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Abstract: To solve the problems of curves and surfaces approximation with normalized totally
positive bases, a new progressive and iterative approximation for least square fitting method called
HSS-LSPIA is proposed, which is based on the HSS iterative approach for solving linear equations
of LSPIA. The HSS-LSPIA format includes two iterations with iterative difference vectors, each of
which is distinct from the other. The approximate optimal positive constant, as well as convergence
analyses, are provided. Furthermore, the HSS-LSPIA method can be faster than the ELSPIA, LSPIA,
and WHPIA methods in terms of convergence speed. Numerical results verify this phenomenon.
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1. Introduction

Geometric iteration techniques (GI) are a subcategory of iterative linear algebraic methods for
solving linear equations that have gained popularity as a data-fitting tool in recent years. Since its
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introduction, geometric iteration approaches in geometric design, including computer-aided design
(CAD), differential equations, statistics, and approximation theory, have been widely used in many
areas of research and practical applications. The progressive and iterative approximation (PIA)
method presented by Lin et al. [1] is an adaptable and stable approach to data fitting that belongs to
the geometric iteration methods category. The PIA method can be applied to interpolate and
approximate curves and surfaces with normalized totally positive (NTP) bases.

Moreover, the EPIA method [2] is extended to approximate a given data points set. The EPIA
organizes the data points into groups with equal to the amount of control points as there are control
points. Each group represents a control point and then executes PIA-format iterative approximation.
However, the limit of the generated curves and surfaces sequence is not the least square fitting (LSF)
result to the data points set. Then, Deng and Lin proposed the LSPIA method [3], in which the least
square fitting (LSF) result to the data set with the B-spline basis is the limit of the generated curves
and surfaces sequence. Ebrahimi and Loghman [4] presented a composite iterative procedure for the
progressive and iteration approximation for generates a sequence of matrices based on the Schulz
iterative method which it uses in the adjusting vectors. In addition, Lin et al. [5] also gives an review
of interpolation and approximation geometric iteration methods, as well as local characteristics and
accelerating methods, as well as demonstrating convergence.

Recently, Wang [6] presented an extended the progressive and iterative approximation for least
square fitting (ELSPIA) approach with global and local relaxation parameters, which converges faster
than the LSPIA method [3] in terms of iterative steps and computing time. In this article, we propose
the Hermitian and skew-hermitian splitting methods for least squares fitting on a progressive-iterative
approximation, can theoretically reduce the approximation error to zero.

The PIA [1] is an iterative approach for solving a system of linear equations BP = Q, as we know,
where B = {Bi(t j)}n,mi, j=1 is a collocation matrix with 0 = t1 < t2 < t3 < · · · < tm = 1 and n = m, {Q j}

m
j=1

refers to a collection of data points and {Pi}
n
i=1 refers to a collection of control points. When all of

the entries in each row of the blending basis matrix B add up to 1, B is normalized. Consider that if
all of a matrix’s minors are non-negative, it is totally positive. The basis is considered to be totally
positive if all of the collocation matrices are totally positive. As a result, the blending basis matrix B is
normalized totally positive (NTP), and the NTP basis is the corresponding basis. The NTP bases have
traditionally been related to shape-preserving representations [7]. The majority of curve and surface
representations used in computer-aided design, such as the Bernstein basis and the B-spline basis, are
based on NTP bases.

Using the Hermitian and skew-Hermitian splits, Bai et al. [8] presented an iteration approach (HSS).
Hu et al. [9] developed a new PIA iterative algorithm and its weighted form for progressive iterative
interpolation of data points based on the HSS-iteration approach, using NTP bases, namely HPIA and
WHPIA, respectively. These two approaches’ iterative processes formally consist of two iterations,
with the iterative distinction vectors in the two iterations differing.

As we know, the LSPIA [3, 10] and ELSPIA [6] are the iteration approaches for solving a system
of linear equations µBT BP = BT Q, where B = {Bi(t j)}n,mi, j=1 is a collocation matrix with 0 = t1 < t2 <

t3 < · · · < tm = 1 and m ≥ n, µ is constant satisfying the condition 0 < µ < 2
λ0

with λ0 is the largest
eigenvalue of BT B, {Q j}

m
j=1 refers to a collection of data points and {Pi}

n
i=1 refers to control points.

According to theoretical analysis [8], the HSS-iteration consistently converges unconditionally to
the exact solution of the system of linear equations Ax = b, where A ∈ Cn×n and non-singular. Using
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the HSS-iteration approach, we propose a new procedure, called the HSS-LSPIA method, for solving a
system of linear equations of LSPIA such that A = µBT B , x = P and b = BT Q, where B = {Bi(t j)}n,mi, j=1 ∈

Rm×n is a collocation matrix with m ≥ n.
The paper is organized as the following: Section 2 presents preliminaries. Section 3 shows the

iterative format of the HSS-LSPIA method schemes for curves and surfaces with NTP bases
respectively. And proves the convergence of HSS-LSPIA in the case of curves and surfaces in this
section. In Section 4, we present the experimental results of five examples show that the HSS-LSPIA
method is more effectively efficient than the LSPIA [3], ELSPIA [6] and WHPIA [9]. Finally, in
Section 5, some conclusions are summarized.

