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1. Introduction

We consider the second-order cone complementarity problem (SOCCP), which is to find (x, y) ∈
Rn × Rn such that

x ∈ K , y ∈ K , xT y = 0, y = F(x), (1.1)

where F : Rn → Rn is a continuously differentiable function, K ⊂ Rn is the Cartesian product of
second-order cones (SOCs), that is, K = Kn1 × · · · × Knr with r, n1, ..., nr ≥ 1 and n =

∑r
i=1 ni, where

Kni are the ni-dimensional second-order cone defined by

Kni := {(x1, x̄T )T ∈ R × Rni−1 : x1 ≥ ‖x̄‖}. (1.2)

Here and below, ‖ · ‖ denotes the 2-norm. Since K1 is the set of nonnegative real values R+ (the
nonnegative orthant in R), the SOCCP includes the well-known nonlinear complementarity problem as
a special case, corresponding to ni = 1 for all i = 1, 2, ..., r.
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In the last few years, the SOCCP has attracted a lot of attention due to its wide applicability in
many fields (e.g., [2–4, 14, 16]). A number of numerical methods have been proposed to solve the
SOCCP among which the smoothing Newton-type method is one of the most effective methods (e.g.,
[1, 5, 7, 9, 11, 12, 15, 18, 20–23]). The main idea of these smoothing Newton-type methods is to use a
smoothing function to reformulate the concerned SOCCP as a system of smooth nonlinear equations
H(z) = 0 and then solve it by using Newton’s method. In these smoothing Newton-type methods, it has
been proved that any accumulation point z∗ of the generated iteration sequence {zk} satisfies H(z∗) =

0. However, many papers do not analyze whether such an accumulation point exists (e.g., [5, 15]).
To ensure that such an accumulation point exists, existing smoothing Newton-type methods usually
require that the solution set of the SOCCP is nonempty and bounded (e.g., [7, 9, 11, 12, 18, 20–23]).

Recently, Huang, Hu and Han [10] presented a nonmonotone smoothing algorithm for solving
the symmetric cone complementarity problem for which global convergence is established by just
requiring that the solution set of the problem is nonempty. Motivated by their work, in this paper,
we give a new convergence analysis of a class of smoothing Newton-type methods for the SOCCP.
Specifically, we introduce a special regularized Chen-Harker-Kanzow-Smale (CHKS) smoothing
function that is perturbed by µt where µ is the smoothing parameter and t ∈ (0, 1/2] is a constant. By
using this smoothing function, we reformulate the SOCCP as a system of smooth nonlinear equations
Ht(z) = 0 (see, Section 3 below) and propose a class of smoothing Newton-type methods to solve it.
We prove that, when the solution set of the SOCCP is only nonempty, the proposed method has the
following convergence properties.

(i) It generates a bounded iteration sequence;
(ii) The value of the merit function converges to zero;
(iii) Any accumulation point of the generated iteration sequence is a solution of the SOCCP;
(iv) It has a local quadratic convergence rate under suitable assumptions.
The paper is organized as follows. In Section 2, we introduce Euclidean Jordan algebras associated

with the SOC Kn. In Section 3, based on a special regularized CHKS smoothing function, we
reformulate the SOCCP as a family of parameterized smooth nonlinear equations. In Section 4, we
give a class of smoothing Newton-type methods for solving the SOCCP. In Section 5, we investigate its
global and local convergence properties respectively. The numerical results are reported in Section 6.
Some conclusions are given in Section 7.

Throughout the paper, Rn denotes the space of n-dimensional real column vectors. Rn
+ (Rn

++) denotes
the nonnegative (positive) orthant in Rn. For convenience, we write (uT

1 , ..., u
T
m)T as (u1, ..., um) for any

vectors ui ∈ R
ni . In represents the n × n dimension identity matrix; 〈·, ·〉 denotes the Euclidean inner

product. intK denotes the interior of K . For any x, y ∈ Rn, we write x �K y (x �K y) if x − y ∈ K
(x − y ∈ intK). For any α, β > 0, α = O(β) (α = o(β)) means that α/β is uniformly bounded (tends to
zero) as β→ 0.

2. Euclidean Jordan algebras

For any vectors x = (x1, x̄) ∈ R × Rn−1 and y = (y1, ȳ) ∈ R × Rn−1, their Jordan product associated
with the SOC Kn is defined by

x ◦ y := (xT y, x1ȳ + y1 x̄).
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The identity element under this product is e := (1, 0, ..., 0)T ∈ Rn. A vector x ∈ Rn is said to be
invertible if there exists a unique y ∈ Rn such that x ◦ y = e. We shall call this y the inverse of x and
denote it by x−1. Moreover, if x ∈ Kn, then there exists a unique vector in Kn, which we denote by
√

x, such that
√

x ◦
√

x = x.
For any x = (x1, x̄) ∈ R × Rn−1, its spectral decomposition with respect to the SOC Kn is

x = λ1(x)c1 + λ2(x)c2,

where λ1(x), λ2(x) and c1, c2 are the spectral values and associated spectral vectors of x, respectively,
that are given by

