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Abstract: In this paper, we present a powerful numerical scheme based on energy boundary
functions to get the approximate solutions of the time-fractional inverse Burger equation containing
HH-derivative.This problem has never been investigated earlier so, this is our motivation to work
on this important problem. Some numerical examples are presented to verify the efficiency of the
presented technique. Graphs of the exact and numerical solutions along with the plot of absolute error
are provided for each example. Tables are given to see and compare the results point by point for each
example.
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1. Introduction

This study is devoted to investigate the numerical solutions of the time-fractional Burger equation.
The time-fractional Burger equation can be regarded as the generic convection model. To see more
details see [1]. Also, this model has a huge interest, physically. In fact, researchers consider this
problem as a proper reduction of the Navier–Stokes system. Indeed, the flow model which consists
of some important phenomena such as heat’s diffusion and turbulence can be described by the Burger
model. In recent years different methods have been worked on this important problem numerically
and analytically. For example, an application of the fictitious time integration method for obtaining
the numerical solutions of this equation can be seen in [2]. Also, to get the approximate solutions of
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generalized time-fractional Burgers equation a linear finite difference scheme has been worked in [3].
To get the analytical solutions of this problem, an application of the (G′/G)-expansion method can be
found in [4]. Moreover, in [5] approximate analytical solution of the nonlinear fractional KdV–Burgers
equation has been provided. Also, an efficient method for time-fractional damped Burger and time-
sharma-tasso-Olver equations employing the FRDTM was presented in [6]. A reliable method for
solving the space–time fractional Burgers and time-fractional Cahn-Allen equations can be seen in
[7]. Approximate solution of the fractional Burgers model using cubic B-spline finite was obtained
in [8]. Analytical solution of the time and space fractional Burgers’ problem can be seen in [9]. Also,
approximate solutions of the fractional Burger equation using differential transform approach can be
read in [10]. Furthermore, the applications of other method on this problem can be observed in [11–16].

In recent years, many researchers have paid attention to non-integer differential and integral
operators as generalizations of differential and integral operators of integer orders. These non-integer
operators are able to consider any arbitrary value for their orders. There are various definitions for
fractional operators. The Caputo sense is one of the most famous fractional derivatives. In spite of
the beneficial properties of this operator, the chief drawback of this derivative is the singularity of its
kernel. To dominate this issue, new definitions of fractional derivatives such as Caputo–Fabrizio and
Atangana–Baleanu senses have been introduced. In the Caputo–Fabrizio definition, the exponential
function has been employed instead of the singular kernel in the definition of the Caputo derivative,
while in the Atangana–Baleanu definition, the Mittag–Leffler function has been applied. Albeit the
mentioned definitions solve the issue of the singularity of the Caputo fractional derivatives, they
themselves have a number of limitations. For instance, in the Caputo–Fabrizio fractional derivative,
due to the structure of the kernel function it is difficult to extract a closed-form for the fractional
derivative of functions. Moreover, the expansion of numerical schemes for solving differential
equations involving this type of fractional derivative can be hard. On the other hand, although it
is easy to work with the definition provided by Atangana and Baleanu, the fractional derivatives
of analytic functions in this sense will be non-analytic functions. In the sequel, to overcome the
mentioned limitations, we use a new non-singular fractional differentiation called Heydari-Hosseininia
fractional derivative [17] Motivated by the mentioned arguments in the current study we investigate the
time-fractional inverse Burger problem involving a new generation of fractional derivative: Heydari-
Hosseininia (HH) derivative. This is the first time that this problem is under investigation. We consider
the following problem:

HHDα
τh(z, τ) − h(z, τ)hz(z, τ) = hzz + H(z, τ), 0 < z < 1, 0 < τ < τ f , (1.1)

h(0, τ) = F0(τ), h(l, τ) = Fl(τ). (1.2)

where HH derivative introduced in [15] as:

HHDα
τ f (τ) =

1
Γ(1 − α)

∫ τ

0
f ′(c)T1

(
−α

1 − α
(τ − c)

)
dc, 0 < α<1, (1.3)

where Tα(z) is Mittag-Leffler function represented via:

Tα(z) =

∞∑
k=0

zk

Γ(αk + 1)
. (1.4)
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We have

h(0, τ) = F0(τ), h(l, τ) = Fl(τ), h(0, τ) = Q0(τ), hz(l, τ) = Ql(τ), (1.5)

H(0, τ) = H0(τ), H(l, τ) = Hl(τ), Hz(0, τ) = H
′

0(τ), h(l, τ) = H
′

l (τ). (1.6)

We order our manuscript as follows: We explain a new notion of energy border functional equation
in Section 2. We provide the method to construct H(x, t) in Section 3. Section 4 solves two numerical
examples. Lastly, the conclusion section is given.

2. Energy functional of boundary functions

Some implementations of energy functional boundary functions can be found in [18–26]. The
structure of energy functional boundary functions is given as follows. By multiplying Eq (1.1) by
h(z, τ) we obtain:

h(z, τ)HHDα
τh(z, τ) − h2(z, τ)hz(z, τ) = h(z, τ)hzz(z, τ) + h(z, τ)H(z, τ). (2.1)

Using Eq (1.5) and integration by parts from x = 0 to x = l yields:

∫ `

0
h(z, τ)HHDα

τh(z, τ)dz +

∫ `

0
h2

z (z, τ)dz −
∫ `

0
H(z, τ)h(z, τ)dz

= Q`(τ)F`(τ) − Q0(τ)F0(τ) +
1
3

[h3(l, τ) − h3(o, τ)] =

Q`(τ)F`(τ) − Q0(τ)F0(τ) +
1
3

[F3(l, τ) − F3(o, τ)] = F(τ).

(2.2)

The above problem is an energy equation and we use it to discover H(z, τ). Thus, we describe the
following relation:

v(z, τ) = h(z, τ) −G0(z, τ), (2.3)

where G0(z, τ) is the homogenization function

G0(z, τ) =
1
`3 [2F0(τ) − 2F`(τ) + Q0(τ)` + Q`(τ)`] z3

−
1
`2 [3F0(τ) − 3F`(τ) + 2Q0(τ)` + Q`(τ)`] z2 + Q0(τ)z + F0(τ).

(2.4)

Regarded to homogeneous boundary conditions:

∫ `

0
[v(z, τ)) + G0(z, τ)]

[
HHDα

τv(z, τ) +HH Dα
τG0(z, τ)

]
dz +

∫ `

0

[
vz(z, τ) + G′0(z, τ)

]2 dz
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−

∫ `

0
[v(z, τ) + G0(z, τ)] H(z, τ)dz = F(τ) (2.5)

v(0, τ) = 0, v(`, τ) = 0, vz(0, τ) = 0, vz(`, τ) = 0. (2.6)

Since we are not aware of the exact value of v(z, τ), so some functions can be considered to
proximate this function. We can gather the boundary function which spontaneously gladdens the
boundary conditions in Eq (2.9):

G j(z) =
(
x4 − 2`x3 + `2x2

)
x j−1, j ≥ 1. (2.7)

with
G j(0) = 0, G j(`) = 0, G′j(0) = 0, G′j(`) = 0. (2.8)

According to Eqs (2.8) and (2.9), it is inevitable that βG j(z), β ∈ R, is a function with boundary, if
G j(z) is a function with boundary, and if G j(z) and Gk(z) are functions with boundary, G j(y) + Gk(z)
is said to be a boundary function. The boundary functions are closed under a scalar addition and
multiplication; thus, the group of {

G j(z)
}
, j ≥ 1. (2.9)

and the zero component set up a linear space of homogeneous functions with boundary, represented as
G.
For identifying H(z, τ), an approximate functional equation can be obtained in the following way.

Theorem 1:

We have

T j(z) = γ jG j(z), j ≥ 1. (2.10)

Where H(z, τ) is solution of the following equation in terms of T j(z).

