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1. Introduction

In 1926, the Austrian physicist Schrödinger proposed the famous Schrödinger equation [1] in order
to solve the uncertainties of the microscopic world and to reveal the fundamental laws of matter motion
in the microphysical world, serving as a powerful tool to deal with all non-relativistic problems in
atomic physics, which is equivalent to the role played by Newtons laws in classical mechanics. The
Schrödinger equation plays a very wide and important role in the fields of atomic, molecular, solid state
physics, nuclear physics, and chemistry, etc. However, it is usually difficult to find the exact solutions
of the Schrödinger equation, which is replaced by the numerical solution. Therefore, the numerical
method of nonlinear Schrödinger equation has attracted wide attention of scholars.

During the past two decades, enormous works have been devoted to numerical simulations and
numerical analysis for the Schrödinger equation. In the literature [2], a local discontinuous galerkin
finite element method was proposed to solve the nonlinear Schrödinger equation. Wang et al. [3]
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proposed two-grid finite element method to solve the nonlinear Schrödinger equation. Liao et al. [4]
developed the finite difference explicit scheme and gave the error analysis in the sense of maximum
norm. Sun [5] introduced an explicit difference scheme on an infinite domain using artificial boundary
conditions. In the literature [6], a pseudo-spectral Fourier method was introduced to solve the
Schrödinger equation in optical fibers. Mackenzie et al. [7] presented an hr-adaptive method for the
cubic nonlinear Schrödinger equation. Zhai et al. [8] developed the strang splitting method for space
fractional nonlinear Schrödinger equations. Feng et al. [9] focused on high-order conserving
SAV-Gauss collocation finite element schemes for nonlinear Schrödinger equation. Hu et al. [10]
introduced two-grid finite element algorithms for two-dimensional nonlinear Schrödinger equation
with wave operator. Iqbal et al. [11] proposed a cubic B-spline Galerkin method for the coupled
nonlinear Schrödinger equation. Cai et al. [12] developed the integral factor method, diagonal matrix
technique and FFT algorithm to solve the high-dimensional Schrödinger equation with damping.

Based on previous research, different from the traditional element-based numerical method, we
adopt a new meshless method called barycentric interpolation collocation method, which can
effectively avoid the cumulative error caused by the difference scheme. Compared with the spectral
method, the barycentric interpolation collocation method can deal with irregular domains. As a novel
meshless method, barycentric interpolation method is a good choice for dealing with polynomial
interpolations since it is accurate highly, fast, stable and easy on program implementation. Recently,
barycentric interpolation collocation method has been widely used in elastic mechanics, microwave
technology, fluid mechanics and many other applications. Many researchers extended this method to
solve various types of differential equations, such as the stress separation in photoelasticity [13],
Fredholm integral equation [14], heat conduction equation [15], two-dimensional Fractional Cable
Equation [16], Allen-Cahn equation [17], Volterra integral equation [18], time-fractional order
telegraph equation [19], Burgers equation [20], and so on.

Based on the above works, we focus on a fully discrete scheme for the Schrödinger equation,
which is a second-order Crank-Nicolson scheme in time combined with the barycentric interpolation
collocation method in space. Moreover, we will give consistency analysis of the semi-discretized
scheme in space. This paper will further promote the development of high-precision numerical
algorithms for solving nonlinear Schrödinger equations, and provide a new way for the study of
nonlinear science.

The rest of the paper is structured as follows: In section 2, temporal discretization and the
barycentric interpolation collocation method are introduced. In section 3, consistency analysis of
semi-discretized system are carried out in detail for the Schrödinger equation. In section 4, fully
discretized scheme based on Crank-Nicolson is presented. Numerical examples verify the accuracy
and efficiency of the algorithm in section 5 and some conclusions are given in section 6.

2. Description of the method

2.1. Schrödinger equations

The initial boundary value problem of nonlinear Schrödinger equation is considered as follows.
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i
∂u(x, t)
∂t

+ ∆u(x, t) + β |u|2 u + v(x)u = 0, (x, t) ∈ Ω × (0,T ],

u(x, 0) = u0(x), x ∈ Ω,
(2.1)

with homogeneous Dirichlet boundary condition, where Ω is a bounded domain in Rd(d = 1, 2). It is
easy to show that this equation conserves the total mass and the total energy [21].

M(t) = ||u||2 ≡ M(0). (2.2)

E(t) =
β

4
||u||40,4 −

1
2
||∇u||2 +

v
2
||u||2 ≡ E(0). (2.3)

2.2. Temporal discretization

The time interval [0,T ] is discretized into N subintervals of equal length τ = T
N such as 0 = t0 <

t1 < · · · < tN = T , where tn = nτ, n = 0, 1, · · · ,N.

Let tn+ 1
2

=
1
2

(tn + tn+1), consider Eq (2.1) at (x, t
n+

1
2
), it can be modified as

i
∂u

(
x, tn+ 1

2

)
∂t

+ ∆u(x, tn+ 1
2
) + β

∣∣∣∣u (
x, tn+ 1

2

)∣∣∣∣2 u
(
x, tn+ 1

2

)
+ v(x)u

(
x, tn+ 1

2

)
= 0. (2.4)

where 0 ≤ n ≤ N − 1.
From Eq (2.4), the first term can be modified as

∂u
∂t

(
x, tn+ 1

2

)
=

1
τ

(u(x, tn+1) − u(x, tn)) −
τ2

24
∂3u
∂t3

(x, ε) . (2.5)

The third term can be modified as

|u(x, tn+ 1
2
)|2u(x, tn+ 1

2
) =

1
2

(
|u(x, tn)|2 + |u(x, tn+1)|2

)
u(x, tn+ 1

2
) + o(τ2). (2.6)

From Eqs (2.4–2.6), we get

i
u(x, tn+1) − u(x, tn)

τ
+ ∆u(x, tn+ 1

2
) +

β

2

(
|u(x, tn)|2 + |u(x, tn+1)|2

)
u(x, tn+ 1

2
) + v(x)u

(
x, tn+ 1

2

)
+ o(τ2) = 0.