λi(x) = x1 + (−1)i‖x̄‖, ci =

{ 1
2

(
1, (−1)i x̄

‖x̄‖

)
, x̄ , 0,

1
2

(
1, (−1)iω

)
, x̄ = 0,

i = 1, 2,

with any ω ∈ Rn−1 such that ‖ω‖ = 1.
For any x = (x1, x̄) ∈ R × Rn−1 with spectral values λ1(x), λ2(x) and spectral vectors c1, c2, the

following results hold:
(1) x2 := λ1(x)2c1 + λ2(x)2c2 ∈ K

n and x2 = x ◦ x.
(2) If x ∈ Kn, then λ2(x) ≥ λ1(x) ≥ 0 and

√
x =
√
λ1(x)c1 +

√
λ2(x)c2.

(3) If x ∈ intKn, then λ2(x) ≥ λ1(x) > 0 and x−1 = λ1(x)−1c1 + λ2(x)−1c2.

Given an element x = (x1, x̄) ∈ R × Rn−1, we define the symmetric matrix

Lx :=
[

x1 x̄T

x̄ x1In−1

]
.

It is easy to verify that Lxy = x ◦ y, ∀y ∈ Rn. Moreover, if x ∈ intKn, then Lx is invertible with

L−1
x =

1
det(x)

[
x1 −x̄T

−x̄ det(x)
x1

In−1 + x̄x̄T

x1

]
,

where det(x) := x2
1 − ‖x̄‖

2 denotes the determinant of x.
We can also define the trace of x = (x1, x̄) ∈ R × Rn−1 by Tr(x) := λ1(x) + λ2(x) = 2x1. Then, for

any x, y ∈ Rn, it holds that Tr(x ◦ y) = 2xT y and Tr(e) = 2.

3. Reformulation of the SOCCP

In the following analysis, we assume that K = Kn. This does not result in any loss of generality
because our analysis can be easily extended to the general case. Smoothing Newton-type methods
are typically designed based on a smoothing function. Up to now, many smoothing functions for the
SOCCP have been proposed. Among them, the CHKS smoothing function

ϕ(µ, x, y) = x + y −
√

(x − y)2 + 4µe, ∀(µ, x, y) ∈ R × Rn × Rn

is one of the most prominent smoothing functions which satisfies (see, [8, Proposition 4.1])

ϕ(0, x, y) = 0⇐⇒ x ∈ K , y ∈ K , xT y = 0.
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Chi and Liu [6] proposed a regularized CHKS smoothing function which is denoted as

φ(µ, x, y) = (1 + µ)(x + y) −
√

(1 − µ)2(x − y)2 + 4µe, ∀(µ, x, y) ∈ R × Rn × Rn.

Based on φ, Chi and Liu [6] proposed a non-interior continuation method for solving the SOC
optimization problem.

In this paper, we introduce a special regularized CHKS smoothing function which is defined by

φt(µ, x, y) = (1 + µt)(x + y) −
√

(1 − µt)2(x − y)2 + 4µe, ∀(µ, x, y) ∈ R × Rn × Rn, (3.1)

where t ∈ (0, 1/2] is a constant. As it will be shown later (see, Theorem 5.1 below), the parameter
t ∈ (0, 1/2] plays a key role in proving the boundedness of the generated iteration sequence.

The following theorem gives the continuously differentiable property of the function φt, which has
a proof that is similar to Theorem 2.4 in [6].

Theorem 3.1. Let φt(µ, x, y) be defined by (3.1). Denote w :=
√

(1 − µt)2(x − y)2 + 4µe. Then φt(µ, x, y)
is continuously differentiable at any (µ, x, y) ∈ R++ × R

n × Rn with

(φt(µ, x, y))′µ = tµt−1(x + y) − L−1
w [(µt − 1)tµt−1(x − y)2 + 2e],

(φt(µ, x, y))′x = (1 + µt)In − (1 − µt)2L−1
w Lx−y,

(φt(µ, x, y))′y = (1 + µt)In + (1 − µt)2L−1
w Lx−y.

Moreover, lim
µ→0

φt(µ, x, y) = φt(0, x, y) and

φt(0, x, y) = 0⇐⇒ x ∈ K , y ∈ K , xT y = 0.

To reformulate the SOCCP as a family of parameterized smooth equations, we introduce a class
of single variable functions as follows.

Assumption 3.1. Assume that h : R→ R is a function that satisfies the following conditions:
(a) h is continuously differentiable with h′(µ) > 0 for any µ > 0;
(b) h(µ) = 0 implies that µ = 0;
(c) − h(µ)

h′(µ) ∈ [−µ, 0) for any µ > 0;
(d) h(µ) ≥ µ for any µ ≥ 0;
(e) there exist η1 ≥ 0 and η2 ≥ 0 such that h′(µ) ≤ η1h(µ) + η2 for any µ ≥ 0.

Regarding Assumption 3.1, we have the following remarks.

