
http://www.aimspress.com/journal/Math

AIMS Mathematics, 7(9): 17592–17602.
DOI: 10.3934/math.2022968
Received: 04 May 2022
Revised: 22 July 2022
Accepted: 24 July 2022
Published: 29 July 2022

Research article

Existence of solutions for the boundary value problem of non-instantaneous
impulsive fractional differential equations with p-Laplacian operator

Yiyun Li, Jingli Xie*and Luping Mao

College of Mathematics and Statistics, Jishou University, Jishou, Hunan 416000, China

* Correspondence: Email: xiejingli721124@163.com.

Abstract: In this paper, we consider a boundary value problem of impulsive fractional differential
equations with the nonlinear p-Laplacian operator, where impulses are non-instantaneous. By
converting the given problem into an equivalent integral form and applying the Schauder fixed point
theorem, we obtain some sufficient conditions for the existence of solutions. An illustrative example is
presented to demonstrate the validity of our results.

Keywords: fractional differential equations; non-instantaneous impulsive; p-Laplacian operator;
fixed point theorem
Mathematics Subject Classification: 34A08, 34B37

1. Introduction

Fractional differential equations are considered as a generalization of ordinary differential equations
and have attracted growing attention recently. The theory of fractional differential equations is
generally considered to provide valuable tools for mathematical modeling of many real-world
phenomena in physics [1, 2, 3, 4], polymer rheology [5], regular variation in thermodynamics, control
theory, biology [6], blood flow phenomena, viscoelasticity, and damping. The main advantage of
fractional derivatives is that they can describe the properties of heredity and memory of many materials.
The fractional derivative of order α with 1 < α ≤ 2 appears in several diffusion problems used in
physical and engineering applications, for example, in the mechanism of superdiffusion [7]. Therefore,
the research on the existence and controllability of the fractional evolution system with order 1 < α ≤ 2
has become a hot research topic recently. We refer [8, 9, 10, 11, 12, 13] and the references cited therein
for recent development on this topic.

Note that differential equations with p-Laplacian operator have been widely applied in many
scientific fields including dynamical systems, and mathematical models of mechanics. Turbulent flow
in a porous medium is a fundamental mechanics problem. To study this type of problems, Leibenson
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[14] introduced the p-Laplacian equation as follows:(
φp(u′(t))

)′
= f (t, x(t), u′(t)),

where φp(s) = |s|p−2s, p > 1. Obviously, φp is invertible and its inverse operator is φq, where q > 1
is a constant such that 1

p + 1
q = 1. Recently, the existence of solutions to boundary value problems for

the fractional differential equations with the p-Laplacian operator have received considerable attention
[15, 16, 17]. Liu and Jia [18] considered the following fractional differential equation involving the
p-Laplacian operator: 

(
φp(cDα

0+u(t))
)′

= f (t, u(t)), t ∈ (0, 1),
u(0) = r0u(1), u′(0) = r1u′(1),
u(i)(0) = 0, i = 1, 2, . . . , [α] − 1,

where cDα
0+ is the standard Caputo derivative, 1 < α ∈ R, φp(s) = |s|p−2s, p > 1. The existence of

solutions of boundary value problem for the p-Laplacian operator equations was obtained by means of
the Banach contraction mapping principle.

Impulse is a universal phenomenon in human social activities and nature. According to the duration
of the change process, the impulse can be divided into instantaneous impulse and non-instantaneous
impulse. The instantaneous impulse was first proposed by V. Milman et al. [19]. Instantaneous impulse
effects appear in many practical systems and applications, for example, pharmacology and automatic
control systems. However, not all the phenomena in real life such as the drug injection process could be
described by instantaneous impulses. Therefore, the concept of non-instantaneous impulses was first
proposed by Hernández and O’Regan [20]. This type of impulse is more advantageous in modeling
the dynamics of evolution processes, and differential equations involving such have received extensive
attention [21, 22, 23, 24, 25].

Agarwal et al. [26] investigated Caputo fractional differential equations with non-instantaneous
impulses: 

c
0Dqu(t) = f (t, u(t)), t ∈ (tk, sk], k = 0, 1, . . . ,m + 1,
u(t) = φk(t, u(t), u(sk − 0)), t ∈ (sk, tk+1], k = 0, 1, 2, . . . ,m,
u(0) = u0,

where u, u0 ∈ R, f : ∪m+1
k=0 [tk, sk × R→ R], φk : [sk, tk+1] × R × R → R, (k = 0, 1, 2, . . . ,m). By using

the iterative techniques combined with lower and upper solutions methods, some sufficient conditions
for the existence of positive solutions to the above initial value problems were obtained.