(2.7)
By ignoring the high order term o(τ2), we get

i
un+1 − un

τ
+ ∆un+ 1

2 +
β

2
((|un|2 + |un+1|2)un+ 1

2 ) + vun+ 1
2 = 0. (2.8)

Thus we get Crank-Nicolson scheme, which is a nonlinear implicit scheme, and its numerical
solution is second order in time.

First, we prove the lemma as follows:
Lemma 1. For un+ 1

2 = un+1+un

2 ∈ C, it holds that 〈un+ 1
2 , un+ 1

2 〉 ∈ R.
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Proof.

〈un+ 1
2 , un+ 1

2 〉 =
1
4
〈un+1 + un, un+1 + un〉

=
1
4

"
Ω

(un+1 + un)(un+1
+ un)dΩ

=
1
4

"
Ω

|un+1|2 + un+1un
+ unun+1

+ |un|2dΩ.

(2.9)

Because |un+1|2 + |un|2 ∈ R, so we only need to prove un+1un
+ unun+1

∈ R. Suppose un+1 = an+1 + ibn+1,
un+1

= an+1 − ibn+1, then we can get

un+1un
+ unun+1

= (an+1 + ibn+1)(an − ibn) + (an + ibn)(an+1 − ibn+1)
= an+1an + ianbn+1 − ian+1bn + bn+1bn + an+1an − ianbn+1 + ian+1bn + bn+1bn

= 2an+1an + 2bn+1bn ∈ R.

(2.10)

Hence, 〈un+ 1
2 , un+ 1

2 〉 ∈ R. �

For the completeness of this paper, the mass and energy conservation of semi discrete scheme in
time will be given here.

For the discrete inner product with un+ 1
2 on both sides of Eq (2.8)

〈i
un+1 − un

τ
,

un+1 + un

2
〉 + 〈∆un+ 1

2 , un+ 1
2 〉 +

β

2
〈(|un|2 + |un+1|2)un+ 1

2 , un+ 1
2 〉 + v〈un+ 1

2 , un+ 1
2 〉 = 0. (2.11)

Take the imaginary part of Eq (2.11), there are

1
2τ

(||un+1||2 − ||un||2) + Im〈∆un+ 1
2 , un+ 1

2 〉+
β

2
Im〈(|un|2 + |un+1|2)un+ 1

2 , un+ 1
2 〉+ vIm〈un+ 1

2 , un+ 1
2 〉 = 0. (2.12)

Hence, from the second term of the Eq (2.12), using the integration and lemma 1, we can deduce

〈∆un+ 1
2 , un+ 1

2 〉 = −〈∇un+ 1
2 ,∇un+ 1

2 〉 ∈ R. (2.13)

Using lemma 1, from the third term and the forth term of the Eq (2.12), we can get

〈(|un|2 + |un+1|2)un+ 1
2 , un+ 1

2 〉 = (|un|2 + |un+1|2)〈un+ 1
2 , un+ 1

2 〉 ∈ R. (2.14)

v〈un+ 1
2 , un+ 1

2 〉 ∈ R. (2.15)

Consequently, the first term
1
2τ

(||un+1||2 − ||un||2) = 0. In other words, ||un+1||2 = ||un||2. Hence, the
total mass is conserved.

For the discrete inner product with (un+1 − un) on both sides of the Eq (2.8), and take the real parts
on both sides of the equation

Re〈∆un+ 1
2 , (un+1 − un)〉 +

β

2
Re〈(|un|2 + |un+1|2)un+ 1

2 , (un+1 − un)〉 + Re(v〈un+ 1
2 , un+1 − un〉) = 0. (2.16)
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And we can deduce

Re(v〈un+ 1
2 , un+1 − un〉) =

v
2

Re(
"

Ω

(un+1 + un)(un+1
− un)dΩ)

=
v
2

(
"

Ω

(|un+1|2 − |un|2)dΩ)

=
v
2

(||un+1||2 − ||un||2).

(2.17)

Re〈∆un+ 1
2 , (un+1 − un)〉 = −

1
2

Re〈(∇un+1 + ∇un), (∇un+1 − ∇un)〉

= −
1
2

"
Ω

Re(∇un+1 + ∇un)(∇un+1
− ∇un)dΩ

= −
1
2

"
Ω

(|∇un+1|2 − |∇un+1|2)dΩ

= −
1
2
||∇un+1||2 +

1
2
||∇un||2.

(2.18)

β

2
Re〈(|un|2 + |un+1|2)un+ 1

2 , (un+1 − un)〉 =
β

4
(|un|2 + |un+1|2)Re(

"
Ω

(un+1 + un)(un+1
− un)dΩ)

=
β

4
(|un|2 + |un+1|2)

"
Ω

(|un+1|2 − |un|2)dΩ

=
β

4

"
Ω

(|un+1|4 − |un|4)dΩ

=
β

4
(||un+1||40,4 − ||u

n||40,4).

(2.19)

Hence, we can obtain

E(tn+1) =
β

4
||un+1||40,4 −

1
2
||∆un+1||2 + v||un+1||2 =

β

4
||un||40,4 −

1
2
||∆un||2 + v||un||2 = E(tn). (2.20)

In other words, the total energy is conserved.