Remark 3.1. (i) The conditions (a)–(c) were introduced by Jiang [13].
(ii) There are many functions satisfying Assumption 3.1, for example, h(µ) = µ, h(µ) = eµ − 1,
h(µ) = eµ + µ − 1 and so on.
(iii) If h1 and h2 satisfy Assumption 3.1, then αh1 + βh2 satisfies Assumption 3.1 for any α, β ≥ 0 with
α + β = 1.
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In the rest of this paper, we let z := (µ, x, y) ∈ R×Rn×Rn. We define the function Ht : R×Rn×Rn →

R × Rn × Rn as

Ht(z) :=


h(µ)

y − F(x)
φt(µ, x, y)

 , (3.2)

where φt is given in (3.1). Then, by Theorem 3.1 and Assumption 3.1 (b), we can immediately get the
following theorem.

Theorem 3.2. (i) (x, y) is the solution of the SOCCP if Ht(z) = 0.
(ii) Ht(z) is continuously differentiable at any z = (µ, x, y) ∈ R++ × R

n × Rn with its Jacobian

H′t (z) =


h′(µ) 0 0

0 −F′(x) I
(φt(z))′µ (φt(z))′x (φt(z))′y

 ,
where (φt(z))′µ, (φt(z))′x and (φt(z))′y are given in Theorem 3.1.

In the case of smoothing Newton-type methods, it is essential that the Jacobian matrix H′t (z) is
invertible since the direction of descent should be well defined and unique to solve Ht(z) = 0. To
establish the nonsingularity of H′t (z), we need the monotonicity of F which has been extensively used
in previous studies (e.g., [5,7,9,11,12,15,20–22]). The function F is said to be monotone if it satisfies

〈x − y, F(x) − F(y)〉 ≥ 0, ∀ (x, y) ∈ Rn × Rn.

Under this monotonicity assumption, similarly to the proof of Theorem 5.1 in [12], we can establish
the nonsingularity of H′t (z) as follows.

Theorem 3.3. If F is monotone, then H′t (z) is nonsingular for any z ∈ R++ × R
n × Rn.

4. Class of smoothing Newton-type methods

Let Ht(z) be defined by (3.2). We denote the merit function ft : R1+2n → R+ by

ft(z) := ‖Ht(z)‖2 = h(µ)2 + ‖y − F(x)‖2 + ‖φt(µ, x, y)‖2. (4.1)

We now give our methods for solving the SOCCP.

Algorithm 4.1. (A class of smoothing Newton-type methods)
Step 0: Choose constants δ, σ ∈ (0, 1) and µ0 > 0. Choose a function h(µ) satisfying the conditions
(a)–(e) in Assumption 3.1. Choose η1 ≥ 0 and η2 ≥ 0 such that h′(µ) ≤ η1h(µ) + η2 for any µ ≥ 0.
Choose γ ∈ (0, 1) such that γ ≤ µ0 and γ(η1+η2) < 1. Choose (x0, y0) ∈ Rn×Rn and let z0 := (µ0, x0, y0).
Let z̄ := (1, 0, ..., 0)T ∈ R1+2n. Set k := 0.
Step 1: If ‖Ht(zk)‖ = 0, then stop. Otherwise, compute

ζk := γmin{1, ft(zk)}. (4.2)

Step 2: Compute the search direction ∆zk := (∆µk,∆xk,∆yk) ∈ R1+2n by solving the following system

H′t (z
k)∆zk = −Ht(zk) + ζkh′(µk)z̄. (4.3)
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Step 3: Find a step-size αk := δlk , where lk is the smallest nonnegative integer l satisfying

ft(zk + δl∆zk) ≤ (1 − σδ2l) ft(zk). (4.4)

Step 4: Set zk+1 := zk + αk∆zk. Set k := k + 1 and go to Step 1.

Theorem 4.1. If F is monotone, then Algorithm 4.1 is well-defined and can generate an infinite
sequence {zk = (µk, xk, yk)} with µk > 0 for any k ≥ 0.

Proof. Suppose that zk = (µk, xk, yk) ∈ R++ × R
2n for some k. Then, it follows from Theorem 3.3 that

H′t (z
k) is nonsingular. Hence, the system (4.3) is solvable. Moreover, by (4.3), we have that

f ′t (zk)∆zk = 2Ht(zk)T H′t (z
k)∆zk

= 2Ht(zk)T [−Ht(zk) + ζkh′(µk)z̄]
= −2 ft(zk) + 2h(µk)h′(µk)ζk

≤ −2 ft(zk) + 2h(µk)ζk[η1h(µk) + η2]
= −2[ ft(zk) − η1ζkh(µk)2 − η2ζkh(µk)], (4.5)

where the first inequality follows from Assumption 3.1(e). By the definition of ζk in (4.2), also notice
that min{1, a2} ≤ a for any a > 0; additionally, we have that ζk ≤ γ and ζk ≤ γ‖Ht(zk)‖. This together
with h(µk) ≤ ‖Ht(zk)‖ gives

