
http://www.aimspress.com/journal/Math

AIMS Mathematics, 8(1): 29–60.
DOI: 10.3934/math.2023002
Received: 19 July 2022
Revised: 25 August 2022
Accepted: 01 September 2022
Published: 27 September 2022

Research article

Reliability analysis of constant partially accelerated life tests under
progressive first failure type-II censored data from Lomax model: EM and
MCMC algorithms

Mohamed S. Eliwa1,2,3,* and Essam A. Ahmed4,5

1 Department of Statistics and Operation Research, College of Science, Qassim University, Buraydah
51482, Saudi Arabia

2 Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
3 Department of Mathematics, International Telematic University Uninettuno, I-00186 Rome, Italy
4 Mathematics Department, Faculty of Science, Sohag University, Sohag 82524, Egypt
5 Faculty of Business Administration, Taibah University, Saudi Arabia

* Correspondence: Email: m.eliwa@qu.edu.sa.

Abstract: Examining life-testing experiments on a product or material usually requires a long time of
monitoring. To reduce the testing period, units can be tested under more severe than normal conditions,
which are called accelerated life tests (ALTs). The objective of this study is to investigate the problem
of point and interval estimations of the Lomax distribution under constant stress partially ALTs based
on progressive first failure type-II censored samples. The point estimates of unknown parameters and
the acceleration factor are obtained by using maximum likelihood and Bayesian approaches. Since
reliability data are censored, the maximum likelihood estimates (MLEs) are derived utilizing the
general expectation-maximization (EM) algorithm. In the process of Bayesian inference, the Bayes
point estimates as well as the highest posterior density credible intervals of the model parameters and
acceleration factor, are reported. This is done by using the Markov Chain Monte Carlo (MCMC)
technique concerning both symmetric (squared error) and asymmetric (linear-exponential and general
entropy) loss functions. Monte Carlo simulation studies are performed under different sizes of samples
for comparison purposes. Finally, the proposed methods are applied to oil breakdown times of
insulating fluid under two high-test voltage stress level data.

Keywords: constant-stress partially ALTs; Bayesian estimation; expectation-maximization algorithm;
metropolis-Hasting algorithm
Mathematics Subject Classification: 60E05, 62F10, 62N05, 62P10

http://www.aimspress.com/journal/Math
http://dx.doi.org/ 10.3934/math.2023002


30

1. Introduction

The Pareto system of distributions includes four types (I–IV) of cumulative distribution functions
that produce different density shapes, see Johnson et al. [1]. The type II Pareto distribution is known
in the literature by the Lomax distribution, see Lomax [2]. Lomax distribution is considered a serious
distribution of lifetime models because it belongs to the family of decreasing failure rate models. When
the population has a heavy-tailed distribution and the experimenter seeks a good probability distribution
describing this case, the Lomax model is an excellent alternative to most common models such as the
exponential, Weibull, or gamma distributions, see Bryson [3]. This distribution could be a flexible
model because it’s used for analyzing different lifetime data. It has various applications in medicine,
biological sciences, engineering, operations research, natural sciences, queuing theory, and internet
traffic modeling. One can see, among many others, Johnson et al. [1]. Recently, David et al. [4] found
many applications for this distribution in business, economics, and actuarial modelling. Additionally,
it’s noted that this distribution has some characteristics that make it a preferred distribution. One in
every of these, the statistical and reliability properties of this distribution may be expressed in closed
forms, which help statisticians model different types of data.

Due to these features, several authors used this model in modeling data, especially, censored
observations. Hence our motivation to verify this distribution throughout this paper is because of its
practical importance in the many different alternative areas mentioned above, as mentioned in many
references. Among these references, Harris [5] and Atkinson and Harrison [6] found this distribution
very convenient when examining data on income and wealth. Dubey [7] reported that this distribution
is one of the special cases of the specific compound gamma distribution. Bryson [3] suggested that
when the available data are heavy-tailed, the Lomax distribution is another suitable distribution to the
exponential distribution. Tadikamalla [8] listed that the Lomax distribution can be derived from a
family of Burr distributions. In addition to any or all of the above, this distribution has itself been
used as a basis for several generalizations, see Al-Awadhi and Ghitany [9], Ghitany et al. [10], and
Punathumparambath [11].

If X is a continuous random variable that follows a Lomax distribution with shape and scale
parameters θ and β, respectively, then the probability density function (PDF) and its corresponding
cumulative distribution function (CDF) can be formulated as

f (x; θ, β) = θβθ (β + x)−(θ+1) ; x > 0,

and
F (x; θ, β) = 1 − βθ (β + x)−θ ; x > 0,

respectively. Further, the Lomax failure rate function can be expressed as

h (x; θ, β) = θ (β + x)−1 ; x > 0,

where β > 0 and θ > 0. In industrial operations, under normal operating conditions, we need a very
long time to obtain the failure times of these products, which also causes the average failure times of
these products to be long, this is not in line with the industrial revolution and modern technology. To
provide quick solutions in such cases, experimenters perform the ALT, where the units we want to test,
are placed under several stress levels whose values are higher than the normal stress values in order to
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reduce the time it takes to fail. Under typical conditions, the experimenters use the data obtained from
the accelerated test to estimate the failure distribution of the units.

The types of stress loading in ALT are generally classified as constant stress, step stress, or
progressive stress. The constant-stress loading is a time-independent test setting where the stress
remains fixed until an item is desert. It has different advantages when compared to time-dependent
stress loads. This is simply, because most real products operate under constant stress. There are
several major references in the area of ALT, among the most important of these references, the
follower can look at Nelson [12], Meeker and Escobar [13], Bagdonavicius and Nikulin [14], among
others.

ALT first assumption is that there is a known or assumed relationship between life stresses,
therefore, data generated from accelerated conditions can be relied upon for normal use conditions.
However, it has been found that in some cases this relationship cannot be known or even adequately
assumed, especially when the units under test are new. Therefore, partially accelerated life tests
(PALT) are oftentimes used in such cases. In general, PALT can be divided into two types, the first is
constant-stress PALT and the other is step-stress PALT. In constant-stress PALT, all groups of test
units are placed separately in use conditions and accelerated conditions. For step-stress PALT, the test
conditions for the remaining items in the experiment shift from conditions of use to conditions of
higher stress at a given time or when a specified number of failures occur.

Constant-stress PALT is our area of interest in this paper. In this type, all test units are divided into
two groups, where the first group is assigned to work under normal conditions while the second group
is assigned to work under accelerated conditions. In recent years, a lot of studies have been proposed
in the field of PALT. For instance, we can refer to Ismail [15], Bhattacharyya and Soejoeti [16],
Gouno [17], El-Morshedy et al. [18], Nassar et al. [19], Rao [20], Bai and Chung [21], Hassan and
Al-Ghamdi [22], Wu and Kus [23], Wu et al. [24], Fan et al. [25], and Lio and Tsai [26]. Although
the main objective of PALT is to shorten the test time of the experiment, the experimenter loses a lot
of time waiting for all test units to fail. For this, it is necessary to deal with censored data. In
literature, type-I and type-II censoring schemes are the main censoring schemes. These do not permit
the withdrawal of intermediate components. Because of this constraint, these schemes are not flexible
enough. To avoid the difficulties of these schemes, various generalizations have been proposed. One
of these is the progressive censoring scheme. It allows for live units to be removed from the test at
time points (controlled conditions) other than the final termination point of the experiment. The
article presented by Balakrishnan and Aggarwala [27] has many applications in progressive type-II
censoring. Sometimes, some problems arise concerning the age of the products, and therefore the
experimental time of control is simply too long. To resolve this issue, the statistician provided other
censoring schemes. Among them was Johnson [28], who introduced the scheme of the first failure
censoring.

During this censoring, the test units whose number is N = n × k are distributed over the n number
of groups where each group has k number of test units, after that, a life test is performed for all groups
at the same time and conditions and the first failure times are recorded in each of the test groups. With
this life-telling design, a great deal of time and cost is saved. Thus, it is clear that both first failure and
first failure progressive censoring schemes significantly improve the efficiency of the life test. From
this point, Wu and Kus [23] presented the progressive first-failure censoring scheme which profits the
practical advantages of the two schemes. There are several advantages that distinguish this censoring,
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including the test time is short as well as the resources are saved, and a few units at risk will be removed
during the experiment at each of several ordered failure times. Another advantage of this censoring is
that it allows the experimenters to remove one or more of the groups under test even without noticing
the first failure in the groups that will be removed from the experiment. Hence, this censoring is
more efficient in reliability studies. Recently, more literature is available on progressive first-failure
censoring, including Lio and Tsai [26], Soliman et al. [29], Ahmed [30], Krishna et al. [31], Kumar
et al. [32], El-Din et al. [33], Ahmadi and Doostparast [34], and Saini et al. [35].

Now, we briefly discuss the first-failure progressive type-II censoring scheme. Let n independent
groups with k items in each group are put on a life test. Start dropping R1 number of groups as soon as
the first failure time X1:m:n:k has occurred. When the second failure time X2:m:n:k occurs, randomly delete
R2 groups from the experiment and also delete the group in which the second failure was observed and
repeat. The experimenter continues in the same manner until all remaining live Rm groups and the
group in which the mth failure has occurred are removed at the time of the mth failure. The observed
failures X1:m:n:k < X2:m:n:k < ... < Xm:m:n:k called progressive first failure censored order statistics and
while ℜ = (R1, ...,Rm) is called a progressive censoring scheme. This scheme includes various kinds
of censoring schemes. For example, if k = 1, it reduces to a progressive censoring scheme. Also,
it contains the usual order statistics (k = 1, ℜ = (0, 0, ..., 0) and m = n) and type II right censoring
scheme (k = 1,R1, ...,Rm−1 = 0 and Rm = n − m) as special cases.

Before completing this section, a brief presentation on the parameter estimation of the Lomax
distribution should be made. There are several studies presented by many authors focusing on
estimating the parameters of the Lomax distribution when observations are completed or censored.
The Bayesian and classical estimators for the same sample size from Lomax distribution based on the
progressive type-I censoring, are discussed by Elfattah et al. [36]. Raqab et al. [37] presented
different predictors of failure times based on multistage progressive censoring from Pareto
distribution. The optimal censoring scheme for estimating the parameters of the Lomax distribution
based on progressive type-II censoring is presented by Cramer and Schmiedt [38]. Empirical Bayes
estimators of reliability performances using progressive type-II censoring from the Lomax model are
discussed by El-Din et al. [33]. Al-Zahrani and Al-Sobhi [39] have concerned with the estimation
problem of the P (Y < X) of the Lomax distribution based on general progressive censoring. When
the available data is progressive type-II censoring data, the MLEs of the Lomax distribution are
derived using the expectation-maximization (EM) algorithm by Helu et al. [40]. Wei et al. [41]
studied Bayes estimation of the Lomax distribution parameters in the composite LINEX loss of
symmetry. Furthermore, based on the progressively type-I hybrid censored sample, Asl et al. [42]
applied the classical and Bayesian inferential procedures for the Lomax distribution. Chandra and
Khan [43] have derived a step-stress ALTs model for the Lomax failure time under modified
progressive type-I censoring. Recently, under generalized progressive hybrid censoring, Mahto
et al. [44] analyzed a partially observed competing risk model for the Lomax model.

