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Abstract: In this paper, we discuss the parameters estimation of the Burr XII distribution. We know
that the most popular method in the literature for parameter estimation is the maximum likelihood
method. However, the maximum likelihood estimators (MLEs) are widely known to be biased for
small sample sizes. Therefore, this motivate us to obtain approximately unbiased estimators for
this distribution’ parameters. Precisely, we focus on two bias-correction techniques (analytical and
bootstrap approaches) to reduce the biases of the MLEs to the second order of magnitude. In order
to compare the performance of these estimators, Monte Carlo simulations are conducted. Lastly, two
real-data examples are provided to show the usefulness of these proposed estimators when sample sizes
are small.
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1. Introduction

[6] listed the Burr system of distributions that include twelve types of cumulative distribution
functions which yield a variety of density shapes among one of these distributions is a Burr type XII
model. [7] have pointed that choosing the parameters of the Burr distribution appropriately covers
a large portion of the curve shape characteristics in the Pearson family. As a result, the Burr type
XII distribution has been applied in medical, business, chemical engineering, quality control and
reliability studies since its shape parameter produces various shapes to be good fits for different data.
For instance, [29] showed that the Burr type XII distribution can be applied roughly to any given
set of uni-model data besides its relationship to other different distributions. In addition, [9] used
this distribution to fit the uranium survey data. [33–35] used this distribution to fit non-censored and
censored lifetimes data. Moreover, [23] estimated the parameters of the Burr type XII distribution
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under doubly censored data. [30] obtained point and interval estimates of the parameters of the Burr
type XII distribution with multiple-censored using the maximum likelihood method. [22] considered
the estimation of the three-parameter Burr XII distribution and its doubly truncated form. [32] provided
a technique that takes the use of the relationship between three-parameter Burr XII distribution and
the two parameter Weibull distribution, which arises as the distribution’s limiting case. Furthermore
from Bayesian point of view, [21] studied the Burr type XII distribution as a failure model under
various loss functions. In addition, [14] used this distribution to estimate its parameters under random
censoring. Furthermore, [2] used this distribution to estimate its parameters under middle-censored
data. [1] obtained estimation of stress-strength parameter for Burr type XII distribution based on
progressive type-II Censoring. A characterization of the Burr type XII distribution was studied by [3].
Moreover, [5] studied the properties and applications of the Burr XII-Power Cauchy distribution.

It is well-known that the most popular estimation method is the maximum likelihood method. This
is because it has attractive mathematical properties such as unbiasedness, efficiency, consistency and
asymptotic normality for large sample sizes. These properties, however, may not hold true for small or
even moderate sample sizes see [8, 15–17, 19, 26, 31] among others.

As is well known, the most often quoted features of the maximum likelihood technique rely mostly
on the large sample size condition. The maximum likelihood estimators, in particular, contain biases of
the order O

(
n−1

)
, which are typically ignored in practice. As will be shown, the maximum likelihood

estimators of the parameters associated with the Burr XII distribution are biased, particularly in small
samples, implying that the expected value of estimators varies from the real value of parameters. Given
this, it is critical to create virtually unbiased estimators for this distribution. This observation motivates
us to use a bias-corrected approach to lower the MLE’s bias from order O

(
n−1

)
to order O

(
n−2

)
.

Furthermore, in terms of bias and standard error, we find superior estimators for this distribution than
MLE for practical applications. In the next paragraph, we will use two corrective procedures in addition
to MLEs to generate modified MLEs that are unbiased to second order. As demonstrated by our
simulation analysis, the suggested two corrected MLEs outperform the uncorrected MLEs in terms of
consistency and efficiency. Moreover, the two corrected procedures contain closed-form expressions,
making them visually appealing and simple to compute. Additionally, numerical data reveals that bias-
corrected estimators are exceptionally accurate even for very small sample sizes and outperform earlier
estimators in terms of biases and root mean squared errors.