ζkh(µk)2 ≤ γ ft(zk) and ζkh(µk) ≤ γ ft(zk). (4.6)

By Assumption 3.1(d), we have that ft(zk) ≥ h(µk)2 ≥ µ2
k > 0. So, by (4.5) and (4.6), it holds

f ′t (zk)∆zk ≤ −2[1 − γ(η1 + η2)] ft(zk) < 0. (4.7)

This implies that ∆zk is the direction of descent of ft(z) at zk. Next we show that there exists at least one
nonnegative integer l that satisfies (4.4). On the contrary, we suppose that for any nonnegative integer
l,

ft(zk + δl∆zk) > (1 − σδ2l) ft(zk),

i.e.,
ft(zk + δl∆zk) − ft(zk)

δl > −σδl ft(zk). (4.8)

Since µk > 0, ft(z) is continuously differentiable at zk. So, by letting l→ ∞ on both sides of (4.8), we
have that f ′t (zk)∆zk ≥ 0. This contradicts (4.7). Hence, we can find the step size αk ∈ (0, 1] in Step 3
and get the (k + 1)th iteration point zk+1 = zk + αk∆zk. Moreover, by the first equation in (4.3), we have
that ∆µk = −

h(µk)
h′(µk) + ζk which together with Assumption 3.1(c) gives

µk+1 = µk + αk∆µk = µk − αk
h(µk)
h′(µk)

+ αkζk ≥ (1 − αk)µk + αkζk > 0. (4.9)

Thus, we can conclude that if zk ∈ R++ × R
2n for some k, then zk+1 can be generated by Algorithm 4.1

with zk+1 ∈ R++ × R
2n. Since z0 = (µ0, x0, y0) ∈ R++ × R

2n, by mathematical induction, we prove the
theorem. ut
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5. Convergence analysis

In this section, we establish the global and local quadratic convergence of Algorithm 4.1 under the
assumption that the solution set of the SOCCP is nonempty, without requiring its boundedness.

Lemma 5.1. Let φt be defined by (3.1). For any (µ, x, y, c) ∈ R++ × R
n × Rn × Rn, one has

φt(µ, x, y) = c⇐⇒ x + µty −
c
2
�K 0, µtx + y −

c
2
�K 0

and
(
x + µty −

c
2

)
◦

(
µtx + y −

c
2

)
= µe.

Proof. By Lemma 4.1 in [10], for any (µ, a, b, c) ∈ R++ × R
n × Rn × Rn, we have that

a + b −
√

(a − b)2 + 4µe = c⇐⇒ a −
c
2
�K 0, b −

c
2
�K 0

and
(
a −

c
2

)
◦

(
b −

c
2

)
= µe.

Since φt can be rewritten as

φt(µ, x, y) = (x + µty) + (µtx + y) −
√

[(x + µty) − (µtx + y)]2 + 4µe,

we obtain the desired result. ut

Lemma 5.2. Suppose that F is monotone and {zk = (µk, xk, yk)} is the iteration sequence generated by
Algorithm 4.1. Then for all k ≥ 0,

µk ≥ γmin{1, ft(zk)}. (5.1)

Proof. By Step 0, we have that µ0 ≥ γ ≥ γmin{1, ft(z0)}. Suppose that µk ≥ γmin{1, ft(zk)} for some
k. Then, from (4.2) and (4.9) it follows that

µk+1 ≥ (1 − αk)µk + αkζk

≥ (1 − αk)γmin{1, ft(zk)} + αkζk

= γmin{1, ft(zk)}
≥ γmin{1, ft(zk+1)},

where the last inequality holds because { ft(zk)} is monotonically decreasing as given by Step 3. So, by
mathematical induction, we prove the lemma. ut

Theorem 5.1. Suppose that F is monotone and the solution set of the SOCCP is nonempty. Then the
iteration sequence {zk = (µk, xk, yk)} generated by Algorithm 4.1 is bounded.

Proof. By Theorem 4.1, we have that zk = (µk, xk, yk) ∈ R++ × R
2n for all k ≥ 0. Moreover, since

the sequence { ft(zk)} is monotonically decreasing, we have that ft(zk) ≤ ft(z0) for any k ≥ 0. Now we
assume ‖zk‖ → ∞ as k → ∞ and we will thus derive a contradiction. Since

0 < µk ≤ h(µk) ≤ ‖Ht(zk)‖ =
√

ft(zk) ≤
√

ft(z0), (5.2)
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where the second inequality holds by Assumption 3.1 (d), we have that ‖(xk, yk)‖ → ∞ as k → ∞. For
any t ∈ (0, 1/2], we define

ak :=
1
µt

k

(yk − F(xk)), bk :=
1

2µt
k

φt(µk, xk, yk), ∀k ≥ 0. (5.3)

Then, from (4.1), we have the following for any k ≥ 0

‖ak‖2 + ‖bk‖2 =
1
µk

2t ‖y
k − F(xk)‖2 +

1
4µ2t

k

‖φt(µk, xk, yk)‖2 ≤ 2
ft(zk)
µ2t

k

. (5.4)