Motivated by the work above, in this work, we consider the boundary value problem of non-
instantaneous impulsive fractional differential equations with the p-Laplacian operator:

(
φp(cDα

0+u(t))
)′

= f (t, u(t)), t ∈ (sk, tk+1], k = 0, 1, . . . ,m,
u(t) = gk(t, u(t)), u′(t) = hk(t, u(t)), t ∈ (tk, sk], k = 1, 2, . . . ,m,
u(0) = u′(0) = 0, φp(cDα

0+u(sk)) = 0, k = 0, 1, . . . ,m,

(1.1)

where cDα
0+ denotes the Caputo fractional derivative, 1 < α ≤ 2, J = [0, 1], 0 = s0 < t1 < s1 < t2 <

· · · < tm < sm < tm+1 = 1 are pre-fixed numbers. The function f : J × R → R is continuous and
gk, hk : [tk, sk] × R→ R is continuous for all k = 1, 2, . . . ,m.
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We point out, comparing the earlier work [3, 18, 24, 25, 26], our major contributions are:
i) We propose a new model based on [18, 25] and our model involves both the non-instantaneous

impulsive effect, fractional order derivative, and the derivative term of p-Laplacian operator, while the
models in [3, 18] do not consider non-instantaneous impulsive effects.

ii) Motivated by [24, 26], for the nonlinear system with Caputo fractional derivative of order α ∈
(1, 2] and non-instantaneous impulsive, we properly define the boundary value conditions and non-
instantaneous impulsive conditions.

iii) We establish an integral equation equivalent to the problem (1.1) and develop new techniques
different from [3, 18, 24, 25, 26] to obtain new results on the existence of solutions to non-instantaneous
impulsive fractional differential equations with the p-Laplacian operator.

iv) The novelty of this work lies in the study of the class of non-instantaneous impulsive fractional
order differential equations with the p-Laplacian operator and especially in introducing a non-
instantaneous impulsive fractional differential system of order α ∈ (1, 2].

The rest of this paper is organized as follows. In Section 2, we give some basic definitions and
fractional calculus. In Section 3, we use Schauder fixed point theorem to prove the existence results
for the solutions to the above-proposed problem (1.1). In Section 4, as an application we give and
analyze an important illustrative example. The conclusion is given in the last section.

2. Preliminaries

In this section, we present some useful lemmas, theorems, and some definitions, which are
important in obtaining the existence of solutions.

Consider the piecewise continuous space PC(J,R) := {u : J → R : u ∈ C((tk, tk+1],R), k = 0, 1, · · · ,
m and there exist u(t−k ) and u(t+

k ), k = 1, 2, · · · ,m, with u(t−k ) = u(tk)
}

with the norm
‖u‖PC := max {|u(t)| : t ∈ J}. Obviously (PC(J,R), ‖·‖PC) is a Banach space. Set PC1(J,R) := {u ∈
PC(J,R) : u′ ∈ PC(J,R)} with the norm ‖u‖PC1 := max {‖u‖PC , ‖u′‖PC}. Then, (PC1(J,R), ‖·‖PC1) is
also a Banach space.

Definition 2.1. ([2]) The fractional integral of order α(α > 0) of function u ∈ L1([0, 1],R) is given by
Iα0+u(t) = 1

Γ(α)

∫ t

0
(t − s)α−1u(s)ds,

where Γ(α) is the Gamma function, provided the right side is pointwise defined on (0,+∞).

Definition 2.2. ([2]) The Caputo fractional derivative of order α(α > 0) of function u ∈ Cn([0, 1],R)
is given by

cDαu(t) = 1
Γ(n−α)

∫ t

0
(t − s)n−α−1u(n)(s)ds,

where t > 0, n = [α] + 1, Γ(α) is the Gamma function.

Lemma 2.3. ([3]) For α > 0 and u ∈ C(0, 1) ∩ L1(0, 1), the solution of fractional differential equation
cDα

0+u(t) = 0 is given by u(t) = c0 + c1t + · · · + cn−1tn−1, ci ∈ R, i = 0 , 1 , 2 , · · · , n − 1 , n = [α] + 1,
and [α] denotes the integer part of the real number α.