In this paper, we consider two techniques. The first one is a corrective technique, say “analytical
approach” introduced by [11]. This approach corrects the bias of MLEs to the second order of
magnitude by subtract it from the MLEs. Some authors such as [18, 20, 28] implemented software
programs even though its limited to enable users to calculate the analytic Cox-Snell formula for bias
corrections for different pre-specified distributions. Furthermore, the second technique is based on
bootstrap re-sampling method that can reduce the bias to the second order, say “bootstrap approach”
presented by [12]. We will call these corrected estimators as bias-corrected estimators (or for short, bc
estimators) in both techniques. Monte Carlo Simulations and real data applications are considered to
illustrate the performances of these estimators.

Because of estimation problem for the three-parameter Burr XII distribution as pointed out by [27],
we set without loss of generality the scale parameter to be 1. Hence, if X follows a Burr type XII
distribution (denoted by BurrXII(α, β)), then the distribution function (cdf) and the probability density
function (pdf) of X are respectively given by (see [6]):
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F (x;α, β) = 1 − {1 + xα}−β, (1.1)

f (x;α, β) = α β x(α−1)
{1 + xα}−(β+1), (1.2)

where both α > 0 and β > 0 are shape parameters. However, α parameter plays the important role in
the shape of this distribution to be decreasing, positively skewed or unimodel as shown in Figure 1.
Also, this can be seen from the effectiveness of the shape parameter α in the hazard function (h(x)) of
this distribution

h (x) =

(
α β

x

) {
1 + x−α

}−1
. (1.3)
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Figure 1. Plots of the pdf of the Burr XII distribution with (a) β = 1 and different values of
α and (b) α = 1 and different values of β.

The rest of the paper is organized as follows. In Section 2, we introduce the maximum likelihood
estimation (MLE). We provide the bc MLEs for both analytical and bootstrap approachs in Section 3. In
Section 4, simulation results to assess the performance of the maximum likelihood estimation method
are reported. Furthermore, we demonstrate the performance of these approachs by providing two
examples based on real data in Section 5. Finally, we give some concluding remarks in Section 6.

2. Maximum likelihood estimation

Let X1, · · · , Xn be a random sample of size n from BurrXII(α, β). The log likelihood function (l) is

l (α, β) = Log L (α, β) = n log (α) + n log (β) + (α − 1)
n∑

i=1

log(xi) − (β + 1)
n∑

i=1

log {1 + (xi)α}. (2.1)

In order to obtain the MLE’s (α̂ and β̂) of α and β respectively, we maximize (2.1) with respect to
α and β. Thus, we have the following equations:

∂l
∂α

=
n
α

+

n∑
i=1

log(xi) − (β + 1)
n∑

i=1

log (xi)
[
1 + (xi)−α

]−1
, (2.2)
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∂l
∂β

=
n
β
−

n∑
i=1

log {1 + (xi)α}. (2.3)

Even though these non-linear Eqs (2.2) and (2.3) cannot be solved analytically, several programs
such as SAS, R, Mathematica, Maple, or Matlab can be used to solve these equations numerically
to estimate the MLEs denoted by η̂MLE where η = (α, β)

′

. As pointed earlier, these MLEs will be
biased for small sample sizes. Consequently, the bias may give misleading results which has an
effect on interpretations of phenomena in real applications. Therefore, this motivates us to consider
approximately unbiased estimators to reduce the bias of these MLEs of Burr XII distribution.

3. Bias-corrected MLEs

Two bias-correction approaches are considered in this section. The first one is the “analytical
approach” introduced by [11] which is presented in Section 3.1 and the second one is the “bootstrap
approach” introduced by [12] which is presented in Section 3.2.

3.1. Analytical approach

Suppose l(η) is the log likelihood function based on a sample of n observations with p-dimenstional
parameter vector expressed as η =

(
η1, · · · , ηp

)′
and l(η) is regular with respect to all derivatives up to

the third order, inclusively. Then, the joint cumulants of the derivatives of l = l(η) are defined as

ϕi j = E
[
∂2l

∂ηi∂η j

]
, i, j = 1, · · · , p , (3.1)

ϕi jk = E
[

∂3l
∂ηi∂η j∂ηk

]
, i, j, k = 1, · · · , p , (3.2)