For any k ≥ 0, by (5.1), if ft(zk) ≥ 1, then µk ≥ γ; therefore,

ft(zk)
µ2t

k

≤
ft(z0)
γ2t . (5.5)

And if ft(zk) < 1, then µk ≥ γ ft(zk) which gives

ft(zk)
µ2t

k

≤
ft(zk)1−2t

γ2t ≤
ft(z0)1−2t

γ2t , t ∈ (0, 1/2]. (5.6)

By (5.4), (5.5) and (5.6), the sequence {(ak, bk)} is uniformly bounded. Since the solution set of the
SOCCP is nonempty, there exists a solution of the SOCCP, denoted by (x∗, y∗) ∈ Rn × Rn, such that

x∗ �K 0, y∗ �K 0, 〈x∗, y∗〉 = 0, y∗ = F(x∗). (5.7)

Now we construct another sequence {(x̂k, ŷk)} given

x̂k := xk + µt
ky

k − µt
kb

k, ŷk := µt
kxk + yk − µt

kb
k. (5.8)

By (5.3), we have that φt(µk, xk, yk) = 2µt
kb

k. Thus, from Lemma 5.1 it follows that

x̂k �K 0, ŷk �K 0 and x̂k ◦ ŷk = µke. (5.9)

By (5.7), (5.8) and (5.9), and also using the fact that 〈p, q〉 ≥ 0 holds for any p �K 0 and q �K 0
(see, [10, Lemma 2.3]), we have that

2µk = Tr(µke) = 2〈x̂k, ŷk〉

≥ 2[〈x̂k, ŷk〉 − 〈x∗, ŷk〉 − 〈x̂k, y∗〉]
= 2〈x̂k − x∗, ŷk − y∗〉

= 2〈xk − x∗ + µt
ky

k − µt
kb

k, yk − y∗ + µt
kxk − µt

kb
k〉,

which together with (5.3), (5.7) and the monotonicity of F gives

µk ≥ 〈xk − x∗, yk − y∗〉 + µt
k〈x

k − x∗, xk − bk〉

+ µt
k〈y

k − bk, yk − y∗〉 + µ2t
k 〈y

k − bk, xk − bk〉

= 〈xk − x∗, F(xk) − F(x∗) + µt
ka

k〉 + µt
k〈x

k − x∗, xk − bk〉
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+ µt
k〈y

k − bk, yk − y∗〉 + µ2t
k 〈F(xk) − bk + µt

ka
k, xk − bk〉

≥ µt
k〈x

k − x∗, ak〉 + µt
k‖x

k‖2 + µt
k〈x

k,−bk〉 + µt
k〈−x∗, xk〉 + µt

k〈x
∗, bk〉

+ µt
k‖y

k‖2 + µt
k〈y

k,−y∗〉 + µt
k〈−bk, yk〉 + µt

k〈b
k, y∗〉

+ µ2t
k 〈F(xk) − F(bk), xk − bk〉 + µ2t

k 〈F(bk) + µt
ka

k − bk, xk − bk〉

≥ µt
k
[
‖(xk, yk)‖2 + 〈xk, p(µt

k, a
k, bk)〉 − 〈yk, y∗ + bk〉 + q(µt

k, a
k, bk)

]
, (5.10)

where
p(µt

k, a
k, bk) := ak − bk − x∗ + µt

k(F(bk) + µt
ka

k − bk),

q(µt
k, a

k, bk) := 〈x∗, bk − ak〉 + 〈bk, y∗〉 + µt
k〈F(bk) + µt

ka
k − bk,−bk〉.

Furthermore, by (5.2) and (5.10), we have that

‖(xk, yk)‖2 + 〈xk, p(µt
k, a

k, bk)〉 − 〈yk, y∗ + bk〉 + q(µt
k, a

k, bk) ≤ µ1−t
k ≤ ft(z0)

1−t
2 ,

which together with ‖(xk, yk)‖ → ∞ as k → ∞ gives

lim
k→∞

[
1 +
〈xk, p(µt

k, a
k, bk)〉

‖(xk, yk)‖2
−
〈yk, y∗ + bk〉

‖(xk, yk)‖2
+

q(µt
k, a

k, bk)
‖(xk, yk)‖2

]
≤ lim

k→∞

ft(z0)
t−1
2

‖(xk, yk)‖2
= 0. (5.11)

Since {(ak, bk)} is bounded and 0 < µk ≤
√

ft(z0) for any k ≥ 0, the sequences {p(µt
k, a

k, bk)} and
{q(µt

k, a
k, bk)} are all bounded. Also notice that the sequences

{
xk

‖(xk ,yk)‖

}
and

{
yk

‖(xk ,yk)‖

}
are all bounded.