Meanwhile, no articles appeared on estimating parameters of the Lomax distribution based on a
constant-stress PALT under progressive first failure type-II censored data. Our aim in this article is to
address this research point. Two approaches will be used to estimate the parameters of the Lomax
distribution, the maximum likelihood (ML) and Bayesian methods. When calculating the maximum
likelihood estimates (MLEs) and their associated confidence intervals, the Newton-Raphson (NR) and
EM algorithms, are derived and discussed in detail. On the other hand, when the Bayes procedure is
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performed, there is difficulty in obtaining the posterior distributions because this process often
requires the computation of integrals, which is often difficult to compute, whether using complex high
or low-dimensional models. In such a case, we can rely on the MCMC to estimate the unknown
parameters. Assuming independent gamma priors for the parameters, the Bayes estimates will be
performed under different loss functions. Based on various techniques of the MCMC, the Gibbs
within Metropolis samples can be applied to generate samples from the posterior distributions. The
performance of the Bayes estimators can be compared with classical MLEs through extensive
computer studies. Approximate 95% confidence intervals of the unknown parameters can be
calculated based on the MLEs via NR, EM, and MCMC algorithms. Also, we will compare them
through their average lengths and coverage probability.

As for the form and organization of this paper as well as its sequence, it is as follows: Model
description and basic assumptions are presented in Section 2. Frequentest estimations including
MLEs and approximate confidence intervals of unknown parameters, are provided in Section 3.
During this section, we also developed the EM algorithm for calculating the MLEs and the observed
Fisher information matrix. Bayes point estimates via (symmetric-asymmetric) loss functions and their
corresponding credible intervals, are constructed in Section 4. A real-life example as well as
simulation studies are presented and discussed in Section 5. Finally, a few concluding remarks are
reported in Section 6.

2. Model descriptions and assumptions

2.1. Model description

As explained above, in constant-stress PALT, N1 number of test units are randomly selected from
all available units (N), and are operated under normal conditions, while the remaining N2 = N − N1

number of units are operated under accelerated conditions. Assume the lifetime of the test unit follows
the Lomax distribution, therefore, the PDF, CDF, and failure rate function at normal conditions are
given, respectively by

f1 (x1, θ, β) = θβθ (β + x1)−(θ+1) ; x1 > 0, (1)

F1 (x1; θ, β) = 1 − βθ (β + x1)−θ ; x1 > 0, (2)

and
h1 (x1; θ, β) = θ (β + x1)−1 ; x1 > 0, (3)

where β > 0 and θ > 0. The hazard rate function for any item tested at the accelerated condition is
given as follows

h2 (x2; θ, β, λ) = λh1 (x1) = θλ (β + x2)−1 ; x2 > 0, (4)

where λ (λ > 1) is the acceleration factor. Under the accelerated condition, the PDF and its
corresponding CDF are obtained, respectively by

f2 (x2; θ, β, λ) = θλβθλ (β + x2)−(θλ+1) ; x2 > 0, (5)

and
F2 (x2; θ, β, λ) = 1 − βθλ (β + x2)−θλ ; x2 > 0. (6)
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Here, the progressive first-failure censoring is combined with constant-stress PALT. Hence, the total of
N test units will be divided into two groups, namely, group I and group II. Elements of the first group
(N1 = n1k1) are assigned to normal conditions whereas the items of the second group (N2 = n2k2)
are allocated to stress conditions. Each group is divided under normal or accelerated conditions into
several groups containing the number of test units kd. In this scheme, R1i and R2i are the progressive
censoring schemes for normal and accelerated tests, respectively. This scheme runs until md; d = 1, 2
failures are observed in each test condition, respectively, as follows.

For group I (items dedicated to normal condition) or group II (items are dedicated to stress
condition), suppose that a random sample Xd = (Xd1, Xd2, ..., Xndkd ) of size Nd = ndkd,; d = 1, 2 is put
on a life test experiment where the lifetimes X

′

dis are independent and identically distributed (IID)
random variables with PDF fXd (xd;Θ) and CDF FXd (xd;Θ) where Θ is a vector of unknown
parameters, and Nd test units are divided into nd independent groups with kd items in each group.
Now, when the first failure Xd1 is appeared, then the group with observed failure and also Rd1 of the
remaining (nd − 1) groups are randomly removed from the experiment. Next, when the second failure
Xd2 is observed, then the group with the second observation and also Rd2 of the remaining
(nd − Rd1 − 1) groups are randomly removed. The experiment continues until the mdth failure with
lifetime Xdmd is observed and the group with this observed failure and the remaining Rdmd groups are
all removed from the experiment. In this way, a progressive first-failure censored sample
Xd = (Xd1, Xd2, ..., Xdmd ) of size md can be obtained from a parent sample of size Nd with censoring

scheme ℜd = (Rd1,Rd2, ...,Rdmd ) where
md∑
i=1

Rdi = nd − md. In our study, Rdi, i = 1, 2, ...,md are fixed

prior and md < nd. With a progressively first-failure type-II censoring scheme under constant-stress
PALT, the likelihood function of the observed sample Xd can be written as

L (x;Θ) ∝
2∏

d=1

 md∏
i=1

fd (xdi;Θ)
[
1 − Fd

(
xd(i);Θ

)]kd(Rdi+1)−1

 . (7)

2.2. Basic assumptions

Regarding the proposed PALT approach, the following assumptions are made:

(A1) The total number of units under test is N = n1k1 + n2k2.
(A2) The lifetime of all units tested under various normal or accelerated conditions follow the Lomax

distribution.
(A3) The lifetimes of test items are IID random variables.
(A4) The lifetimes X1i, i = 1, 2, . . . ,m1 of items assigned to the normal condition, while the lifetimes

X2i, i = 1, 2, . . . ,m2 of items assigned to the accelerated condition are mutually independent.
(A5) The lifetime of any item at accelerated condition is X2 = λ

−1X1.

Next based on a progressive first failure censored sample from the Lomax distribution, the MLEs
via both NR and EM algorithms are derived for the unknown parameters θ, β, and λ.
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3. Maximum likelihood estimation and confidence interval

3.1. Maximum likelihood estimation via Newton-Raphson method

Consistency, asymptotic efficiency, asymptotic unbiased, and asymptotic normality are some of the
characteristics of the MLE, which made it one of the most important and popular methods for fitting the
statistical model. In this section, the MLEs of θ, β, and λ can be derived from the likelihood function
(LF) presented in (7). The substitution of (1)–(6) into (7) yields

L (x;Θ) ∝
2∏

d=1

md∏
i=1

θS d (λ) βθS d(λ) (β + xdi)−(θS d(λ)+1)
[
βθS d(λ) (β + xdi)−θS d(λ)

]kd(Rdi+1)−1

∝ θm1+m2βθ(k1n1+λk2n2)λm2

2∏
d=1

md∏
i=1

(β + xdi)−{θS d(λ)kd(Rdi+1)+1} , (8)

where

S d (λ) =


1, d = 1

λ, d = 2.
(9)

The MLEs of θ, β and λ are the values that maximize the LF in (8). Maximizing the LF is difficult, so
it is preferable to maximize the logarithm of this function, where the log-LF, say ℓ = log L (θ, β, λ|y),
can be formulated as

ℓ(θ, β, λ) ∝ (m1 + m2) log θ+m2 log λ+ θ(k1n1+λk2n2) log β−
2∑

d=1

md∑
i=1

(θS d (λ) kd(Rdi+1)+1) log(β+ xdi).

(10)
By calculating the first derivatives of (10) with respect to θ, β, and λ and then setting them equal to
zero, the resulting simultaneous equations are expressed as follows

∂ℓ(θ, β, λ)
∂θ

=
(m1 + m2)

θ
+ (k1n1 + λk2n2) log β −

2∑
d=1

md∑
i=1

[S d (λ) kd (Rdi + 1)] log (β + xdi) = 0, (11)

∂ℓ(θ, β, λ)
∂β

=
θ (k1n1 + λk2n2)

β
−

2∑
d=1

md∑
i=1

[θS d (λ) kd (Rdi + 1) + 1]
β + xdi

= 0, (12)

and
∂ℓ(θ, β, λ)

∂λ
=

m2

λ
+ θk2n2 log β − θk2

m2∑
i=1

(R2i + 1) log (β + x2i) = 0. (13)

The preceding equations mathematically represent a system of three nonlinear equations in three
unknowns θ, β, and λ. Theoretically, there is difficulty in providing closed-form solutions to the
previous nonlinear equations. Thus, the numerical NR technique will be applied to solve these
simultaneous equations to get the MLEs (θ̂ML, β̂ML, λ̂ML) of (θ, β,λ).

Theorem 1. The MLEs of the parameters θ > 0, β > 0 and λ > 1 are exist and unique.

Proof. To prove this theorem, three cases should be discussed, namely, (i) for given β > 0 and λ > 1,
the MLE of θ exists and is unique; (ii) for given θ > 0 and λ > 1, the MLE of β exists and is unique;
and (iii) for given θ > 0 and β > 0, the MLE of λ exists and is unique.
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For the first case,when β and λ are known, the MLE of θ can be obtained from (11) as follows

θ̂ML = (m1 + m2) /ϕ (β, λ) ,

where

ϕ (β, λ) =
{

2∑
d=1

md∑
i=1

[S d (λ) kd (Rdi + 1)] log (β + xdi) − (k1n1 + λk2n2) log (β)
}
.

Using (10) and θ̂ML, we can write

ℓ(θ, β, λ) ∝ (m1 + m2) log θ + ω1(θ, β, λ)
= (m1 + m2) log θ − (m1 + m2) log θ̂ML + (m1 + m2) log θ̂ML + ω(θ, β, λ)

= (m1 + m2) log
(
θ

θ̂ML

)
+ (m1 + m2) log θ̂ML + ω(θ, β, λ),

where

ω(θ, β, λ) = m2 log λ + θ(k1n1 + λk2n2) log (β) −
2∑

d=1

md∑
i=1

(θS d (λ) kd(Rdi + 1) + 1) log(β + xdi).

Using inequality log θ
θ̂ML
≤ θ

θ̂ML
− 1, we have

ℓ(θ, β, λ) ≤
(m1 + m2) θ

θ̂ML
− (m1 + m2) + (m1 + m2) log θ̂ML + ω(θ, β, λ)θ|θ̂ML

.

Hence,
ℓ(θ, β, λ) ≤ θϕ (β, λ) − (m1 + m2) + (m1 + m2) log θ̂ + ω(θ, β, λ)θ|θ̂ML

.

Equality holds if and only if θ = θ̂ML or equivalent, ℓ(θ, β, λ) = ℓ(θ̂ML, β, λ) if and only if θ = θ̂ML. This
proves that the function ℓ(θ, β, λ) reaches its maximum value at the point ℓ(θ̂, β, λ) where β and λ are
given. Using the similarity steps to prove (ii) and (iii). □

For more results about the existence and uniqueness theorem of MLEs of the Lomax parameters, see
Cramer and Schmiedt [38], and recently Qin and Gui [45]. The second derivatives are very important
for distributions that are expressed using over one parameter for several reasons. For one of those
reasons, they are going to confirm that maxima have been identified. In our case, the second partial
derivatives of the LF can be expressed as

∂2ℓ

∂θ2 =
− (m1 + m2)

θ2 ,
∂ℓ

∂θ∂β
=

∂ℓ

∂β∂θ
=

(k1n1+λk2n2)
β

−
2∑

d=1

md∑
i=1

S d (λ) kd (Rdi + 1)
(β + xdi)

,

∂ℓ

∂θ∂λ
=

∂ℓ

∂λ∂θ
= k2n2 log (β) − k2

m2∑
i=1

(R2i + 1) log (β + x2i) ,

∂2ℓ

∂β2 =
−θ (k1n1 + λk2n2)

β2 +
2∑

d=1

md∑
i=1

[θS d (λ) kd (Rdi + 1) + 1]
(β + xdi)2 ,

∂2ℓ

∂λ2 = −
m2

λ2 ,

∂2ℓ

∂β∂λ
= θk2n2

β
− θk2

m2∑
i=1

(R2i+1)
β+x2i

.