ϕi j,k = E
[(

∂2l
∂ηi∂η j

) (
∂l
∂ηk

)]
, i, j, k = 1, · · · , p . (3.3)

These joint cumulants’ derivatives are

ϕ(k)
i j =

∂ϕi j

∂ηk
, i, j, k = 1, · · · , p . (3.4)

Furthermore, we assume all expressions in (3.1) to (3.4) are of order O(n).
Let I =

[
−ϕi j

]
be the Fisher information matrix of η, where i, j = 1, · · · p . [11] proved that for

independent sample not necessarily identical the bias of the sth element of the MLE of η is

Bias
(̂
ηs

)
=

p∑
i=1

p∑
j=1

p∑
k=1

ϕsiϕ jk

[
1
2
ϕi jk + ϕi j,k

]
+ O

(
n−2

)
, s = 1, · · · , p , (3.5)
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where ϕi j is the (i, j)th element of the inverse of the information matrix. Later, [10] showed that
Eq (3.5) still hold if the sample data are not identical and non-independent observations provided
that all expressions in (3.1) to (3.4) are of order O(n). They expressed Eq (3.5) as

Bias
(̂
ηs

)
=

p∑
i=1

ϕsi
p∑

j=1

p∑
k=1

ϕ jk

[
ϕ(k)

i j −
1
2
ϕi jk

]
+ O

(
n−2

)
, s = 1, · · · , p . (3.6)

This bias expression in Eq (3.6) is generally easier to compute than that of Eq (3.5) because the term
of the form in Eq (3.3) was dropped from Eq (3.5).

Define ω(k)
i j = ϕ(k)

i j −
1
2ϕi jk , i, j, k = 1, · · · , p. Thus, we have these two matrices (Ψ and Ω(k)) as

Ψ =
[
Ω(1)| Ω(2)

| · · · |Ω(p)
]

where Ω(k) =
[
ω(k)

i j

]
, i, j, k = 1, · · · , p. (3.7)

Therefore, the bias expression of η̂ can be expressed in matrix form as

Bias
(̂
η
)

= I−1Ψ · vec
(
I−1

)
+ O

(
n−2

)
, (3.8)

where vec is an operator that stacks column vectors of a matrix below one another. Thus, the bc MLE
of η, denoted as η̂BCMLE , is given by

η̂BCMLE = η̂ − Î
−1

Ψ̂ · vec
(̂
I
−1

)
, (3.9)

where η̂ is the MLE of η , Î = I|η=η̂ and Ψ̂ = Ψ|η=η̂ . Note that the bias of η̂BCMLE is O
(
n−2

)
.

Since we study the Burr XII distribution, we have η = (α, β)
′

and p = 2. In order to obtain the
bc MLEs, we need to find the higher-order derivatives of the log-likelihood function for the Burr XII
distribution taken with respect to α and β as follows:

∂2l
∂α2 = −

n
α2 − (β + 1)

n∑
i=1

{
log (Xi)

}2(Xi)α
[
1 + (Xi)α

]−2, (3.10)

∂2l
∂β2 = −

n
β2 , (3.11)

∂2l
∂α∂β

= −

n∑
i=1

{
log (Xi) (Xi)α

[
1 + (Xi)α

]−1
}
, (3.12)

∂3l
∂α3 =

2n
α3 − (β + 1)

n∑
i=1

{[
log (Xi)

]3(Xi)α
[
1 + (Xi)α

]−3 [
1 − (Xi)α

]}
, (3.13)

∂3l
∂β3 =

2n
β3 , (3.14)

∂3l
∂α2∂β

= −

n∑
i=1

{
log (Xi)

}2(Xi)α
[
1 + (Xi)α

]−2, (3.15)

∂3l
∂β2∂α

= 0. (3.16)
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Observe that if X follows BurrXII(α, β) then Y = (X)α ∼ f (y) = β
[
1 + y

]−(β+1) f or y > 0. We
know that the beta function is Beta (a, b) =

∫ 1

0
ya−1(1 − y)b−1 dy =

Γ(a)Γ(b)
Γ(a+b) where Γ (t) =

∫ ∞
0

yt−1e−y dy
is the gamma function. The following formulas will be needed∫ ∞

0
log (y) ya−1[1 + y

]−b dy = Beta (a, b − a) {ψ (a) − ψ (b − a)} f or a < b, (3.17)

