~n corresponding to S 4(x).

where

Table 2. Values of ~ that ensure the convergence of the approximate solution

x uH uH uH

~ = −0.94 ~ = −0.91 ~ = −0.089607
0 -0.000234746223448 -0.000227270037349 -0.000223798068881

0.2 0.323041090007669 0.312411224185282 0.307482332540245
0.4 1.593021768935646 1.541612692662778 1.517753524195289
0.6 3.923057382146835 3.797407545034087 3.739072477211836
0.8 7.500234778270934 7.261462205176178 7.150577092704081
1 12.583195260825082 12.185024506254976 12.000063885259873
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Example 6.2. Consider the following boundary value problem:

8ψ′′(x) = 8(cos(x) − sin(x)) −
1
50

(
1 − 3 cos(x) − 2 sin(x) +

sin(2x)
3

)
+ 48x2 + 9x4

+ 0.02

x∫
0

sin(x − t)ψ2(t)dt + 0.02

π∫
0

sin(x − t)ψ2(t)dt,
(6.2)

where x ∈ [0, π], ψ(0) = −1, and ψ(π) = 1 and the exact solution is ψ(x) = sin(x) − cos(x).
Applying u(x) = ψ′′(x), we get an NVFIE with the form of Eq (3.5). Since the kernel k(x, t) = sin(x−

t) is a real valued continuous function in x∀t ∈ [0, x] and
 π∫

0
sin(x − t)2dt

 1
2

=
(
π
2

) 1
2

= γ ∀x ∈ [0, π],

the value of (α + (|λ1| + |λ2|)C∗(1)) = 1.012664. So Eq (3.5) has a solution from Theorem 3.2.
Table 3 presents the∞−norm of the absolute errors between the exact solution and the approximate

solutions obtained by using the MADM and HAM with ~ = −0.16579, −0.16578 and −0.16577 where

the initial value of u0 is
cos(x)
200

.

Table 3. Exact solution ue of Example (6.2) along with the approximate solution S 3(x) using

MADM and HAM where S n(x) =
n∑

i=0
ui(x) as in Theorem 3.3. See the caption of Table 1 for

the description of uM and uH.
x ue uM uH uH uH ‖ue − uM‖ ‖ue − uH‖

~ = −0.16579 ~ = −0.16578 ~ = −0.16577 ~ = −0.16577
0 1.0000000000 1.0131227836 1.0131227836 1.0131227836 1.0004121726 0.0131227836 0.0004121726

0.6283185307 0.2212317420 0.2337366092 0.2337366092 0.2337366092 0.2288946915 0.0125048671 0.0076629494
1.2566370614 -0.6420395219 -0.6363285798 -0.6363285798 -0.6363285798 -0.6329909938 0.0057109420 0.0090485280
1.8849555921 -1.2600735106 -1.2601671258 -1.2601671258 -1.2601671258 -1.2543201179 0.0000936151 0.0057533927
2.5132741228 -1.3968022466 -1.3943052273 -1.3943052273 -1.3943052273 -1.3947135856 0.0024970193 0.0020886610
3.1415926535 -1.0000000000 -0.9862687835 -0.9862687835 -0.9862687835 -0.9984737858 0.0137312164 0.0015262141

Figure 3 illustrates the absolute errors of the MADM and HAM corresponding to the exact solution
at any considered point in Table 3.

Figure 3. Comparison of the exact and approximate solutions of Example (6.2).
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The values of ~ that ensure the convergence of the approximate solution are represented in Figure 4.

Figure 4. Illustration of the optimal value of the control parameter ~n corresponding to S 3(x).

Example 6.3. Consider the following boundary value problem:

1000ψ′′(x) + ψ(x) = 1001e−x −

(
−3e−3x + 2ex

8
+

2e−x

4

)
−

(
−ex−4

8
−

e−x−2

4

)

+

x∫
0

cosh(x − t)ψ3(t)dt +

1∫
0

cosh(x − t)ψ3(t)dt,
(6.3)

where x ∈ [0, 1], ψ(0) = 1 and ψ(1) = e−1 and the exact solution is ψ(x) = e−x.

The value of (α + (|λ1| + |λ2|)C∗(1)) ≈ 7.5. So Eq (3.5) has a solution from Theorem 3.2. And since
the value of (α+(|λ1 |+|λ2 |)C∗(1))

ω
is close to zero, the approximate solution approaches the ue solution rapidly.

Table 4 presents the∞−norm of the absolute errors between the exact solution and the approximate
solutions obtained by using the MADM and HAM with ~ = −0.16655, −0.16654 and −0.16653 where
the initial value of u0 is

x
1000

.

Table 4. Exact solution ue of Example (6.3) along with the approximate solution S 3(x) using
MADM and HAM. See the caption of Table 1 for the description of uM and uH.

x ue uM uH uH uH ‖ue − uM‖ ‖ue − uH‖

~ = −0.16655 ~ = −0.16654 ~ = −0.16653 ~ = −0.16655
0 1.0000000000 1.0006689598 1.0001208391 1.0000607907 1.0000007423 -0.0006689598 -0.0001208391

0.2 0.8187307530 0.8189818777 0.8185775678 0.8185284312 0.8184792946 -0.0002511246 0.0001531852
0.4 0.6703200460 0.6702463215 0.6700094163 0.6699692118 0.6699290073 0.0000737244 0.0003106296
0.6 0.5488116360 0.5484759072 0.5484108756 0.5483779840 0.5483450925 0.0003357288 0.0004007604
0.8 0.4493289641 0.4487727932 0.4488794418 0.4488525383 0.4488256349 0.0005561708 0.0004495223
1 0.3678794411 0.3671295391 0.3674095283 0.3673875286 0.3673655288 0.0007499019 0.0004699128

Figure 5 illustrates the absolute errors for the MADM and HAM corresponding to the exact solution
at any considered point in Table 4.
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Figure 5. Comparison of the exact and approximate solutions of Example (6.3).

The values of ~ (see Table 5), that ensure the convergence of the approximate solution are
represented in Figure 6.

Figure 6. Illustration of the optimal value of the control parameter ~n corresponding to S 3(x).

Table 5. Results for the approximate solution uH, as obtained via the HAM, for
Example (6.3) corresponding to the value of ~.

x ue uH uH uH uH

~ = −0.16655 ~ = −0.16654 ~ = −0.16651 ~ = −0.16650

0 1.0000000000 1.0001208391 1.0000607907 0.9998806455 0.9998205971
0.2 0.8187307530 0.8185775678 0.8185284312 0.8183810213 0.8183318847
0.4 0.6703200460 0.6700094163 0.6699692118 0.6698485984 0.6698083939
0.6 0.5488116360 0.5484108756 0.5483779840 0.5482793095 0.5482464180
0.8 0.4493289641 0.4488794418 0.4488525383 0.4487718280 0.4487449246
1 0.3678794411 0.3674095283 0.3673875286 0.3673215294 0.3672995296
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7. Conclusions

If the value of
(α + (|λ1| + |λ2|)C∗(1))

|ω|
is near zero, then the approximate solution approaches the

exact solution rapidly. As illustrated through the examples, the MADM gives a better approximate
solution in case of a separate kernel of polynomial functions (Example 6.1), while for the case of
different kernels of trigonometric functions the HAM gives the better approximate solution (Examples
6.2 and 6.3). In terms of the running time, in both cases, the HAM is significantly faster than the
MADM.
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