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Abstract: In this paper, we research semi-discrete multipoint flux mixed finite element (MFMFE)
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1. Introduction

OCPs have a profound research background. They have been widely used in industrial process,
transportation, economic management and other fields, and have been a great development in modern
life. Undoubtedly, the finite element method (FEM) is commonly applied in computing OCP as well
as there has been a lot of works [1-9]. The FEM for PDEs and OCPs are introduced systematically in
references [10-12].

About solving the OCP of elliptic equation, there are plenty of works. In particular, here is an early
article by Falk [2] on the prior error estimation of elliptic equations by applying the standard finite
element method. Malanowshi [3] has established a priori error estimation for convex constrained
optimal control using finite element approximations. Hou [5] also works out an article on error
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estimation and superconvergence of elliptic optimal control by applying MFE method. Guo [13]
innovatively used a split positive definite MFE method to deal with the convex OCP of elliptic
equation. Liu and Chen [14] use MFE method to calculate OCP and obtain a posteriori error estimation.
However, there are not many studies on parabolic equations. For convex polygon region parabolic OCP,
there is a prior error for the FEM approximation, see Shakya [15]. Xing, Lu and Chen [16, 17] have
obtained L? error and a priori error in allusion to parabolic OCPs by using MFE method.

In this paper, we will adopt semi-discrete MFMFE method to develop L? error of parabolic control
problem. MFMFE method is based on the lowest order BDM; MFE space. By adopting special
quadrature rules, it can not only allow local flux elimination, but also can be formed the cell-centered
system for state varibles and co-state varibles, also this system is symmetrically positive definite,
see [18-21]. That avoids the problem of solving saddle-point algebraic systems required by MFE
method.

Other contents are arranged. The MFMFE method is introduced in Section 2. The L? error is
described in Section 3. A numerical example is used to verify the correctness of theoretical analysis
in Section 4. We summarize the paper in Section 5. We specifically study the OCP for the state
variable p, g and the control ¢:

(1 T
mln{—f (llo = odll* + llg — qall* + ||§||2)dt}, (L.1)
sek |2 0

according with the following conditions
q: +divo =¢,0=—-BVg,x € Q,
q(x,t) =0,x € 0Q,t € J, (1.2)
q(x,0) = go(x), x € Q,

where J = [0, T]. Here, we define Q c R? and it is a bounded convex domain with C? boundary.
As well as B(x) is a symmetric positive definite matrix. K represents the admissible set of the control
variable, given by

K={seX(Q:a<s<p], (1.3)

where @ and g are given functions. Next, we give the notation of the space that we need to use. First,
W™P(Q) is defined by the Sobolev spaces on Q. And it has two related norms, which are defined by

ey = D 1D I,

|vl<m
Bl = > ID"BIL, 0
la|l=m
Here, W;""(Q2) means equal to 0 at the boundary. We define that H"(Q) = W"™*(Q), HJ'(Q) = Wg”2(Q),
and || - |l = I - w2y Il - 1l = 11 - llo.2- We denote by L°(J; W™P(Q)) the Banach space of all L* integrable

functions from J into W"»?(Q) with norm

T
1
161l s 7, wmr () = (f”@”f;vm,p(g)dt)%
0
here s € [1, 00).
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2. The multipoint flux method

This section mainly studies MFMFE method approximation problem (1.1) and (1.2). There are
V = Hdiv) = {w € (1A Q). diver € LX(Q)},

W e LX(Q),
the weak formulation of (1.1) and (1.2) can be written as: find (o, ¢,¢) € V X W x K such that

(1 (T
min {— f (llo — eall* + llg — qall* + IIgllz)dt} , (2.1)
ek 2 0
(B0, V) — (¢, divv) =0,¥v eV, (2.2)
(g, m) + (divo, ) = (¢, 7),Vm € W, (2.3)

where (-) represents the inner product in L*(Q) or (LZ(Q))Z. The convex control problems (2.1)—(2.3)
has a unique solution (o, ¢, ¢). In addition the triplet (o, g, ¢) is the solution to (2.1)—(2.3) if and only
if there is a co-state (g,r) € V X W such that (o, q, g, 7, ¢) satisfies the optimality conditions for ¢ €
J [14-16]:

(B™'0,v) - (q,divv) = 0,Vv €V, (2.4)
(q:, ) + (divo, ) = (¢, m),Vm e W, (2.5)
(B 'g,v) — (r,divv) = —(0 — 04, V), VYV €V, (2.6)
—(ry, ) + (divg,m) = (g — qa, M),V € W, 2.7)
(r+6,5§-¢)20,V5 e K. (2.8)

We are going to give you our own method. MFMFE method is adopted, which considers partition,
mapping, BDM, space and special quadrature rules as in the article [20]. Then we display some
theories that are important to us. The spaces on I';, are made up of

Vi={veV:vlg o e V(). VE T, (2.9)
Wy={reW:nlp o 7.7 e WE)VEer"}, (2.10)
Ky, = {5‘ €W, :Sle € (e, (Br),VE € Fh} ; 2.11)

where v|z < ¥ is a mapping from the subdivision cell E to the reference cell E =10,1]x[0,1], and
Vi, W), are BDM;, spaces. In addition,

1
(Vg = E Ef a(x, t)dx,

1
(,B)E = E!ﬂ(x, Hdx,
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for r,v € V,, we give the definition of global quadrature rule [21] which is limited to E,

(B'rvg = ) (B rvgr.
Eel™
According to (2.9) and (2.10), we can get
| 1 1 N
f B'r-vdx = f B'—DFg# - —DFpdJpdx = f —DFLB'DFivdx = f B 'ivdx,
E E JE JE £ JE E

where & = JEDFEIE(DFEI)T and F : £ o E is a bijection mapping. As well as DFy is a Jacobi
matrix and Jg is a Jacobian. Other details see references [21]. Represents the quadrature error of
element through

oe(B7'r,v) = (B 'r,v)g — (B7'r, V)0.E>

as well as the global quadrature error is given through o(B~'r,v)|z = (B~ 'r,v).
Now, we introduce two known conclusions from the reference [21].

Lemma 2.1. For one constant M, it is nothing to do with h, such that
(B™'r,r)g = MIIrIP*,Vr € V.

Lemma 2.2. For one constant M, it is nothing to do with h, such that

o (B Ty, ) < MAI||ilixll, Ve € Wi

See the literature [20, 21] for more details on quadrature rules. Then the MFMFE method
approximation for the problem (2.1)—(2.3) is to find (0p, g1, 1) € Vi X W), X K}, such that

(1 (T
min {— f (llon — eall* + lign — qall* + ||§'h||2)dl‘}, (2.12)
She€Kp 2 0

(B 01, Vi) — (qn, divvy) = 0,Vv, € V), (2.13)

(Gne» ) + (divoy, ) = (Sp, my), YV, € W, (2.14)

The control problem (2.12)—(2.14) has a unique solution (o, g, ;) and a triplet (op, i, 1) 1S the
solution of (2.12)—(2.14) if and only if there exists a costate (g, r,) € V;, X W, so that (op, @i, Sh» &hs 1)
satisfies the optimality conditions:

(B 0n, Vi) — (qn, divvy) = 0,Yv,, € V), (2.15)
(Gne> ) + (divop, m) = (Sny 7)), Y7tu € W, (2.16)
(B~ g1, Vi)o — (i divvy) = =01, — 0a> V1), Vi € Vi, (2.17)
—(rnes ) + (divgn, 7)) = (gn — qa> 7n), V7tu € Wi, (2.18)
(rn + Sn> Sn — 6n) 2 0,98y, € K. (2.19)

Next, we will take advantage of a few indirect variables. We give the definition of state
solution (0($), ¢(S), g(S), r(S)), which Y& € K are