2.3. Barycentric Lagrange interpolation

Suppose there are n + 1 distinct interpolation nodes x j in the direction of x, where corresponds to a
set of real numbers y j ( j = 0, 1, · · · , n) at the same time. Therefore, there exists a unique interpolation
polynomial whose degree is not exceeding m, satisfying p(x j) = y j ( j = 0, 1, · · · , n). As it known to
us, such polynomial p(x) is unique and can be written in Lagrange form as

p(x) =

m∑
j=0

π j(x)y j, π j(x) =

m∏
i=0,i, j

(x − xi)

m∏
i=0,i, j

(
x j − xi

) , j = 0, 1, · · · ,m, (2.21)

where π j(x) are Lagrange interpolation basis functions, satisfying the properties

π j (xi) = σ ji =

{
1, j = i
0, j , i

, i, j = 0, 1, · · · ,m. (2.22)
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n∑
j=0

π j(x) = 1. (2.23)

Let
q(x) = (x − x0)(x − x1) · · · (x − xm). (2.24)

Defining the barycentric weights by

λ j =
1

m∏
i=0,i, j

(
x j − xi

) , j = 0, 1, · · · ,m. (2.25)

Then the interpolation basis function π j(x) can be expressed as

π j(x) = q(x)
λ j

x − x j
, j = 0, 1, · · · ,m. (2.26)

Inserting Eq (2.26) into Eq (2.21), we can get

p(x) = q(x)
m∑

j=0

λ j

x − x j
y j. (2.27)

The barycentric Lagrange interpolation formula can be achieved from Eqs (2.23–2.26) , namely

p(x) =

m∑
j=0

λ j

x − x j
y j

n∑
j=0

λ j

x − x j

. (2.28)

The barycentric Lagrange interpolation is ill-formed for isometric nodes. However, choosing a node
family with a density ratio of (1− x2)−

1
2 can make it numerically stable. The simplest node distribution

is the Chebyshev point family. Therefore, in order to ensure the numerical stability of the barycenter
Lagrange interpolation, the second Chebyshev point family is adopted in this paper: x j = cos( j

mπ)
( j = 0, 1, · · · ,m).

2.4. Differential matrix

The derivative of p(x) defined as Eq (2.28) with respect to x as

p(v)(xi) =
dv p(xi)

dxv =

n∑
j=0

γ(v)
j (xi)y j =

n∑
j=0

D(v)
i j y j, v = 1, 2, · · · . (2.29)

The first and second order differentiation matrices can be obtained by the following formula
D(1)

i j = γ′j(xi) =
ω j/ωi

xi − x j
, j , i

D(1)
ii = −

n∑
j=0, j,i

D(1)
i j

, (2.30)
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367
D(2)

i j = γ′′j (xi) = −2
ω j/ωi

xi − x j

( ∑
k,i

ωk/ωi

xi − xk
+

1
xi − x j

)
, j , i

D(2)
ii = −

n∑
j=0, j,i

D(2)
i j

. (2.31)

By mathematical induction, we have the following v-order differential matrix
D(v)

i j = v
(
D(v−1)

ii D(1)
i j −

D(v−1)
i j

xi − x j

)
, j , i

D(v)
ii = −

n∑
j=0, j,i

D(v)
i j

. (2.32)

3. Semi-discretized system and consistency analysis

3.1. Semi-discretized system based on barycentric interpolation collocation method

The spatial region Ω = [a, b]× [c, d] of the Schrödinger equation is discretized into (M +1)× (N +1)
second-type Chebyshev nodes, namely a = x0 < x1 < · · · < xM = b, c = y0 < y1 < · · · < yN = d.
Then the (M + 1) × (N + 1) Chebyshev nodes on the region are (xi, t), i = 0, 1, · · · ,M. Denoting
u(xi, y, t) = ui(y, t), v(xi, y) = vi(y), i = 0, 1, · · · ,M, barycentric interpolation approximation function
can be modified as

u(x, y, t) =

M∑
l=0

Ql(x)ul(y, t), (3.1)

where Ql(x) is the interpolation basis function of the barycentric interpolation. Substitute the above
formula into the equation, and let the equation hold on nodes x0, x1, · · · , xM, the ordinary differential
equation system can be obtained, namely

i
M∑

l=0

Ql(xi)
∂ul(y, t)
∂t

+

M∑
l=0

Q′′l (xi)ul(y, t)+
M∑

l=0

Ql(xi)
∂2ul(y, t)
∂y2 +G

 M∑
l=0

Ql(xi)ul(y, t)

+v(xi, y)
M∑

l=0

Ql(xi)ul(y, t) = 0.

(3.2)

where Q′′l (xi) =
d2Ql(xi)

dx2 = C(2)
il ,G(u) = β|u|2u. Eq (3.2) can be written in matrix form, namely

i


∂u0(y, t)
∂t
...

∂uM(y, t)
∂t

 + C


u0(y, t)
...

uM(y, t)

 +


∂2u0(y, t)
∂y2

...
∂2uM(y, t)

∂y2


+


G(u0(y, t))

...

G(uM(y, t))

 +


v0(y)u0(y, t)

...

vM(y)uM(y, t)

 = 0. (3.3)

where C=


C(2)

00 · · · C(2)
0M

...
...

C(2)
M0 · · · C(2)

MM

.
Denote ui(y j, t) = ui j(t). Similarly, ui(y, t) can be written in barycentric interpolation form

ui(y, t) =

N∑
r=0

ηr(y)uir(t). (3.4)
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where ηr(y) is the basis function in barycentric interpolation on the direction of y.
Inserting Eq (3.4) into Eq (3.3) and making Eq (3.3) be identical at the nodes y0, y1, · · · , yN , we get

i



N∑
r=0
ηr(y j)

du0r(t)
dt

...
N∑

r=0
ηr(y j)

duMr(t)
dt


+ C



N∑
r=0
ηr(y j)u0r(t)

...
N∑

r=0
ηr(y j)uMr(t)


+



N∑
r=0
η′′r (y j)u0r(t)

...
N∑

r=0
η′′r (y j)uMr(t)


+


G
(

N∑
r=0
ηr(y j)u0r(t)

)
...

G
(

N∑
r=0
ηr(y j)uMr(t)

)


+


v0(y)

N∑
r=0
ηr(y j)u0r(t)
...

vM(y)
N∑

r=0
ηr(y j)uMr(t)


= 0.