Lemma 2.4. ([2, 4]) For α > 0 and u ∈ C(0, 1) ∩ L1(0, 1), then (i) Iα0+(cDα
0+u(t)) = u(t) + c0 + c1t +

· · · + cn−1tn−1, ci ∈ R, n = [α] + 1, (ii) cDα
0+ Iα0+u(t) = u(t).

Lemma 2.5. ([20]) Let φp be a p-Laplacian operator. Then
(i) for 1 < p ≤ 2, uv > 0, and |u| , |v| ≥ ρ > 0, then
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17595∣∣∣φp(u) − φp(v)
∣∣∣ ≤ (p − 1)ρp−2 |u − v|.

(ii) If p > 2, and |u| , |v| ≤ ρ∗, then∣∣∣φp(u) − φp(v)
∣∣∣ ≤ (p − 1)ρ∗p−2 |u − v|.

Theorem 2.6. ([27])(Schauder fixed point theorem) Let Ω be a closed, convex and nonempty subset
of a Banach space X. Let T : Ω → Ω be a continuous mapping such that the set TΩ is a relatively
compact subset of X. Then T has at least one fixed point in Ω. That is, there exists an x ∈ Ω such that
T x = x.

Lemma 2.7. Let y : [0, 1] → R and Gk,Hk : [tk, sk] → R are continuous functions. A function
u ∈ PC1(J,R) is a solution of the impulsive problem

(
φp(cDα

0+u(t))
)′

= y(t), t ∈ (sk, tk+1], k = 0, 1, . . . ,m,
u(t) = Gk(t), u′(t) = Hk(t), t ∈ (tk, sk], k = 1, 2, . . . ,m,
u(0) = u′(0) = 0, φp(cDα

0+u(sk)) = 0, k = 0, 1, . . . ,m,

(2.1)

if and only if u satisfies the following integral equation

u(t) =



1
Γ(α)

∫ t

0
(t − s)α−1φq(

∫ s

0
y(τ)dτ)ds, t ∈ [0, t1],

Gk(t), t ∈ (tk, sk], k = 1, 2, . . . ,m,
1

Γ(α)

∫ t

0
(t − s)α−1φq(

∫ s

sk
y(τ)dτ)ds

− 1
Γ(α)

∫ sk

0
(sk − s)α−1φq(

∫ s

sk
y(τ)dτ)ds

+ sk
Γ(α−1)

∫ sk

0
(sk − s)α−2φq(

∫ s

sk
y(τ)dτ)ds

− t
Γ(α−1)

∫ sk

0
(sk − s)α−2φq(

∫ s

sk
y(τ)dτ)ds

+Gk(sk) + Hk(sk)(t − sk), t ∈ (sk, tk+1], k = 1, 2, . . . ,m.

(2.2)

Proof. Assume that u satisfies (2.1). For t ∈ [0, t1], integrating the first equation of (2.1) from zero to
t, we obtain φp(cDα

0+u(t)) − φp(cDα
0+u(0)) =

∫ t

0
y(s)ds. Using the boundary condition φp(cDα

0+u(0)) = 0,
we have φp(cDα

0+u(t)) =
∫ t

0
y(s)ds.

Applying φ−1
p = φq on both sides of the equation φp(cDα

0+u(t)) =
∫ t

0
y(s)ds, we get

cDα
0+u(t) = φq(

∫ t

0
y(s)ds).

For t ∈ [0, t1], by Lemma 2.4, we have u(t) = 1
Γ(α)

∫ t

0
(t − s)α−1φq(

∫ s

0
y(τ)dτ)ds+a0+b0t. Then, u′(t) =

1
Γ(α−1)

∫ t

0
(t − s)α−2φq(

∫ s

0
y(τ)dτ)ds + b0.

Condition u(0) = 0, u′(0) = 0 further implies a0 = 0 and b0 = 0. Thus

u(t) =
1

Γ(α)

∫ t

0
(t − s)α−1φq(

∫ s

0
y(τ)dτ)ds.

For t ∈ (tk, sk], k = 1, 2, . . . ,m, applying the impulsive condition of (2.1), we find that

u(t) = Gk(t).
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In addition, for t ∈ (sk, tk+1], k = 1, 2, · · · ,m, integrating both sides from sk to t, we
obtain φp(cDα

0+u(t)) − φp(cDα
0+u(sk)) =

∫ t

sk
y(s)ds. Using the condition φp(cDα

0+u(sk)) = 0, we get

φp(cDα
0+u(t)) =

∫ t

sk
y(s)ds.