(14)
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Arranging the second partial derivatives (14) in matrix form yields the Hessian matrix, which when
multiplied by -1 in a statistical context, is known as a Fisher information matrix. In an optimization
context, a sufficient condition for a stationary point to be a maximum is that the Hessian matrix is
negative semi-definite. In the statistical literature, the inverse form of the Fisher information matrix is
noted by the variance-covariance matrix. Thus, for the MLEs of the Lomax parameters, the Hessian
matrix can be proposed as

H =


∂2ℓ
∂θ2

∂2ℓ
∂θ∂β

∂2ℓ
∂θ∂λ

∂2ℓ
∂β∂θ

∂2ℓ
∂β2

∂2ℓ
∂β∂λ

∂2ℓ
∂λ∂θ

∂2ℓ
∂λ∂λ

∂2ℓ
∂λ2

 .
The corresponding Fisher information matrix is

I =


− ∂

2ℓ
∂θ2 − ∂2ℓ

∂θ∂β
− ∂2ℓ
∂θ∂λ

− ∂2ℓ
∂β∂θ

− ∂
2ℓ
∂β2 − ∂2ℓ

∂β∂λ

− ∂2ℓ
∂λ∂θ

− ∂2ℓ
∂λ∂β

− ∂2ℓ
∂λ2

 ,
and the asymptotic variance-covariance matrix is

I−1 =


Var(θ̂ML) Cov(θ̂ML, β̂ML) Cov(θ̂ML, λ̂ML)

Cov(β̂ML, θ̂ML) Var(β̂ML) Cov(β̂ML, λ̂ML)
Cov(λ̂ML, θ̂ML) Cov(λ̂ML, β̂ML) Var(λ̂ML)

 . (15)

Thus, an approximate (1−α)100% confidence intervals for θ, β, and λ are obtained from the asymptotic
normality of the ML results of intervals calculated according to

θ̂ML ∓ zα/2
√

Var(θ̂ML), β̂ML ∓ zα/2
√

Var(β̂ML), λ̂ML ∓ zα/2
√

Var(λ̂ML), (16)

where zα/2 is defined as the percentile of the standard normal model with α/2 right-tail probability. In
the next two sections, the EM algorithm is applied to calculate MLEs of unknown parameters and their
corresponding confidence intervals.

3.2. Maximum likelihood estimation via EM algorithm

In this segment, our focus will be on the application of the EM algorithm in estimating the Lomax
parameters, as it represents a general algorithm to obtain the MLEs, especially, in the problems of
incomplete or missing data. The standard NR algorithm does not converge in some cases (see Pradhan
and Kundu [46]), while the convergence is reliably an advantage of the EM method over other methods.
Thus, the EM algorithm is utilized in this subsection as a good alternative to the NR approach, in
order to calculate the MLEs of the unknown parameters of the Lomax model based on the fact that
the available sample (constant partially PALT under progressive first-failure type-II censored samples)
is considered incomplete data. This algorithm was proposed by Dempster et al. [47] and later was
thoroughly discussed alongside its extensions in the book by McLachlan and Krishnan [48]. Now,
let us symbolize the observed data by Xd = (Xd1, Xd2, ..., Xdmd ) whereas the censored data by Zd =

(Zd1,Zd2, ...,Zdmd ), where each Zdi is 1 × (kdRdi + kd − 1) vector with Zdi = (Zdi1,Zdi2, ...,Zdi(kdRdi+kd−1));
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i = 1, 2, ...,md; d = 1, 2 and they are not observable. Let W = (Xd,Zd) represents the complete data
set, hence the complete data LF will be in the following form

Lc (W;Θ|R) =
2∏

d=1

 md∏
i=1

fd (xdi; θ, β, λ)
md∏
i=1

kd(Rdi+1)−1∏
j=1

fd

(
zdi j; θ, β, λ

) . (17)

After ignoring the constants in the previous equation, the log-LF can be written as

ℓc (W;Θ) = N ln (θ) + θ (k1n1 + k2λn2) ln β + n2k2 ln (λ) −
2∑

d=1

md∑
i=1

(S d (λ) θ + 1) ln (β + xdi)

−
2∑

d=1

md∑
i=1

kd(Rdi+1)−1∑
j=1

(S d (λ) θ + 1) ln(β + Zdi j). (18)

The EM algorithm runs in two main stages: The expectation stage (E-stage), followed by the
maximization stage (M-stage), which are repeated until achieving at least one convergence criterion.
At each iteration, the missing data are filled with expected data and consequently, the estimations of
the parameters are updated. About the requirements of the E-stage, one needs to compute the
pseudo-log-LF, which can be obtained from ℓc (W; θ, β, λ) by replacing any function of zdi j, say g(zdi j),
with an accompanying conditional expectation “E

[
g(zdi j)|zdi j > Xdi

]
”. Therefore,

Ls(Θ) = E(ℓc(W;Θ)|Xd) = N ln (θ) + (k1n1 + k2λn2) θ ln β + n2k2 ln (λ)−
2∑

d=1

md∑
i=1

(S d (λ) θ + 1) ln (β + xdi) −
2∑

d=1

md∑
i=1

kd(Rdi+1)−1∑
j=1

(S d (λ) θ + 1)E
[
ln(β + Zdi j)

]
. (19)

For simplicity, xdi has been used instead of xdi:md:nd:kd ; d = 1, 2. Then, the M-stage begins, in which the
pseudo-log-LF in (19) is maximized relative to θ, β, and λ. Thus, at sth stage, the estimate of (θ, β, λ)
is (θ(s), β(s), λ(s)), then (θ(s+1), β(s+1), λ(s+1)) can be obtained by maximizing Ls(θ, β, λ) with respect to
(θ, β, λ). Hence, by equating the partial derivative of Ls(Θ) to zero, a nonlinear system of equations can
be generated as follows

(k1n1 + k2n2) (
1
θ
+ ln β)−

2∑
d=1

md∑
i=1

S d (λ) ln (β + xdi)−
2∑

d=1

md∑
i=1

(kd(Rdi + 1)− 1)S d (λ) A (xdi; θ, β, λ) = 0, (20)

θ(k1n1 + λk2n2)
β

−
2∑

d=1

md∑
i=1

(S d (λ) θ + 1)
β + xdi

−
2∑

d=1

md∑
i=1

(kd(Rdi + 1) − 1) (S d (λ) θ + 1) B (xdi; θ, β, λ) = 0, (21)

and

n2k2

λ
+ θn2k2 ln (β) − θ

m2∑
i=1

log (β + x2i) − θ
m2∑
i=1

(k2(R2i + 1) − 1) A (x2i; θ, β, λ) = 0. (22)

The conditional distribution of zdi follows the truncated Lomax distribution with left truncation at xdi

(see Ng et al. [49]). That is,

f (zdi|zdi > xdi) =
f (zdi)

1 − F (xdi)
; zdi > xdi, i = 1, 2, ...,md, d = 1, 2.
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Hence,

f
(
zdi j|zdi j > xdi

)
= S d (λ) θ(β + xdi)S d(λ)θ

[
β + zdi j

]−(S d(λ)θ+1)
; zdi j > xdi, d = 1, 2. (23)

Then, the conditional expectation E (ln(β + zdi)|zdi > xdi) can be obtained as follows

E (ln(β + zdi)|zdi > xdi) = S d (λ) θ (β + xdi)S d(λ)θ
∞∫

xdi

ln(β + t)
[
β + t

]−(S d(λ)θ+1) dt,

using u = ln(β + t) and dv = (β + t)−(S d(λ)θ+1) dt,

A (xdi;Θ) = E
(
ln(β + zdi)|zdi j > xdi

)
= ln(β + xdi) +

1
S d (λ) θ

, (24)

and

B (xdi;Θ) = E
[
(β + zdi)−1

|zdi > xdi

]
= S d (λ) θ (β + xdi)S d(λ)θ

∞∫
xdi

(β + zdi)−(S d(λ)θ+2) dt,

=
S d (λ) θ

(S d (λ) θ + 1) (β + xdi)
.

3.3. Fisher information matrix

Depending on the method presented by Louis [50], we can have an observed Fisher information
matrix. Let X indicate observed data, W denotes the complete data, IX(Θ) shows the observed
information, while IW(Θ) and IW |X(Θ) stand for the complete and missing information, then according
to the Louis approach we have

IX(Θ) = IW(Θ)|Θ=(θ,β,λ) − IW |X(Θ)|Θ=(θ,β,λ), ,Θ = (θ, β, λ)), (25)

where IW(Θ) is obtained as

IW(Θ)|Θ=(θ,β,λ) = −E
[
∂ fW(w;Θ)

∂Θ2

]
Θ=(θ,β,λ)

=


a11 a12 a13

a21 a22 a23

a31 a32 a33

 . (26)

The complete data LF of the Lomax distribution in constant-stress PALT can be expressed as

fW(w;Θ) =
2∏

d=1

ndkd∏
i=1

fd
(
xd(i);Θ

)
= θnλn2k2βθ(k1n1+k2n2λ)

2∏
d=1

ndkd∏
i=1

(β + xdi)−(S d(λ)θ+1) . (27)

Hence, the log-LF based on Xd is given by

ln fW(w;Θ) = n ln (θ) + θ(k1n1 + k2n2λ) ln (β) + n2k2 ln (λ) −
2∑

d=1

ndkd∑
i=1

(S d (λ) θ + 1) log (β + xdi) , (28)
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hence, 

a11 = −E
[
∂2 ln fW (w;Θ)

∂θ2

]
= nθ−2, a33 = −E

[
∂2 ln fW (w;Θ)

∂λ2

]
= n2k2λ

−2,

a22 = −E
[
∂2 ln fW (w;Θ)

∂β2

]
= θ(k1n1 + k2n2λ)β−2 −

2∑
d=1

ndkd∑
i=1

(S d (λ) θ + 1)E (β + xdi)−2 ,

a12 = a21 = −E
[
∂2 ln fW (w;Θ)

∂β∂θ

]
= −(k1n1 + k2n2λ)β−1 +

2∑
d=1

ndkd∑
i=1

S d (λ) E
[
(β + xdi)−1

]
,

a13 = a31 = −E
[
∂2 ln fW (w;Θ)

∂θ∂λ

]
= −k2n2 ln (β) +

n2kd∑
i=1

E
[
log (β + x2i)

]
,

a23 = a32 = −E
[
∂2 ln fW (w;Θ)

∂β∂λ

]
= −k2n2θβ

−1 + θ
n2k2∑
i=1

E
[
(β + x2i)−1

]
,

where

E
[
(β + xdi)−1

]
= S d (λ) θβS d(λ)θ

∞∫
0

1
(β + t)(S d(λ)θ+2) dt =

S d (λ) θ
β(S d (λ) θ + 1)

, (29)

E
[
(β + xdi)−2

]
= S d (λ) θβS d(λ)θ

∞∫
0

dt
(β + t)(S d(λ)θ+3) =

S d (λ) θ
β2(S d (λ) θ + 2)