(B™'0(8), V) = (q(&),divv) = 0,¥v € V, (2.20)
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(q:($), m) + (divo(S), ) = (§,7m),Vm e W, (2.21)
(B™'8(8), V) = (r(§), divv) = =(0(§) = 04, V), YV € V, (2.22)
—(r:(8), ) + (divg($), m) = (q(S) — qa, ), VY € W. (2.23)

We give the discrete state solution (0,($), g1($), g1($), r1($)), which V& € K are

(B™'01(), Vi) — (qu(§), divvy) = 0,Yv,, € V), (2.24)
(gn($), mn) + (divon($), ) = (S, 7tn), Y7y € W, (2.25)
(B™'g1($), Vi) — (ra($), divvy) = =(0n($) = 0a» Vi), YVi, € Vi, (2.26)
=(rn(), ) + (divgn($), mtn) = (qn($) — qa, ), V7tp € Wi (2.27)

3. Error analysis

Now, we estimate the error between the exact solution (o,q,g,r,¢) and its approximation
(On» Gn» &n» Th» Sp)- First, we give the definition [16] of the standard L? projection P, : W — W,V € W,
that is

(Q—Phe,ﬂ'h) :O,Vﬂ'h ew,. (31)
We introduce the Fortin projection I, : V — V), Vu € V, that is
(le(,U - Hh,u),ﬂ'h) =0,Vr, € W, 3.2)

So we get certain projection relationships are as follows:

16 — TL,0ll < M6l 6 € (H'(Q))?, (3.3)
ldiv(® — T1,0)|| < Mh|dive|,,div € H (Q), (3.4)
lr — Pyrtll—s < Mh'|n|y, s = 0,1, 1 € H(Q). (3.5)

We review some existing conclusions in reference [16], which will be important for our next analysis.

Lemma 3.1. For M > 0, which is a constant and independent of h, we have

llo — Qh(S’)”LZ(J;U(Q)) +llg - Qh(S')||L°°(J;L2(Q)) < Mh, (3.6)
g — gr(Oll2r.r2 ) + IIr = (o122 < Mh. (3.7)

Now, we just need to give the error estimates [|0,(S) — Oulli2:2@))» 191(S) = Gulli=: 12 1184(S) —
8h||L2(J;L2(g))» lra(s) — 7’h||L°°(/;L2(Q))-

Theorem 3.1. For M > 0, which is a constant and independent of h, we have

llon(s) — onlliz2)) + 11gn(S) = gullis2)y < Mlls = Sulli2:r2@y + Mh, (3.8)
gn(s) = gnllizrrzy + 1rn(S) = Fillie 2@y < Mlls = Sulliz:2@)) + Mh. (3.9)
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Proof. First, let ¢ = ¢ in (2.24)—-(2.27), we will have the relations for intermediate solution
©n($), 41($), (S, 8n(S))-

(B~ 0n($), vi) = (qu($), divvy) = 0,Yv, € V, (3.10)

(gn(§), mn) + (divon(), ) = (S, 7tn), Y1y € Wy, (3.11)

(B™'g1(s), Vi) — (ra(s), divvy) = =(04(S) = 0a» Vi), YVi, € Vi, (3.12)

—(ru($), ) + (divgi($), 1) = (qn(S) — qa, 7n), Y7t € W, (3.13)

Then, we’re going to take the difference between (2.15)—(2.18) and the Eqs (3.10)—(3.13) of the above
intermediate solution. So we get error equations:

(B~ (on(s) — 0), Vi) + (B~ (0 — I1,0), vi)) + (B~ (I1,0 — 1), Vi)o

(B0, v)) — (@4(6) — g, divyy) = 0, G-19)
(@(S) = G i) + (div(0n($) — 0),1) + @iv(o — o)) = (s — G, (B.15)
(B‘l(g_;;(g) =), Vi) + (B (g = Thyg), vi) + (B (TLig = 1), Vo (3.16)
4 (BT, Vi) — (1i() — iy divwy) = —(04() = 01 Vi),
—(S) = s 1) + (div(ga(S) — £, ) + (div(TTig — g, 71) = (@h(6) = o T, (3.17)

Next, the theorem is proved in two parts.
Part 1. Setting v, = [1,0 — 0, in (3.14), m;, = q;(¢) — g1, in (3.15), combing these two equations, there is

(B~' (o — 01), TTho — 0n)o + (qi($) = que» an(S) — qn)
= (s = suqu(§) — qn) — (B (on(s) — 0), TIho — on) — (B~ (0 — T140), 40 — on) (3.18)
—o (B 0, 0 — 04) — (div(on(s) — 0), gin(s)).

