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1. Introduction

We consider the unconstrained optimization problems with the form

min
x∈Rn

f (x), (1.1)

where f : Rn → R is a continuously differentiable function and bounded below. There are many
methods for solving (1.1) such as the Newton methods, Quasi-Newton methods, Steepest Descent
method, and Levenberg-Marquardt methods [36]. However, these methods are efficient to use for
low-dimensional problems, while high-dimensional problems require many iterations and a long time.
Therefore, to overcome the drawbacks of the previous methods, a nonlinear conjugate gradient (CG)
method is proposed. Generally, the CG method is used to solve large-scale optimization problems
because it has simple iterations, fast convergence properties, and low memory requirements [5,22,36].

The CG method was first introduced by Hestenes and Stiefel in 1952 and was used to solve a
system of linear equations. Subsequently, in 1964, Fletcher and Reeves extended the form of the
CG method to solve large-scale nonlinear systems of equations, and they used it to solve the general
form of the optimization problem without constraints. The results of the expansion carried out by
Fletcher and Reeves triggered many further studies [36]. For instance, in [24], Ibrahim et al. proposed
a new hybrid method by combining the Liu-Storey [29] and Kamandi-Amini [28] conjugate gradient
parameters. Likewise, Jian et al. [26] proposed a simple spectral CG method for solving large-scale
unconstrained optimization problems. The method was based on the Fletcher-Reeves [17] and the
Dai-Yuan methods [11]. Under the weak Wolfe line search structure, the convergence analysis was
presented. In [44], Salleh et al. proposed a modified Liu and Storey [29] method by formulating the
new parameter. Depending on the strong Wolfe line search, the search direction satisfies the descent
condition and fulfills the convergence properties. Besides this, Zheng and Shi [53] proposed another
formula for the CG parameter. The parameter is formulated by replacing the denominator of the PRP
formula. The direction satisfies a trust region property and by using the Armijo line search, the global
convergence properties were proved. Furthermore, motivated by the idea of Zhang et al. in [52],
Tian et al. [49] proposed a new descent hybrid three-term CG algorithm. The new method satisfies
the sufficient descent condition and is independent of the line search structure. For uniformly convex
objective functions, global convergence is established under mild conditions. The modified secant
condition is also used to establish global convergence for general functions, without the assumption of
convexity. According to the numerical results, the proposed algorithm by Tian et al. [49] is effective
and reliable.

The CG method is an iteration method where each step produces approximation points from the
following formula:

xk+1 = xk + αkdk, k = 0, 1, 2, ...,

where dk is the search direction, xk+1 and xk are the current and previous points, respectively. The
αk > 0 is the stepsize, obtained by exact or inexact line searches. However, considering the level of
efficiency, inexact line search is more often used than exact line search. The two most frequently used
inexact line searches are weak Wolfe and strong Wolfe line searches. The weak Wolfe line search is
calculated such that αk satisfy
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f (xk + αkdk) ≤ f (xk) + δαkgT
k dk, (1.2)

g(xk + αkdk)T dk ≥ σgT
k dk, (1.3)

and the strong Wolfe line search is calculated such that αk satisfy

f (xk + αkdk) ≤ f (xk) + δαkgT
k dk, |g(xk + αkdk)T dk| ≤ −σgT

k dk,

where gk = g(xk) = ∇ f (xk) is a gradient f at point xk, and the parameters δ and σ are required to
satisfy 0 < δ < σ < 1. One condition that must be met by the CG method is the descent condition.
This condition guarantees that the approximation point leads to the minimum point, and this condition
is defined as follows:

gT
k dk < 0.

Over time, an Omani scientist Al-Baali [4] proposed another version of the descent condition, which
plays an important role in the convergence of CG methods called the sufficient descent condition. The
definition of sufficient descent condition is given below.

Definition 1. Let f : Rn → R is continuously differentiable function and the search direction dk

satisfies
gT

k dk ≤ −C∥gk∥
2, ∀k, (1.4)

where C > 0 is a constant, then dk is said to fulfill the sufficient descent condition.

For standard CG method, the search direction dk is defined by

dk :=

−gk, if k = 0,
−gk + βkdk−1, if k > 0,

where βk is a parameter corresponding to a distinct CG method. Some of the well-known standard
CG methods are the Hestenes-Stiefel (HS) method [19], the Fletcher-Reeves (FR) method [17], the
Polak-Ribiére-Polyak (PRP) method [40,41], the Conjugate-Descent (CD) method [16], the Dai-Yuan
(DY) method [11], the Liu-Storey (LS) method [29], and the Rivaie-Mustafa-Ismail-Leong (RMIL)
method [43] and their βk parameters are

βHS
k =

gT
k rk−1

dT
k−1rk−1

, βFR
k =

∥gk∥
2

∥gk−1∥
2 , β

PRP
k =

gT
k rk−1

∥gk−1∥
2 , β

CD
k =

∥gk∥
2

−dT
k−1gk−1

,

βDY
k =

∥gk∥
2

dT
k−1rk−1

, βLS
k =

gT
k rk−1

−gT
k−1dk−1

, βRMIL
k =

gT
k rk−1

∥dk−1∥
2 ,

respectively, where rk−1 := gk − gk−1 and ∥.∥ is a symbol for Euclidean norm on Rn. We know that the
HS, PRP, and LS methods are efficient but fail to meet the convergence property, even when using the
exact line searches for non-convex functions. So, to improve the convergence of the PRP, HS, and LS
methods, Powell [42] suggested modifying the parameter values to be non-negative. On other hand,
while this makes the FR, PRP, DY, and RMIL methods robust and able to converge, the numerical
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performance remains not efficient. When compared to the standard CG method, the hybrid [30, 33]
and three-term [8, 23, 25, 38, 51] CG methods always show good theoretical properties and numerical
performance, such as the sufficient descent property regardless of the line search structure.

Recently, Abubakar et al. [1] proposed a hybrid three-term CG method in which the search direction
is generated from the limited memory Broyden-Fletcher-Goldferb-Shanno (LBFGS) Quasi-Newton
method. The method satisfies the sufficient descent condition and fulfills the trust region. Under a
condition, the global convergence properties were established, and compared with some of the existing
methods, the method is efficient. Likewise, Deepho et al. in [12] proposed a modification of the hybrid
three-term CG method. The modification was done by combining the conjugate gradient parameters
that already exist. Numerical experiments on several test problems for the method showed good results
compared to other existing methods. In addition, the methods have also been applied to solve risk
optimization problems in portfolio selection.