, (30)

and

E
[
log (β + xdi)

]
= S d (λ) θβS d(λ)θ

∞∫
0

log (β + t)
(β + t)(S d(λ)θ+1) dt =

1 + S d (λ) θ log[β]
S d (λ) θ

. (31)

The Fisher information matrix for a single observation which censored at ith time failure is given by

Ii
W |X(Θ) = −E

[
∂2 ln fzdi (zdi|xdi,Θ)

∂Θ2

]
Θ=(θ,β,λ)

=


b11 (xdi,Θ) b12 (xdi,Θ) b13 (xdi,Θ)
b21 (xdi,Θ) b22 (xdi,Θ) b23 (xdi,Θ)
b31 (xdi,Θ) b32 (xdi,Θ) b33 (xdi,Θ)

 , (32)

where fzdi (zdi|xdi,Θ) is given in (23) and the expected values of the second partial of the log-LF of Z
given X are calculated as

b11 (xdi,Θ) = −E
[
∂2 ln fzdi (zdi |xdi,Θ)

∂θ2

]
= 1

θ2 ,

b22 (xdi,Θ) = −E
[
∂2 ln fzdi (zdi |xdi,Θ)

∂β2

]
=

θS d(λ)
(2+θS d(λ))(β+xdi)2 ,

b33 (xdi,Θ) = −E
[
∂2 ln fzdi (zdi |xdi,Θ)

∂λ2

]
=

(
S
′

d(λ)
S d(λ)

)2
,

b12 (xdi,Θ) = b21 (xdi,Θ) = −E
[
∂2 ln fzdi (zdi |xdi,Θ)

∂θ∂β

]
=

−S d(λ)
(β+xdi)(S d(λ)θ+1) ,

b13 (xdi,Θ) = b31 (xdi,Θ) = −E
[
∂2 ln fzdi (zdi |xdi,Θ)

∂θ∂λ

]
=

S
′

d(λ)
θS d(λ) ,

b23 (xdi,Θ) = b32 (xdi,Θ) = −E
[
∂2 ln fzdi (zdi |xdi,Θ)

∂β∂λ

]
=

−θS
′

d(λ)
(1+θS d(λ))(β+xdi)

,

consequently, the total missing information is obtained as

IX(Θ)|Θ=(θ,β,λ) =
2∑

d=1

md∑
i=1

[kd(Rdi + 1) − 1] Ii
W |X(Θ)|Θ=(θ,β,λ), (33)
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where Ii
W |X(Θ)|Θ=(θ,β,λ) is given by (32). Finally, the asymptotic variance-covariance matrix of the MLE

of Θ is then obtained as

[IX(Θ)]−1
Θ=(θ,β,λ) = −E

[
∂2 ln L(xd;Θ)

∂Θ2

]−1

Θ=(θ,β,λ)
. (34)

Once the relevant variance estimates have been obtained from MLEs for θ, β, and λ, asymptotic
confidence intervals of 100(1 − γ)% can be easily generated using the normality property of MLEs.

4. Bayesian estimation

In this section, the Bayes estimates for the unknown parameters θ, β, and λ are derived and
discussed. Here, we consider independent gamma priors for θ and β, with PDFs given, respectively by

πθ = θ
a1−1e−b1θ; a1 > 0, b1 > 0, (35)

and
πβ = β

a2−1e−b2β; a2 > 0, b2 > 0, (36)

where (a1, b1) and (a2, b2) are hyper-parameters chosen to reflect prior knowledge about θ and β. The
non-informative distribution with ai = 0, bi = 0; i = 1, 2 can be chosen if no prior knowledge is
available. Moreover, a vague prior is selected for the acceleration factor λ with the following PDF

πλ = λ
−1; λ > 0. (37)

The joint prior density function of θ, β, and λ is then obtained by

π(θ, β, λ) = θa1−1βa2−1λ−1e−b1θ−b2β−b3λ. (38)

The joint posterior distribution of θ, β, and λ is reported using Bayes theorem by combining the LF of
(θ, β, λ) given in (8) and the joint prior distribution π(θ, β, λ) in (38) as

π∗(θ, β, λ) = Aθ(m1+m2+a1−1)βθ(k1n1+k2n2λ)+a2−1λm2+a3−1e−b1θ−b2β−b3λ

×

2∏
d=1

md∏
i=1

(1 + βxdi)−[S d(λ)θkd(Rdi+1)+1]

= Aθ(m1+m2+a1−1)βθ(k1n1+k2n2λ)+a2−1λm2−1

× exp
[
−b1θ − b2β −

2∑
d=1

md∑
i=1

[S d (λ) θkd(Rdi + 1) + 1] ln(β + xdi)
]
, (39)

where A is a normalizing constant and is given by

A =

∞∫
0

∞∫
0

∞∫
1

π∗(θ, β, λ)dθdβdλ.

In Bayes’ approach, to reach the best estimator, one should choose a loss function corresponding to
each of the possible estimators. Here, the estimates are derived concerning two different types of
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loss functions, namely, symmetric loss functions and asymmetric loss functions. Squared error loss
function (SELF) will be a representative of the first type, while both general entropy loss function
(GELF) and LINEX loss function (LLF) will represent examples of choosing the second type. When
an overestimation or underestimation occurs, the SELF is not appropriate. In this case, GELF and
LLF can be taken as an alternative selection to estimate the parameters. The LLF is useful when
overestimation is more serious than underestimation and vice-versa. Let ψ be an estimator for the
unknown parameter ϕ, the loss functions under study can be presented as follows:

• Symmetric loss function, SELF: Form “(ψ − ϕ)2” and Bayes estimate “Eϕ

(
ϕ|t

)
”.

• Asymmetric loss function:

– GELF: Form “(ψ
ϕ
)q − q ln(ψ

ϕ
) − 1, q , 0” and Bayes estimate “

(
Eϕ

(
ϕ−q|t

))− 1
q ”.

– LLF: Form “exp
[
c(ψ − ϕ)

]
−c(ψ−ϕ)−1, c , 0” and Bayes estimate “−1

c ln
(
Eϕ

(
exp(−cϕ)|t

))
”.

It is not difficult to notice that, when q = −1, the Bayes estimation for any parameter ϕ based on
GELF and SELF are the same (see Calabria and Pulcini [51]). Referring to (39), we can notice the
difficulty of calculating integrals, and then the inability to obtain the joint posterior in a closed form
that enables us to calculate Bayes estimations of the unknown parameters θ, β, and λ. Therefore,
in order to obtain these estimates, we will rely on the MCMC approach, which enables us to obtain
simulated samples from the posterior distributions of the parameters. These generated samples will be
used for calculating the point and interval estimation of unknown parameters. As for the mechanism
of this method, it depends on the calculation of conditional posterior functions where the conditional
distribution of θ given β and λ can be expressed as

π∗1(θ|β, λ, x
¯
) ∝ θ(m1+m2+a1−1) exp

[
−θT (x; S d (λ) , β)

]
∼ Gamma

[
m1 + m2 + a1, b1 + T (x; S d (λ) , β)

]
, (40)

where

T (x; S d (λ) , β) =
2∑

d=1

md∑
i=1

(S d (λ) kd (Rdi + 1)) ln (β + xdi) − (k1n1 + λk2n2) ln (β) . (41)

Similarly, the conditional distribution of β given θ, λ, and data can be reported as

π∗2(β|θ, λ, x
¯
) ∝ βθ(k1n1+k2n2λ)+a2−1 exp

[
−b2β −

2∑
d=1

md∑
i=1

(S d (λ) θkd (Rdi + 1) + 1) ln (β + xdi)
]
. (42)

Further, the conditional distribution of λ given θ, β, and data, can be listed as

π∗3(λ|θ, β, x
¯
) ∝ λm2−1 exp

[
−λ

{
m2∑
i=1
θk2 (R2i + 1) ln (β + x2i) − θk2n2 ln (β)

}]
∼ Gamma

[
m2,

m2∑
i=1
θk2 (R2i + 1) ln (β + x2i) − θk2n2 ln (β)

]
. (43)

It can be seen that π∗1(θ|β, λ,x
¯
) and π∗3(λ|θ, β,x

¯
) are gamma densities. Thus, samples of θ and λ can be

generated using a gamma generator. Moreover, π∗2(β|θ, λ,x
¯
) cannot be reduced for drawing samples

directly by standard methods. In such a case, to obtain Bayes’ estimate for β, we can use one of the
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well-known algorithms in the MCMC method, which is Metropolis-Hastings (MH) algorithm model,
which was presented in the literature by Metropolis et al. [52]. To apply this algorithm, we need to
assume a proposal function to sample from it. In this algorithm, we may choose either symmetric
or non-symmetric proposal distribution to decrease the rejection rate as much as possible. Since the
marginal distribution of β is not well-known, then the normal distribution is listed as a symmetric
proposal distribution.

The Metropolis-Hastings steps are included in the Gibbs sampler to update β, while θ as well as λ is
updated directly from its full conditional. Below is a hybrid algorithm with Gibbs sampling steps for
updating the parameters θ and λ with MH steps for updating β:
Step 1: Choose an initial guess of (θ, β, λ), say (θ(0), β(0), λ(0)), and set l = 1.
Step 2: Generate β(l) according to the following steps:

(i) Generate β∗ from normal N(β(l−1),Var(β̂ML)) distribution where Var(β̂ML) denotes the variance
of β;

(ii) Compute r = min
{

1,
π∗2(β∗|θ(l−1), λ(l−1), x

¯
)

π∗2(β(l−1)|θ(l−1), λ(l−1), x
¯
)

}
;

(iii) Generate a sample u from the U(0; 1) distribution;
(iv) If u ≤ r, then set β(l) = β∗; otherwise β(l) = β(l−1).

Step 3: Generate θ(l) from Gamma(m1 + m2 + a1,m1 + m2 + a1, b1 + T
(
xd; S d

(
λ(l−1)

)
, β

)
).

Step 4: Generate λ(l) from Gamma(m2,
m2∑
i=1
θ(l)k2 (R2i + 1) ln

(
β(l) + x2i

)
− θ(l)k2n2 ln

(
β(l)

)
).

Step 5: Set l = l + 1.
Step 6: Repeat steps (2 − 5) M times to obtain the desired number of samples.

We discard the initial M0 number of burn-in samples and obtain estimates using the remaining
M − M0 samples. Hence, the Bayes estimate of ϕ = (θ, β, or λ) under SELF can be considered as the
mean of the generated samples from the posterior densities as follows

ϕ̂BS ≃
1

M − M0

M∑
l=1
ϕl. (44)

Further, the approximate Bayes estimate for ϕ, under LLF and GELF are then given, respectively by

ϕ̂BL =
−1
c

log
[

1
M − M0

M∑
l=M0+1

e−cϕ(l)
]
, (45)

and

ϕ̂BGE =

[
1

M − M0

M∑
l=M0+1

(
ϕ−q)(l)

] −1
q

. (46)

To construct the highest posterior density (HPD) credible interval of ϕ = (θ, β, or λ) using generated

MCMC sampling procedure, we first refer to the ordered random sample generated in the previous
algorithm in the form ϕ(1) < ϕ(2) < ... < ϕ(M) , then the 100(1 − γ)% confidence intervals for the
parameter ϕ can be listed as(

ϕ̂( l
M ), ϕ̂

(
l+[M(1−γ)]

M

))
; l = 1, 2, ...,M −

[
M (1 − γ)

]
, (47)

where [.] refers to the greatest integer function.
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5. Simulation study and real data analysis

In this section, we introduce a numerical investigation of the estimation methods discussed in
previous sections for the Lomax distribution using simulated data and a realistic data set.