Applying φ−1
p = φq on both sides of the equation φp(cDα

0+u(t)) =
∫ t

sk
y(s)ds, we have

cDα
0+u(t) = φq(

∫ t

sk

y(s)ds).

By (i) of Lemma 2.4, we have u(t) = 1
Γ(α)

∫ t

0
(t − s)α−1φq(

∫ s

sk
y(τ)dτ)ds + ak + bkt. Then, u′(t) =

1
Γ(α−1)

∫ t

0
(t − s)α−2φq(

∫ s

sk
y(τ)dτ)ds + bk. Substituting u(sk), u′(sk) into the second equation of (2.1), we

obtain

ak = Gk(sk) − Hk(sk)sk −
1

Γ(α)

∫ sk

0
(sk − s)α−1φq(

∫ s

sk

y(τ)dτ)ds

+
sk

Γ(α − 1)

∫ sk

0
(sk − s)α−2φq(

∫ s

sk

y(τ)dτ)ds,

bk = Hk(sk) −
1

Γ(α − 1)

∫ sk

0
(sk − s)α−2φq(

∫ s

sk

y(τ)dτ)ds.

Consequently, we have

u(t) =
1

Γ(α)

∫ t

0
(t − s)α−1φq(

∫ s

sk

y(τ)dτ)ds −
1

Γ(α)

∫ sk

0
(sk − s)α−1φq(

∫ s

sk

y(τ)dτ)ds

+
sk

Γ(α − 1)

∫ sk

0
(sk − s)α−2φq(

∫ s

sk

y(τ)dτ)ds −
t

Γ(α − 1)

∫ sk

0
(sk − s)α−2

× φq(
∫ s

sk

y(τ)dτ)ds + Gk(sk) + Hk(sk)(t − sk).

This accomplish the proof. �

3. Main results

We first pose the following assumptions:
(H1) There exist a function$ ∈ L1([sk, tk+1],R+), and a non-decreasing function ν ∈ C([0,∞),R+)

such that ‖ f (t, u) ‖≤ $(t)ν(‖ u ‖PC), for each t ∈ [sk, tk+1], and all u ∈ R.
(H2) There exist a function ψk ∈ C([tk, sk],R+), and a non-decreasing function η ∈ C([0,∞),R+)

such that ‖ gk(t, u) ‖≤ ψk(t)η(‖ u ‖PC), for each t ∈ [tk, sk], and all u ∈ R.
(H3) There exist a function ϕk ∈ C([tk, sk],R+), and a non-decreasing function θ ∈ C([0,∞),R+)

such that ‖ hk(t, u) ‖≤ ϕk(t)θ(‖ u ‖PC), for each t ∈ [tk, sk], and all u ∈ R.
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Define an operator T : PC(J,R)→ PC(J,R) as follows:

Tu(t) =



1
Γ(α)

∫ t

0
(t − s)α−1φq(

∫ s

0
f (τ, u(τ))dτ)ds, t ∈ [0, t1],

gk(t, u(t)), t ∈ (tk, sk], k = 1, 2, · · · ,m,
1

Γ(α)

∫ t

0
(t − s)α−1φq(

∫ s

sk
f (τ, u(τ))dτ)ds

− 1
Γ(α)

∫ sk

0
(sk − s)α−1φq(

∫ s

sk
f (τ, u(τ))dτ)ds

+ sk
Γ(α−1)

∫ sk

0
(sk − s)α−2φq(

∫ s

sk
f (τ, u(τ))dτ)ds

− t
Γ(α−1)

∫ sk

0
(sk − s)α−2φq(

∫ s

sk
f (τ, u(τ))dτ)ds

+gk(sk, u(sk)) + hk(sk, u(sk))(t − sk), t ∈ (sk, tk+1], k = 1, 2, . . . ,m.

(3.1)

Let M = maxk=1,2,...,m ψk(sk), N = maxk=1,2,...,m ϕk(sk), K =
∫ 1

0
$(t)dt = ‖$‖L1

[0,1]
and Lk = sα−1

k

(
(α +

1)sk + αtk+1
)

+ tαk+1(k = 1, 2, . . . ,m). Now we are ready to state the following results.