2. Preliminaries

2.1. LSPIA and ELSPIA

For any blending curves and surfaces fitting, we’ll go through the progressive iterative
approximation property. For the ordered point set {Q j}

m
j=1, select control point set {Pi}

n
i=1 from {Q j}

m
j=1

with m ≥ n, let {Q j}
m
j=1 be the assigned parameters to {Q j}

m
j=1, choose B = {Bi(t j)}n,mi, j=1 as an NTP basis.

For the ELSPIA method [6], let γ0
j = 0, j = 1, 2, . . . ,m, and P0

i = Pi, i = 1, 2, . . . , n be weighted
sum and the initial control points, respectively, we can obtain the (k + 1)th blending curve,

Ck+1(t) =

n∑
i=1

Bi(t)Pk+1
i , t ∈ [0, 1]. (2.1)

We update the control points

Pk+1
i = Pk

i + ∆k+1
i , i = 1, 2, . . . , n, (2.2)

by adjusting vector

∆k+1
i = µ

m∑
j=1

Bi(t j)γk+1
j , i = 1, 2, . . . , n, (2.3)

with the inner iteration
γk+1

j = (1 − ω)γk
j + ωδk

j, j = 1, 2, . . . ,m, (2.4)

and the difference vector

δk
j = Q j −

n∑
i=1

Bi(t j)Pk
i , j = 1, 2, . . . ,m. (2.5)

The parameters ω and µ both satisfy the condition in this case

0 < ω < 2, 0 < µ <
2(2 − ω)
ωσ2

0

(2.6)

where σ0 stands for the collocation matrix B’s largest singular value.
When the parameters ω and µ are satisfy as to the following

ω = 1, 0 < µ <
2
σ2

0

(2.7)
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the LSPIA method [3] is a special case of the ELSPIA method for blending curve fitting.
In the case of the surface, two NTP bases are required. In both directions t and v, a Kronecker

product is formed by {Bi(t)}
n1
i=1 and {N j(v)}n2

j=1. We given the initial control points {P0
i j}

n1,n2
i, j=1, with a real

increasing parameters set {t0
h}

m1
h=1, i.e. 0 = t1 < t2 < t3 < · · · < tm1 = 1 and {v0

l }
m2
l=1, i.e. 0 = v1 < v2 <

v3 < · · · < vm2 = 1. We select {Pi j}
n1,n2
i, j=1 from the ordered point set {Qi j}

m1,m2
i, j=1 . The sequence of surface

iterations C(k+1)(t, v) is related to that of the curve case with k ≥ 0;

Ck+1(t, v) =

n1∑
i=1

n2∑
j=1

Bi(t)N j(v)Pk+1
i, j . (2.8)

We update the control points

Pk+1
i j = Pk

i j + ∆k+1
i j , i = 1, 2, . . . , n1, j = 1, 2, . . . , n2, (2.9)

by adjusting vector

∆k+1
i j = µ

m1∑
h=1

m2∑
l=1

Bi(th)N j(vl)γk+1
hl , i = 1, 2, . . . , n1 and j = 1, 2, . . . , n2, (2.10)

with the inner iteration

γk+1
i j = (1 − ω)γk

i j + ωδk
i j, i = 1, 2, . . . ,m1, j = 1, 2, . . . ,m2, (2.11)

and the difference vector

δk
i j = Qi j −

n1∑
h=1

n2∑
l=1

Bi(t j)Bi(th)N j(vl)γk
hl, (2.12)

with i = 1, 2, . . . ,m1 and j = 1, 2, . . . ,m2, where µ is the global relaxation parameter and ω is the local
relaxation parameter satisfy

0 < ω < 2, 0 < µ <
2(2 − ω)
ωσ2

B0σ
2
N0

(2.13)

where σB0 and σN0 are the largest singular values of the collocation matrix B and N, which correspond
to the bases {Bi(t)}

n1
i=1 and {N j(v)}n2

j=1, respectively.
When the parameters ω and µ are satisfy as to the following

ω = 1, 0 < µ <
2(2 − ω)
ωσ2

B0σ
2
N0

. (2.14)

the LSPIA method [3] is a special case of the ELSPIA method for blending surface fitting.
Let

Γk+1 = [γk+1
0 , γk+1

1 , . . . , γk+1
m ]T , k ≥ 0,

Pk+1 = [Pk+1
0 , Pk+1

1 , . . . , Pk+1
n ]T , k ≥ 0,

and
Q = [Q0,Q1, . . . ,Qn]T .

According to updating the control points in the case of curve (2.2), we revise the iterative form with
(2.3)–(2.5) as the matrix iterative form in the same matrix form as updating the control points in the
case of surface (2.9). We then rewrite with (2.10)–(2.12) as follows Γk+1 = (1 − ω)Γk + ω(Q − BPk),

Pk+1 = Pk + µBT Γk+1, k ≥ 0.
(2.15)
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2.2. HSS-iteration

Many problems in scientific computing lead to a system of linear equations

BP = Q, B ∈ Cm×m is nonsingular, P,Q ∈ Cm, (2.16)

with B a large sparse non-Hermitian and positive definite matrix.
Iterative methods for the system of linear equations (2.16) require efficient splittings of the

coefficient matrix B. For example, the Jacobi and the Gauss-Seidel iterations [11–16] split the matrix
B into its diagonal and off-diagonal part. Because the matrix B naturally possesses a
Hermitian/skew-Hermitian splitting (HSS) [17, 18]

B = H + S , (2.17)

where
H =

1
2

(B + BT ) and S =
1
2

(B − BT ), (2.18)

Bai et al. presented the Hermitian/skew-hermitian splitting (HSS) iteration approach [9] as a new way
to solve a system of linear equations (2.16). We’ll pretend that we’ve recieved the iteration sequence
until Pk+1 (k ≥ 1) converges. Then, the HSS iteration can compute from the format as (αI + H)Pk+ 1

2 = (αI − S )Pk + Q,

(αI + S )Pk+1 = (αI − H)Pk+ 1
2 + Q,

(2.19)

where I is the identity matrix and α is a positive constant.
They have also proved this method converges unconditionally to the exact solution of the system of

linear equations (2.16). The upper bound of the contraction factor of the HSS iteration is dependent on
the spectrum of the Hermitian part H but is independent of the spectrum of the skew-Hermitian part S
as well as the eigenvectors of the matrices H,S , and B.