5.1. Censoring sample data

Here, the estimation procedure described in the previous sections is applied to the set of simulated
progressive first-failure type-II censoring sample data under the constant-stress PALT. A data set of
system lifetime is generated from the Lomax model with θ = 0.2, β = 2 and λ = 1.2, respectively.
Based on N = 200 (n1 = n2 = 50, k1 = k2 = 2), using the algorithm described in Balakrishnan
and Sandhu [53], we simulate two samples of size m1 = 20 and m2 = 30 from the Lomax(θ, β) and
Lomax(θλ, β), respectively under the following two progressive censoring schemes

ℜ1 = {5, 0, 0, 5, 0, 0, 3, 0, 0, 0, 5, 2, 2, 2, 1, 1, 1, 1, 1, 1},
ℜ2 = {3, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 3, 0, 1, 0, 1, 0, 1, 0, 0, 2, 1}.

The simulated data are given in Table 1.

Table 1. Simulated progressive first-failure censored samples with constant PALT.

Normal condition 0.0600 0.1763 0.2126 0.4183 0.4304 0.5200 0.7656
1.8601 1.9396 2.2424 3.0073 3.4157 5.7828 7.2197
8.2609 23.9444 49.6628 61.0012 185.615 235.921

Accelerated condition 0.0080 0.1242 0.3281 0.4551 0.7045 0.8303 1.0725
1.2998 1.3810 1.7342 1.8328 2.2544 2.3445 4.1533
5.0055 5.1700 5.8743 6.0516 6.6369 6.7635 7.2544
7.7786 8.1127 14.6889 27.7101 28.4127 33.5706 74.577

151.143 218.760

For the generated data, we first compute the MLEs of θ, β, and λ using the NR and EM methods, the
results are listed in Table 2. Of the tabulated values, the estimates obtained using the NR method are far
more distant from the true parameter value than those obtained under the EM algorithm. Then, next,
we begin to calculate Bayes estimates, depending on the proposed loss functions and using informative
priors (a1 = 20, b1 = 100, a2 = 200, b2 = 100). For LLF, c = −10 and 10 were used as two options
for the constant c. These choices give more weight to underestimation and exaggeration, respectively.
Similarly, two choices for q such as q = −10 and 10 are considered under GELF. The results are
reported also in Table 2. From Table 2, it can be seen that, the estimates under the SELF, LINEX,
and the GELF are close to the actual values of the parameters. From (15) and (34), the observed
variance-covariance matrix based on NR and EM algorithms are given, respectively by

0.00221228 0.030004 −0.0100315
0.030004 0.903339 −0.0142983
−0.0100315 −0.0142983 0.140199

 ,
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and 
0.00180724 0.0136311 −0.010884
0.0136311 0.357374 −0.0142983
−0.010884 −0.0142983 0.138958

 .
Table 2 also contains all interval estimations of the unknown parameters θ, β, and λ using the

various methods mentioned. The Bayesian estimator gives narrower credible intervals as compared to
the classical MLEs.

Table 2. Estimated values of θ, β and λ and its corresponding 95% confidence intervals (CI).

Method→ MLEs Bayes estimators

Parameter ↓ NR EM SELF LLF GELF

c1 = −10 c2 = 10 c1 = −10 c2 = 10

θ = 0.2 Estimate 0.1559 0.1605 0.1775 0.1816 0.1737 0.1973 0.1535
95% CI (0.0637, 0.2481) (0.0771, 0.2438) (0.1262, 0.2349)

β = 2 Estimate 1.9077 1.9886 2.0040 2.1091 1.9093 2.0482 1.9486
95% CI (0.0449, 3.7705) (0.8169, 3.1603) (1.7395, 2.2833)

λ = 1.2 Estimate 1.2970 1.2887 1.1914 2.0059 0.9254 0.1973 0.1535
95% CI (0.5632, 2.0309) (0.5580, 2.0192) (0.7188, 1.8596)

The numerical example shows that the means of the Bayes estimates and MLEs via NR or EM
algorithm of the unknown parameters θ, β and λ are close to the true values. It is seen that the Bayes
estimates have better performances than MLEs where the Bayes estimates feature smaller bias than
MLEs and that the interval lengths of HPD credible intervals are shorter than approximate confidence
intervals, which also shows that HPD credible intervals are superior to approximate confidence
intervals in terms of interval lengths.

5.2. Engineering data analysis and interpretation

In this segment, we would like to know how the estimation techniques suggested in the above
sections work in practice for the accelerated data set. The data are from the accelerated life test of oil
breakdown times of insulating fluid under various levels of high voltage. Table 3 shows this data under
two high test voltages stress levels (in kilovolt, Kv), see Nelson [12]. Here, the stress level (32 Kv) was
assumed as normal conditions while the other stress level (36 Kv) was considered to be the accelerated
conditions.

Table 3. Times to breakdown of an insulating fluid.

Normal conditions 0.27 0.40 0.69 0.79 2.75 3.91 9.88 13.95
(32 Kv) 15.93 27.80 53.24 82.85 89.29 100.58 215.10

Accelerated conditions 0.35 0.59 0.96 0.99 1.69 1.97 2.07 2.58
(36 Kv) 2.71 2.90 3.67 3.99 5.35 13.77 25.50
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The initial shape is reported using the non-parametric approaches like histogram, kernel density,
box, violin, TTT, and normal Q-Q plots in Figures 1 and 2. It is noted that the data is asymmetric as
well as some outliers observations were founded. Moreover, the failure rate is decreasing.
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Figure 1. Non-parametric plots for normal conditions.
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Figure 2. Non-parametric plots for accelerated conditions.

Before further proceeding, we first check if the Lomax model can be used as a proper one to fit this
data through the Kolmogorov-Smirnov (K-S) statistic. K-S distances and its associated p-values were

AIMS Mathematics Volume 8, Issue 1, 29–60.



47

calculated for the data set with the two stress levels, and the calculated values were: 0.1671 (0.7964)
and 0.1435 (0.9169), respectively. Thus, we ensured that the Lomax distribution is considered an
appropriate distribution for this data. The MLEs are listed in Table 4. By moving to Bayes estimates,
since no prior information is available about the unknown population parameters, the noninformative
(or vague) gamma priors are appropriate in this case. In this case the hyperparameters take zero values
(ai = bi = 0, i = 1, 2). As noted earlier, Metropolis within the Gibbs algorithm was relied upon to
generate 10000 MCMC samples based on the MLEs of θ, β, and λ as initial values at the beginning of
the algorithm. Trace plots for the first 10000 MCMC outputs of θ, β, and λ are shown in Figure 3. It is
showing good convergence of MCMC procedure. Moreover, the histogram plots of generated samples
of θ, β, and λ were presented in Figure 4. It is observed that the histograms of the generated samples
quite well with the theoretical posterior density functions.
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Figure 3. Trace plots of the parameters based on the MCMC outputs for Nelson data.
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Figure 4. Histograms of the parameters obtained from the Gibbs sampling based on Nelson data.

For Bayesian estimations under asymmetric LLF, it is known in the literature that, c < 0 implies
that underestimation results in more penalty than overestimation and the reverse is true for c > 0.
When c close to zero LLF becomes symmetric, and it behaves roughly as the SELF. The Bayes
estimates of θ, β, and λ are computed and reported in Table 4 with c = −2 and 2. The second
asymmetric loss used here is GELF. In this loss function q > 0 means overestimation is more serious
than underestimation and the opposite is true when q < 0. The symmetrical case in which this loss
function approximately corresponds to SELF occurs when q = −1. Also, the Bayes estimates are
computed and recorded in Table 4 with q = −2 and 2. This table also displays the 95% ML and Bayes
confidence intervals with the corresponding lengths for all estimates based on the complete sample
data.

Go ahead, based on the complete failure data in Table 3, in order to reduce cost and time, we assume
that the number of items put on a life test is equal to nd × kd, d = 1, 2, where nd denotes the number of
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groups and kd the number of items in each group. The previous data were randomly grouped into n1 =

n2 = 5 sets, with k1 = k2 = 3 observations in each. Here, It is assumed that we observed only m1 = m2 =

4 data with arbitrarily chosen censoring schemes ℜ1 = ℜ2 = (1, 0, 0, 0). Thus, the progressive first
failure censored samples under the two stress are obtained as follows: X1 = {0.27, 2.75, 3.91, 82.85}
and X2 = {0.35, 1.69, 2.07, 2.71}. The MLEs relative to both NR, EM techniques and Bayesian MCMC
method of unknown parameters θ, β, and λ are computed and listed in Table 5 for Nelson data under
schema V: n1 = n2 = 5, k1 = k2 = 3, m1 = m2 = 3. Moreover, the results of 95% approximate CI,
credible intervals, and HPD intervals of θ, β, and λ are given in Table 5.

Table 4. Estimated values of θ, β and λ and its corresponding 95% CI for complete Nelson
data.

Method→ MLEs Bayes estimators

Parameter ↓ NR EM SELF LLF GELF

c = −2 c = 2 q = −5 q = 5

θ Estimate 0.7726 0.7758 0.9191 0.3579 0.3451 0.3603 0.3243
95% CI (0.110242, 1.43492) (0.166638, 1.37853) (0.552597, 1.38861)

β Estimate 6.9467 6.9568 9.742 11.1155 8.8626 9.9055 9.6694
95% CI (−4.27344, 18.1667) (−2.60354, 16.4968) (7.80366, 11.97200)

λ Estimate 3.1321 3.1333 3.5563 6.2863 2.3876 3.289 2.6017
95% CI (0.449858, 5.81441) (0.603516, 5.66076) (1.66313, 6.67387)

Table 5. Estimated values of θ, β and λ and its corresponding 95% CI for Nelson data under
schema V.

Method→ MLEs Bayes estimators

Parameter ↓ NR EM SELF LLF GELF

c = −2 c = 2 q = −2 q = 2

θ Estimate 0.3354 0.3358 0.6344 0.6911 0.5892 0.6727 0.5157
95% CI (0.110242, 1.43492) (0.166638, 1.37853) (0.552597, 1.15338)

β Estimate 5.0338 5.0438 9.74342 10.8765 8.8918 9.7954 9.5889
95% CI (−4.27344, 18.1667) (−2.60354, 16.4968) (7.93259, 11.8236)

λ Estimate 3.315 3.3169 3.5606 22.5007 1.8117 4.3008 1.8284
95% CI (0.449858, 5.81441) (0.603516, 5.66076) (0.75323, 9.76393)

Finally, we can conclude that the estimated Lomax distribution provides an excellent good fit for
the given data and the Bayes estimates fits the data better than MLEs. Also, we have decreased the
number of units used here and yet we have obtained results close to the complete sample.

5.3. The performance of different estimators

In this numerical section, we compare the performance of various estimators and confidence
intervals mentioned above by conducting a simulated study. First, under normal and accelerated
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conditions from the Lomax(θ, β) and Lomax(θλ, β) distributions, respectively, the algorithm which is
given by Balakrishnan and Sandhu [53] can be utilized to generate progressive first-failure censored
samples. This simulation was earned by considering different values of (n1, n2,m1,m2, k1, k2), and by
choosing (θ, β, λ) = (0.4, 1.5, 1.3) in all cases. Further, we are giving results only for two different
group sizes (k1, k2) = (1, 2) and (2, 1), and the censoring schemes used in this simulation are:

Scheme I: R1d, ...,R2d, ...,R(md−1)d = 0,Rmd = nd − md, d = 1, 2.