Motivated by the above contributions, in this paper, we propose a hybrid three-term CG method
based on the structure of the LBFGS method of Nocedal [39] and Shanno [45], which can give a better
numerical performance. The following are some of this paper’s contributions:

(1) Based on the LBFGS method, a new hybrid three-term CG method for solving unconstrained
optimization is proposed.

(2) The search direction of the proposed method satisfies the sufficient descent property without
requiring any line search.

(3) The global convergence of the proposed method is demonstrated using the weak Wolfe line search.

(4) The computational performance of the new method is presented on several standard test problems.

(5) Finally, the proposed method is effectively applied to image restoration and minimizing risk in
portfolio selection problems.

The paper is organized as follows. In Section 2, we present a modified hybrid three-term CG
method and give the algorithm for our proposed method. In Section 3, we establish the sufficient
descent condition and prove the global convergence property of our proposed method under a certain
line search. Numerical experiments are outlined in Section 4 to see the computational performance by
using several test functions and comparing them with other existing methods. In Section 5, we provide
problem-solving to image restoration and portfolio selection problems by using our proposed method.
Finally, the conclusions are presented in Section 6.

2. Formulation and algorithm

We start this section by describing our formulation and then present an algorithm of our proposed
method.

In [1], Abubakar et al. proposed a hybrid three-term HTT CG method in which the search direction
is formulated as follows:

d0 := −g0, dk := −gk + β
HTT
k dk−1 + γkgk, k ≥ 1,
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where

βHTT
k :=

∥gk∥
2

zk
−
∥gk∥

2gT
k dk−1

z2
k

, γk := −vk
gT

k dk−1

zk
,

and

zk := max{λ∥dk−1∥∥gk∥, dT
k−1rk−1, ∥gk−1∥

2}, λ > 0, 0 ≤ vk ≤ v̄ < 1.

Similarly, Deepho, et al. [12] proposed a hybrid three-term TTCDDY CG method in which the search
direction owns the form

d0 := −g0, dk := −gk + β
TTCDDY
k dk−1 + ϱkgk, k ≥ 1,

where

βTTCDDY
k :=

∥gk∥
2

hk
−
∥gk∥

2gT
k dk−1

h2
k

,

ϱk := −ek
gT

k dk−1

hk
,

and

hk := max{ϖ∥dk−1∥∥gk∥,−dT
k−1gk−1, dT

k−1rk−1}, ϖ > 0, 0 ≤ ek ≤ ē < 1.

Under some assumptions, HTT and TTCDDY methods satisfy the sufficient descent condition, and
the global convergence is proved. The numerical experiments showed that the HTT and TTCDDY
methods perform better than the other existing methods.

Motivated by the HTT and TTCDDY methods, we propose a new hybrid three-term CG method
based on the LBFGS Quasi-Newton method. In the same way, we first recall the search direction of
the LBFGS method as

dLBFGS
k := −Mkgk,

Mk = −

(
I −

sk−1rT
k−1

sT
k−1rk−1

−
rk−1sT

k−1

sT
k−1rk−1

+
sk−1rT

k−1rk−1sT
k−1

sT
k−1rk−1

+
sk−1sT

k−1

sT
k−1rk−1

)
,

where sk−1 = xk − xk−1 = αk−1dk−1 and I is the identity matrix. By simplifying the form of dLBFGS
k , we

can define the search direction as follows:

dLBFGS
k := −gk +

(
βHS

k −
∥rk−1∥

2gT
k dk−1

(dT
k−1rk−1)2

)
dk−1 +

gT
k dk−1

dT
k−1rk−1

(rk−1 − sk−1). (2.1)

Next, replacing the term (rk−1 − sk−1) in (2.1) with ckrk−1, where ck is a parameter, we get the
following three-term search direction:

dTT HS
k := −gk +

(
βHS

k −
∥rk−1∥

2gT
k dk−1

(dT
k−1rk−1)2

)
dk−1 + ck

gT
k dk−1

dT
k−1rk−1

rk−1. (2.2)
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Further, replacing βHS
k with βPRP

k , ∥rk−1∥
2gT

k dk−1

(dT
k−1rk−1)2 with ∥gk∥

2gT
k dk−1

∥gk−1∥4
and (rk−1 − sk−1) with ckrk−1 in (2.1), we can

write a three-term search direction as

dTT PRP
k := −gk +

(
βPRP

k −
∥gk∥

2gT
k dk−1

∥gk−1∥
4

)
dk−1 + ck

gT
k dk−1

∥gk−1∥
2 rk−1. (2.3)

In the following, we will rewrite how to find the parameter ck as in [1, 12]. The ck parameter is
obtained by solving the univariate problem as follows:

min
c∈R
∥(rk−1 − sk−1) − cgk∥

2
F ,

where ∥ · ∥F is the Frobenious norm.
Let Ak = (rk−1 − sk−1) − cgk, then

AkAT
k = [(rk−1 − sk−1) − cgk][(rk−1 − sk−1) − cgk]T

= [(rk−1 − sk−1) − cgk][(rk−1 − sk−1)T − cgT
k ]

= c2gkgT
k − c[(rk−1 − sk−1)gT

k + gk(rk−1 − sk−1)T ] + (rk−1 − sk−1)(rk−1 − sk−1)T .

Letting Bk = rk−1 − sk−1, then

AkAT
k = c2gkgT

k − c[BkgT
k + gkBT

k ] + BkBT
k ,

and

tr(AkAT
k ) = c2∥gk∥

2 − c[tr(BkgT
k ) + tr(gkBT

k )] + ∥Bk∥
2

= c2∥gk∥
2 − 2cgT

k Bk + ∥Bk∥
2.

Differentiating the above with respect to c and equating to zero, we have

2c∥gk∥
2 − 2gT

k Bk = 0,

which implies

c =
gT

k (rk−1 − sk−1)
∥gk∥

2 .