Thus, we have that

lim
k→∞

[〈xk, p(µt
k, a

k, bk)〉
‖(xk, yk)‖2

−
〈yk, y∗ + bk〉

‖(xk, yk)‖2
+

q(µt
k, a

k, bk)
‖(xk, yk)‖2

]

= lim
k→∞

[〈 xk

‖(xk, yk)‖
,

p(µt
k, a

k, bk)
‖(xk, yk)‖

〉
−

〈 yk

‖(xk, yk)‖
,

y∗ + bk

‖(xk, yk)‖

〉
+

q(µt
k, a

k, bk)
‖(xk, yk)‖2

]
= 0,

which is in contradiction to (5.11). The proof is completed. ut

Remark 5.1. In the proof of Theorem 5.1, the second inequality in (5.6) is essential and it only holds
for t ∈ (0, 1/2]. This is why we replace the parameter µ by µt (t ∈ (0, 1/2]) for the CHKS function
in (3.1).

Theorem 5.2. Suppose that F is monotone and the solution set of the SOCCP is nonempty. Let {zk =

(µk, xk, yk)} be the iteration sequence generated by Algorithm 4.1. Then

lim
k→∞

ft(zk) = 0. (5.12)

Proof. Since { ft(zk)} is monotonically decreasing, it is convergent. So, there exists a constant f ∗ ≥ 0
such that

lim
k→∞

ft(zk) = f ∗, lim
k→∞

ζk = ζ∗ := γmin{1, f ∗}.

Now we assume f ∗ > 0 and will thus derive a contradiction. Since the sequence {zk = (µk, xk, yk)}
is bounded, it has at least one accumulation point, denoted by z∗ := (µ∗, x∗, y∗). Then there exists an
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infinite subsequence {zk}k∈K ⊂ {zk} such that lim
k∈K,k→∞

zk = z∗. We now divide the proof into the following
two parts.
Part 1. Assume that αk ≥ c for all k ∈ K, where c > 0 is a fixed constant. Then from Steps 3 and 4,
we have the following for all k ∈ K

ft(zk+1) ≤ (1 − σα2
k) ft(zk) ≤ (1 − σc2) ft(zk). (5.13)

By letting k → ∞ with k ∈ K on both sides of the inequality (5.13), we have that f ∗ ≤ (1 − σc2) f ∗

which gives f ∗ = 0. This contradicts the assumption f ∗ > 0.
Part 2. Assume that there exists an infinite subset K̄ ⊂ K such that lim

k∈K̄,k→∞
αk = 0. Then, by the line

search criterion (4.4), we have the following for all k ∈ K̄

ft(zk + δ−1αk∆zk) > (1 − σ(δ−1αk)2) ft(zk),

i.e.,
ft(zk + δ−1αk∆zk) − ft(zk)

δ−1αk
> −σδ−1αk ft(zk). (5.14)

By (5.1), we have that µ∗ ≥ γmin{1, f ∗} > 0. Thus, ft(z) is continuously differentiable at z∗. By letting
k → ∞ with k ∈ K̄ on both sides of the inequality (5.14), we have that

f ′t (z∗)∆z∗ ≥ 0, (5.15)

where ∆z∗ := H′t (z
∗)−1[−Ht(z∗) + ζ∗h′(µ∗)z̄]. On the other hand, from Step 3 it follows that

ft(zk + αk∆zk) − ft(zk)
αk

≤ −σαk ft(zk). (5.16)

By letting k → ∞ with k ∈ K̄ on both sides of the inequality (5.16), we have that

f ′t (z∗)∆z∗ ≤ 0. (5.17)

Hence, we can conclude from (5.15) and (5.17) that f ′t (z∗)∆z∗ = 0. By (4.3), we have the following for
all k ≥ 0

f ′t (zk)∆zk ≤ −2[1 − γ(η1 + η2)] ft(zk). (5.18)

By letting k → ∞ with k ∈ K̄ on both sides of the inequality (5.18), and also using f ′t (z∗)∆z∗ = 0, we
have that 2[1−γ(η1 +η2)] f ∗ ≤ 0 which together with γ(η1 +η2) < 1 yields f ∗ = 0. This also contradicts
the assumption f ∗ > 0. We complete the proof. ut

Theorem 5.3. Suppose that F is monotone and the solution set of the SOCCP is nonempty. Then any
accumulation point of the iteration sequence {zk} generated by Algorithm 4.1 is a solution of ft(z) = 0.

Proof. The theorem holds under the conditions of (5.12) and the continuity of ft. ut

Similar to the proof of Theorem 8 in [19], we obtain the local superlinear and quadratic convergence
of Algorithm 4.1 as follows.

Theorem 5.4. Suppose that F is monotone and the solution set of the SOCCP is nonempty. Suppose
that z∗ is an accumulation point of the infinite sequence {zk} generated by Algorithm 4.1. Suppose
that H is semismooth at z∗ and that all V ∈ ∂H(z∗) are nonsingular. Then the whole sequence {zk}

converges to z∗ and ‖zk+1 − z∗‖ = o(‖zk − z∗‖). Furthermore, if H is strongly semismooth at z∗, then
‖zk+1 − z∗‖ = O(‖zk − z∗‖2).
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6. Numerical experiments

In this section, we discuss how we applied Algorithm 4.1 to solve some SOCCPs. All experiments
were performed on a personal computer with 1.96 GB of memory and a Pentium(R) Dual-Core
processor 2.93 GHz . The program codes were written in Matlab and run in a Matlab 7.1 environment.
For the experiments, we chose h(µ) = eµ − 1, µ0 = 10−2, γ = 10−4, σ = 10−3, δ = 0.8 and t = 0.5. We
applied ‖Ht(zk)‖ ≤ 10−5 as the stopping criterion.