∫ `

0

[
T j(z) + G0(z, τ)

] [
HHDα

τG0(z, τ) − H(z, τ)
]

dz

+

∫ `

0

[
T ′j(z) + G′0(z, τ)

]2
dz = F(τ),

(2.11)

where

a2 =

∫ `

0
G′j(z)2dz, a1 =

∫ `

0

{
2G′0(z, τ)G′j(z) +

[
HHDα

τG0(z, τ) − H(z, τ)
]
G j(z)

}
dz

a0 =

∫ `

0

{
G′0(z, τ)2 + G0(z, τ)

[
HHDα

τG0(z, τ) − H(z, τ)
]}

dz − F(τ), (2.12)

γ j =
−a1 −

√
a2

1 − 4a0a2

2a2
. (2.13)
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Proof. G j(z) ∈ G is an element in the linear space G. Thus, the scalar multiplication in Eq (2.11)
renders T j(z) ∈ G, which satisfies the following homogeneous boundary conditions:

T j(0) = 0, T j(`) = 0, T ′j(0) = 0, T ′j(`) = 0, (2.14)

with regard to Eq (2.9). The function T j(z) already satisfies the conditions in Eq (2.15) as those
of Eq (2.7) for v(z, τ). The power identity Eq (2.6) is introduced to T j(z), from which we can get
approximately v(z, τ) by T j(z) and obtain Eq (2.12) which is a functional energy equation of T j(z) in
linear space G. Using Eq (2.11) for T j(z) and

T ′j(z) = γ jG′j(z), (2.15)

for T j(x) into Eq (2.12) we obtain:

a2γ
2
j + a1γ j + a0 = 0, (2.16)

The coefficients a0, a1, a2 are described in Eq (2.13). Therefore, the solution of γ j is obtained in Eq
(2.14). So, this completes the proof. �

3. Numerical algorithm

We approximate H(z, τ) as follows:

H(z, τ) = D(z, τ) +

m∑
i=1

ciTi(z), (3.1)

where

D(z, τ) =
1
`3

[
2H0(τ) − 2H`(τ) + H′0(τ)` + H′`(τ)`

]
z3

−
1
`2

[
3H0(τ) − 3H`(τ) + 2H′0(τ)` + H′`(τ)`

]
z2 + H′0(t)z + H0(τ),

(3.2)

Then, we get

ci

∫ `

0

[
T j(z) + G0(z, τ)

]
Ti(z)dz =∫ `

0

[
T j(z) + G0(z, τ))

] [
HHDα

τh(z, τ)G0(z, τ) − D(z, τ)
]

dz+∫ `

0

[
T ′j(z) + G′0(z, τ)

]2
dz − F(τ).

(3.3)
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Then, we obtain:

H(0, τ) = D(0, τ) +

m∑
i=1

ciTi(0) = H0(τ),D(0, τ) = H0(τ),Ti(0) = 0,

H(`, τ) = D(`, τ) +

m∑
i=1

ciTi(`) = H`(τ),D(`, τ) = H`(τ),Ti(`) = 0,

Hz(0, t) = Dz(0, τ) +

m∑
i=1

ciT ′i (0) = H′0(τ), due to Dz(0, τ) = H′0(τ),T ′i (0) = 0,

Hz(`, τ) = Dz(`, τ) +

m∑
i=1

ciT ′i (`) = H′`(τ), due to Dz(`, τ) = H′`(τ),T ′i (`) = 0,

where we have applied Eq (3.1) and Eq (3.3). Secondly, the coefficient matrix
∫ `

0
T j(z)Ti(z)dz in Eq

(3.5) is symmetric.
(i) We give s ∈

(
0, τ f

]
, and m, ε, γ j = 0, j = 0, and c = (c1, . . . , crn)T, c0 = 0.

(ii) For τ = 0, 1, . . . ,

T j(z) = γ jG j(z),

H(z, τ) = D(z, τ) +

m∑
j=1

ck
jT j(z),

and we determine

a2 =

∫ `

0
G′j(z)2dy,

a1 =

∫ `

0

{
2G′0(z, τ)G′j(z) +

[
HHDα

τG0(z, τ) − H(z, τ)
]
G j(z)

}
dy,

a0 =

∫ `

0

{
G′0(y, s)2 +

[
HHDα

s G0(z, τ) − H(z, τ)
]
G0(z, τ)

}
dz − F(τ).