(3.5)

where η′′r (y j) =
d2ηr(y j)

dy2 = D(2)
jr .

Let

U = [uT
0 (t),uT

1 (t), · · · ,uT
M(t)]T = [u00(t), · · · , u0N(t), u10(t), · · · , u1N(t), · · · , uM0(t), · · · , uMN(t)]T .

Eq (3.5) can be rewritten in the following matrix form

i
dU
dt

+ (C(2) ⊗ IN)U + (IM ⊗ D(2))U+G(U) + v(x)U = 0. (3.6)

In the above formula: the symbol ⊗ represents the Kronecker product of the matrix, C(2) is the
barycentric interpolation second-order differential matrix about the nodes x0, x1, · · · , xM; D(2) is the
barycentric interpolation second-order differential matrix about the nodes y0, y1, · · · , yN; IM and IN are
the M-order identity matrix and N-order identity matrix.

3.2. Consistency analysis

In this part, we present consistency estimates of the semi-discretized scheme with the collocation
method. Let p(x) is the Lagrange interpolation function approximating u(x). According to theorem 3.1
in reference [19], we obtain the following approximation properties.
Lemma 2. For the error function defined above u(x, t) and the function u(x, t) ∈ Cm+1[a, b]

|e(x, t)| ≤ C1‖ u(m+1) ‖∞

(
eh
2m

)m

, u(x, t) ∈ Cm[a, b],

|ex(x, t)| ≤ C∗1‖ u(m+1) ‖∞

(
eh

2(m − 1)

)m−1

, u(x, t) ∈ Cm−1[a, b],

|exx(x, t)| ≤ C∗∗1 ‖ u(m+1) ‖∞

(
eh

2(m − 2)

)m−2

, u(x, t) ∈ Cm−2[a, b],

(3.7)

where function e(x, t) = u(x, t) − p(x, t) =
u(m+1)(ξ)
(m+1)!

∏m
i=0(x − xi), C1, C∗1, C∗∗1 are constant independent of

x, e is natural logarithm and hx represents the length of the interval [a, b].
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Defining the error function as

e(x, y, t) : = u(x, y, t) − u(xm, yn, t)
= u(x, y, t) − u(xm, y, t) + u(xm, y, t) − u(xm, yn, t).

In that way, we can get

e(x, y, t) :=
∂(m+1)

x u(ξi, y, t)
(m + 1)!

m∏
i=0

(x − xi) +
∂(n+1)

y u(xm, ξ j, t)
(n + 1)!

n∏
j=0

(y − y j). (3.8)

In order to estimate the error of the barycentric interpolation Lagrange collocation method, an operator
is defined

D := i
∂

∂t
+
∂2

∂x2 +
∂2

∂y2 + v(x, y) + f (u). (3.9)

where f (u) is equal to |u|2 in the equation.
Theorem 1. For u(x, y, t) ∈ Cm+1([a, b] × [c, d], the error result is as follow

|u(x, y, t) − u(xm, yn, t)| ≤ C∗∗1 ‖ ∂
(m+1)
x u ‖

∞

(
ehx

2(M − 2)

)M−2

+ C∗∗2 ‖ ∂
(n+1)
y u ‖

∞

(
ehy

2(N − 2)

)N−2

. (3.10)

Proof.

Du(x, y, t) − Du(xm, yn, t) = iut(x, y, t) − iut(xm, yn, t) + uxx(x, y, t) − uxx(xm, yn, t)
+ uyy(x, y, t) − uyy(xm, yn, t) + v(x, y)[u(x, y, t) − u(xm, yn, t)]
+ β[|u(x, y, t)|2u(x, y, t) − |u(xm, yn, t)|2u(xm, yn, t)]
:= R1 + R2 + R3 + R4 + R5.

(3.11)

where
R1 = iut(x, y, t) − iut(xm, yn, t),
R2 = uxx(x, y, t) − uxx(xm, yn, t),
R3 = uyy(x, y, t) − uyy(xm, yn, t),
R4 = v(x, y)[u(x, y, t)) − u(xm, yn, t)],
R5 = β[|u(x, y, t)|2u(x, y, t) − |u(xm, yn, t)|2u(xm, yn, t)].

For R1, we have

R1 = iut(x, y, t) − iut(xm, yn, t)
= iut(x, y, t) − iut(xm, y, t) + iut(xm, y, t) − iut(xm, yn, t)

= i
∂(m+1)

x ut(ξi, y, t)
(m + 1)!

m∏
i=0

(x − xi) + i
∂(n+1)

y ut(xm, ξ j, t)
(n + 1)!

n∏
j=0

(y − y j)

= iet(xm, y, t) + iet(xm, yn, t).

(3.12)

Applying Lemma 2, we obtain

|R1| = |et(xm, y, t) + et(xm, yn, t)|

≤ C1 ‖ ∂
(m+1)
x u‖∞

(
ehx

2M

)M

+ C2 ‖ ∂
(n+1)
y u‖∞

(
ehy

2N

)N

.
(3.13)
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Similarly, for R2 and R3 we can get

|R2| = |exx(xm, y, t) + exx(xm, yn, t)|

≤ C∗∗1 ‖ ∂
(m+1)
x u‖∞

(
ehx

2(M − 2)

)M−2

+ C2 ‖ ∂
(n+1)
y u‖∞

(
ehy

2N

)N

,
(3.14)

|R3| =
∣∣∣eyy(xm, y, t) + eyy(xm, yn, t)

∣∣∣
≤ C1 ‖ ∂

(m+1)
x u‖∞

(
ehx

2M

)M

+ C∗∗2 ‖ ∂
(n+1)
y u‖∞

(
ehy

2(N − 2)

)N−2

.
(3.15)

Then
|R4| = |v(x, y)[u(x, y, t) − u(xm, yn, t)]|

= |v(x, y)[u(x, y, t) − u(xm, y, t) + u(xm, y, t) − u(xm, yn, t)]|
≤ C3 |[u(x, y, t) − u(xm, y, t) + u(xm, y, t) − u(xm, yn, t)]|

≤ C4 ‖ ∂
(m+1)
x u‖∞

(
ehx

2M

)M

+ C4 ‖ ∂
(n+1)
y u‖∞

(
ehy

2N

)N

.