∫ ∞

0

[
log (y)

]2 y
a−1[

1 + y
]−b dy = Beta (a, b − a)

{[
ψ (a) − ψ (b − a)

]2
+ ψ(1) (a) + ψ(1) (b − a)

}
, f or a < b,

(3.18)

and in general∫ ∞

0

[
log (y)

]c ya−1[1 + y
]−b dy =

∂c

∂αc Beta (a, b − a) f or a < b and c = 1, 2, · · · , (3.19)

see Eqs (2.2.4.24), (2.6.4.6), (2.6.4.7) and (2.6.4.10) in [24], respectively. Therefore, using the previous
Eqs (3.17)–(3.19) we get

E
{
log (X) (X)α

[
1 + (X)α

]−1
}

=

(
1
α

)
E

{
log (Y) Y [1 + Y]−1

}
=

(
1
α

) ∫ ∞

0
log (y) y

[
1 + y

]−1 f (y) dy

=

(
β

α

) ∫ ∞

0
log (y) y

[
1 + y

]−(β+2) dy

=

(
β

α

)
Beta (2, β) {ψ (2) − ψ (β)}

=
ψ (2) − ψ (β)
α (β + 1)

. (3.20)

Let ψ (t) =
dlog(Γ(t))

dt =
Γ
′
(t)

Γ(t) be the digamma function. Thus, ψ(m) (t) = dm

dtmψ (t) = dm+1

dtm+1 log (Γ (t)) be the
mth derivative of the digamma function. Hence, ψ (t) = ψ(0) (t). Similarly,

E
{{

log (X)
}2(X)α

[
1 + (X)α

]−2
}

= E


{

log (Y)
α

}2

Y [1 + Y]−2


=

(
β

α2 (β + 1) (β + 2)

) {[
ψ (2) − ψ (β + 1)

]2
+ ψ(1) (2) + ψ(1) (β + 1)

}
, (3.21)

E
{{

log (X)
}3(X)α

[
1 + (X)α

]−3
}

= E


{

log (Y)
α

}3

Y [1 + Y]−3
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=

(
β

α3 (β + 2) (β + 3)

) {[
ψ (2) − ψ (β + 2)

]
×([

ψ (2) − ψ (β + 2)
]2

+ 3
[
ψ(1) (2) + ψ(1) (β + 2)

])
+ ψ(2) (2) − ψ(2) (β + 2)

}
, (3.22)

E
{{

log (X)
}3(X)2α[1 + (X)α

]−3
}

= E


{

log (Y)
α

}3

Y2[1 + Y]−3


=

(
2β

α3 (β + 1) (β + 2) (β + 3)

) {[
ψ (3) − ψ (β + 1)

]
×([

ψ (3) − ψ (β + 1)
]2

+ 3
[
ψ(1) (3) + ψ(1) (β + 1)

])
+ ψ(2) (3) − ψ(2) (β + 1)

}
. (3.23)

For the joint cumulants of the derivatives of the log-likelihood function, see Appendix A. As
previously mentioned, we can use any computer program to compute the bc MLE of η (̂ηBCMLE )
given by

η̂BCMLE = η̂ − Î
−1

Ψ̂ · vec
(̂
I
−1

)
,

where I is the Fisher information matrix of η and Ψ =
[
Ω(1)| Ω(2)

]
such that Ω(k) =

[
ω(k)

i j

]
, i, j, k = 1, 2.