Hence, we select ck as
ck := min {c̄,max {0, c}} , (2.4)

which implies 0 ≤ ck ≤ c̄ < 1.
Based on the search direction of the three-term CG defined in (2.2) and (2.3), we construct a new

search direction of the hybrid three-term CG method as follows:

dk :=

−g0, k = 0,
−gk + β

HT HP
k dk−1 + κ

HT HP
k rk−1, k ≥ 1,

(2.5)

where

βHT HP
k :=

gT
k rk−1

nk
−
∥rk−1∥

2gT
k dk−1

n2
k

, (2.6)
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κHT HP
k := ck

gT
k dk−1

nk
, (2.7)

and
nk := max{µ∥dk−1∥ ∥rk−1∥, dT

k−1rk−1, ∥gk−1∥
2}, µ > 0. (2.8)

Now, we provide the flow framework of our algorithm as follows:

Algorithm 1: New hybrid three-term HS-PRP CG method (HTHP)
Input : Select the start point x0 ∈ R

n, the parameters ϵ > 0, 0 < δ < σ < 1, 0 ≤ c̄ < 1, and
µ > 0.

Step 1 : Compute gk, if ∥gk∥ ≤ ϵ, then
stop.

end
Step 2 : if k = 0, then

set dk := −gk;
else

Compute the search direction dk using Eqs (2.4)–(2.8).
end
Step 3 : Compute the stepsize αk using any line search strategy technique.
Step 4 : Compute the next iterate xk+1 = xk + αkdk.
Step 5 : Set k := k + 1 and go to Step 1.

3. Convergence result

In this section, we provide the global convergence result of the HTHP method under the following
assumption.

Assumption 1. The level set B := {x ∈ Rn : f (x) ≤ f (x0)} is bounded, where x0 is starting point.

Assumption 2. In some neighborhood L of B, the gradient of the function f is Lipschitz continuous.
That is, we can find L > 0, such that for all x

∥g(x) − g(v)∥ ≤ L∥x − v∥, v ∈ L.

In other words, Assumption 1 states that there exists a constant T > 0, such that:

∥x∥ ≤ T, ∀x ∈ B.

Furthermore, observe that from Assumptions 1 and 2, we can obtain a positive constant F, such that:

∥g(x)∥ ≤ F, ∀x ∈ B.

Next, we will present the sufficient descent condition for the HTHP method.
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Lemma 1. Let dk be generated by (2.5). Then we obtain

gT
k dk ≤ −

(
1 −

1
4

(1 + c̄)2
)
∥gk∥

2. (3.1)

So, the search direction given by (2.5) satisfies the sufficient descent condition (1.4).

Proof. For k = 0, we have gT
0 d0 = −∥g0∥

2 and then the relation (3.1) is obvious since 0 ≤ ck ≤ c̄ < 1.
Meanwhile, for k ≥ 1, multiplying both sides (2.5) by gT

k , we get

gT
k dk = −∥gk∥

2 +
gT

k rk−1

nk
gT

k dk−1 −
∥rk−1∥

2gT
k dk−1

n2
k

(gT
k dk−1) + ck

gT
k dk−1

nk
gT

k rk−1

= −∥gk∥
2 + (1 + ck)

gT
k rk−1

nk
gT

k dk−1 −
∥rk−1∥

2

n2
k

(gT
k dk−1)2. (3.2)

Using the inequality aT
k bk ≤

1
2

(
∥ak∥

2 + ∥bk∥
2
)

with

ak =
1
√

2
(1 + ck)gk, bk =

√
2(gT

k dk−1)rk−1

nk
,

we obtain

(1 + ck)
gT

k rk−1

nk
gT

k dk−1 ≤
1
4

(1 + ck)2∥gk∥
2 +

(gT
k dk−1)2∥rk−1∥

2

n2
k

. (3.3)

Combining (3.2) with (3.3), we get

gT
k dk ≤ −∥gk∥

2 +
1
4

(1 + ck)2∥gk∥
2 +

(gT
k dk−1)2∥rk−1∥

2

n2
k

−
∥rk−1∥

2

n2
k

(gT
k dk−1)2

= −∥gk∥
2 +

1
4

(1 + ck)2∥gk∥
2

= −

(
1 −

1
4

(1 + ck)2
)
∥gk∥

2

≤ −

(
1 −

1
4

(1 + c̄)2
)
∥gk∥

2.

The proof is completed. □

Remark 1. The lemma above indicates that the HTHP always satisfies the sufficient descent condition
without depending on any line search.

Next, we will establish the global convergence properties of the HTHP method.

Theorem 1. Let Assumptions 1 and 2 hold, and assume conditions (1.2) and (1.3) are satisfied, then

lim inf
k→∞

∥gk∥ = 0. (3.4)
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Proof. We will prove the theorem by contradiction, that is, assume that (3.4) is not true. Then, there
exists a constant ζ such that

∥gk∥ ≥ ζ, for all k ≥ 0. (3.5)

From (2.6), we have

∣∣∣βHT HP
k

∣∣∣ = ∣∣∣∣∣∣gT
k rk−1

nk
−
∥rk−1∥

2gT
k dk−1

n2
k

∣∣∣∣∣∣
≤
∥gk∥ ∥rk−1∥

µ∥dk−1∥ ∥rk−1∥
+
∥rk−1∥

2 ∥gk∥ ∥dk−1∥

(µ∥dk−1∥ ∥rk−1∥)2

=

(
1
µ
+

1
µ2

)
∥gk∥

∥dk−1∥
. (3.6)

Next, from (2.7), we have

∣∣∣κHT HP
k

∣∣∣ = ∣∣∣∣∣∣ck
gT

k dk−1

nk

∣∣∣∣∣∣
= ck

∣∣∣∣∣∣gT
k dk−1

nk

∣∣∣∣∣∣
≤ c̄
∥gk∥ ∥dk−1∥

nk

≤ c̄
∥gk∥ ∥dk−1∥

µ∥dk−1∥ ∥rk−1∥

= c̄
∥gk∥

µ∥rk−1∥
. (3.7)

Furthermore, from (2.5)–(2.8), (3.6) and (3.7), we have

∥dk∥ =
∥∥∥−gk + β

HT HP
k dk−1 + κ

HT HP
k rk−1

∥∥∥
≤ ∥gk∥ +

∣∣∣βHT HP
k

∣∣∣ ∥dk−1∥ +
∣∣∣κHT HP

k

∣∣∣ ∥rk−1∥

≤ ∥gk∥ +

(
1
µ
+

1
µ2

)
∥gk∥

∥dk−1∥
∥dk−1∥ + c̄

∥gk∥

µ∥rk−1∥
∥rk−1∥

=

(
1 +

1
µ
+

1
µ2 +

c̄
µ

)
∥gk∥

≤

(
1 +

1
µ
+

1
µ2 +

c̄
µ

)
F.