2.3. WHPIA iteration

Hu et al. [9] presented a new PIA iterative technique and its weighted edition for progressive
iterative interpolation of data points based on the HSS-iteration approach, using NTP bases called
HPIA and WHPIA, respectively. The WHPIA method typically converges faster than the HPIA
method in the majority of cases. Following that, we briefly review the WHPIA’ iterative processes,
which formally consist of two iterations with different iterative distinction vectors in the two
iterations, and set up a function based on NTP bases like a perturbation term in the iteration process.

The case of a curve with an NTP basis {Bi(t)}mi=1 and a collection of data points to be interpolated
{Qi}

m
i=1. Then, with a real increasing parameters set {ti}

m
i=1 i.e. 0 = t1 < t2 < t3 < · · · < tm = 1, use these

data points to be the initial control points {P0
i }

m
i=1 and {P

1
2
i }

m
i=1. The initial blending curve can be formed

as follows:

C0(t) =

m∑
i=1

Bi(t)P0
i , t ∈ [0, 1], (2.20)

and

C
1
2 (t) =

m∑
i=1

Bi(t)P
1
2
i , t ∈ [0, 1]. (2.21)
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Then, the sequence of curves Ck(t) for k ≥ 1 as the following

Ck(t) =

m∑
i=1

Bi(t)Pk
i , t ∈ [0, 1], (2.22)

where 

Pk
i = Pk− 1

2
i + ω∆k

1i,

∆k
1i = P0

i −

[
1
2 (Ck(ti) + Ck− 1

2 (ti)) + 1
2 (Ck− 1

2 (Bi) + Ck(Bi))
]
,

Pk+ 1
2

i = Pk
i + ω∆k

2i,

∆k
2i = P0

i −

[
1
2 (Ck−1(ti) + Ck− 1

2 (ti)) + 1
2 (Ck− 1

2 (Bi) + Ck−1(Bi))
]
.

(2.23)

In (2.23), Ck(Bi) is defined as follows

Ck(Bi) =

m∑
j=1

Bi(t j)Pk
j, i = 1, 2, . . . ,m, k = 0,

1
2
, 1, . . . ,

which is a function that receives the blending bases as variables.
Surface fitting with two NTP bases {Bi(t)}

n1
i=1, {N j(v)}n2

j=1, and a collection of data points {Qi j}
n1,n2
i, j=1

to be interpolated. Then, using these data points to be the initial control points {P0
i j}

n1,n2
i, j=1, with a real

increasing parameters set {t0
i }

n1
i=1, i.e. 0 = t1 < t2 < t3 < · · · < tn1 = 1 and {v0

j}
n2
j=1, i.e. 0 = v1 < v2 < v3 <

· · · < vn2 = 1. The initial blending surface can be created as follows:

C0(t, v) =

n1∑
i=1

n2∑
j=1

Bi(t)N j(v)P0
i, j, t, v ∈ [0, 1]. (2.24)

Then, the sequence of surfaces Ck+1(t, v) for k ≥ 1, can be compute as follows

Ck(t, v) =

n1∑
i=1

n2∑
j=1

Bi(t)N j(v)Pk
i, j, (2.25)

where 

Pk
i j = Pk− 1

2
i j + ω∆k

1i j,

∆k
1i j = P0

i j −

[
1
2 (Ck(ti, v j) + Ck− 1

2 (ti, v j)) + 1
2 (Ck− 1

2 (Bi,N j) + Ck(Bi,N j))
]
,

Pk+ 1
2

i j = Pk
i j + ω∆k

2i j,

∆k
2i j = P0

i j −

[
1
2 (Ck−1(ti, v j) + Ck− 1

2 (ti, v j)) + 1
2 (Ck− 1

2 (Bi,N j) + Ck−1(Bi,N j))
]
.

(2.26)

We can use the following expression in (2.26) as a perturbation term in the iteration process, even as
we appear to have done with a curve;

Ck(Bi,N j) =

n1∑
i=1

n2∑
j=1

Bi(t)N j(v)Pk
i j, k = 0,

1
2
, 1, . . . .