3.2. Bootstrap approach

[12] introduced bootstrap resampling method to generate pseudo-samples from the original sample.
In order to obtain the bc MLEs, we subtract the estimated bias obtained from these samples from the
original MLEs as follows:

Let x = (x1, · · · , xn)
′

be a random sample of size n from F, the distribution function (cdf). Let τ̂ be
the estimator of τ where the parameter τ = t (F) be some function of F. We resample x∗ =

(
x∗1, · · · , x

∗
n

)′
as pseudo-samples of size n from the original sample x by generating observations with replacement.
From these pseudo-samples, we obtain the bootstrap replicates of τ̂, denoted by τ̂∗ = g(x∗). The
empirical cdf (ecdf) of τ̂∗ can be used to estimate the cdf of τ̂, Fτ̂. The bootstrap bias of the estimator
τ̂ = g(x) can be estimated by

BF
(̂
τ, τ

)
= EF

[̂
τ
]
− τ (F) . (3.24)

By replacing F by Fτ̂ in Eq (3.24) since it is consistent estimator, we obtain the estimated bootstrap
bias as

B̂Fτ̂
(̂
τ, τ

)
= EFτ̂

[̂
τ∗

]
− τ̂. (3.25)

If we have bootstrap estimates of size N, say
(̂
τ∗(1), · · · , τ̂∗(N)

)
, and N is sufficiently large then the

estimator EFτ̂
[̂
τ∗

]
in Eq (3.25) can be approximated by

τ̂∗(·) =
1
N

N∑
i=1

τ̂∗(i).
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Therefore, the estimated bootstrap bias becomes

B̂Fτ̂
(̂
τ, τ

)
= τ̂∗(·) − τ̂. (3.26)

Hence, the bc estimator (τB) according to Efron’s bootstrap resampling approach is

τB = τ̂ − B̂Fτ̂
(̂
τ, τ

)
= 2 τ̂ − τ̂∗(·). (3.27)

Therefore, in our case we let η̂BCBOOT = τB.

4. A simulation study

In this section, we perform Monte Carlo simulations to assess the effectiveness of the several
considered estimators of the Burr XII distribution with cdf and pdf presented respectively in Eqs (1.1)
and (1.2). We choose random samples of size n = 5, 10, 20, 35, 50, 75, 100, 200 , 500 with α = 0.1,
0.5, 1, 1.5, 3 and β = 0.1, 0.5, 1, 1.5, 3. We used M = 5000 Monte Carlo replications with B = 1000
bootstrap replications in our simulations for each combination of (n, α, β).

For an estimator η̂ of the parameter η = (α, β)′, we calculate the average bias and the RMSEs, which

are denoted by Bias(̂η)= 1
M

∑M
i=1

(̂
ηi − η

)
, and RMSE(̂η)=

√
1
M

∑M
i=1

(̂
ηi − η

)2 , respectively.
The average biases and the RMSEs of the estimates of α and β across sample sizes were depicted

in Figures 2 and 3. The following are some conclusions that can be derived.

(1) For each simulation under consideration, the MLE estimators of α seem to have a positive bias.
This shows that they overestimate the real value of the parameter α on average, in particular when
the sample size is small. Furthermore, when the real value of the parameter β is less than one, the
MLE estimators frequently appear to have a negative bias, i.e., they underestimate the real value of
the parameter β for different sample sizes. On the other hand, when the real value of the parameter
β is equal to or larger than one, the MLE estimators often tend to be positively biased. This means
that they, on average, overestimate the real value of the parameter β for different sample sizes.

(2) In each simulation for varied sample sizes, the BCMLEs of α and β beat the MLE estimators in
terms of bias and RMSE. As a result, if bias is an issue, the BCMLEs would be excellent choices
for estimating α and β. In addition, in terms of bias and RMSE for most simulations, the BCBOOTs
of α and β beat the MLE estimators for various sample sizes. As a consequence, the BCBOOTs
would be preferable choices for estimating α and β.