Hence, the sequence {∥dk∥} generated by the HTHP method has an upper bound, i.e.

∥dk∥ ≤ Y, ∀k ≥ 0, (3.8)

where Y =
(
1 + 1

µ
+ 1
µ2 +

c̄
µ

)
F.

Now, from (1.2) and using Lemma 1, 0 ≤ c̄ < 1, δ > 0, αk > 0, we have
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f (xk + αkdk) ≤ f (xk) + δαkgT
k dk

≤ f (xk) − δαk

(
1 −

1
4

(1 + c̄)2
)
∥gk∥

2

≤ f (xk).

If we expand the above result and together with Assumption 1, we obtain

f (xk + αkdk) = f (xk+1) ≤ f (xk) ≤ f (xk−1) ≤ ... ≤ f (x0) < +∞. (3.9)

Also, adding condition (1.3) by −gT
k dk yields

g(xk + αkdk)T dk − gT
k dk ≥ σgT

k dk − gT
k dk = −(1 − σ)gT

k dk.

Applying Lemma 1 and Assumption 2 to relation above, we now have

−(1 − σ)gT
k dk ≤ (gk+1 − gk)T dk ≤ ∥gk+1 − gk∥∥dk∥ ≤ L∥xk+1 − xk∥∥dk∥.

Using the equation ∥xk+1 − xk∥ = ∥αkdk∥ = αk∥dk∥, then the above relation will be

−(1 − σ)gT
k dk

L∥dk∥
2 ≤ αk. (3.10)

Multiplying (3.10) by −δgT
k dk ≥ 0 and combining with (1.2), we get

δ(1 − σ)(gT
k dk)2

L∥dk∥
2 ≤ −δαkgT

k dk ≤ f (xk) − f (xk+1)

or
δ(1 − σ)(gT

k dk)2

L∥dk∥
2 ≤ f (xk) − f (xk+1). (3.11)

Summing (3.11), and applying (3.9), we have

δ(1 − σ)
L

∞∑
k=0

(gT
k dk)2

∥dk∥
2 ≤ ( f (x0) − f (x1)) + ( f (x1) − f (x2)) + ... ≤ f (x0) < +∞.

That implies,
+∞∑
k=0

(gT
k dk)2

∥dk∥
2 < +∞. (3.12)

Now, from inequality (3.5) and (3.1) we get that

gT
k dk ≤ −

(
1 −

1
4

(1 + c̄)2
)
∥gk∥

2

≤ −

(
1 −

1
4

(1 + c̄)2
)
ζ2. (3.13)

Upon squaring both sides of (3.13), then dividing by ∥dk∥
2 and also using (3.8), we obtain

+∞∑
k=0

(gT
k dk)2

∥dk∥
2 ≥

(
1 −

1
4

(1 + c̄)2
)
ζ2
+∞∑
k=0

1
∥dk∥

2 = +∞.

This result contradicts (3.12). Therefore, the condition (3.4) holds. □
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4. Numerical experiments

This section analyzes the performance of the new HTHP CG algorithm on several benchmark test
functions considered from Andrei [5] and Moré et al. [37], with dimensions ranging from 2 to
1,000,000 (see Table 1). To illustrate the efficiency, the proposed method was compared with other
existing methods such as TTCDDY [12], HTT [1], and MPRP [52], based on the following metrics:

• Number of iterations denoted as NOI.
• Number of function evaluations presented as NOF.
• Central processing unit time denoted as CPU time.

Table 1. The problems and their dimensions.

No Problem/Dimension No Problem/Dimension
1 COSINE 6000 67 Extended DENSCHNB 300,000
2 COSINE 100,000 68 Generalized Quartic 9000
3 COSINE 800,000 69 Generalized Quartic 90,000
4 DIXMAANA 2000 70 Generalized Quartic 500,000
5 DIXMAANA 30,000 71 BIGGSB1 110
6 DIXMAANB 8000 72 BIGGSB1 200
7 DIXMAANB 16,000 73 SINE 100,000
8 DIXMAANC 900 74 SINE 50,000
9 DIXMAANC 9000 75 FLETCBV 15

10 DIXMAAND 4000 76 FLETCBV 55
11 DIXMAAND 30,000 77 NONSCOMP 5000
12 DIXMAANE 800 78 NONSCOMP 80,000
13 DIXMAANE 16,000 79 POWER 150
14 DIXMAANF 5000 80 POWER 90
15 DIXMAANF 20,000 81 RAYDAN1 500
16 DIXMAANG 4000 82 RAYDAN1 5000
17 DIXMAANG 30,000 83 RAYDAN2 2000
18 DIXMAANH 2000 84 RAYDAN2 20,000
19 DIXMAANH 50,000 85 RAYDAN2 500,000
20 DIXMAANI 120 86 DIAGONAL1 800
21 DIXMAANI 12 87 DIAGONAL1 2000
22 DIXMAANJ 1000 88 DIAGONAL2 100
23 DIXMAANJ 5000 89 DIAGONAL2 1000
24 DIXMAANK 4000 90 DIAGONAL3 500
25 DIXMAANK 40 91 DIAGONAL3 2000
26 DIXMAANL 800 92 Discrete Boundary Value 2000
27 DIXMAANL 8000 93 Discrete Boundary Value 20,000
28 DIXON3DQ 150 94 Discrete Integral Equation 500
29 DIXON3DQ 15 95 Discrete Integral Equation 1500

Continued on next page

AIMS Mathematics Volume 8, Issue 1, 1–28.