The WHPIA format of curves and surface, which involves two iterations and substituting the sequential
iterative process length of each control point in PIA, is referred to as (2.23) and (2.26), respectively.
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3. Iterative format of HSS-LSPIA

As we know, the PIA [1] is an iterative approach for solving a system of linear equations BP = Q,
B ∈ Cm×n with n = m. The matrix form of PIA method as

Pk+1 = Pk +
(
Q − BPk

)
= (I − B) Pk + Q, (3.1)

and the LSPIA [3, 10] and ELSPIA [6] are the iteration approaches for solving a system of linear
equations µBT BP = BT Q, B ∈ Cm×n with m ≥ n. The matrix form of LSPIA method as

Pk+1 = Pk + µBT
(
Q − BPk

)
=

(
I − µBT B

)
Pk + µBT Q. (3.2)

For an NTP basis {Bi(t j)}n,mi, j=1 and a data set points {Q j}
m
j=1 to be fitted in either Rm×2 or Rm×3. We use all

these data points to be the initial control points {P0
i }

n
i=1 in Rn×2 or Rn×3 and combine the HSS-iteration

with the LSPIA method for solving a system of linear equations

µBT BP = BT Q, B ∈ Cm×n (m ≥ n). (3.3)

The matrix form of HSS-LSPIA method as the following (αI + H)Pk+ 1
2 = (αI − S )Pk + µBT Q,

(αI + S )Pk+1 = (αI − H)Pk+ 1
2 + µBT Q,

(3.4)

where

H =
µ

2

(
BT B +

(
BT B

)T
)

=
µ

2

(
BT B + BT B

)
= µBT B (3.5)

and

S =
µ

2

(
BT B −

(
BT B

)T
)

=
µ

2

(
BT B − BT B

)
= 0. (3.6)

We can rewrite (3.4) as  (αI + µBT B)Pk+ 1
2 = (αI)Pk + µBT Q,

(αI)Pk+1 = (αI − µBT B)Pk+ 1
2 + µBT Q.

(3.7)

Then, we have
αIPk+ 1

2 + µBT BPk+ 1
2 = αIPk + µBT Q, (3.8)

and
αIPk+1 = αIPk+ 1

2 − µBT BPk+ 1
2 + µBT Q. (3.9)
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By (3.8) and (3.9), we get

αIPk+1 = αIPk + µBT Q − µBT BPk+ 1
2 + µBT Q − µBT BPk+ 1

2 . (3.10)

So,
Pk+1 = Pk +

µ

α
BT

(
Q − BPk+ 1

2
)

+
µ

α
BT

(
Q − BPk+ 1

2
)
. (3.11)

Let
Pk+ 1

2
i = Pk +

µ

α
BT

(
Q − BPk+ 1

2
)

and
∆k

i =
µ

α
BT

(
Q − BPk+ 1

2
)
,

then
Pk+1

i = Pk+ 1
2

i + ∆k
i . (3.12)

Remark 3.1. Since the skew-Hermitian part S = 0, HSS-LSPIA can called shifted splitting LSPIA [19].

3.1. The curve case

Considering an NTP basis {Bi(t j)}n,mi, j=1 with m ≥ n and a data set points {Q j}
m
j=1 to be fitted in

either Rm×2 or Rm×3. The initial blending curve C0(t) and C
1
2 (t) can then be generated using all these

data points to be the initial control points {P0
i }

n
i=1 in Rn×2 or Rn×3 and {P

1
2
i }

n
i=1, with a real increasing

parameters set {ti}
m
i=1 i.e. 0 = t1 < t2 < t3 < · · · < tm = 1. The initial blending curve can be formed as

follows:

C0(t) =

n∑
i=1

Bi(t)P0
i , t ∈ [0, 1] (3.13)

and

C
1
2 (t) =

n∑
i=1

Bi(t)P
1
2
i , t ∈ [0, 1]. (3.14)

Then, the remaining curve of the sequence Ck+1(t) for k ≥ 0, can be compute as following:

Ck+1(t) =

n∑
i=1

Bi(t)Pk+1
i , t ∈ [0, 1], (3.15)

where 
Pk+1

i = Pk+ 1
2

i + ∆k
i ,

∆k
i =

µ

α
BT

(
Qi −Ck+ 1

2 (ti)
)
,

Pk+ 1
2

i = Pk
i +

µ

α
BT

(
Qi −Ck+ 1

2 (ti)
)
.

(3.16)

In (3.16), Ck+ 1
2 (t j) is defined as the following:

Ck+ 1
2 (t j) =

n∑
i=1

Bi(t j)P
k+ 1

2
i , k = 0, 1, 2, . . . . (3.17)
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Both global and local relaxation parameters, µ and α are satisfied as

0 < µ <
2
λmax

, α > 0 (3.18)

where λmax denotes the largest eigenvalue of BT B. If (3.16) converge, then

lim
k→∞

Pk
i = lim

k→∞
Pk+ 1

2
i = lim

k→∞
Pk+1

i , (3.19)

the HSS-LSPIA format of curves, including of two iterations and substituting the sequential iterative
process from each control point in LSPIA, is recognized as (3.16).

Remark 3.2. From (3.16), we will get limk→∞Ck+1(ti) exist, if for any ε > 0 there is a natural number
A , when k > A , ‖Pk+1

i − Pk
i ‖ < ε. Furthermore, whether the spectral radius of the iterative matrix Pk+1

in (3.11) is less than 1 affects convergence.

3.2. Convergence analysis of the HSS-LSPIA curve fitting

Lemma 3.3. [1] Given an NTP basis {Bi(t j)}n,mi, j=1 with m ≥ n and BT B is nonsingular collocation
matrix. And assuming that λi(BT B), i = 1, 2, . . . , n is eigenvalue of BT B, then 0 < λi(BT B) ≤ 1.