(3) As sample size n becomes large, the biases and RMSEs of all investigated estimators will decrease
as expected. This is mostly due to the fact that in statistical theory, most estimators perform better
as the sample size n increases. As expressed above, the reductions in bias and RMSE are very
significant for the bc estimators for small sample sizes. Tables 1 and 2 give point estimates of
the parameters α and β of Burr XII distribution with their corresponding biases and RMSEs by
using the three different estimation methods (MLE, BCMLE and BCBOOT) across samples sizes,
respectively. For example, where n = 10, α = 1.5, and β =1, we have Bias(α̂ MLE)=0.2641,
Bias(α̂ BCMLE)=-0.0099, Bias(α̂ BCBOOT)= 0.0864, Bias(β̂ MLE) = 0.0786, Bias(β̂ BCMLE)
= 0.0026, Bias(β̂ BCBOOT) =0.0018, RMSE(α̂ MLE) = 0.7336, RMSE(α̂ BCMLE) = 0.5055,
RMSE(α̂ BCBOOT)= 0.6304, RMSE(β̂ MLE) = 0.4299, RMSE(β̂ BCMLE) = 0.3621, RMSE(β̂
BCBOOT) = 0.3952.
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Figure 2. Plots of the average biases comparisons of the three different estimation methods
for α (left side) and β (right side).
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Figure 3. Plots of the RMSEs Comparisons of the three different estimation methods for α
(left side) and β (right side).
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Table 1. Point estimates of the parameter α of Burr XII distribution with their corresponding
biases and RMSEs by using the three different estimation methods (MLE, BCMLE and
BCBOOT) across sample sizes.

α̂ Bias RMSE
n α MLE BCMLE BCBOOT MLE BCMLE BCBOOT MLE BCMLE BCBOOT
10 1.5 1.7641 1.4901 1.5864 0.2641 -0.0099 0.0864 0.7336 0.5055 0.6304
20 1.5 1.6585 1.5336 1.551 0.1585 0.0336 0.051 0.4478 0.3788 0.3918
35 1.5 1.5779 1.5114 1.517 0.0779 0.0114 0.017 0.2869 0.2623 0.2638
50 1.5 1.5562 1.51 1.5124 0.0562 0.01 0.0124 0.2209 0.2057 0.2074
75 1.5 1.5293 1.4992 1.5 0.0293 -0.0008 0 0.1686 0.1619 0.1616
100 1.5 1.5269 1.5044 1.5045 0.0269 0.0044 0.0045 0.1431 0.138 0.139
200 1.5 1.508 1.4969 1.4977 0.008 -0.0031 -0.0023 0.1002 0.099 0.0997
500 1.5 1.5049 1.5005 1.5007 0.0049 0.0005 0.0007 0.063 0.0626 0.0627

Table 2. Point estimates of the parameter β of Burr XII distribution with their corresponding
biases and RMSEs by using the three different estimation methods (MLE, BCMLE and
BCBOOT) across sample sizes.

β̂ Bias RMSE
n β MLE BCMLE BCBOOT MLE BCMLE BCBOOT MLE BCMLE BCBOOT
10 1 1.0786 1.0026 1.0018 0.0786 0.0026 0.0018 0.4299 0.3621 0.3952
20 1 1.0273 0.996 0.9923 0.0273 -0.004 -0.0077 0.271 0.2526 0.2588
35 1 1.0191 1.0022 1.0013 0.0191 0.0022 0.0013 0.1917 0.1841 0.1874
50 1 0.998 0.987 0.9867 -0.002 -0.013 -0.0133 0.1574 0.154 0.1564
75 1 1.0095 1.002 1.0014 0.0095 0.002 0.0014 0.1342 0.1316 0.1318

100 1 1.0014 0.9959 0.9962 0.0014 -0.0041 -0.0038 0.113 0.1117 0.1127
200 1 1.006 1.0033 1.0034 0.006 0.0033 0.0034 0.0786 0.078 0.0787
500 1 0.9963 0.9953 0.995 -0.0037 -0.0047 -0.005 0.0474 0.0474 0.0478

5. Illustrative applications

We consider two real data sets to compare the performance of these estimators (the maximum
likelihood estimator denoted by η̂MLE , the bc maximum likelihood estimator using analytical approach
denoted by η̂BCMLE and the bc estimator using bootstrap approach denoted by η̂BCBOOT).

The first set of data indicates the survival rate (in percentage) of the batches of rats exposed to varied
amounts of radiation. This data set was introduced by [13]. It is presented as follows: 44.0, 55.0, 16.0,
13.0, 4.0, 1.96, 6.12, 0.5, 0.32, 0.110, 0.015, 0.019, 0.7 and 0.006.