Example 6.1. Consider the following linear SOCCP:

x ∈ K2, y ∈ K2, xT y = 0, F(x) = Mx + q,

where

M =

(
1 −1
−1 1

)
, q =

(
−1
1

)
.

Obviously, F is monotone. It is easy to see that x = (α + 1, α)T and y = (0, 0)T is the solution
of the SOCCP for any α ≥ −0.5. Thus, the solution set of the SOCCP is unbounded. For the
experiments, we chose the starting points as follows: (1) x0 = rand(2, 1), y0 = rand(2, 1); (2)
x0 = 100 × rand(2, 1), y0 = 100 × rand(2, 1); (3) x0 = 10 × rand(2, 1), y0 = Mx0 + q; (4)
x0 = −10 × rand(2, 1), y0 = Mx0 + q. The numerical results are listed in Table 1 where ST denotes the
starting point, IT denotes the number of iterations, HK denotes the value of ‖Ht(z)‖ when Algorithm 4.1
terminates and SOL denotes the solution obtained via Algorithm 4.1.

Table 1. Numerical results for Example 6.1.

ST IT HK SOL
(1) 5 3.0356×10−6 ((0.5100,−0.4900), (0, 0))

6 9.2030×10−7 ((0.5153,−0.4847), (0, 0))
5 4.4773×10−6 ((0.5068,−0.4932), (0, 0))

(2) 8 9.5651×10−6 ((0.5018,−0.4982), (0, 0))
6 9.8135×10−6 ((0.8930,−0.1070), (0, 0))
6 1.3431×10−8 ((0.5082,−0.4918), (0, 0))

(3) 6 4.0106×10−8 ((0.5177,−0.4823), (0, 0))
5 3.8350×10−6 ((0.6641,−0.3359), (0, 0))
5 5.8296×10−6 ((0.7465,−0.2535), (0, 0))

(4) 4 1.5372×10−6 ((0.5034,−0.4966), (0, 0))
5 8.7951×10−6 ((0.5024,−0.4976), (0, 0))
5 9.0901×10−6 ((0.5024,−0.4976), (0, 0))

Example 6.2. Consider the following linear SOCCP:

x ∈ K3, y ∈ K3, xT y = 0, F(x) = Mx + q,

where

M =


1 −1 0
−1 1 0
0 0 1

 , q =


0
0
0

 .
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In this example, F is also monotone. It is easy to see that x = (α, α, 0) and y = (0, 0, 0) is the
solution of the SOCCP for any α ≥ 0. Thus, the solution set of the SOCCP is also unbounded. A
main difference between Example 6.1 and Example 6.2 is that the SOCCP considered in Example 6.2
does not have a strictly complementary solution. For the experiments, the starting points were chosen
as follows: (1) x0 = y0 = (1, 1, 1); (2) x0 = y0 = (10, 10, 10); (3) x0 = y0 = (1000, 1000, 1000); (4)
x0 = (1, 1, 1), y0 = Mx0 + q; (5) x0 = −(1, 1, 1), y0 = Mx0 + q; (6) x0 = (10, 10, 10), y0 = Mx0 + q; (7)
x0 = −(10, 10, 10), y0 = Mx0 + q. The testing results are listed in Table 2.

Table 2. Numerical results for Example 6.2.

ST IT HK SOL
(1) 3 8.5878×10−6 ((0.0390, 0.0390, 0), (0, 0, 0))
(2) 4 1.2772×10−6 ((0.0673, 0.0673, 0), (0, 0, 0))
(3) 5 7.2163×10−7 ((1.7992, 1.7992, 0), (0, 0, 0))
(4) 3 8.8100×10−6 ((0.1278, 0.1278, 0), (0, 0, 0))
(5) 3 8.7263×10−6 ((0.0052, 0.0052, 0), (0, 0, 0))
(6) 4 1.4706×10−6 ((0.3179, 0.3179, 0), (0, 0, 0))
(7) 4 1.2731×10−6 ((0.0056, 0.0056, 0), (0, 0, 0))

Example 6.3. Consider the following nonlinear SOCCP:

x ∈ K , y ∈ K , xT y = 0, y = F(x),

where K = K3 × K2 and F : R5 → R5 is given by

F(x) =


24(2x1 − x2)3 + exp(x1 − x3) − 4x4 + x5

−12(2x1 − x2)3 + 3(3x2 + 5x3)/
√

1 + (3x2 + 5x3)2 − 6x4 − 7x5

−exp(x1 − x3) + 5(3x2 + 5x3)/
√

1 + (3x2 + 5x3)2 − 3x4 + 5x5

4x1 + 6x2 + 3x3 − 1
−x1 + 7x2 − 5x3 + 2


.