Scheme II:

 R1d = R2d = ... = R md−1
2
= 0; R md+1

2
= nd − md, if md is odd.

R1d = R2d = ... = R md−2
2
= 0; R md

2
= nd − md, if md is is even.

Scheme III: R2d, ...,R3d, ...,Rmdd = 0,R1d = nd − md, d = 1, 2.
Scheme IV: R1d, ...,R3d, ...,Rmdd = 0, nd = md, d = 1, 2.

In order to improve the appearance of the numerical tables, the various censoring schemes have
been represented by short notations as (10, 0∗4) denotes (10, 0, 0, 0, 0). In each case, estimates of θ,
β, and λ were calculated based on both the ML and Bayes methods. The NR and EM algorithm
methods were used for ML estimation computation, while the MH algorithm with the Gibbs sampling
algorithm is used to compute Bayes estimators. The informative prior distributions for both θ and β,
with hyperparameters a1, b1, a2, and b2 were utilized and the associated hyperparameters are defined
through the following discussion. According to the idea of Arabi Belaghi et al. [54], let M1 random
samples from Lomax(θ = 0.4, β = 1.5) distribution are available, and that (θ̂i, β̂i); i = 1, 2, . . . ,M1

are the MLEs of (θ, β). Suppose that a parameter ϕ is a prior distributed as gamma with density
proportional to ϕh1−1e−h2ϕ, where ϕ can be either θ or β. Then prior mean and variance are obtained by
h1
h2

and h1
h2

2
, respectively. Now, equating the sample mean and associated variance of ϕ̂i with the mean

and variance of the prior distribution, we get

1
M1

M1∑
i=1
ϕ̂i =

h1

h2
and

1
M1 − 1

M1∑
i=1

[
ϕ̂i −

M1∑
j=1
ϕ̂ j

]2

=
h1

h2
2

.

From these equations, we get

h1 =

[
1

M1

M1∑
i=1
ϕ̂i

]2

1
M1−1

M1∑
i=1

[
ϕ̂i −

M1∑
j=1
ϕ̂ j

]2 and h2 =

[
1

M1

M1∑
i=1
ϕ̂i

]
1

M1−1

M1∑
i=1

[
ϕ̂i −

M1∑
j=1
ϕ̂ j

]2 .

Thus, if the unknown parameter is θ, then the corresponding hyperparameters are estimated as
h1 = a1, h2 = b1 and likewise, for β, we have h1 = a2 and h2 = b2. Following this, we compute
hyperparameters by taking M1 = 1000 and for each M1 a sample of size 50 is taken into consideration
to obtain desired estimates. Consequently, hyperparameters are assigned values as a1 = 2.021,
b1 = 4.9488, a2 = 5.827 and b2 = 3.2019. Considering different loss functions, all the Bayes
estimators are derived, and the corresponding approximate estimates are provided by applying Gibbs
sampling under the MH sampling technique (see Section 4) approach. The different values of loss
parameters are arbitrarily taken as c = ±1.5 and q = ±1.5, which produces estimators under both
symmetric and asymmetric loss functions. The MH with the Gibbs algorithm is implemented using
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the normal distribution as the proposal distribution. Markov chains of size 5000 are generated and the
first 1000 of the observations are removed to eliminate the effect of the starting distribution. While
utilizing this algorithm, we take the corresponding MLEs as an initial guess for the respective
unknown parameters and the associated variance-covariance matrix as the variance-covariance matrix
of the normal proposal density. All the simulations were performed using the Mathematica 9 software
and the results were based on NS = 1000 Monte Carlo runs. We compute average values (Avg) and
corresponding mean square error (MSE) of different estimates. Here,

Avg =
NS∑
i

ϕ̂i/NS and MSE = {ϕ̂i − ϕ}
2/NS ,

where ϕ̂ is the estimate of ϕ. Also, we obtain the average length (AL) of 95% confidence/HPD credible
intervals and 95% CP of the parameters based on the simulation. The results of the Monte Carlo
simulation study are presented in Tables A1–A4 (see appendix). From these tables the following
conclusions are made:

(1) The MSEs of all estimates decrease as the sample sizes increase in all cases, as expected.
(2) The MLEs of θ, β, and λ using the EM algorithm have smaller MSEs than the MLEs using the

NR algorithm. Hence, the MLEs via the EM algorithm perform better than those obtained by the
NR method.

(3) In most simulations, the Bayes estimates outperform the MLEs for the estimation of θ, β, and
λ. So, in general, we would recommend using the Bayes estimate of the unknown parameters of
Lomax distribution based on a first-failure progressively censoring scheme under constant-stress
PALT. Also, from the tabulated values, we notice that the Bayes estimates of θ, β, and λ under
asymmetric loss function (LLF, GELF) are sensitive to the value of the parameters c and q. It is
observed that, as expected, the positive values of c and q respectively under LINEX and GELF
lead to smaller estimates as compared to the negative value of c and q. Moreover, the choice
c = 1.5 for the LINEX loss seems to be reasonable. For the GELF, q = 1.5 is a better value in
computing the Bayes estimate based on the LINEX or the SELE. Hence, it can be concluded that
the asymmetric loss function makes the Bayes estimates attractive for use, in reality, the scale
parameters c and q of the LINEX and GELF make one estimate the unknown parameters with
more flexibility.

(4) Finally, in most cases, the MSEs and the AL of the intervals for (θ, β, λ) are maximized when
the censoring is at the end. Hence, when we compare progressive type-II censoring and type-II
censoring plans, the progressive type-II plan provides a better result.

6. Conclusions

In this work, different parameter estimation methods for the two parameters of the Lomax
distribution are discussed based on constant stress partially accelerated life test using the progressive
first failure type-II censored sample data. We derived the MLEs and Bayes estimates of the
parameters as well as the acceleration factor and the corresponding confidence intervals. We have also
exploited the EM algorithm to obtain the MLEs for the unknown parameters. In addition, the
supplemented EM algorithm was used for finding the asymptotic covariance matrix of the ML
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estimators. Meanwhile, because the explicit expressions of MLEs of part of parameters cannot be
derived, we look to the Bayesian method for support. Based on the square error, LINEX, and general
entropy loss functions, the Bayes estimates are obtained on the premise of independent gamma priors.
The posterior distributions of unknown parameters indicated that some parameters do not follow a
well-known distribution. Consequently, we utilized MH sampling within the Gibbs sampling steps
algorithm to calculate the Bayes estimates with associated HPD credible intervals. In order to
compare the performance of all mentioned methods directly and to investigate the effect of different
values of n, m, and k, the simulation study was implemented. The average, MSEs, the average widths
of the interval estimators, and the coverage percentages of each estimator are illustrated. The
simulation results show that for fixed values of m and k, the performances of both estimation methods
improve with n, and for fixed n and k, their performances improve with m, also for fixed n and m, their
performances improve with k.

Further, the numerical results demonstrated that the Bayes method based on informative priors
outperformed the ML method under both NR and EM methods. Also, it is perceived that the estimates
obtained under the EM method generally perform well compared to those obtained under the NR
method in terms of yielding relatively low values of MSEs and average widths of the interval
estimators. Further, the Bayes estimates based on LINEX, and general entropy loss functions are
more efficient than the squared error loss function under informative and non-informative priors.
Practically, the study has demonstrated that the Lomax model has provided good flexibility for
modeling oil breakdown times of insulating fluid data sets. The novelty in this research is that if a
progressively first failure type-II censored sample is used, different sample sizes (k1 , k2) can be
considered in each group, and this is fully consistent with real examples when doing life tests. Finally,
in this work, although we have mainly considered progressively first failure type-II censoring and
Lomax distribution, the same method can be extended for other distribution and censoring schemes
also. There are numerous further works to be done here, for example, the design of optimal censoring
schemes, inference of competing risks model with more failure factors, and making statistical
prediction of the further order statistics based on the PALTs from Lomax distribution, these topics can
be investigated in the future. Finally, we recommend the use of MCMC, and EM procedures based on
partially accelerated life test using the progressive first failure type-II censored on data related to life
testing, reliability modeling as well as biological analysis.
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Table A1. Estimated values of θ, β and λ and its corresponding 95% CI for Nelson data
under schema V.

MLE MCMC
(k1, k2) n1 = n2 m1 = m2 Scheme NR EM SE LLF GELF

c = −1.5 c = 1.5 q = −1.5 q = 1.5
(1, 2) 40 35 I Avg 0.4437 0.4425 0.4322 0.4370 0.4275 0.4357 0.4148

MSE 0.0149 0.0142 0.0066 0.0073 0.0061 0.0070 0.0053
II Avg 0.4413 0.4395 0.4312 0.4362 0.4264 0.4349 0.4131

MSE 0.0122 0.0115 0.0059 0.0066 0.0054 0.0063 0.0046
III Avg 0.4488 0.4490 0.4314 0.4367 0.4263 0.4352 0.4124

MSE 0.0209 0.0211 0.0067 0.0074 0.0062 0.0071 0.0054
40 IV Avg 0.4347 0.4341 0.4272 0.4314 0.4231 0.4303 0.4117

MSE 0.0100 0.0097 0.0059 0.0064 0.0055 0.0062 0.0049

60 40 I Avg 0.4349 0.4311 0.4280 0.4321 0.4240 0.4310 0.4130
MSE 0.0116 0.0100 0.0067 0.0072 0.0062 0.0069 0.0052

II Avg 0.4319 0.4285 0.4254 0.4301 0.4209 0.4288 0.4083
MSE 0.0114 0.0099 0.0061 0.0067 0.0057 0.0064 0.0050

III Avg 0.4607 0.4456 0.4328 0.4387 0.4272 0.4370 0.4122
MSE 0.0265 0.0182 0.0071 0.0079 0.0063 0.0075 0.0053

50 I Avg 0.4209 0.4200 0.4182 0.4214 0.4151 0.4207 0.4060
MSE 0.0070 0.0067 0.0042 0.0045 0.0040 0.0043 0.0036

II Avg 0.4219 0.4202 0.4193 0.4228 0.4159 0.4220 0.4061
MSE 0.0073 0.0067 0.0044 0.0047 0.0042 0.0045 0.0038

III Avg 0.4326 0.4295 0.4255 0.4294 0.4216 0.4284 0.4110
MSE 0.0098 0.0086 0.0049 0.0053 0.0045 0.0051 0.0039

60 IV Avg 0.4216 0.4208 0.4195 0.4224 0.4168 0.4217 0.4088
MSE 0.0057 0.0055 0.0037 0.0040 0.0036 0.0039 0.0032

90 75 I Avg 0.4170 0.4156 0.4169 0.4191 0.4137 0.4186 0.4083
MSE 0.0042 0.0038 0.0032 0.0034 0.0031 0.0033 0.0028

II Avg 0.4181 0.4164 0.4182 0.4206 0.4158 0.4201 0.4089
MSE 0.0039 0.0035 0.0029 0.0031 0.0028 0.0030 0.0025

III Avg 0.4212 0.4196 0.4170 0.4196 0.4144 0.4190 0.4091
MSE 0.0055 0.0047 0.0033 0.0035 0.0032 0.0034 0.0029

90 IV Avg 0.4101 0.4096 0.4100 0.4118 0.4081 0.4114 0.4027
MSE 0.0033 0.0031 0.0024 0.0026 0.0024 0.0025 0.0022

(2,1) 40 35 I Avg 0.4489 0.4458 0.4326 0.4387 0.4268 0.4369 0.4114
MSE 0.0244 0.0215 0.0086 0.0096 0.0078 0.0091 0.0067