12

N0 Problem/Dimension NO Problem/Dimension
30 DQDRTIC 9000 96 Extended Powell Singular 1000
31 DQDRTIC 90,000 97 Extended Powell Singular 2000
32 QUARTICM 5000 98 Linear Full Rank 100
33 QUARTICM 150,000 99 Linear Full Rank 500
34 EDENSCH 7000 100 Osborne 2 11
35 EDENSCH 40,000 101 Penalty1 200
36 EDENSCH 500,000 102 Penalty1 1000
37 EG2 100 103 Penalty2 100
38 EG2 35 104 Penalty2 110
39 FLETCHCR 1000 105 Extended Rosenbrock 500
40 FLETCHCR 50,000 106 Extended Rosenbrock 1000
41 FLETCHCR 200,000 107 Broyden Tridiagonal 500
42 Freudenstein & Roth 460 108 Broyden Tridiagonal 50
43 Freudenstein & Roth 10 109 HIMMELH 70,000
44 Generalized Rosenbrock 10,000 110 HIMMELH 240,000
45 Generalized Rosenbrock 100 111 Brown Badly Scaled 2
46 HIMMELBG 70,000 112 Brown and Dennis 4
47 HIMMELBG 240,000 113 Biggs EXP6 6
48 LIARWHD 15 114 Osborne1 5
49 LIARWHD 1000 115 Extended Beale 5000
50 Extended Penalty 1000 116 Extended Beale 10,000
51 Extended Penalty 8000 117 HIMMELBC 500,000
52 QUARTC 4000 118 HIMMELBC 1,000,000
53 QUARTC 80,000 119 ARWHEAD 100
54 QUARTC 500,000 120 ARWHEAD 1000
55 TRIDIA 300 121 ENGVAL1 500,000
56 TRIDIA 50 122 ENGVAL1 1,000,000
57 Extended Woods 150,000 123 DENSCHNA 500,000
58 Extended Woods 200,000 124 DENSCHNA 1,000,000
59 BDEXP 5000 125 DENSCHNB 500,000
60 BDEXP 50,000 126 DENSCHNB 1,000,000
61 BDEXP 500,000 127 DENSCHNC 10
62 DENSCHNF 90,000 128 DENSCHNC 500
63 DENSCHNF 280,000 129 DENSCHNF 500,000
64 DENSCHNF 600,000 130 DENSCHNF 1,000,000
65 DENSCHNB 6000 131 ENGVAL8 500,000
66 DENSCHNB 24,000 132 ENGVAL8 1,000,000

The executions were carried out under the weak Wolfe line search. For the proposed method, the
parameters’ values σ = 0.009, δ = 0.0001, µ = 0.02, c̄ = 0.105 were considered for the numerical
experimentation. While, for the TTCDDY, HTT, and MPRP methods, the parameter values defined in
the study were maintained. The termination criteria for all algorithms were set as ∥gk∥ ≤ 10−6, and an
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algorithm is said to fail (failure point denoted as “NaN”) if any of the following conditions hold:

• The stopping condition ∥gk∥ ≤ 10−6 is not satisfied.
• The NOI exceeds 2000.

All algorithms are coded on MATLAB as in [27], and the host computer is an Intel Core i7
processor with the following specifications: 16 GB RAM, 64-bit Windows 10 Pro operating system.
The complete experimental results for the TTCDDY, HTT, MPRP, and HTHP methods are provided
in https://github.com/malik1106/HTHP.git, and the graphical representation of the results are further
evaluated using the performance profile tool introduced by Dolan and Moré [14], as shown in
Figures 1 (for NOI), 2 (for NOF), and 3 (for CPU time) respectively. Based on the performance
profile rule, the algorithm with the highest curve illustrates the efficiency of that algorithm over the
others considered for comparison.

Referring to our plots, it is clear from Figures 1–3 that the curve of the proposed HTHP method lies
above that of TTCDDY, HTT, and MPRP for all the three performance metrics, which include NOI,
NOF, and well as the CPU time. This implies that it is the most efficient algorithm among the related
TTCDDY, HTT, and MPRP methods.

Figure 1. Performance profiles on NOI.
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Figure 2. Performance profiles on NOF.

Figure 3. Performance profiles on CPU time.

5. Application to image restoration and portfolio selection

Until now, the CG method have been widely used in solving some problems, such as the regression
analysis problems [47, 48], image restoration problems [10, 27], motion control [2, 3], and portfolio
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selection problems [1, 6, 12, 13, 31, 32]. In this section, we apply the proposed method for solving
image restoration and portfolio selection problems.

5.1. Image restoration

The problem of restoring images that have been corrupted by noise in the transmission or acquisition
process are among the difficult optimization problems due to their nonsmooth properties. Most of
the available gradient-based algorithms are unable to solve these problems directly due to the nature
of the problems. With recent advances in gradient-based methods, more efficient and reliable noise
suppression process capable of producing better and more accurate results can be achieved. One of
the classical noise models considered by several researchers is impulse noise. Lately, researchers
have investigated the performance of some gradient-based methods on image restoration problems
(see [7, 50]).

In this section, we demonstrate the performance of the proposed HTHP CG method in recovering the
original Camera, Lena, and Goldhill 256 × 256 grey level images (x) that have been corrupted by salt-
and-pepper impulse noise. For this purpose, we first consider the index set of the noise candidate as:

K = {(i, j) ∈ W |ξ̄i j , ξi j, ξi j = smin or smax},

where xi, j represent the grey level of the true image x at the pixel location (i, j), W = {1, 2, ·,M} ×
{1, 2, ·,N} and ξ̄ is an adaptive median filter of the observed noisy image ξ of x corrupted by salt-
and-pepper impulse noise. Also, smin and smax denotes the minimum and maximum of a noisy pixel
respectively. Based on the above, we defined the image restoration problem as follows:

minG(u),

where

G(u) =
∑

(i, j)∈K

{ ∑
(m,n)∈Vi, j/K

ϕα(ui, j − ξm,n) +
1
2

∑
(m,n)∈Vi, j∩K

ϕα(ui, j − um,n)
}
,

where Vi j = {(i, j − 1), (i, j + 1), (i − 1, j), (i + 1, j)} is the neighborhood of (i, j). From the above
equation, it is obvious that the regularity of G relies on the Huber function ϕ which is chosen as the
edge-preserving potential function with ϕα(t) =

√
t2 + α with α = 1.