Note that
(B™' (0 — 01), o — 0n)o = M0 — o4l
1d )
(G (S) = qi» qn(S) — qn) = 5%”‘]}1(5') —aill”.

Then, we can obtain

1d
Mo = aull” + 5 —llau() = gll* < Mlls = ulllign = gu(&)ll + Mllea(s) - el = ol
+ Mllo — iollliTIho — exll + Mhllolli|ITTho — ol
+ Mlldivien(s) = 0)lllgn(s) = gull;

(3.19)
where we also used the inequality o-(B~'II,v, 7) < Mh|[v||;|In||. Next, we use the e-Cauchy inequality,
(3.3) and Lemma 3.1 to estimate (3.19),
e li T T P ) 2 )
M|IT,0 — onll” + 2dt||le(§) anll” < Mlls = Gill” + ellllyo — oull” + &llgn(s) — gull” + Mh~.  (3.20)
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We integrate (3.20) over time as well as applying the Gronwall’s lemma, where we will use (g,(s) —
qn)li=0o = 0. So we get

0 — onll2:2)) + 11g1(S) — Gnlli=ri2) < Mlls = Sull2ir2@)) + Mh. (3.21)
Combining (3.21), (3.3) and (3.6), we will derive
llon(s) — Qh||L2(J;L2(Q)) + llgn(s) — CIh||L°°(J;L2(Q))
= llon(s) — Q||L2(J;L2(Q)) +llo - HhQ||L2(J;L2(Q))
+ Mro — onll2 2@y + 1190(S) — qull e 12 (3.22)

< Mh+ Mh + M|ls = sulli2s.12)) + Mh
< Mlls = sulli2s. 12y + Mh.

Part 2. Setting v, = I1,g — g, in (3.16), m;, = r;(s) — r, in (3.17), combing these two equations, there is

(B ' (ug — g1). T1hg — 8n)o — (rul§) = Ty i(S) — 1)
= (qn(§) = qn, () — 1) — (0n(s) — on TIng — g1) — (B~ (gn(s) — &), T11g — g1) (3.23)
—(B7'(g — 1,8), TIhg — gn) — (B '8, TIng — gn) — (div(gi(s) — &), ru(§) — 1)

Note that
(B (48 — gn), TIhg — gn)o = Mg — gull’,

1d
(rn(S) = Ty 1i(S) — 1) = EEH’%(S‘) - nill”.

Then, using the same method as Part 1, we will get

1d
M||T,g — gill* + =— —
ITThg = gall™ + 5 —-llr($) = rull

< Mligi(s) = gullllra(s) = rull + Mllon(s) — onlllltng — gall (3.24)
+ Ml|gn(s) — glllIrg — gull + Mg — IL,glllIT11,g — gull
+ Mh|gll ITTg — gull + MIIdiv(gn(s) — &Irn(s) — 1l

where we also used the inequality o(B~'TI,v, r) < MA||v||;||||. Next,we use the e-Cauchy inequality,
(3.3) and Lemma 3.1 to estimate (3.24),
1d
M|\,g — gill® + EE”rh(g) — rall?

< Mligu(s) = gull* + Mllon(s) — oull® (3.25)
+ &llll,g — gull® + llra(s) — rull* + MA*.