II Avg 0.4512 0.4471 0.4338 0.4403 0.4277 0.4384 0.4113
MSE 0.0194 0.0167 0.0079 0.0089 0.0071 0.0084 0.0059

III Avg 0.4614 0.4551 0.4373 0.4444 0.4306 0.4422 0.4131
MSE 0.0318 0.0276 0.0089 0.0101 0.0079 0.0095 0.0066

40 IV Avg 0.4342 0.4314 0.4260 0.4313 0.4210 0.4299 0.4069
MSE 0.0148 0.0130 0.0062 0.0068 0.0056 0.0065 0.0049

60 40 I Avg 0.4432 0.4336 0.4328 0.4378 0.4279 0.4364 0.4145
MSE 0.0165 0.0121 0.0071 0.0078 0.0065 0.0074 0.0056

II Avg 0.4457 0.4344 0.4331 0.4392 0.4273 0.4374 0.4118
MSE 0.0182 0.0130 0.0076 0.0085 0.0068 0.0081 0.0059

III Avg 0.4522 0.4422 0.4384 0.4437 0.4333 0.4422 0.4197
MSE 0.0165 0.0122 0.0076 0.0083 0.0068 0.0080 0.0058

50 I Avg 0.4318 0.4308 0.4298 0.4342 0.4256 0.4330 0.4139
MSE 0.0113 0.0105 0.0064 0.0069 0.0059 0.0067 0.0051

II Avg 0.4230 0.4220 0.4200 0.4245 0.4156 0.4234 0.4033
MSE 0.0100 0.0092 0.0051 0.0056 0.0047 0.0053 0.0042

III Avg 0.4440 0.4365 0.4323 0.4377 0.4271 0.4362 0.4129
MSE 0.0156 0.0118 0.0059 0.0067 0.0054 0.0063 0.0044

60 IV Avg 0.4131 0.4120 0.4139 0.4174 0.4105 0.4166 0.4006
MSE 0.0067 0.0055 0.0039 0.0042 0.0037 0.0041 0.0034

90 75 I Avg 0.4166 0.4166 0.4183 0.4213 0.4154 0.4255 0.4072
MSE 0.0066 0.0065 0.0041 0.0043 0.0039 0.0042 0.0034

II Avg 0.4249 0.4202 0.4231 0.4264 0.4199 0.4256 0.4109
MSE 0.0074 0.0055 0.0040 0.0043 0.0037 0.0041 0.0033

III Avg 0.4349 0.4283 0.4284 0.4323 0.4246 0.4313 0.4142
MSE 0.0124 0.0093 0.0049 0.0054 0.0045 0.0052 0.0039

90 IV Avg 0.4170 0.4146 0.4193 0.4218 0.4168 0.4212 0.4096
MSE 0.0042 0.0033 0.0030 0.0032 0.0029 0.0031 0.0026
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Table A2. The Avg (first row) and MSEs (second row) of the ML and Bayes estimates for β
when θ=0.4, β = 1.5, λ = 1.3 under different schemes.

MLE MCMC
(k1, k2) n1 = n2 m1 = m2 Scheme NR EM SE LLF GELF

c = −1.5 c = 1.5 q = −1.5 q = 1.5
(1,2) 40 35 I Avg 1.9487 1.9239 1.6463 1.8187 1.5017 1.6772 1.4853

MSE 1.4301 1.3267 0.1386 0.2867 0.0811 0.1538 0.0963
II Avg 1.8878 1.8641 1.6439 1.8298 1.4924 1.6768 1.4738

MSE 1.0170 0.9452 0.1277 0.2827 0.0742 0.1430 0.0889
III Avg 1.9244 1.9082 1.5971 1.7984 1.4394 1.6327 1.4156

MSE 2.1821 1.9819 0.1277 0.2870 0.0832 0.1420 0.1003
40 IV Avg 1.8533 1.8391 1.6184 1.7904 1.4791 1.6486 1.4627

MSE 0.8758 0.8257 0.1292 0.2753 0.0790 0.1428 0.0833

60 40 I Avg 1.8115 1.7579 1.6106 1.7351 1.4970 1.6341 1.4865
MSE 0.7088 0.5538 0.1492 0.2520 0.0972 0.1605 0.1124

II Avg 1.7342 1.6980 1.5992 1.7417 1.4766 1.6260 1.4617
MSE 0.4861 0.3920 0.1160 0.2143 0.0788 0.1260 0.0916

III Avg 1.9262 1.8033 1.6188 1.8203 1.4580 1.6546 1.4346
MSE 1.3477 0.9358 0.1245 0.3002 0.0747 0.1405 0.0917

50 I Avg 1.7261 1.7066 1.5934 1.7129 1.4880 1.6161 1.4760
MSE 0.6082 0.5395 0.1249 0.2071 0.0882 0.1333 0.1014

II Avg 1.7221 1.6990 1.6144 1.7545 1.4941 1.6402 1.4819
MSE 0.5098 0.4512 0.1370 0.2452 0.0908 0.1480 0.1050

III Avg 1.7670 1.7285 1.6204 1.7918 1.4825 1.6505 1.4676
MSE 0.5894 0.4851 0.1271 0.2698 0.0778 0.1409 0.0904

60 IV Avg 1.6947 1.6807 1.5949 1.7187 1.4871 1.6181 1.4758
MSE 0.4309 0.3989 0.1229 0.2056 0.0862 0.1316 0.0805

90 75 I Avg 1.6451 1.6238 1.5917 1.6821 1.5084 1.6094 1.5006
MSE 0.2574 0.2084 0.1094 0.1637 0.0809 0.1154 0.0903

II Avg 1.6388 1.6180 1.5948 1.6935 1.5060 1.6138 1.4974
MSE 0.2187 0.1838 0.0957 0.1517 0.0689 0.1021 0.0767

III Avg 1.6788 1.6577 1.5900 1.7052 1.4891 1.6119 1.4779
MSE 0.3472 0.2775 0.1040 0.1756 0.0742 0.1115 0.0722

90 IV Avg 1.6289 1.6202 1.5838 1.6746 1.5023 1.6012 1.4953
MSE 0.2182 0.1962 0.0980 0.1498 0.0722 0.1039 0.0792

(2.1) 40 35 I Avg 1.8044 1.7871 1.6128 1.7672 1.4842 1.3151 1.2090
MSE 0.8652 0.7910 0.1230 0.2429 0.0788 0.1356 0.1064

II Avg 1.8533 1.8339 1.6477 1.8209 1.5077 1.6778 1.4935
MSE 0.8790 0.8127 0.1353 0.2794 0.0804 0.1499 0.0936

III Avg 1.9007 1.8694 1.6678 1.8580 1.5162 1.7004 1.5011
MSE 1.0838 0.9791 0.1371 0.3029 0.0762 0.1537 0.0897

40 IV Avg 1.7283 1.716 1.6041 1.7598 1.4771 1.6323 1.4612
MSE 0.5710 0.53798 0.1153 0.2241 0.0783 0.1257 0.0911

60 40 I Avg 1.7212 1.6788 1.5865 1.6960 1.4867 1.6078 1.4746
MSE 0.5303 0.4192 0.1036 0.1690 0.0743 0.1108 0.0841

II Avg 1.7519 1.7062 1.6288 1.7706 1.5106 1.6541 1.4993
MSE 0.4974 0.4075 0.1200 0.2317 0.0760 0.1314 0.0871

III Avg 2.1016 1.9482 1.6413 1.8236 1.4921 1.6739 1.4736
MSE 2.6694 2.0469 0.1309 0.2746 0.0803 0.1452 0.0863

50 I Avg 1.6749 1.6685 1.6140 1.7324 1.5091 1.6363 1.4991
MSE 0.3906 0.3709 0.1215 0.2052 0.0824 0.1306 0.0934

II Avg 1.6700 1.6652 1.6063 1.7328 1.4971 1.6299 1.4851
MSE 0.3408 0.3249 0.1042 0.1866 0.0705 0.1129 0.0804

III Avg 1.7818 1.7451 1.6501 1.8033 1.5230 1.6771 1.5117
MSE 0.6692 0.5746 0.1295 0.2567 0.0777 0.1428 0.0899

60 IV Avg 1.6233 1.6184 1.5872 1.7000 1.4890 1.6085 1.4779
MSE 0.2850 0.2621 0.1017 0.1671 0.0734 0.1085 0.0832

90 75 I Avg 1.6283 1.6281 1.6134 1.7061 1.5305 1.6309 1.5247
MSE 0.2590 0.2580 0.1129 0.1748 0.0809 0.1200 0.0893

II Avg 1.6488 1.6286 1.6107 1.7040 1.5268 1.6285 1.5201
MSE 0.2445 0.2086 0.0936 0.1454 0.0667 0.0999 0.0729

III Avg 1.6911 1.6588 1.6166 1.7433 1.5272 1.6478 1.5195
MSE 0.3804 0.3097 0.1131 0.1991 0.0744 0.1214 0.0832

90 IV Avg 1.6164 1.6058 1.6120 1.6967 1.5338 1.6284 1.5278
MSE 0.1747 0.1571 0.0925 0.1402 0.0659 0.0985 0.0716
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Table A3. The Avg (first row) and MSEs (second row) of the ML and Bayes estimates for λ
when θ=0.4, β = 1.5, λ = 1.3 under different schemes.

MLE MCMC
(k1, k2) n1 = n2 m1 = m2 Scheme NR EM SE LLF GELF

c = −1.5 c = 1.5 q = −1.5 q = 1.5
(1.2) 40 35 I Avg 1.4152 1.4091 1.3222 1.4284 1.2438 1.3426 1.2245

MSE 0.2032 0.1892 0.1211 0.1900 0.0961 0.1267 0.1067
II Avg 1.3929 1.3868 1.3127 1.4164 1.2357 1.3330 1.2152

MSE 0.1610 0.1495 0.0994 0.1589 0.0797 0.1040 0.0896
III Avg 1.3759 1.3707 1.2918 1.3991 1.2148 1.3123 1.1939

MSE 0.1845 0.1680 0.1146 0.1909 0.0932 0.1192 0.1054
40 IV Avg 1.3803 1.3760 1.3047 1.3920 1.2375 1.3223 1.2198

MSE 0.1618 0.1530 0.0987 0.1449 0.0821 0.1022 0.0907

60 40 I Avg 1.3888 1.3744 1.3195 1.4070 1.2517 1.3371 1.2346
MSE 0.1500 0.1297 0.1026 0.1516 0.0831 0.1068 0.0916

II Avg 1.3740 1.3636 1.3158 1.4013 1.2485 1.3333 1.2310
MSE 0.1290 0.1093 0.0940 0.1350 0.0776 0.0976 0.0855

III Avg 1.3683 1.3464 1.2944 1.3836 1.2255 1.3126 1.2067
MSE 0.1506 0.1186 0.0930 0.1355 0.0780 0.0963 0.0868

50 I Avg 1.3570 1.3516 1.3083 1.3737 1.2541 1.3223 1.2400
MSE 0.1115 0.0990 0.0804 0.1056 0.0689 0.0828 0.0743

II Avg 1.3845 1.3766 1.3389 1.4096 1.2813 1.3536 1.2680
MSE 0.1145 0.1014 0.0890 0.1233 0.0724 0.0926 0.0779