To demonstrate the suitability of the proposed HTHP method, we compare the performance result
with that of TTCDDY, HTT, and MPRP methods based on three metrics which include CPU time
(CPUT), relative error (RelErr), and peak signal-to-noise ratio (PSNR). All the methods were
implemented on MATLAB software installed on an Intel Core i7 computer with 16 GB RAM. The
quality of the images restored is based on 30, 50, and 80 percent noise degrees respectively.

From results presented in Tables 2–7, we can see that the proposed method outperformed the other
methods considered in the study based on all the three metrics employed which includes CPUT, RelErr,
as well as PSNR. In addition, Figures 4–6 show that the proposed method was able to remove noise
from the corrupted Camera, Lena, and Goldhill images with a better accuracy compare to the other
methods. Based on these results, we can conclude that the proposed HTHP CG method is suitable and
effective.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

Figure 4. Images corrupted by 30% salt-and-pepper noise: (a–c), the restored images via
TTCDDY: (d–f), the restored images via HTT: (g–i), the restored images via HTHP: (j–l),
and the restored images via MPRP: (m–o).
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

Figure 5. Images corrupted by 50% salt-and-pepper noise: (a–c), the restored images via
TTCDDY: (d–f), the restored images via HTT: (g–i), the restored images via HTHP: (j–l),
and the restored images via MPRP: (m–o).

AIMS Mathematics Volume 8, Issue 1, 1–28.



18

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

Figure 6. Images corrupted by 70% salt-and-pepper noise: (a–c), the restored images via
TTCDDY: (d–f), the restored images via HTT: (g–i), the restored images via HTHP: (j–l),
and the restored images via MPRP: (m–o).
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Table 2. Image restoration outputs for Camera based on CPUT, RelErr, and PSNR.

Noise TTCDDY HTT

CPUT RelErr PSNR CPUT RelErr PSNR
30% 48.7915 1.05125 30.7558 48.5623 1.05126 30.7558
50% 116.132 1.71497 27.4747 117.190 1.71497 27.4747
80% 190.563 3.15721 23.5289 186.039 2.99665 23.6932

Table 3. Image restoration outputs for Camera based on CPUT, RelErr, and PSNR.

Noise HTHP MPRP

CPUT RelErr PSNR CPUT RelErr PSNR
30% 48.5041 1.05112 30.7567 59.1099 1.2126 30.7433
50% 117.053 1.71051 27.3803 114.1785 1.8109 27.2048
80% 189.843 2.93330 23.8340 182.7823 3.2413 23.7697

Table 4. Image restoration outputs for Lena based on CPUT, RelErr, and PSNR.

Noise TTCDDY HTT

CPUT RelErr PSNR CPUT RelErr PSNR
30% 37.1322 0.89482 33.8083 37.2949 0.89494 33.8069
50% 86.0965 1.34941 30.2385 81.7588 1.34964 30.2370
80% 185.258 25.3976 26.0779 149.421 2.48394 26.3320

Table 5. Image restoration outputs for Lena based on CPUT, RelErr, and PSNR.

Noise HTHP MPRP

CPUT RelErr PSNR CPUT RelErr PSNR
30% 37.4014 0.89483 33.8086 46.7401 0.9161 33.6496
50% 80.0735 1.34933 30.2309 110.7538 1.4301 30.2379
80% 150.912 2.62686 25.9123 145.4011 2.4176 26.4453

Table 6. Image restoration outputs for Goldhill based on CPUT, RelErr, and PSNR.

Noise TTCDDY HTT

CPUT RelErr PSNR CPUT RelErr PSNR
30% 47.9128 0.98980 32.0271 48.1301 0.88681 32.2260
50% 80.1133 1.49985 29.4045 81.8965 1.44497 29.2995
80% 125.720 2.63321 25.9414 123.6915 2.60388 25.8423
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Table 7. Image restoration outputs for Goldhill based on CPUT, RelErr, and PSNR.

Noise HTHP MPRP

CPUT RelErr PSNR CPUT RelErr PSNR
30% 48.0866 0.85528 32.1903 46.2320 0.8965 32.0978
50% 81.8959 1.52717 29.2131 78.0435 1.4165 29.4420
80% 124.789 2.59839 25.9093 142.8682 2.6428 25.8946

5.2. Portfolio selection

When investing in bonds or stocks, investors must pay attention to two basic components related
to financial instruments, namely risk and return. Risk is the possibility of loss that occurs when an
investment is made, while the return is the possible profit that can be obtained when investing. In
practice, there is a positive correlation between the expected return and the risk that must be borne;
hence, the greater the expected return, the greater the risk obtained, and vice versa [15]. One way to
make the right investment decisions is to build a portfolio. An investment portfolio is a collection of
investment instruments in several financial securities, which may or may not be the same to minimize
risk and/or maximize returns. By creating a portfolio, investors can identify which securities to choose
and how much capital to invest in the selected securities. Surely, investors will choose an efficient
portfolio to invest [34].

An efficient portfolio aims to minimize risk or maximize return. This study focuses on selecting an
efficient portfolio by minimizing risk. Here, portfolio risk is measured using a risk measuring
instrument. Several risk measurement tools can be used for this purpose, of which a variance risk
measurement tool has been used here [9]. To minimize portfolio variance, several ways in the
optimization mathematical theory can be used, one of which is the CG method. This method is an
optimization method that is still widely used and being developed by researchers. Among the
advantages of using the CG method are low memory usage and high convergence speed [5].

The development of technology and civilization has resulted in a better understanding of the benefits
of short-term and long-term investments. The main purpose of investment is to obtain larger funds in
the future. The capital market in every country is one of the places where investment activities are
carried out by investors. One of the investment products that can be found in the capital market is
stocks. Simply, stocks are proof of ownership of a small part of a company. This evidence entitles the
shareholder to a stock of the company’s assets and profits by the number of stocks owned [35]. There
are at least two things that need to be considered when investing in stocks, namely risk and rate of
return.