(3.16)

Assuming u(x, y, t), u(xm, yn, t) is bounded, we have

|R5| =
∣∣∣β[|u(x, y, t)|2u(x, y, t) − |u(xm, yn, t)|2u(xm, yn, t)]

∣∣∣
= β[|u(x, y, t)|2u(x, y, t) − |u(x, y, t)|2u(xm, yn, t)

+ |u(x, y, t)|2u(xm, yn, t) − |u(xm, yn, t)|2u(xm, yn, t)]
= β[|u(x, y, t)|2(u(x, y, t) − u(xm, yn, t))

+ u(xm, yn, t)(|u(x, y, t)|2 − |u(xm, yn, t)|2)]
= β[|u(x, y, t)|2(u(x, y, t) − u(xm, yn, t))

+ u(xm, yn, t)(|u(x, y, t)| − |u(xm, yn, t)|)(|u(x, y, t)| + |u(xm, yn, t)|)]

≤ C5 ‖ ∂
(m+1)
x u‖∞

(
ehx

2M

)M

+ C6 ‖ ∂
(n+1)
y u‖∞

(
ehy

2N

)N

.

(3.17)

Substituting (3.12)–(3.17) into (3.11), this completes the proof. �
It can be seen from the error estimate that the numerical scheme is exponentially convergent, and

the order of the differential operator determines the order of convergence of the algebraic equation.

4. Fully discretized scheme based on Crank-Nicolson method

In the section, we will solve the ODE system (3.6) by the Crank-Nicolson scheme. Partition the

interval (0,T] into a uniform mesh with the time step τ =
T
l

: 0 = t0 < t1 < · · · < tl = T . Let

Uk = U(tk), k = 0, 1, · · · , l.
Using Crank-Nicolson difference scheme in the time direction of the Eq (3.6), we can get

i
Uk+1 − Uk

τ
+

1
2

(C(2) ⊗ IN)(Uk+1 + Uk)+
1
2

(IM ⊗ D(2))(Uk+1 + Uk) + Gk + v(x)Uk+ 1
2 = 0. (4.1)

Where Gk =
β

2
(|Uk+1|2 + |Uk|2)Uk+ 1

2 .
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We can get the following scheme:[
iI +

τ

2
(C(2) ⊗ IN) +

τ

2
(IM ⊗ D(2)) +

τ

2
diag(v(x))

]
Uk+1 = Fk −

τβ

4
(|Uk+1|2 + |Uk|2)Uk+1, (4.2)

where Fk =

[
iI −

τ

2
(C(2) ⊗ IN) −

τ

2
(IM ⊗ D(2)) −

τ

2
diag(v(x)) +

τβ

4
(|Uk|2 + |Uk+1|2)

]
Uk, k = 0, 1, · · · , l−

1.
Using Newton iterative method for the nonlinear term

τ

2
|Uk+1|2Uk+1, we can obtain[

iI +
τ

2
(C(2) ⊗ IN) +

τ

2
(IM ⊗ D(2)) +

τ

2
diag(v(x))

]
Uk+1, j = Fk −

τβ

4
(|Uk+1|2 + |Uk|2)Uk+1, j−1. (4.3)

5. Numerical experiments

In this section, several examples are provided to verify the high accuracy and numerical stability of
the proposed scheme.

For convenience, we define the maximum absolute and relative error symbols as follows:

E∞ = max
0≤i≤N

|Ui − ui|, (5.1)

Er∞ =

max
0≤i≤N

|Ui − ui|

max
0≤i≤N

|ui|
. (5.2)

where Ui denote the numerical solution, ui denote the exact solution respectively, ‖ · ‖∞ is the L∞ norm.

5.1. Example 1

We consider the following problem on Ω = [0, 1] × (0, 1] as
i
∂u
∂t

+
∂2u
∂x2 + |u|2u = f ,

u(x, 0) = sin πx,
u(0, t) = 0, u(1, t) = 0,

(5.3)

where {
u = sin(πx) cos(t),
f = −i sin t sin πx − π2 cos t sin πx + | sin πx cos t|2 sin πx cos t.

(5.4)

Fix M = 16, and time step τ is varied. Table 1 shows that the convergence order is second order in
time.

Table 1. Convergence rates in time for 1D problems.

τ E∞ Rate
1/16 2.1981e-05 \

1/32 5.4687e-06 2.0070
1/64 1.3647e-06 2.0026
1/128 3.4093e-07 2.0010
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Table 2 shows the maximum absolute error and the maximum relative error obtained by the second-
order finite difference scheme and the barycentric interpolation collocation scheme. Second-order finite
difference scheme [21] for the Schrödinger equation is as follows.

i
un+1

j − un
j

τ
+

un+ 1
2

j+1 − 2un+ 1
2

j + un+ 1
2

j−1

h2 +
β

2

(∣∣∣un
j

∣∣∣2 +
∣∣∣un+1

j

∣∣∣2) un+ 1
2

j +
v
2

(
un+1

j + un
j

)
= 0. (5.5)

Table 2. Error comparison of two schemes in example 1 (τ = 10−4).

second-order finite difference barycentric Lagrange interpolation
M E∞ Er∞ M E∞ Er∞
16 8.1000e-03 6.1000e-03 4 8.2345e-02 9.3736e-02
32 2.0000e-03 1.5000e-03 6 9.8617e-04 7.7428e-04
64 5.0659e-04 3.8028e-04 8 7.8213e-06 5.8152e-06
128 1.2662e-04 9.5054e-05 10 4.5589e-08 3.1234e-08
256 3.1656e-05 2.3764e-05 12 3.6991e-10 2.5479e-10

It can be seen that barycentric interpolation collocation method can achieve higher accuracy with
less nodes. For example, when the temporal step τ = 10−4 , barycentric Lagrange interpolation only
needs to take 8 points in space to achieve the accuracy of 10−6 , but the second-order finite difference
scheme requires 256 points to achieve the accuracy of 10−5.