We integrate (3.25) over time as well as making use of the Gronwall’s lemma, where we will use
(rn(s) — rw)l=r = 0. So we can obtain

IM1hg = gnllr2r2y + 1rn(S) = rallie 2@y
< Mllgn(s) = gnll2.r2@) + Mllon(s) = onlliz.r2@)) + Mh. (3.26)
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Combining (3.26), (3.3), (3.7) and (3.8), we will derive

llgn(s) — gh||L2(J;L2(Q)) + |[ra(s) = rh||L°°(J;L2(Q))
= lgn(s) — g2z + 118 — ngllizir2) + Mhg — gulliz:rz)y + 11a(S) = rill =2

< Mh + Mh + Mllgi($) — qullz2.2)) + Mllen($) — onllr2.2@)) + Mh -2
< Mlls = sullzzr.20)) + Mh.
Thus, the theorem has been proofed. O
From reference [16], we get the following result.
Lemma 3.2. For any §, € K}, there exists a function §* € K, such that
Sr = Sulr, VT € T, (3.28)
And some error estimates as follows:
1617 < el - + 18I )2, (3.29)
16 = &1l < MA (e} + 1BI)*. (3.30)

Theorem 3.2. Let ¢ and g, be the optimal controls of (2.4)—(2.8) and (2.15)—(2.19) respectively; for
M > 0, which is a constant and independent of h; such that

lls = Sull2r2@)y < Mh, (3.31)
llo — onllizr:r2)) + 11g = gullie2)) < Mh, (3.32)
lg — gnllr2rr2)) + Ir = ralls 2y < Mh. (3.33)

Proof. First of all, let’s do a little bit of preparation for estimating ||g — ¢;||. For ¢ € K, we use the
multipoint method to discrete (2.20)—(2.23), then we have

(B™'01($), Vo — (qn(§), divvy) = 0,Yv), € Vj, (3.34)
(gn($), 7t) + (divon($), mn) = (S, 74), V71, € W, (3.35)
(B™'g1(), Vi) — (ru(), divvy) = —(04($) — 04> Vi), VVi € Vi, (3.36)
—(rn(), ) + (divgn($), mn) = (qn(S) — qa, ), Y7, € W (3.37)

For any ¢ € K and &, € K, from (2.16) and (3.35) with § = §, so that

(div(on — 0n(Sn), tn) = (Sh = Sna 1) — (Gne — qne(Sh)> 1), (3.38)

making a difference between (2.5) and (3.35), we have

(div(o — 0n($), mp) = (¢ = &, 7tn) = (qr = qne(S), 7p).- (3.39)
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It follows from (7, + ¢, $, — 1) = 0, VS, € K, that

(Sh> S — Sn) + (rns s — S) < 0.
From (2.17) and (3.38), we have that

(Sh = Sh> 1) = (qne — qne(Sn), 1) + (div(on — 0n(S1h)), T1)
= (qne — qne(Sn), 1) + (B g, 00 — 00(S)) 0 + (00 — Qa0 — 0n(S1)),

from (2.15), (3.34), (2.18), we can obtain

(B~ g1, 00 — 0n(§1))o

= (B (on — 0n(Sn). 8n)o

= (qn — qn(Sn), divgy)

= (qn — 94> qn — qn(Sn)) + (Fues Gn — qn(Sn)).

Considering (3.40)—(3.42), we can derive

(Sh>Sh = Sn) + (G = qn(S)s 1) + (qn = Ga> gn — qn(Sn)) + (Fnes gn — qr(Sh))

+(0n — 0a,0n — 0n(Sn)) < 0.
Next, relations (2.17), (2.18), (3.34) and (3.35) imply that any &), € K},

(on — 04> 01(Sn)) + (qn — qa> qn(S1))
= —(B' g, 0n(Sn) 0 + (ra, divon(§n)) — (s gu(S)) + (divgn, gn(Sh))
= (Sn> 'n) = (qne(Sh)s ) — (Fhes Gu(Sh))-

Let & =¢in (2.17) and (2.18), (3.34) and (3.35), we can find that

(©n = 04,01($)) + (qn — qa> q1(S)) = (1) = (qni(S)s 1) — (Pt gi(S))-

From (3.44) and (3.45), we can get that

(©n = 04> 01(Sh) — 01($)) + (g — qa, g1r(Sh) — qi(s))
= (Sn = 1) — (Gn(Sn) = qui(S), i) = (it Gn(Sh) — qi(s)).