Returns on investment is a financial measure that is widely used to measure the probability of
obtaining a return on investment. Returns can be in the form of returns that have occurred
(realized returns) or expected returns, which have not yet occurred but are expected to occur in the
future. Realized returns can be calculated using historical data, which is quite important because it is
used as a measure of the performance of an asset. In addition, realized returns are also the basis for
determining expected returns in the future [18].

For stock A, the realized returns can be defined as

ri,A =
pi − pi−1

pi−1
, (5.1)
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where, ri,A is the value of return of stock A at time i, pi is stock price at time i, and pi−1 is stock price
at time i − 1 [46]. While the expected return can be formulated as follows:

E(Ri,A) = µA =

N∑
i=1

ri,A f (ri,A), (5.2)

where, Ri,A is a random variable of the return of stock A at time i, E(Ri,A) = µA is the expected
return of stock A, Ri,A follows a certain distribution with the density function expressed as f (ri,A), and
i = 1, 2, ...,N [20, 21].

In addition to returns, the risk also needs to be considered when investing. Risk is often associated
with deviations from the expected outcomes. One way to calculate risk is using the standard deviation
method, where the method is used to measure the deviation of values that have occurred with the
expected value. The variance of stock A can be expressed as follows [20, 21]:

σ2
A = E

[
(Ri,A − µA)2

]
=

N∑
i=1

(ri,A − µA)2 f (ri,A). (5.3)

In investing, Harry Markowitz advises to not put all the capital you have in just one asset because
if that asset fails, all the capital invested in that asset will disappear. Thus, one way that investors can
minimize risk is to diversify investments in the form of a portfolio. The formation of a portfolio is
one way an investor can employ to maximize the expected return or/and minimize the level of risk
that will be faced. Of course, the portfolio formed must be optimal. To form an optimal portfolio,
Harry Markowitz proposed a method known as the mean-variance method, which uses the average and
variance of historical stock price data [34]. The main result of this method is that the proportion of
each stock is obtained so that an optimal portfolio can be formed.

Markowitz’s portfolio theory works on how to diversify a stock portfolio to minimize risk. Portfolio
risk is not just the weighted average in the portfolio but must also consider the relationship between
the stocks. This relationship is known as covariance. Covariance is a measurement that expresses the
joint variance of two random variables, defined as follows [20, 21]:

σAB = E
[
(Ri,A − µA)(Ri,B − µB)

]
=

N∑
i=1

[
(ri,A − µA)(ri,B − µB)

]
f (ri,A, ri,B), (5.4)

where σA,B is the covariance of return between stocks A and B. Next, we will explore returns, expected
returns, and variance and covariance of return of the portfolio. Suppose an investment portfolio consists
K stocks, the return of each stock is ri,1, ri,2, ..., ri,K . If rT is the vector of return stocks in the investment
portfolio, then we can express it as follows: rT = (ri,1, ri,2, ..., ri,K). It is assumed that the first and
second moments of return on these assets exist. Let µT and wT represent the transposing of the mean
vector and weight vector, respectively, which can be expressed as follows: µT = (µ1, µ2, ..., µK), wT =

(w1,w2, ..., gk) and µ j = E[ri, j], w j is weight/proportion of funds allocated to the stocks j, j = 1, 2, ...,K.
Based on these notations, the return of the portfolio can be formulated as follows [46]:

rp =

K∑
j=1

w jri, j = wT r. (5.5)
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According to (5.5), the expected return of the portfolio can be expressed as the following equation:

µp = E[rp] = E[wT r] = wT E[r] = wTµ. (5.6)

By using (5.5), the variance of portfolio return can be expressed as follows:

σ2
p = Var(rp) =

K∑
j

K∑
l

w jwlσ jl = wTΣw, (5.7)

where

Σ =


σ11 σ12 ... σ1K

σ21 σ22 ... σ2K
...

...
...

...

σK1 σK2 ... σKK

 ,
and σ11, σ12, ..., σKK can be determined by (5.4).

After knowing the expected return and variance of the portfolio return, the next problem becomes
how to choose an efficient portfolio, namely a portfolio that has high return expectations with low
risk as measured by variance. We know that Markowitz [34] popularized the method of selecting an
efficient portfolio by minimizing portfolio risk, measured by variance. Therefore, the optimization
problem of portfolio selection by minimizing risk to be solved is as follows:minimize : σ2

p =
∑K

j
∑K

l w jwlσ jl = wTΣw.

subject to :
∑K

j=1 w j = 1.
(5.8)

Now, we will consider the problem of determining the proportion of stock in a portfolio by applying
the proposed CG method, such that it produces an optimal portfolio. The stock data analyzed in this
portfolio problem is stock data traded on the capital market in Indonesia through the Indonesian Stock
Exchange (IDX). The historical stock data used is the daily closing price of the stocks included in the
IDX30 stock list and accessed through the website http://finance.yahoo.com. The names of the top 20
stocks are listed in Table 8.

Furthermore, from the 20 stocks that have been selected in the formation of the portfolio, daily
historical data will is sought for the period from June 1, 2020, to May 31, 2022. The historical data for
these stocks contain the opening price, highest price, lowest price and closing price, respectively. For
analysis purposes, in this research, we only need the daily closing price of the stock. After selecting
several stocks to be included in the portfolio formation, they were estimated for their distribution
model, expectations, and return variance. Identification of the distribution model for the return of each
stock was done by finding the return using the formula (5.1), and then fitting the distribution using
EasyFit software. After obtaining the estimated distribution function, the next step is calculating the
expected return and variance by using (5.2) and (5.3), respectively. In addition, we also calculate ratio
between expected return and variance. Thus, we get the estimated distribution, expected return (µ),
variance (σ2), and ratio (µ/σ2) of each return stock in Table 9.
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Table 8. List of stocks included in the IDX30 index for the period February 2022–July 2022.

No Code Name
1 ADRO Adaro Energy Tbk.
2 ANTM Aneka Tambang (Persero) Tbk
3 ASII Astra International Tbk.
4 BBCA Bank Central Asia Tbk.
5 BBNI Bank Negara Indonesia (Persero) Tbk.
6 BBRI Bank Rakyat Indonesia (Persero) Tbk.
7 BBTN Bank Tabungan Negara (Persero) Tbk.
8 BMRI Bank Mandiri (Persero) Tbk.
9 BRPT Barito Pacific Tbk.