The estimated values of the parameters of the Burr XII distribution are listed in Table 3. Table 3
shows that the MLE estimates are larger than the bc MLE and bootstrap estimates of α and β, implying
that the MLE technique overestimates both parameters. Figure 4 illustrates the evaluation of the pdf
and cdf of the Burr XII distribution with respect to the estimates of α and β in Table 3. The density
shape based on the MLE method may be misleading as shown in this Figure, and thus we propose the
use of bc MLEs for this data set.
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Table 3. Point estimates of the parameters (α and β) of Burr XII distribution for the first data.

Estimate α β

MLE 0.5677 1.0382
BCMLE 0.5276 0.9956

BCBOOTP 0.5387 1.0324
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Figure 4. The cdf and pdf of the Burr XII distribution fitted to the survival rate data using
the various estimates of α and β.

The second data set represents the time to failure (in months) of 20 electronic components on test.
This data set was taken from [33]. Furthermore, it was analyzed by [25]. For convenience, we present
it as follows: 0.1, 0.1, 0.2, 0.3, 0.4, 0.5, 0.5, 0.6, 0.7, 0.8, 0.9, 0.9, 1.2, 1.6, 1.8, 2.3, 2.5, 2.6, 2.9
and 3.1.

Similarly, The estimated values of the parameters of the Burr XII distribution are listed in Table 4.
Table 4 shows that the MLE estimates are larger than the bc MLE and bootstrap estimates of α and
β, implying that the MLE technique overestimates both parameters, particularly α. Figure 5 illustrates
the evaluation of the pdf and cdf of the Burr XII distribution with respect to the estimates of α and β in
Table 4. The density shape based on the MLE method may be misleading as shown in this Figure, and
thus we propose the use of bc MLEs for this data set.

Table 4. Point estimates of the parameters (α and β) of Burr XII distribution for the second data.

Estimate α β

MLE 1.5606 1.2883
BCMLE 1.4574 1.2415

BCBOOTP 1.4712 1.2509
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Figure 5. The cdf and pdf of the Burr XII distribution fitted to the failure time data using the
various estimates of α and β.

6. Conclusions

The second-order bc MLEs of the Burr XII distribution have been derived based on the “analytical
approach” developed by [11]. bc MLEs not only have clear expressions, but they also minimize the bias
and root mean square errors (RMSEs) of the parameters of the Burr XII distribution at the same time.
For parameter estimation, we also evaluated the “bootstrap approach” resampling method described
by [12]. The numerical findings of both simulation studies and real-data applications clearly imply
that bc MLEs should be recommended for use in practical applications, particularly when the sample
size is small or moderate. Further work could be bias reduction of MLE’s for Burr type XII distribution
(see [4]).
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Appendices

A. The joint cumulants of the derivatives of the log-likelihood function:
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Thus, ω(k)
i j = ϕ(k)

i j −
1
2ϕi jk

ω(1)
11 = ϕ(1)

11 −
1
2
ϕ111 =

n
α3 +

(
nβ

α3 (β + 2) (β + 3)

) {
2 (β + 3)

[
ψ (2) − ψ (β + 1)

]2
+ 2 (β + 3) ψ(1) (2) +

2 (β + 3) ψ(1) (β + 1) − (β + 1)
{[
ψ (2) − ψ (β + 2)

] ([
ψ (2) − ψ (β + 2)

]2
+

3
[
ψ(1) (2) + ψ(1) (β + 2)

])
+ ψ(2) (2) − ψ(2) (β + 2)

}
+ 2

[
ψ (3) − ψ (β + 1)

]
×([

ψ (3) − ψ (β + 1)
]2

+ 3
[
ψ(1) (3) + ψ(1) (β + 1)

])
+ 2 ψ(2) (3) − 2 ψ(2) (β + 1)

}
.

© 2022 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 7, Issue 9, 17444–17460.

http://creativecommons.org/licenses/by/4.0

	Introduction
	Maximum likelihood estimation
	Bias-corrected MLEs
	Analytical approach
	Bootstrap approach

	A simulation study
	Illustrative applications
	Conclusions