Similarly, there is

©01(S) = 04,01 — 0h(S)) + (g1(S) = qa> qn — qn(s))
= (Sn = S 74(S)) = (@t — qne(), 11(S)) — (1ne(S), g — qi(S)).

At present, we will use the above results to estimate ||¢ — ¢;|| . We study that

s = sull* < (ho 61 =€) + (01 = Qas 01 — 01(S)) + (qh — Gas Gn — qn(S))
(61 = 6) — (01($) — 04, 01 — 01(S)) — (q1(S) — qa> qn — qi(S))
= (Sh» Sh = Sn) + (©n — Q4> 01 — 01(SH)) + (qn — qa» qn — qn(Sh))

+(0n — 04> 0n(Sn) — 0n($)) + (g — G4 qn(Sn) — qin(s)) — (0h(S) — 0a, On — Oi(S))

—(q1($) = qa- qn — qn($)) + (Sh, S — ) — (S, 61 — ©).

(3.40)

(3.41)

(3.42)

(3.43)

(3.44)

(3.45)

(3.46)

(3.47)

(3.48)
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Applying (3.43), (3.46) and (3.47), there is

s — sull* < =(qne — gne(Gn)s 1) = it Gn — @1 (G) + (S — €5 70) — (@e(Gn) = qe(§), 1)

=("nes qrn(Sn) — qn(S)) — (§n =, 11(S)) + (Gre — qui($), 11()) + (rn(S), g — qi(S))

+(Sn: S —6) = (§,6,— )

= —(qn — qu($)s 1) — i g — qi(S)) + (S — S, 6 + 1) — (61, — 6,6 + 14(S)) (3.49)
+(Gne — qn($), 1(8)) + (rue($), gn — qi(S))

= —(qn — qu(©)s 1 = 10()) = (e — 11(S)s g — qi(S)) + (S — S, Sn + 1)

—(Sh — 6,6+ ru(s)).

We know that
(c+r¢—¢)=0. (3.50)
Hence, from (3.50), we will get

C+nrns—s)+(c+r()s,—¢)+(r—r(s)en—¢)=0. (3.51)

Thus, we can get ||¢ — ¢,|[> with (3.49)—(3.51) as follows

s — sull* < =(qn — qu()s rw = 11(8)) = (rne — r1(S), g — qi(s))

+ S =gt t(€+rs—gp)+ (=), shn—¢)

< =(qm = qu(©), 1 = 1i(9)) = (rie — (), g — qi(s))

+§+rSh—¢)+ (=68 —¢)—(r—ri(s), S —¢) (3.52)
+(rn =€), S =)+ (e + 1S —6n) + (r— (), sn — )

< —L(gn — qn(©)sri — ra()) + lls + rlli (IS = sull1 + 118 — <ll-1)

+(lls = sull + llrn = ra(DIDNSH = sl + Ir = r( OIS = SlI + lls = SalD.

According to the Lemma 3.3, there exists ¢* € K and for all T € I, there are

)1 = sulrs

llgs = 71 < MEA(lledl} + 1BIR)?. (3.53)

We choose ¢ = ¢* and §;, = P;¢ in (3.52), combining (3.52) and (3.53), using (3.5). We also apply the
&-Cauchy inequality. Then we can obtained that

s = sullP< —L(qn — qu(s), rw — ru(s)) + MA|is + rll;
+Mh(ls = Gull + llrn = ra(OI + |lr = ra(OID + lIr = ra(Dl s — <l (3.54)
< —4(g, = qi(©). 1 — ru(€)) + MI* + &liry — ru()I? + Mllr — ru()I? + &lls — sl

for any small &, &, > 0. We know that,
(@n — qn()li=0 = 0,
(rn = rn()i=r = 0.
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Thus, we can easily get that