10 CPIN Charoen Pokphand Indonesia Tbk.
11 ICBP Indofood CBP Sukses Makmur Tbk.
12 INCO Vale Indonesia Tbk.
13 INDF Indofood Sukses Makmur Tbk.
14 KLBF Kalbe Farma Tbk.
15 PGAS Perusahaan Gas Negara (Persero) Tbk.
16 SMGR Semen Indonesia (Persero) Tbk.
17 PTBA Tambang Batubara Bukit Asam (Persero) Tbk.
18 TLKM Telekomunikasi Indonesia (Persero) Tbk.
19 WSKT Waskita Karya (Persero) Tbk.
20 UNVR Unilever Indonesia Tbk.

Suppose that the investor forms a portfolio consisting of the five best stocks. Therefore, from the 20
stocks in Table 9, the five best stocks will be selected based on the largest ratio value. The covariance
among five selected stocks is summarized in Table 10. Since five stocks were selected for the portfolio,
the optimization problem (5.8) becomesminimize : σ2

p =
∑5

j=1
∑5

l=1 w jwlσ jl = wTΣw.

subject to : w1 + w2 + ... + w5 = 1.
(5.9)

Note that the proposed HTHP method is to solve the optimization problem without constraints, so to
solve the problem (5.9) by using the HTHP method, we need to convert it to an unconstrained problem.
Suppose that w5 = 1−w1−w2−w3−w4, where w1,w2,w3,w4 and w5 are proportional to UNVR, SMGR,
BRPT, WSKT and CPIN stocks, respectively. Furthermore, by using values of covariance among the
selected stocks in Table 10, we have an unconstrained optimization portfolio selection problem as
follows:

min
(w1,w2,w3,w4)∈R4

(w1 + w2 + w3 + w4 − 1)((41w1)/105 + w2/3125 + (29w3)/105

+ (41w4)/105 − 51/105) + w4(w2/6250 − (3w1)/105 + (3w3)/25000 + (27w4)/25000 + 1/104)
+ w1((29w1)/105 + w2/50000 − w3/50000 − (3w4)/105 + 1/104) + w2(w2/2500 − (7w1)/105

+ w3/25000 + (7w4)/105 + 19/105) + w3(w2/105 − (7w1)/50000 + (37w3)/50000 + 11/50000).
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Table 9. Estimated distribution, expected return, variance, and ratio of each stock.

Stock Estimated distribution µ σ2 (µ/σ2)
ADRO Dagum (4P) -0.00167 0.00076 -2.18694
ANTM Dagum (4P) -0.00278 0.00136 -2.0364
ASII Dagum (4P) -0.00056 0.00043 -1.29461

BBCA Gen. Logistic -0.00075 0.00024 -3.06997
BBNI Gen. Logistic -0.00144 0.00053 -2.71164
BBRI Gen. Logistic -0.00067 0.00045 -1.49148
BBTN Gen. Logistic -0.00106 0.00074 -1.43336
BMRI Gen. Logistic -0.00098 0.00043 -2.26977
BRPT Log-Logistic (3P) 0.00145 0.00101 1.440135
CPIN Gen. Logistic 0.00029 0.00051 0.576654
ICBP Laplace 0.00012 0.00027 0.433568
INCO Gen. Logistic -0.00165 0.00085 -1.93436
INDF Burr (4P) -0.00002 0.00025 -0.06185
KLBF Burr (4P) -0.00014 0.00039 -0.35195
PGAS Gen. Logistic -0.00105 0.00079 -1.32354
SMGR Burr (4P) 0.00093 0.00059 1.569875
PTBA Gen. Logistic -0.00130 0.00052 -2.50288
TLKM Gen. Logistic -0.00037 0.00037 -1.00194
WSKT Gen. Logistic 0.00090 0.00118 0.761808
UNVR Gen. Logistic 0.00135 0.00039 3.48021

Table 10. Covariance among the selected stocks.

Stock UNVR SMGR BRPT WSKT CPIN
UNVR 0.00039 0.00012 0.00008 0.00007 0.00010
SMGR 0.00012 0.00059 0.00023 0.00026 0.00019
BRPT 0.00008 0.00023 0.00096 0.00022 0.00022
WSKT 0.00007 0.00026 0.00022 0.00118 0.00010
CPIN 0.00010 0.00019 0.00022 0.00010 0.00051

Applying Algorithm 1 to solve the above problems, we obtain w1 = 0.4347,w2 = 0.1349,w3 =

0.0858,w4 = 0.0973 and w5 = 0.2473. After obtaining the weight value of each stock in the formation
of an efficient portfolio, the next step is to calculate the expected return of the portfolio using (5.6) and
to calculate the portfolio variance using (5.7). The expected value of portfolio return is µp = 0.000949
and portfolio variance isσ2

p = 0.000224. From the results of the analysis, it can be seen that the optimal
portfolio composed of five stocks is a portfolio with the composition of each stock as in Table 11.

From Table 11, the UNVR is 0.4347. This value indicates that the proportion of UNVR in the
formed portfolio is 43.47% of the total allocation of funds. The second proportion, namely SMGR,
is 0.1349, so the amount of funds that will be allocated is 13.49%. The third proportion, namely
BRPT, is 0.0858, so the funds allocated are 8.58%. The fourth proportion for WSKT is 9.73% of funds
allocated, and the fifth proportion for CPIN is 24.73%. By allocating each stock based on the portion

AIMS Mathematics Volume 8, Issue 1, 1–28.
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in Table 11, the investment will provide a rate of return of 0.0949% for the total allocated funds and
the risk of 0.00224% on the total funds.

Table 11. Optimal portfolio weight composition.

Stock UNVR SMGR BRPT WSKT CPIN
Proportion 0.4347 0.1349 0.0858 0.0973 0.2473

6. Conclusions

We have presented a hybrid three-term CG method for solving unconstrained optimization
problems. The method is a combination of HS and PRP three-term types. Under some conditions, the
global convergence properties of the method were established. By using some test functions, the
numerical results showed that the method is most efficient compared to the TTCDDY, HTT, and
MPRP methods. Moreover, our method was able to solve the image restoration and portfolio selection
problems.
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