Let B ∈ Cm×n, B = Mi−Ni (i = 1, 2) be two splitting of the matrix B. In the matrix form, Eq (3.16)’s
two iterative processes can be written as M1Pk+ 1

2 = N1Pk + µBT Q,

M2Pk+1 = N2Pk+ 1
2 + µBT Q,

(3.20)

where M1 = (αI + µBT B), N1 = αI, M2 = αI,N2 = (αI − µBT B), I is identity matrix. Then we can
rewrite (3.20) as a unified matrix iteration format as follows

Pk+1 = M−1
2 N2M−1

1 N1Pk + µM−1
2 (I + N2M−1

1 )BT Q, k = 0, 1, 2, . . . (3.21)

or
Pk+1 = MPk + µM0BT Q, k = 0, 1, 2, . . . (3.22)

where M = M−1
2 N2M−1

1 N1 and M0 = M−1
2 (I + N2M−1

1 ).
Now we have to show that the iterative control point sequence {Pk+1} leads to the unique solution

P∗, i.e. ρ(M) < 1.

Theorem 3.4. Let B ∈ Cm×n with m ≥ n be a positive definite matrix, let H =
µ

2

(
BT B +

(
BT B

))
= µBT B

and S =
µ

2

(
BT B −

(
BT B

))
= 0 be its Hermitian ans skew-Hermitian part, and given α be a positive

constant. The HHS-LSPIA iteration’s iteration matrix M(α) is then provided by

M(α) = (αI + S )−1(αI − H)(αI + H)−1(αI − S )

or
M(α) = (αI)−1(αI − µBT B)(αI + µBT B)−1(αI) (3.23)
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and the spectral radius of M̂(α) is ρ(M̂(α)), bounded by

σ(α) ≡ max
λi∈λ(H)

∣∣∣∣∣∣α − λi

α + λi

∣∣∣∣∣∣,
where the spectral set of the matrix H is λ(H).

As a consequence, it maintains that

ρ(M(α)) ≤ σ(α) < 1 ∀α > 0,

i.e., the HHS-LSPIA iteration converges to the unique solution P∗ of the linear equation (3.3).

Proof. By the resemblance invariance to the matrix spectrum, we have

ρ(M(α)) = ρ((αI)−1(αI − µBT B)(αI + µBT B)−1(αI))
= ρ((αI − µBT B)(αI + µBT B)−1(αI)(αI)−1)
≤ ||(αI − µBT B)(αI + µBT B)−1(αI)(αI)−1||2

≤ ||(αI − µBT B)(αI + µBT B)−1||2.||(αI)(αI)−1||2.

We know that (αI)(αI)−1 = I which is unitary matrix i.e. , ||(αI)(αI)−1||2 = 1. Then , we get

ρ(M(α)) < ||(αI − µBT B)(αI + µBT B)−1||2 = max
λi∈λ(H)

∣∣∣∣∣∣α − λi

α + λi

∣∣∣∣∣∣.
Since λi > 0 (i = 1, 2, 3, . . . , n) and α is positive constant, it is easy to see that ρ(M(α)) ≤ ρ(α) < 1. �

Corollary 3.5. Under the same assumption of Theorem 3.4. Let λmax and λmin be the maximum and the
minimum eigenvalues of BT B, respectively. Then, we have the approximate fastest convergence rate of
HHS-LSPIA methed for the curve fitting when

α∗ = µ
√
λmax(BT B)λmin(BT B) (3.24)

where µ = 2
λmax+λmin

presented in [3].

Proof. In [8], it is shown that the optimal spectral radius. Now,

σ(α) ≡ max
{∣∣∣∣∣∣α − λmin

α + λmin

∣∣∣∣∣∣,
∣∣∣∣∣∣α − λmax

α + λmax

∣∣∣∣∣∣
}
.

To compute an approximate optimal α > 0 such that the convergence factor ρ(M(α)) of the HSS-
LSPIA iteration is minimized, we can minimize the upper bound σ(α) of ρ(M(α)) instead. If α∗ is
such a minimum point, then it must satisfy α∗ − λmin > 0, α∗ − λmax < 0, and

α∗ − λmin

α∗ + λmin
=
λmax − α

∗

λmax − α∗
.

Therefore,

α∗ =
√
λmax(µBT B)λmin(µBT B)

or

α∗ = µ
√
λmax(BT B)λmin(BT B).

�
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Remark 3.6. From (3.16) and Corollary 3.5, we will get µ

α
=

µ

µ
√
λmax(BT B)λmin(BT B)

= 1√
λmax(BT B)λmin(BT B)

=

ω. Then, we use the ω = 1√
λmax(BT B)λmin(BT B)

for compute in (3.16) instead of µ

α
.

3.3. The surface case

Let two NTP bases {Bi(ti′)}
n1,m1
i,i′=1 ∈ C

m1×n1 , {N j(v j′)}
n2,m2
j, j′=1 ∈ C

m2×n2 , and a data set points {Qi′ j′}
m1,m2
i′, j′=1

∈ R(m1×m2)×3 to be fitted, where m1 ≥ m2 ≥ n1 ≥ n2. The initial blending surface C0(t, v) and C
1
2 (t, v)

can then be generated using all these data points to be the initial control points {P0
i j}

n1,n2
i, j=1 ∈ R

(n1×n2)×3 and

{P
1
2
i j}

n1,n2
i, j=1, with a real increasing parameters set {ti′}

m
i′=1 i.e. 0 = t1 < t2 < t3 < · · · < tm = 1. The initial

blending surface can be formed as follows:

C0(t, v) =

n1∑
i=1

n2∑
j=1

Bi(t)N j(v)P0
i, j, t, v ∈ [0, 1], (3.25)

and

C
1
2 (t, v) =

n1∑
i=1

n2∑
j=1

Bi(t)N j(v)P
1
2
i, j, t, v ∈ [0, 1]. (3.26)

Let D = BT B ⊗ NT N where ⊗ is Kronecker product. Then, the remaining surfaces of the sequence
Ck+1(t, v) for k ≥ 0, can be compute as follows:

Ck+1(t, v) =

n1∑
i=1

n2∑
j=1

Bi(t)N j(v)Pk+1
i, j , (3.27)

where 
Pk+1

i, j = Pk+ 1
2

i, j + ∆k
i, j

∆k
i, j =

µ

α
DT

(
Qi, j −Ck+ 1

2 (ti, v j)
)

Pk+ 1
2

i, j = Pk
i, j +

µ

α
DT

(
Qi, j −Ck+ 1

2 (ti, v j)
)
.

(3.28)

We can use the following expression in (3.28) as in the case of curves:

Ck+ 1
2 (ti, v j) =

n1∑
i=1

n2∑
j=1

Bi(t)N j(v)Pk+ 1
2

i, j , k = 0, 1, 2, . . . . (3.29)

If (3.28) converge, then
lim
k→∞

Pk
i, j = lim

k→∞
Pk+ 1

2
i, j = lim

k→∞
Pk+1

i, j (3.30)

the HSS-LSPIA format of surfaces, including two iterations and substituting the sequential iterative
process length from each control point in LSPIA, is recognized as (3.28).

3.4. Convergence analysis of the HSS-LSPIA surface fitting

Lemma 3.7. [1] Given an NTP bases {Bi(ti′)}
n1,m1
i,i′=1 ∈ C

m1×n1 and {N j(v j′)}
n2,m2
j, j′=1 ∈ C

m2×n2 , BT B and NT N
are nonsingular collocation matrices, where m1 ≥ m2 ≥ n1 ≥ n2. Assuming that
λi(BT B), i = 1, 2, . . . , n1 and λi(NT N), i = 1, 2, . . . , n2 are their eigenvalues respectively. Then,
(1) 0 < λi(BT B) ≤ 1, 0 < λi(NT N) ≤ 1,
(2) 0 < λi(D) ≤ 1, D = BT B ⊗ NT N and here ⊗ is Kronecker product.
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Let D = M̂i − N̂i (i = 1, 2) be two splitting of the matrix D. The two iterative processes of (3.28)
can be written in the matrix form  M̂1Pk+ 1

2 = N̂1Pk + µDT Q,

M̂2Pk+1 = N̂2Pk+ 1
2 + µDT Q,

(3.31)

where M̂1 = (αI + µDT D), N̂1 = αI, M̂2 = αI, N̂2 = (αI − µDT D), I is identity matrix. Then we can
rewrite (3.31) as a unified matrix iteration format as follows

Pk+1 = M̂−1
2 N2M̂−1

1 N̂1Pk + µM̂−1
2 (I + N̂2M̂−1

1 )DT Q, k = 0, 1, 2, . . . (3.32)

or
Pk+1 = M̂Pk + µM̂0DT P0, k = 0, 1, 2, . . . (3.33)

where M̂ = M̂−1
2 N̂2M̂−1

1 N̂1 and M̂0 = M̂−1
2 (I + N̂2M̂−1

1 ).
Now we need to show that the iterative control point sequence {Pk+1} leads to the unique solution

P∗, i.e. ρ(M) < 1.

Theorem 3.8. Let D be a positive definite matrix, let Ĥ =
µ

2

(
DT D +

(
DT D

))
= µDT D and Ŝ =

µ

2

(
DT D −

(
DT D

))
= 0 be its Hermitian ans skew-Hermitian part, and let α be a positive constant. The

HHS-LSPIA iteration’s matrix M(α) is then provided by

M̂(α) = (αI + Ŝ )−1(αI − Ĥ)(αI + Ĥ)−1(αI − Ŝ )

or
M̂(α) = (αI)−1(αI − µDT D)(αI + µDT D)−1(αI) (3.34)

and the spectral radius of M̂(α) is ρ(M̂(α)), bounded by

σ(α) ≡ max
λi∈λ(Ĥ)

∣∣∣∣∣∣α − λi

α + λi

∣∣∣∣∣∣,
where λ(Ĥ) is the spectral set of the matrix Ĥ.

As a consequence, it maintains that

ρ(M̂(α)) ≤ σ(α) < 1 ∀α > 0,

i.e., the HHS-LSPIA iteration converges to the unique solution P∗ of the linear equation (3.3).

Proof. By the resemblance invariance to the matrix spectrum, we get

ρ(M̂(α)) = ρ((αI)−1(αI − µBT B)(αI + µBT B)−1(αI))
= ρ((αI − µDT D)(αI + µDT D)−1(αI)(αI)−1)
≤ ||(αI − µDT D)(αI + µDT D)−1(αI)(αI)−1||2

≤ ||(αI − µDT D)(αI + µDT D)−1||2.||(αI)(αI)−1||2.