III Avg 1.3677 1.3583 1.3158 1.3864 1.2585 1.3307 1.2439
MSE 0.1164 0.1004 0.0778 0.1078 0.0649 0.0807 0.0705

60 IV Avg 1.3509 1.3461 1.3121 1.3661 1.2664 1.3241 1.2542
MSE 0.0695 0.0628 0.0553 0.0711 0.0484 0.0569 0.0516

90 75 I Avg 1.3360 1.3304 1.3082 1.3498 1.2715 1.3177 1.2617
MSE 0.0572 0.0493 0.0476 0.0572 0.0428 0.0487 0.0451

II Avg 1.3461 1.3382 1.3194 1.3622 1.2816 1.3290 1.2721
MSE 0.0620 0.0523 0.0530 0.0646 0.0467 0.0543 0.0489

III Avg 1.3250 1.3210 1.2919 1.3343 1.2546 1.3017 1.2441
MSE 0.0616 0.0516 0.0478 0.0567 0.0439 0.0486 0.0466

90 IV Avg 1.3335 1.3306 1.3097 1.3440 1.2788 1.3177 1.2705
MSE 0.0435 0.0383 0.0369 0.0434 0.0335 0.0376 0.0350

(2, 1) 40 35 I Avg 1.3239 1.3210 1.2969 1.3863 1.2280 1.3151 1.2090
MSE 0.1339 0.1249 0.1123 0.1575 0.0957 0.1156 0.1064

II Avg 1.3240 1.3229 1.3011 1.3916 1.2312 1.3196 1.2118
MSE 0.1228 0.1157 0.1046 0.1500 0.0883 0.1079 0.0984

III Avg 1.3097 1.3093 1.2838 1.3695 1.2167 1.3019 1.1965
MSE 0.1060 0.0994 0.0877 0.1194 0.0779 0.0898 0.0870

40 IV Avg 1.3254 1.3247 1.3020 1.3780 1.2411 1.3182 1.2241
MSE 0.0963 0.0902 0.0827 0.1112 0.0719 0.0849 0.0791

60 40 I Avg 1.3129 1.3190 1.2903 1.3662 1.2299 1.3064 1.2124
MSE 0.0970 0.0864 0.0835 0.1126 0.0735 0.0855 0.0813

II Avg 1.3243 1.3284 1.3007 1.3761 1.2403 1.3168 1.2230
MSE 0.0869 0.0758 0.0749 0.1006 0.0659 0.0770 0.0725

III Avg 1.4401 1.4304 1.3304 1.4400 1.2498 1.3514 1.2295
MSE 0.2028 0.1856 0.1014 0.1650 0.0795 0.1070 0.0881

50 I Avg 1.3228 1.3220 1.3018 1.3610 1.2522 1.3147 1.2387
MSE 0.0858 0.0832 0.0763 0.0957 0.0677 0.0779 0.0728

II Avg 1.3315 1.3305 1.3099 1.3688 1.2604 1.3229 1.2470
MSE 0.0770 0.0744 0.0679 0.0859 0.0600 0.0696 0.0645

III Avg 1.3083 1.3106 1.2901 1.3477 1.2417 1.3029 1.2276
MSE 0.0745 0.0681 0.0668 0.0828 0.0607 0.0679 0.0659

60 IV Avg 1.3293 1.3268 1.3098 1.3577 1.2680 1.3206 1.2565
MSE 0.0612 0.0565 0.0550 0.0668 0.0494 0.0561 0.0527

90 75 I Avg 1.3289 1.3289 1.3140 1.3521 1.2799 1.3228 1.2707
MSE 0.0471 0.0471 0.0426 0.0502 0.0387 0.0434 0.0406

II Avg 1.3182 1.3242 1.3010 1.3417 1.2706 1.3129 1.2613
MSE 0.0538 0.0489 0.0485 0.0511 0.0438 0.0476 0.0469

III Avg 1.3086 1.3106 1.2970 1.3339 1.2639 1.3057 1.2545
MSE 0.0527 0.0496 0.0491 0.0536 0.0441 0.0477 0.0465

90 IV Avg 1.3145 1.3156 1.3023 1.3327 1.2746 1.3096 1.2668
MSE 0.0369 0.0336 0.0343 0.0387 0.0323 0.0347 0.0338
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Table A4. Average length (AL) and coverage probability (95% CP) of asymptotic
confidence/Bayesian credible interval for parameters θ=0.4, β = 1.5, λ = 1.3 under different
schemes.

(k1, k2) n1 = n2 m1 = m2 Parameter Scheme MLE MCMC
NR EM

AL 95% CP AL 95% CP AL 95% CP
(1,2) 40 35 θ I 0.3881 0.970 0.3296 0.950 0.3033 0.957

II 0.3881 0.980 0.3564 0.960 0.3115 0.972
III 0.4325 0.975 0.3829 0.955 0.3197 0.972

β I 3.0353 0.962 1.7623 0.927 1.6737 0.985
II 3.1734 0.942 2.0625 0.945 1.6534 0.975
III 3.6831 0.933 2.3495 0.962 1.8102 0.951

λ I 1.4016 0.945 1.2884 0.937 1.2627 0.955
II 1.4409 0.965 1.3230 0.953 1.2920 0.965
III 1.4726 0.935 1.3240 0.925 1.2852 0.938

40 θ IV 0.3418 0.970 0.3213 0.957 0.2856 0.963
β 2.9117 0.968 2.0727 0.941 1.6887 0.983
λ 1.3370 0.940 1.2403 0.928 1.1972 0.938

60 40 θ I 0.344 0.955 0.2996 0.937 0.2811 0.943
II 0.3727 0.970 0.3264 0.948 0.2997 0.955
III 0.5527 0.959 0.3952 0.954 0.3325 0.962

β I 2.8106 0.962 1.6974 0.952 1.6076 0.950
II 2.6048 0.957 1.5544 0.917 1.5326 0.985
III 4.1583 0.955 1.9933 0.925 1.8020 0.975

λ I 1.3396 0.938 1.2094 0.945 1.2025 0.948
II 1.3036 0.942 1.2028 0.948 1.2010 0.943
III 1.4145 0.939 1.2123 0.943 1.2134 0.955

50 θ I 0.2924 0.965 0.2648 0.947 0.2512 0.955
II 0.3071 0.955 0.2832 0.945 0.2618 0.965
III 0.3458 0.977 0.3059 0.957 0.2766 0.972

β I 2.3854 0.953 1.6276 0.922 1.5183 0.967
II 2.3619 0.947 1.5422 0.941 1.5310 0.977
III 2.7614 0.944 1.7793 0.945 1.6787 0.985

λ I 1.1633 0.932 1.0710 0.945 1.0857 0.945
II 1.1844 0.949 1.0965 0.948 1.1030 0.937
III 1.2236 0.954 1.0982 0.955 1.1070 0.950

60 θ IV 0.2669 0.960 0.2528 0.945 0.2362 0.967
β 2.1354 0.955 1.5624 0.939 1.4505 0.960
λ 1.0524 0.952 0.9911 0.955 0.9899 0.957

90 75 θ I 0.2349 0.948 0.2128 0.930 0.2105 0.950
II 0.2462 0.971 0.2277 0.957 0.2196 0.967
III 0.2682 0.960 0.2409 0.935 0.2254 0.955

β I 1.8458 0.963 1.2457 0.965 1.2405 0.962
II 1.8157 0.967 1.2135 0.956 1.2080 0.972
III 2.0932 0.955 1.4069 0.942 1.3953 0.965

λ I 0.9284 0.950 0.8610 0.953 0.8587 0.947
II 0.9334 0.945 0.8711 0.963 0.8525 0.942
III 0.9531 0.952 0.8737 0.948 0.8861 0.943

90 θ IV 0.2094 0.945 0.1997 0.940 0.1916 0.952
β 1.6631 0.953 1.2027 0.975 1.1903 0.967
λ 0.8432 0.973 0.8003 0.970 0.8070 0.965

Continued on next page
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(k1, k2) n1 = n2 m1 = m2 Parameter Scheme MLE MCMC
NR EM

AL 95% CP AL 95% CP AL 95% CP
(2, 1) 40 35 θ I 0.4657 0.965 0.3653 0.905 0.3376 0.965

II 0.4830 0.968 0.3919 0.940 0.3489 0.975
III 0.5579 0.965 0.4252 0.920 0.3640 0.973

40 IV 0.4131 0.965 0.3549 0.935 0.3182 0.955
35 β I 2.9150 0.952 1.7654 0.939 1.6027 0.980

II 3.0140 0.953 2.0554 0.967 1.7105 0.967
III 3.4296 0.954 2.2692 0.967 1.7855 0.962
IV 2.6067 0.957 1.9791 0.925 1.6166 0.962

35 λ I 1.2645 0.922 1.2471 0.918 1.2162 0.927
II 1.2625 0.947 1.2502 0.950 1.2287 0.962
III 1.2594 0.928 1.2414 0.925 1.2052 0.935

40 IV 1.1831 0.93 1.1723 0.932 1.1446 0.934

60 40 θ I 0.4253 0.962 0.308 0.924 0.3124 0.937
II 0.4601 0.958 0.3441 0.930 0.3377 0.972
III 0.8594 0.965 0.4461 0.900 0.3884 0.985

β I 2.5842 0.962 1.1519 0.929 1.4867 0.9625
II 2.5503 0.950 1.5732 0.925 1.5298 0.980
III 5.0418 0.942 2.0217 0.935 1.7460 0.997

λ I 1.1723 0.933 1.1630 0.935 1.1430 0.955
II 1.1798 0.935 1.1724 0.945 1.1460 0.963
III 1.1909 0.945 1.1693 0.953 1.1382 0.937

60 50 θ I 0.3655 0.958 0.2892 0.895 0.2897 0.957
II 0.3694 0.960 0.3079 0.940 0.2939 0.967
III 0.4519 0.971 0.3477 0.903 0.3218 0.960

β I 2.2513 0.950 1.5107 0.932 1.4118 0.962
II 2.2082 0.955 1.4925 0.938 1.4733 0.987
III 2.7040 0.940 1.8107 0.942 1.6039 0.975

λ I 1.0557 0.922 1.0435 0.920 1.0265 0.923
II 1.0609 0.945 1.0515 0.943 1.0298 0.952
III 1.0522 0.927 1.0401 0.934 1.0175 0.943

60 60 θ IV 0.3124 0.960 0.2753 0.955 0.2619 0.962
β 1.9779 0.957 1.4505 0.919 1.4023 0.977
λ 0.9671 0.950 0.9585 0.963 0.9430 0.958

90 75 θ I 0.2808 0.958 0.2279 0.958 0.2188 0.953
II 0.3010 0.947 0.2505 0.932 0.2421 0.970
III 0.3555 0.962 0.2785 0.930 0.2530 0.955

β I 1.7621 0.940 1.3538 0.967 1.2404 0.935
II 1.7704 0.961 1.3662 0.963 1.2725 0.956
III 2.0689 0.943 1.4208 0.948 1.4003 0.975

λ I 0.8634 0.960 0.8564 0.957 0.8483 0.970
II 0.8565 0.933 0.8518 0.935 0.8419 0.943
III 0.8587 0.933 0.8492 0.950 0.8370 0.952

90 θ IV 0.2558 0.967 0.2260 0.960 0.2128 0.967
β 1.5989 0.965 1.2540 0.935 1.2195 0.970
λ 0.7798 0.950 0.7759 0.961 0.7658 0.950
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