T d
f —d—(Qh = qn(s), rp — ri(s)) = 0.
0 t
Then, integrating (3.54) in time, using Lemma 3.1, (3.8) and (3.9), we have

lls = Sull2ir2@)y < Mh. (3.55)
Then, we can get our final results:
llo — onllizi2) + 1 = gnlli=.2) < Mh, (3.56)
llg — gh||L2(J;L2(Q)) + |[r = rh”L"“(J;LZ(Q)) < Mh. (3.57)
So far, we have completed the proof of the theorem. O

4. Numerical experiments

In this section, we will verify the error estimates of the state (0,q), co-state (g,r) and the control
variable ¢ of theoretical analysis by a numerical example.
First, we consider the following OCP for parabolic equations:

T
gg{%l:me—wW+Mq—%W+nw%m}, (4.1)
subject to the state equation and boundary conditions

g +divo=¢+ f,0=-Vq,x€Q,

q(x,t)=0,x € 0Q,t € J,

q(x,0) =0,x € Q,

—r+divg=q—qs8=-Vr—0+04 x€Q,

r(x,t) =0,x € 0Q,t € J,

r(x,T)=0,x € Q.

We choose the domain Q = [0, 1]x [0, 1], T = 1. We adopt the same mesh partition for the state and

the control. The convergence order is computed by the following formula: order ~ %, where i

responds to the spatial partition, and E; denote the L? norm for the state and co-state and the control
approximation.

4.2)

Example. The data for the numerical example is as follows:
¢ =max(0.4 —r,0),
q = sin(2nx,)sin(2rx,)sin(nt),
r = sin(2rx;)sin(2nx; ) sin(nt),
f=aq +divo-g,
qa =4+ 1,
o0 = 2rcos(2rxy)sin(2nx;) sin(nt), 2nsin(2rwx,)cos(2mx,)sin(nt)),
04 = (0,0),
g =1(0,0).

4.3)
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Table 1. Numerical error for the state, co-state, and control variables.

subdivision 8x8 16x16 32x%x32 64x64
llo = onlli20r.2¢) 1.0539E-01 5.2170E-02 2.5770E-02 1.7195E-03
order - 1.0144 1.0175 1.0123
lg = qnlli20.r.1200) 1.4965E-02  7.5657E-03 3.7883E-03 1.8935E-03
order 0.9840 0.9979 1.0005
lg = gnll2or2) 1.1926E-01  6.7083E-02 3.4607E-02 1.7405E-02
order - 0.8301 0.9549 0.9916
¥ = rulli20.r02¢0) 1.3311E-02  6.7998E-03 3.4283E-03 1.7195E-03
order - 0.9691 0.9880 0.9955
lls = sulliz0.7:120) 1.1583E-02  6.3890E-03 3.2607E-02 1.7138E-03
order - 0.8580 0.9589 0.9808

In this example, the L* errors of [lo — onlleorze)y, g — alleorzey. I8 — gillizorza)
lr = 7allr20.1: 200> IS = Sullzz0.1:12(0)) on the MEMFE approximation for state functions and piecewise
constant approximation for control function are presented in Table 1. Numerical results show that the
grid subdivision is smaller, the smaller the error of state, co-state and control variables. And we can see
that the order of state, co-state and control variables basically reaches first order, which is consistent
with our theoretical analysis. So we can conclude from the table that the theoretical analysis is correct.

5. Conclusions

We innovatively use the semi-discrete MFMFE method to study the error for the state, co-state and
the control varibles of Parabolic OCP. Our method is a decoupled method, which avoids the problem
of solving saddle-point algebraic systems required by MFE. It is very novel in dealing with parabolic
optimal control problems, and our method also gets the same results as others after dealing with the
problems, which further proves the correctness of our method and theory. Finally, we also verify the
theoretical analysis through a numerical example.
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