We know that (αI)(αI)−1 = I which is unitary matrix i.e. , ||(αI)(αI)−1||2 = 1. Then , we get

ρ(M̂(α)) < ||(αI − µDT D)(αI + µDT D)−1||2

= max
λi∈λ(Ĥ)

∣∣∣∣∣∣α − λi

α + λi

∣∣∣∣∣∣.
Since λi > 0 (i = 1, 2, . . . , n) and α is positive constant, it is simpler to see that ρ(M̂(α)) ≤ ρ(α) < 1. �
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Corollary 3.9. Under the same assumption of Theorem 3.8. Let λmax and λmin be the maximum and the
minimum eigenvalues of DT D, respectively. Then, we have the fastest convergence rate of HHS-LSPIA
methed for the surface fitting when

α∗ = µ
√
λmax(DT D)λmin(DT D) (3.35)

where µ = 2
λmax+λmin

presented in [3].

The proof to the Corollary 3.9 is omitted since it is similar to the case of Corollary 3.5.

Remark 3.10. From (3.28) and Corollary 3.9, we will get µ

α
=

µ

µ
√
λmax(DT D)λmin(DT D)

= 1√
λmax(DT D)λmin(DT D)

= ω̂. Then, we use the ω̂ = 1√
λmax(DT D)λmin(DT D)

for compute in (3.28) instead of µ

α
.

4. Implementation and examples

In this section, we demonstrated how the HHS-LSPIA effectiveness for three B-spline curve fitting
examples and three examples of B-spline tensor product surface fitting as follows:

• Example 1: A subdivision curve generated using the incenter subdivision technique yielded 100
points (music notation).
• Example 2: y = 3cos(θ) (θ ∈ [0, 6.28]) is a sample of 68 points taken evenly from the polar

coordinate equation.
• Example 3: G-shape font characteristics measured and smoothed with 315 points.
• Example 4: z = y2cos(x) the surface model with 21 × 21 (441) points.
• Example 5: z = ysin(x2) − xcos(y2) the surface model with 21 × 21 (441) points.
• Example 6: z = x2sin(y2) the surface model with 33 × 33 (1089) points.

For all the examples, the number of control points is equal to the number of data points and the
number of control points is the same in each method. We show the details of the implementation
for B-spline curve fitting with the HSS-LSPIA method in the following sections, and we deduce the
specifics surface for B-spline tensor product surface fitting in just the same way. Given an ordered
point set {Q j}

m
j=1,we assign the parameters {t j}

m
j=1 for {Q j}

m
j=1 with the normalized accumulated chord

parameterization method [3, 20], that is, t1 = 0, tm = 1,

t j = t j−1 +
‖Q j − Q j−1‖

D
, j ∈ {2, 3, 4 . . . ,m − 1}, (4.1)

where D =
∑m

j=2 ‖Q j − Q j−1‖ is the sum of chord length. In addition, the knots for the cubic B-spline
fitting curve C(t) =

∑n
i=1 Bi,3(t)Pi, is defined as {0, 0, 0, 0, t̄4, t̄5, . . . , t̄n, 1, 1, 1, 1}, where

t̄i+3 = (1 − α)t j−1 + αt j (4.2)

where d = m
n−2 , α = id − i, j = bidc i ∈ {1, 2, 3 . . . , n − 3}.

In our implementation, we choose the parameter α∗ defined by (3.24) for the HSS-LSPIA method.
The iteration process is stopped for the comparison of the LSPIA [3], ELSPIA [6], WHPIA [9] and
HSS-LSPIA methods if ‖Ek+1−Ek‖ < 10−7, where the fitting error of the k−th iteration is computed by

Ek =

m∑
j=1

‖Q j −

n∑
i=1

Bi(t j)Pk
i ‖

2, k ≥ 0 (4.3)
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and we compare Ek of each iteration to show the efficiency and validity of the HSS-LSPIA.

All the examples are operated on a laptop with a 2.4 GHz Quad-Core Intel Core i5 processor and 8
GB memory via MATLAB R2019a.

In Examples 1–3, the cubic B-spline curves created by the LSPIA [3], ELSPIA [6], WHPIA [9] and
HSS-LSPIA methods with the fitting result are shown in Figures 1–3 respectively. In Examples 4–6,
the B-spline tensor product surface fitting created by the LSPIA [3], ELSPIA [6], WHPIA [9] and
HSS-LSPIA methods with the fitting result are shown in Figures 4–6 respectively. The blue points in
each of the three instances represent known points that form a dotted limit curve to be fitted, green
points represent control points gained at the appropriate step, and the red line shows the curve of each
iteration.

(a) LSPIA (b) ELSPIA

(c) WHPIA (d) HSS-LSPIA

Figure 1. The fitting results of Example 1 using LSPIA, ELSPIA, WHPIA and HSS-LSPIA.
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(a) LSPIA (b) ELSPIA

(c) WHPIA (d) HSS-LSPIA

Figure 2. The fitting results of Example 2 using LSPIA, ELSPIA, WHPIA and HSS-LSPIA.

(a) LSPIA (b) ELSPIA

(c) WHPIA (d) HSS-LSPIA

Figure 3. The fitting results of Example 3 using LSPIA, ELSPIA, WHPIA and HSS-LSPIA.

AIMS Mathematics Volume 7, Issue 9, 17570–17591.