By applying the Fourier transform to both sides of (2.8) and the definition of the Laplacian given
by (5.8), one gets

i
ûn+1

j − ûn
j

τ
+
λ j

2

(
ûn+1

j + ûn
j

)
+
β

2

(
̂∣∣∣∣un

j

∣∣∣∣2 un
j +

̂∣∣∣∣un+1
j

∣∣∣∣2 un+1
j

)
+

v
2

(
û j

n+1 + û j
n
)

= 0. (5.6)

where ûn
j is the j th Fourier coefficient.

Remark. Suppose the Laplacian (−∆) has a complete set of orthonormal eigenfunctions {ϕ j} satisfying
standard boundary conditions on a bounded region Ω ∈ Rn, with corresponding eigenvalues λ j , i.e.,
(−∆)ϕ j = λ jϕ j on Ω, and let

U := {u =

∞∑
j=0

û jϕ j, û =
〈
u, ϕ j

〉
,

∞∑
j=0

|û j|
2|λ j|

2 < ∞}. (5.7)

Then, for any u ∈ U,

(−∆)u =

∞∑
j=0

û jλ jϕ j. (5.8)

For detailed introduction of Fourier spectral method, please refer to reference [22]. �
Table 3 shows the maximum absolute error and the maximum relative error obtained by the spectral

method. Compared with spectral method, we can find that the highest accuracy of the spectral method
is only 10−9 in Table 3. However, the accuracy of barycentric interpolation collocation method is 10−10

when we take 12 points in space from Table 2. So our scheme is still superior.
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Table 3. Error of spectral method (τ = 10−4).

M E∞ Er∞
8 1.9895e-09 3.6822e-09
12 1.9896e-09 3.6824e-09
16 1.9895e-09 3.6822e-09
20 1.9896e-09 3.6823e-09

5.2. Example 2

The initial value condition is u(x, 0) = sinx, β = 1, and the second term of Eq(2.1) is 1
2∆u. The

exact solution of this problem is u(x, t) = exp(−3it
2 )sinx, 0 ≤ x ≤ 2π, 0 < t ≤ 1.

The errors in maximum norm and convergence rates are displayed in Table 4, we can find that the
scheme is second order in time for 1D Schrödinger equation.

Table 4. Convergence rates in time for 1D problems. (M = 16).

τ E∞ Rate
1/16 6.4328e-04 \

1/32 1.5976e-04 2.0096
1/64 3.9795e-05 2.0052
1/128 9.9300e-06 2.0027

Table 5 gives the maximum error and relative error obtained by the barycentric interpolation
collocation scheme and the second-order finite difference scheme. From Table 5, it can be found that
the barycentric interpolation collocation scheme can achieve high accuracy by taking fewer points in
space compared with the second-order finite difference scheme. Especially when the barycentric
Lagrange interpolation collocation scheme takes 8 points, it achieves higher precision than the
second-order finite difference scheme takes 128 points.

Table 5. Error comparison of two schemes in example 2 (τ = 10−4).

second-order finite difference barycentric Lagrange interpolation
M E∞ Er∞ M E∞ Er∞
16 6.4000e-03 3.7000e-03 4 2.8600e-02 2.0200e-02
32 1.6000e-03 9.2627e-04 6 9.6292e-04 7.1450e-04
64 5.0146e-04 2.3179e-04 8 7.7136e-06 5.3692e-06
128 1.0039e-04 5.7960e-05 10 4.4685e-08 2.7993e-08
256 2.5096e-05 1.4489e-05 12 2.6775e-09 1.3854e-09
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So we can draw images of numerical and exact solutions, as shown below. It can be seen from
Figures 1 and 2 that the numerical solution obtained by the barycentric interpolation collocation scheme
is consistent with the exact solution, indicating that the scheme is very stable.

Figure 1. The numerical solution diagram at t = 1.

Figure 2. The exact solution diagram at t = 1.

The discrete mass and energy conservation properties of the Schrödinger equation are further
verified. The space step is selected as τ = 10−4, the corresponding calculation interval
is [0, 2π]× [0, 1]. It can be seen from Figures 3 and 4 that our collocation scheme preserves the total
mass and energy in the discrete sense.
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(a) Total mass. (b) Mass relative error.
Figure 3. Conservation situation of mass for barycentric Lagrange interpolation scheme.

(a) Total energy. (b) Energy relative error.
Figure 4. Conservation situation of energy for barycentric Lagrange interpolation scheme.

5.3. Example 3

The initial value is u0(x) = 2sech(2x)exp(ix). Let the boundary conditions of the one-dimensional
Schrödinger equation be u(−10, t) = u(10, t) = 0 and potential function is v(x) = 0, β = 1.

The solitary waveform under the initial condition t = 0 is shown in Figure 5. The time step is
τ = 10−3 and the corresponding interval is [−10, 10] × [0, 5]. The solitary waveforms of barycentric
Lagrange interpolation at t = 2 and t = 5 are shown in Figure 6 . Therefore, it can be seen that the
solitary waveform of barycentric Lagrange interpolation is very stable, indicating that the numerical
method is stable.
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Figure 5. Solitary waveform under initial condition at t = 0.

(a) t = 2. (b) t = 5.
Figure 6. Solitary waveforms of barycentric Lagrange interpolated.