From [9], F is monotone. Via Algorithm 4.1, we obtain one solution x∗ ≈ (0.2324,−0.0731,
0.2206, 0.5339,−0.5339)T . We test this problem by implementing the starting point x0 = y0 as
follows: (1) (0, ..., 0)T ; (2) (1, ..., 1)T ; (3) (−1, ...,−1)T ; (4) (10, ..., 10)T ; (5) (−10, ...,−10)T ;
(6) (100, ..., 100)T ; (7) (−100, ...,−100)T . For the purpose of comparison, we also implemented the
smoothing Newton-type method developed by Narushima, Sagara and Ogasawara [17] to solve this
test problem, which has been designed based on the following Fischer-Burmeister smoothing function:

ϕ(µ, x, y) = x + y −
√

x2 + y2 + 2µ2e, ∀(µ, x, y) ∈ R+ × R
n × Rn.

The numerical results are listed in Table 3.
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Table 3. Numerical results for Example 6.3.

Algorithm 4.1 Algorithm in [17]
ST IT HK IT HK
(1) 8 5.6960×10−6 12 3.0873×10−6

(2) 10 3.3814×10−6 12 4.5373×10−6

(3) 14 1.1748×10−6 9 3.1992×10−7

(4) 16 3.4836×10−6 18 3.0818×10−6

(5) 17 2.8765×10−7 19 3.3922×10−10

(6) 25 6.3377×10−7 26 3.1577×10−6

(7) 21 5.8425×10−6 25 5.2742×10−6

Example 6.4. Consider the following nonlinear SOCCP:

x ∈ K , y ∈ K , xT y = 0, y = F(x),

where K = K4 and F : R4 → R4 is given by

F(x) =


ex1 + x2

1
ex2 + x2

2
ex3 + x2

3
ex4 + x2

4

 .
Via Algorithm 4.1, we obtain one solution x∗ ≈ (0.3278,−0.1893,−0.1893,−0.1893)T .

We tested this problem by implementing the starting point
x0 = y0 as follows: (1) (0, ..., 0)T ; (2) (1, ..., 1)T ; (3) (−1, ...,−1)T ;
(4) (2, ..., 2)T ; (5) (−2, ...,−2)T ; (6) (4, ..., 4)T ; (7) (−4, ...,−4)T ; (8) (5, ..., 5)T ; (9) (−5, ...,−5)T ;
(10) (10, ..., 10)T ; (11) (−10, ...,−10)T . The numerical results are listed in Table 4, where ∗ denotes
that the algorithm fails to get an optimizer in the short CPU time.

Table 4. Numerical results for Example 6.4.

Algorithm 4.1 Algorithm in [17]
ST IT HK IT HK
(1) 10 3.4465×10−6 7 5.7100×10−7

(2) 10 6.1962×10−6 10 3.8288×10−10

(3) 8 1.6898×10−6 * *
(4) 13 6.4343×10−6 10 7.3642×10−8

(5) 9 3.7606×10−6 11 6.9450×10−8

(6) 11 6.9029×10−6 13 1.2211×10−11

(7) 9 2.8446×10−6 56 3.0036×10−8

(8) 12 2.8408×10−6 10 9.6157×10−7

(9) 11 5.0492×10−7 47 2.3039×10−7

(10) 15 5.2043×10−6 19 5.6091×10−8

(11) 17 2.4327×10−6 * ∗
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From Tables 1 and 2, we can find that Algorithm 4.1 can solve all of the tested problems in very few
iterations. Moreover, the numbers of iterations were slightly different for different starting points. From
Tables 3 and 4, we may see that our algorithm has some advantages over the smoothing Newton-type
algorithm presented in [17]. Although the reported numerical results are preliminary, they demonstrate
that the proposed algorithm is promising for solving SOCCPs even though the solution sets of these
problems are unbounded.

7. Concluding remarks

Based on the regularized CHKS smoothing function φt in (3.1), we have proposed a class of
smoothing Newton-type methods for solving the SOCCP. Unlike many smoothing Newton-type
methods, which usually require the boundedness of the solution set, our method is globally and locally
superlinearly/quadratically convergent when the solution set of the SOCCP is only nonempty, and it
does not require its boundedness.

In the reformulation of the SOCCP, we need a function h that satisfies the conditions (a)–(e) in
Assumption 3.1. Some comments on these conditions are explained as follows. The condition (a)
ensures that Ht(z) is smooth and h(µ)

h′(µ) is well-defined. The condition (b) guarantees that Ht(z) = 0 gives
µ = 0 and that (x, y) is a solution of the SOCCP. The conditions (c) and (d) ensure that the sequence
{µk} generated by Algorithm 4.1 is positive and bounded. The condition (e) ensures that the search
direction is the direction of descent of the merit function.
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