17585

(a) Original surface (b) Data points

(c) Control points at the fitting result using LSPIA (d) Fitting result using LSPIA

(e) Control points at the fitting result using ELSPIA (f) Fitting result using ELSPIA

(g) Control points at the fitting result using WHPIA (h) Fitting result using WHPIA

(i) Control points at the fitting result using HSS-LSPIA (j) Fitting result using HSS-LSPIA

Figure 4. The fitting results of Example 4 using LSPIA, ELSPIA, WHPIA and HSS-LSPIA,
where 4c and 4d shows the result of LSPIA, 4e and 4f shows the result of ESPIA, 4g and 4h
shows the result of WHPIA and 4i and 4j shows the result of HSS-LSPIA.
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(a) Original surface (b) Data points

(c) Control points at the fitting result using LSPIA (d) Fitting result using LSPIA

(e) Control points at the fitting result using ELSPIA (f) Fitting result using ELSPIA

(g) Control points at the fitting result using WHPIA (h) Fitting result using WHPIA

(i) Control points at the fitting result using HSS-LSPIA (j) Fitting result using HSS-LSPIA

Figure 5. The fitting results of Example 5 using LSPIA, ELSPIA, WHPIA and HSS-LSPIA,
where 5c and 5d shows the result of LSPIA, 5e and 5f shows the result of ESPIA, 5g and 5h
shows the result of WHPIA and 5i and 5j shows the result of HSS-LSPIA.
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(a) Original surface (b) Data points

(c) Control points at the fitting result using LSPIA (d) Fitting result using LSPIA

(e) Control points at the fitting result using ELSPIA (f) Fitting result using ELSPIA

(g) Control points at the fitting result using WHPIA (h) Fitting result using WHPIA

(i) Control points at the fitting result using HSS-LSPIA (j) Fitting result using HSS-LSPIA

Figure 6. The fitting results of Example 6 using LSPIA, ELSPIA, WHPIA and HSS-LSPIA,
where 6c and 6d shows the result of LSPIA, 6e and 6f shows the result of ESPIA, 6g and 6h
shows the result of WHPIA and 6i and 6j shows the result of HSS-LSPIA.
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In Figure 7a–7f, we can see that the HSS-LSPIA method has the fitting inaccuracy of the k−th
iteration less than the ELSPIA method, LSPIA method and the WHPIA method respectively.

(a) Ek of Example 1 (b) Ek of Example 2

(c) Ek of Example 3 (d) Ek of Example 4

(e) Ek of Example 5 (f) Ek of Example 6

Figure 7. The comparision of errors for Examples 1–6.

In Table 1 columns “IT” (iteration numbers), “CPU time(s)” (ten times the average amount of CPU
times(s)) and “‖Ek+1‖” (fitting error of the (k+1)th iteration) for the LSPIA [3], ELSPIA [6], WHPIA [9]
and HSS-LSPIA methods are listed. We can observe that the HSS-LSPIA methods requires fewer
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iteration numbers, uses less CPU time, and has a smallest fitting error at (k + 1)th iteration. We can
now conclude from the experiments that, the HSS-LSPIA methods is faster than the ELSPIA method,
LSPIA method and the WHPIA method respectively, in terms of convergence speed. The examples
provided in this section are just intended to show how effective the methods propose by us. Because
the spectral radius will vary depends on the NTP bases, we cannot guarantee that our methods will
converge faster than ELSPIA, LSPIA, and WHPIA in other examples.

Table 1. Comparision of IT, CPU time(s) and ‖Ek+1‖.

Examples Methods IT CPU time(s) ‖Ek+1‖

Example 1 LSPIA 101 0.0084870 1.6400E-05
ELSPIA 59 0.0037290 1.5100E-05
WHPIA 130 0.0082561 1.9899E-05

HSS-LSPIA 47 0.0020687 3.0800E-06
Example 2 LSPIA 410 0.0069510 3.2800E-05

ELSPIA 105 0.0044940 4.7500E-05
WHPIA 1877 0.0319717 5.2800E-04

HSS-LSPIA 65 0.0013589 3.7900E-06
Example 3 LSPIA 395 0.0458660 1.6100E-05

ELSPIA 85 0.0091790 1.3100E-05
WHPIA 763 0.0747946 2.4400E-04

HSS-LSPIA 23 0.0059934 1.1220E-06
Example 4 LSPIA 470 5.5093410 2.7500E-04

ELSPIA 137 1.7922920 1.6703E-04
WHPIA 2901 64.869787 2.0210E-03

HSS-LSPIA 73 1.2409530 1.6634E-05
Example 5 LSPIA 477 6.887048 3.9281E-04

ELSPIA 407 5.638451 2.7947E-04
WHPIA 3834 89.834053 1.9947E-03

HSS-LSPIA 74 1.335767 2.5180E-05
Example 6 LSPIA 1220 42.263918 2.0272E-04

ELSPIA 623 7.318428 1.0700E-04
WHPIA 3935 68.133107 5.6847E-03

HSS-LSPIA 96 1.596564 3.7280E-05

5. Conclusions

In this research, based on the HSS iterative approach for solving system of linear equations of
LSPIA, a new progressive and iterative approximation for least square fitting method called
HSS-LSPIA is developed to solve the problems of curves and surfaces approximation with NTP
bases. The HSS-LSPIA format including two iterations with the iterative distinction vectors in which
the two iterations are different from each other. And then, we provided the approximate value of the
fastest convergence positive constant. In terms of iterative steps and computing time, numerical
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results indicate that the HSS-LSPIA method is more effectively efficient than the ELSPIA, LSPIA,
and WHPIA methods, respectively. It has demonstrated that the HSS-LSPIA method can be faster
than the ELSPIA, LSPIA, and WHPIA methods in terms of convergence speed.
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