5.4. Example 4

We consider the following problem on Ω = [−1, 1]2 × (0, 1] as
i
∂u
∂t

+
∂2u
∂x2 +

∂2u
∂y2 + |u|2u = f ,

u(x, y, 0) = sin πx sin πy,
u(−1, y, t) = 0, u(1, y, t) = 0,
u(x,−1, t) = 0, u(x, 1, t) = 0,

(5.9)

where{
u = sin(πx) sin(πy) cos(t),
f = −i sin t sin πx sin πy − 2π2 cos t sin πx sin πy + | sin πx sin πy cos t|2 sin πx sin πy cos t.

(5.10)

The error comparison results of different discretization schemes in space can be obtained, as shown
in Table 6. One can see that barycentric interpolation collocation method has high precision, as it
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only uses 9 × 9 mesh nodes can achieve the accuracy of second-order central difference approach with
80 × 80 mesh nodes.

Table 6. The accuracy comparison of different schemes for 2D problems. (τ = 10−3).

M N E∞ Er

second-order finite difference

10 10 2.3300e-02 4.7600e-02
20 20 4.6000e-03 8.5000e-03
40 40 1.1000e-03 2.0000e-03
60 60 4.8774e-04 9.0272e-04
80 80 2.7408e-04 5.0727e-04

barycentric Lagrange interpolation

7 7 5.2870e-04 1.1000e-03
8 8 1.1459e-04 2.4372e-04
9 9 1.2117e-04 2.2426e-05
10 10 2.8371e-06 5.6714e-06
15 15 1.5688e-07 2.9037e-07

Table 7 indicates our scheme is second order in time for 2D Schrödinger equation.

Table 7. Convergence rates in time for 2D problems. (M = N = 20).

τ E∞ Rate
1/16 6.3833e-04 \

1/32 1.5699e-04 2.0236
1/64 3.8670e-05 2.0214
1/128 9.5361e-06 2.0197

5.5. Example 5

Consider 2D Schrödinger equation on Ω = [0, 2π] × [0, 2π] with the following initial condition{
iut = −1

2∆u + V(X) + |u|2u, (X, t) ∈ Ω × (0,T ],
u(X, 0) = sin x sin y,

(5.11)

where
V(x, y) = 1 − sin2 x sin2 y.

The exact solution for the problem is u = e−2ti sin x sin y.We take simulation parameters as

τ = 0.001,M = N = 40,T = 1.

So we can draw images of numerical and exact solutions, as shown below. It can be seen from
Figures 7 and 8 that the numerical solution obtained by the barycentric interpolation collocation scheme
is consistent with the exact solution, indicating that the scheme is very stable. Then we need to verify
again the conservation of energy and mass. It can be seen from the Figures 9 and 10 that our collocation
scheme satisfies the discrete mass and energy conservation.
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Figure 7. The numerical solution diagram at t = 1.

Figure 8. The exact solution diagram at t = 1.

(a) Total mass. (b) Mass relative error.
Figure 9. The preservation of mass by the barycentric interpolation collocation scheme.
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(a) Total energy. (b) Energy relative error.
Figure 10. The preservation of energy by the barycentric interpolation collocation scheme.

6. Conclusions

In this paper, by a combination of the barycentric interpolation collocation method and
Crank-Nicolson scheme, an efficient numerical scheme for Schrödinger equation is developed. In
addition, the consistency analysis of the semi-discretized scheme is derived. Numerical examples
show that our scheme is second order in time and convergent exponentially in space. The total mass
and energy conservation in the discrete senses are also checked numerically. Compared with the finite
difference method and spectral method, the barycenter interpolation collocation method can achieve
high accuracy with fewer points. In future work, we plan to extend this method to coupled
schrodinger equations, KdV equations and Klein-Gordon equations etc.

Acknowledgments

This work is in part supported by the NSF of China (No. 11701197), the Fundamental Research
Funds for the Central Universities (No. ZQN-702), the Natural Science Foundation of Fujian
Province (No. 2022J01308), the Key Laboratory of Intelligent Computing and Information
Processing of Ministry of Education (Xiangtan University) (No. 2020ICIP03) and National Training
Program of Innovation and Enterpreneurship for Undergraduates (No. 202110385029).

Conflict of interest

The authors declare that there are no conflicts of interest regarding the publication of this
manuscript.

References

1. E. Schrödinger, The present status of quantum mechanics, Die Naturwissenschaften, 23 (1935), 48.

2. Y. Xu, C. W. Shu, Local discontinuous Galerkin methods for nonlinear Schrödinger equations, J.
Comput. Phys., 205 (2005), 72–97. https://doi.org/10.1016/j.jcp.2004.11.001

AIMS Mathematics Volume 8, Issue 1, 361–381.

http://dx.doi.org/https://doi.org/10.1016/j.jcp.2004.11.001


380

3. J. Wang, M. Li, J. Li, Superconvergence analysis for nonlinear Schrödinger equation
with two-grid finite element method, Appl. Math. Lett., 122 (2021), 107553.
https://doi.org/10.1016/j.aml.2021.107553

4. H. L. Liao, Z. Z. Sun, H. S. Shi, Maximum norm error analysis of explicit schemes for
two-dimensional nonlinear Schrödinger equations, Scientia Sinica Math., 40 (2010), 827–842.
https://doi.org/10.1360/012009-846

5. Z. Z. Sun. The stability and convergence of an explicit difference scheme for the Schrödinger
equation on an infinite domain by using artificial boundary conditions, J. Computat. Phys.,
219 (2006), 879–898. https://doi.org/10.1016/j.jcp.2006.07.001

6. H. E. Ibarra-Villalon, O. Pottiez, A. Gmez-Vieyra, J. P. Lauterio-Cruz, Y. E. Bracamontes-
Rodriguez, Numerical approaches for solving the nonlinear Schrödinger equation in the nonlinear
fiber optics formalism, J. Opt., 22 (2020), 043501. https://doi.org/10.1088/2040-8986/ab739e

7. J. A. Mackenzie, W. R. Mekwi, An hr-adaptive method for the cubic nonlinear Schrödinger
equation, J. Comput. Appl. Math., 364 (2000), 11232. https://doi.org/10.1016/j.cam.2019.06.036