Theorem 3.1. Assume that (H1) − (H3) are satisfied. Setting Br = {u ∈ PC(J,R) : ‖u‖PC ≤ r}, where

r ≥ max
{
φq

(
Kν(r)

)
tα1

Γ(α+1) ,
Lkφq

(
Kν(r)

)
Γ(α+1) + Mη(r) + Nθ(r)(tk+1 + sk)

}
,

then the problem (1.1) has at least one solution.

Proof. The proof is based on the steps given below:
Step 1. We show that T : PC(J,R) → PC(J,R) is continuous. Let {un}n∈N be a sequence such

that un → u in PC(J,R).
Case1. For t ∈ [0, t1], we have

‖(Tun)(t) − (Tu)(t)‖ ≤
1

Γ(α)

∫ t

0
(t − s)α−1

∥∥∥∥∥φq(
∫ s

0
f (τ, un(τ))dτ) − φq(

∫ s

0
f (τ, u(τ))dτ)

∥∥∥∥∥ ds

≤
(q − 1)ρq−2

Γ(α)

∫ t

0
(t − s)α−1( ∫ s

0
‖ f (·, un(·)) − f (·, u(·))‖ dτ

)
ds.

Case2. For t ∈ (tk, sk], k = 1, 2, . . . ,m, we have

‖(Tun)(t) − (Tu)(t)‖ ≤ ‖gk(·, un(·)) − gk(·, u(·))‖ .

Case3. For t ∈ (sk, tk+1], k = 1, 2, . . . ,m, we get

‖(Tun)(t) − (Tu)(t)‖

≤
1

Γ(α)

∫ t

0
(t − s)α−1

∥∥∥∥∥∥φq(
∫ s

sk

f (τ, un(τ))dτ) − φq(
∫ s

sk

f (τ, u(τ))dτ)

∥∥∥∥∥∥ ds

+
1

Γ(α)

∫ sk

0
(sk − s)α−1

∥∥∥∥∥∥φq(
∫ s

sk

f (τ, un(τ))dτ) − φq(
∫ s

sk

f (τ, u(τ))dτ)

∥∥∥∥∥∥ ds

+
sk

Γ(α − 1)

∫ sk

0
(sk − s)α−2

∥∥∥∥∥∥φq(
∫ s

sk

f (τ, un(τ))dτ) − φq(
∫ s

sk

f (τ, u(τ))dτ)

∥∥∥∥∥∥ ds

+
t

Γ(α − 1)

∫ sk

0
(sk − s)α−2

∥∥∥∥∥∥φq(
∫ s

sk

f (τ, un(τ))dτ) − φq(
∫ s

sk

f (τ, u(τ))dτ)

∥∥∥∥∥∥ ds
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+ ‖gk(sk, un(sk)) − gk(sk, u(sk)‖ + ‖hk(sk, un(sk)) − hk(sk, u(sk))‖ (t + sk)

≤
(q − 1)ρq−2

Γ(α)

∫ t

0
(t − s)α−1( ∫ s

sk

‖ f (·, un(·)) − f (·, u(·))‖ dτ
)
ds

+
(q − 1)ρq−2

Γ(α)

∫ sk

0
(sk − s)α−1( ∫ s

sk

‖ f (·, un(·)) − f (·, u(·))‖ dτ
)
ds

+
sk(q − 1)ρq−2

Γ(α − 1)

∫ sk

0
(sk − s)α−2( ∫ s

sk

‖ f (·, un(·)) − f (·, u(·))‖ dτ
)
ds

+
tk+1(q − 1)ρq−2

Γ(α − 1)

∫ sk

0
(sk − s)α−2( ∫ s

sk

‖ f (·, un(·)) − f (·, u(·))‖ dτ
)
ds

+ ‖gk(·, un(·)) − gk(·, u(·)‖ + ‖hk(·, un(·)) − hk(·, u(·))‖ (tk+1 + sk).

Thus, we conclude from the above cases that ‖Tun − Tu‖PC → 0, as n → ∞. This implies that T is
continuous.

Step 2. The operator T is uniformly bounded.
Case 1. For u ∈ Br and when t ∈ [0, t1], we have

‖Tu(t)‖ ≤
1

Γ(α)

∫ t

0
(t − s)α−1φq(

∫ s

0
‖ f (τ, u(τ))‖ dτ)ds

≤
1

Γ(α)

∫ t

0
(t − s)α−1φq(

∫ s

0
$(τ)ν(‖u‖PC)dτ)ds

≤
φq

(
Kν(r)

)
tα1

Γ(α + 1)
≤ r.