8. S. Zhai, D. Wang, Z. Weng, X. Zhao, Error analysis and numerical simulations of Strang splitting
method for space fractional nonlinear Schrödinger equation, J. Sci. Comput., 81 (2019), 965–989.
https://doi.org/10.1007/s10915-019-01050-w

9. X. Feng, B. Li, S. Ma, High-order mass-and energy-conserving SAV-Gauss collocation finite
element methods for the nonlinear Schrödinger equation, SIAM J. Numer. Anal., 59 (2021), 1566–
1591. https://doi.org/10.1137/20M1344998

10. H. Hu, Y. Chen, Analysis of finite element two-grid algorithms for two-dimensional nonlinear
Schrödinger equation with wave operator, J. Comput. Appl. Math., 397 (2021), 113647.
https://doi.org/10.1016/j.cam.2021.113647

11. A. Iqbal, N. N. Abd Hamid, A. I. M. Ismail, Cubic B-spline Galerkin method for numerical
solution of the coupled nonlinear Schrödinger equation, Math. Comput. Simul., 174 (2020), 32–
44. https://doi.org/10.1016/j.matcom.2020.02.017

12. J. Cai, H. Zhang, Efficient schemes for the damped nonlinear Schrödinger equation in high
dimensions, Appl. Math. Lett., 102 (2020), 106158. https://doi.org/10.1016/j.aml.2019.106158

13. Z. Xu, Y. Han, H. Shao, Z. Su, G. He, D. Zhang, High-precision stress determination in
photoelasticity, Appl. Math. Mech., 43 (2022), 557–570. https://doi.org/10.1007/s10483-022-2830-
9

14. H. Liu, J. Huang, Y. Pan, J. Zhang, Barycentric interpolation collocation methods for solving linear
and nonlinear high-dimensional Fredholm integral equations, J. Comput. Appl. math., 327 (2018),
141–154. https://doi.org/10.1016/j.cam.2017.06.004

15. J. Li, Y. Cheng, Linear barycentric rational collocation method for solving heat conduction
equation, Numer. Meth. Part. D. E., 37 (2021), 533–545. https://doi.org/10.1002/num.22539

16. A. Rezazadeh, Z. Avazzadeh, Barycentric-Legendre interpolation method for solving two-
dimensional fractional cable equation in neuronal dynamics, Int. J. Appl. Comput. Math., 8 (2022),
80. https://doi.org/10.1007/s40819-022-01273-w

AIMS Mathematics Volume 8, Issue 1, 361–381.

http://dx.doi.org/https://doi.org/10.1016/j.aml.2021.107553
http://dx.doi.org/https://doi.org/10.1360/012009-846
http://dx.doi.org/https://doi.org/10.1016/j.jcp.2006.07.001
http://dx.doi.org/https://doi.org/10.1088/2040-8986/ab739e
http://dx.doi.org/https://doi.org/10.1016/j.cam.2019.06.036
http://dx.doi.org/https://doi.org/10.1007/s10915-019-01050-w
http://dx.doi.org/https://doi.org/10.1137/20M1344998
http://dx.doi.org/https://doi.org/10.1016/j.cam.2021.113647
http://dx.doi.org/https://doi.org/10.1016/j.matcom.2020.02.017
http://dx.doi.org/https://doi.org/10.1016/j.aml.2019.106158
http://dx.doi.org/https://doi.org/10.1007/s10483-022-2830-9
http://dx.doi.org/https://doi.org/10.1007/s10483-022-2830-9
http://dx.doi.org/https://doi.org/10.1016/j.cam.2017.06.004
http://dx.doi.org/https://doi.org/10.1002/num.22539
http://dx.doi.org/https://doi.org/10.1007/s40819-022-01273-w


381

17. Y. Deng, Z. Weng, Operator splitting scheme based on barycentric Lagrange interpolation
collocation method for the Allen-Cahn equation, J. Appl. Math. Comput., 68 (2022), 3347–3365.
https://doi.org/10.1007/s12190-021-01666-y

18. E. S. Shoukralla, B. M. Ahmed, M. Sayed, A. Saeed, Interpolation method for solving Volterra
integral equations with weakly singular kernel using an advanced barycentric Lagrange formula,
Ain Shams Eng. J., 13 (2022), 101743. https://doi.org/10.1016/j.asej.2022.101743

19. S. Yi, L. Yao, A steady barycentric Lagrange interpolation method for the 2D higher-order time-
fractional telegraph equation with nonlocal boundary condition with error analysis, Numer. Meth.
Part. D. E., 35 (2019), 1694–1716. https://doi.org/10.1002/num.22371

20. Y. Hu, A. Peng, L. Chen, Y. Tong, Z. Weng, Analysis of the barycentric interpolation
collocation scheme for the Burgers equation, Sci. Asia, 47 (2021), 758–765.
https://doi.org/10.2306/scienceasia1513-1874.2021.081

21. Z. Sun, Numerical methods of partial differential equations, Beijing: Science Press, 2022

22. J. Shen, T. Tang, Spectral and high-order methods with applications, Beijing: Science Press, 2006.

c© 2023 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 8, Issue 1, 361–381.

http://dx.doi.org/https://doi.org/10.1007/s12190-021-01666-y
http://dx.doi.org/https://doi.org/10.1016/j.asej.2022.101743
http://dx.doi.org/https://doi.org/10.1002/num.22371
http://dx.doi.org/https://doi.org/10.2306/scienceasia1513-1874.2021.081
http://creativecommons.org/licenses/by/4.0

	Introduction
	Description of the method
	Schrödinger equations
	Temporal discretization
	Barycentric Lagrange interpolation
	Differential matrix

	Semi-discretized system and consistency analysis
	Semi-discretized system based on barycentric interpolation collocation method
	Consistency analysis

	Fully discretized scheme based on Crank-Nicolson method
	Numerical experiments
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5

	Conclusions