Case 2. For u ∈ Br and when t ∈ (tk, sk], k = 1, 2, . . . ,m, we obtain

‖Tu(t)‖ ≤ ‖gk(t, u(t))‖ ≤ ψk(sk)η(r) ≤ r.

Case 3. For u ∈ Br and when t ∈ (sk, tk+1], k = 1, 2, . . . ,m, we get

‖Tu(t)‖ ≤
1

Γ(α)

∫ t

0
(t − s)α−1φq(

∫ s

sk

‖ f (τ, u(τ))‖ dτ)ds

+
1

Γ(α)

∫ sk

0
(sk − s)α−1φq(

∫ s

sk

‖ f (τ, u(τ))‖ dτ)ds

+
sk

Γ(α − 1)

∫ sk

0
(sk − s)α−2φq(

∫ s

sk

‖ f (τ, u(τ))‖ dτ)ds

+
t

Γ(α − 1)

∫ sk

0
(sk − s)α−2φq(

∫ s

sk

‖ f (τ, u(τ))‖ dτ)ds

+ ‖gk(sk, u(sk))‖ + ‖hk(sk, u(sk))‖ (t + sk)

≤
1

Γ(α)

∫ t

0
(t − s)α−1φq(

∫ s

sk

$(τ)ν(‖u‖PC)dτ)ds

+
1

Γ(α)

∫ sk

0
(sk − s)α−1φq(

∫ s

sk

$(τ)ν(‖u‖PC)dτ)ds
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+
sk

Γ(α − 1)

∫ sk

0
(sk − s)α−2φq(

∫ s

sk

$(τ)ν(‖u‖PC)dτ)ds

+
t

Γ(α − 1)

∫ sk

0
(sk − s)α−2φq(

∫ s

sk

$(τ)ν(‖u‖PC)dτ)ds

+ ψk(sk)η(r) + ϕk(sk)θ(r)(tk+1 + sk)

≤
φq

(
Kν(r)

)
tαk+1

Γ(α + 1)
+
φq

(
Kν(r)

)
sαk

Γ(α + 1)
+
φq

(
Kν(r)

)
sαk

Γ(α)
+
φq

(
Kν(r)

)
sα−1

k tk+1

Γ(α)
+ ψk(sk)η(r) + ϕk(sk)θ(r)(tk+1 + sk)

≤
Lkφq

(
Kν(r)

)
Γ(α + 1)

+ Mη(r) + Nθ(r)(tk+1 + sk) ≤ r.

Therefore, T (Br) is uniformly bounded.
Step 3. T maps a bounded set into an equicontinuous set of B(r).
Case 1. For e1, e2 ∈ [0, t1], with e1 < e2, e1 < ξ < e2, u ∈ B(r), we get

‖(Tu)(e2) − (Tu)(e1)‖ ≤
∥∥∥∥∥ 1
Γ(α)

∫ e1

0
(e2 − s)α−1φq(

∫ s

0
f (τ, u(τ))dτ)ds

−
1

Γ(α)

∫ e1

0
(e1 − s)α−1φq(

∫ s

0
f (τ, u(τ))dτ)ds

+
1

Γ(α)

∫ e2

e1

(e2 − s)α−1φq(
∫ s

0
f (τ, u(τ))dτ)ds

∥∥∥∥∥∥
≤

1
Γ(α)

∫ e1

0

∥∥∥(e2 − s)α−1 − (e1 − s)α−1
∥∥∥ φq(

∫ s

0
‖ f (τ, u(τ))‖ dτ)ds

+
1

Γ(α)

∫ e2

e1

(e2 − s)α−1φq(
∫ s

0
‖ f (τ, u(τ))‖ dτ)ds

≤
φq

(
Kν(r)

)
Γ(α + 1)

(eα2 − eα1 ) ≤
φq

(
Kν(r)

)
αξα−1

Γ(α + 1)
(e2 − e1).

Case 2. For e1, e2 ∈ (tk, sk], k = 1, 2, . . . ,m, with e1 < e2, u ∈ B(r), we have

‖(Tu)(e2) − (Tu)(e1)‖ = ‖gk(e2, u(e2)) − gk(e1, u(e1))‖ → 0 as e1 → e2.

Case 3. For e1, e2 ∈ (sk, tk+1], k = 1, 2, . . . ,m, with e1 < e2, e1 < ξ < e2, u ∈ B(r), we have

‖(Tu)(e2) − (Tu)(e1)‖ ≤

∥∥∥∥∥∥ 1
Γ(α)

∫ e1

0
((e2 − s)α−1 − (e1 − s)α−1)φq(

∫ s

sk

f (τ, u(τ))dτ)ds

+
1

Γ(α)

∫ e2

e1

(e2 − s)α−1φq(
∫ s

sk

f (τ, u(τ))dτ)ds

∥∥∥∥∥∥
+

(e2 − e1)
Γ(α − 1)

∫ sk

0
(sk − s)α−2φq(

∫ s

sk

‖ f (τ, u(τ))‖ dτ)ds

+ ‖hk(sk, u(sk))‖ (e2 − e1)

≤
φq

(
Kν(r)

)
Γ(α + 1)

(eα2 − eα1 ) +
sα−1

k φq
(
Kν(r)

)
(e2 − e1)

Γ(α)
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+ ϕk(sk)θ(r)(e2 − e1)

≤
[φq

(
Kν(r)

)
α(ξα−1 + sα−1

k )
Γ(α + 1)

+ Nθ(r)
]
(e2 − e1).

As e2 → e1, the right-hand side of the above inequality is independent of u and tends to zero, which
means that T (Br) is equicontinuous. From Arzela-Ascoli theorem, T is compact. By using Schauder
fixed point theorem, T has at least one fixed point u ∈ Br. Therefore, the problem (1.1) has at least one
positive solution u in Br. �

4. An example

In this section, we give an example to illustrate our main results.
Example 4.1 Consider the following equation

(
φ 3

2
(cD

4
3
0+u(t))

)′
=

|u(t)|
(1+et)(1+|u(t)|) , t ∈ (0, 1

4 ] ∪ (1
2 ,

3
4 ],

u(t) =
|u(t)|

(6+16t2)(1+|u(t)|) , u
′(t) =

|u(t)|
(8+4t)(1+|u(t)|) , t ∈ ( 1

4 ,
1
2 ],

u(0) = u′(0) = 0, φp(cDα
0+u(sk)) = 0, k = 0, 1, 2,

(4.1)

where α = 4
3 , p = 3

2 , q = 3, J = [0, 1] and 0 = s0 < t1 = 1
4 < s1 = 1

2 < t2 = 3
4 = s2 < t3 = 1,m = 2.

Set f (t, u(t)) =
|u(t)|

(1+et)(1+|u(t)|) , g1(t, u(t)) =
|u(t)|

(6+16t2)(1+|u(t)|) , h1(t, u(t)) =
|u(t)|

(8+4t)(1+|u(t)|) .
For all u ∈ R and each t ∈ (0, 1

4 ] ∪ (1
2 ,

3
4 ], then we have ‖ f (t, u)‖ ≤ 1

2 ‖ u ‖PC, $(t) = 1
2 , ν(t) =

√
t.

For all u ∈ R and each t ∈ ( 1
4 ,

1
2 ], we have ‖g1(t, u)‖ ≤ 1

7 ‖ u ‖PC, ‖h1(t, u)‖ ≤ 1
9 ‖ u ‖PC, ψ1(t) = 1

7 :=
M, ϕ1(t) = 1

9 := N, η(t) = θ(t) = t.

Obviously, the inequality r ≥ max
{
φq

(
Kν(r)

)
tα1

Γ(α+1) ,
L1φq

(
Kν(r)

)
Γ(α+1) + Mη(r) + Nθ(r)(t2 + s1)

}
reduces to r ≥

max {0.0331r, 0.7976r} = 0.7976r, which holds for every r > 0.
Thus, all the assumptions in Theorem 3.1 are satisfied, our results can be applied to the problem

(1.1).

5. Conclusions

In this paper, we studied the existence of solutions for multipoint boundary value problems of
impulsive fractional differential equations with p-Laplacian operator. By using fixed point theorem,
we obtained some sufficient conditions for the existence of a solution for the boundary value problem
of non-instantaneous impulsive fractional differential equations with p-Laplacian operator and Caputo
derivative of order α ∈ (1, 2]. We also presented an example to illustrate that our established results
are applicable. In future studies, the concept can be applied to highly complex problems, including
solving high order non-instantaneous impulsive differential equations.
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