(iii) We compute

γ j =
−a1 −

√∣∣∣a2
1 − 4a0a2

∣∣∣
2a2

,

T j(z) = γ jG j(z).
T ′j(z) = γ jG′j(z),

(iv) We insert the above T j(z) and T ′j(z) in

ci

∫ `

0

[
T j(z) + G0(z, τ)

]
Ti(z)dz

=

∫ `

0

[
T j(z) + G0(z, τ)

] [
HHDα

τG0(z, τ) − D(z, τ)
]

dz +

∫ `

0

[
T ′j(z) + G′0(z, τ)

]2
dz − F(τ).

(3.4)
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By solving these equations to reach ck+1
1 and if the convergence criteria satisfies for the norm of ck

∥∥∥ck+1 − ck
∥∥∥ ≤ ε. (3.5)

then we stop iterations. Otherwise, we check on (ii) for the next step. For the first iteration, a2
1−4a0a2

is likely to be negative, and we employ
∣∣∣a2

1 − 4a0a2

∣∣∣ to prevent from program interuption. In relation
Eq (3.5),

∥∥∥ck+1 − ck
∥∥∥ is the Euclidean norm for ck+1 − ck.

4. Numerical results

In this section we examine the performance of the presented method by solving two examples. The
computations are generated by using Matlab 2021. We take into consideration:

û (0, τi) = F0 (τi) [1 + sR(i)], û (`, τi) = F`(t)[1 + sR(i)],
ûz (0, τi) = Q0 (τi) [1 + sR(i)], ûz(`, τ) = Q` (τi) [1 + sR(i)],
Ĥ (0, τi) = H0 (τi) [1 + sR(i)], Ĥ (`, τi) = H` (τi) [1 + sR(i)],
Ĥz (0, τi) = H′0 (τi) [1 + sR(i)], Ĥz (`, τi) = H′` (τi) [1 + sR(i)].

(4.1)

Example 1:

We take into consideration

h(z, τ) = zτ(z − 1)(τ − 2), (4.2)

and the function

H(z, τ) = zτ(z − 1)(τ − 2)(zτ(τ − 2) + τ(τ − 2)(z − 1)) − 2τ(τ − 2). (4.3)

We apply the current method to solve this problem using different parameters. Figure 1 is devoted
to show the approximate and exact solutions along with errors obtained by selecting m = 3, s = 0.001
and the fractional order α = 0.45. Satisfactory results are gained which are displayed point by point
through Table 1. Also we show the results by choosing m = 7, s = 0.001 and α = 0.55 in Figure 2.
Table 2 is responsible to display the values of results containing errors, exact and numerical solutions.
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Figure 1. Simulations for m = 3, s = 0.001 and α = 0.45 of Example 1.
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Figure 2. Simulations for m = 7, s = 0.001 and α = 0.55 of Example 1.
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Table 1. Approximate solution (AS), exact solution (ES) and absolute error (AE) for m = 3,
s = 0.001 and α = 0.45 for Example 1.

(y, s) AS ES AS

(0.1,0.1) 0.3828 0.3826 2.2977e-04
(0.3,0.3) 1.0425 1.0418 6.2569e-04
(0.5,0.5) 1.5009 1.5000 9.0084e-04
(0.7,0.7) 1.7515 1.7504 0.0011
(0.9,0.9) 1.9106 1.9094 0.0011

Table 2. Approximate solution (AS), exact solution (ES) and absolute error (AE) for m = 7,
s = 0.001 and α = 0.55 for Example 1.

(y, s) AS ES AE

(0.1,0.1) 0.3825 0.3826 5.9868e-05
(0.3,0.3) 1.0418 1.0417 1.6303e-04
(0.5,0.5) 1.4998 1.5000 2.3472e-04
(0.7,0.7) 1.7502 1.7504 2.7390e-04
(0.9,0.9) 1.9091 1.9094 2.9878e-04

Example 2:

Consider the following variable

h(z, τ) = sin(z)exp(−τ), (4.4)

and the function

H(z, τ) = sin(z)exp(−τ) + cos(z)sin(z)exp(−2τ). (4.5)

We solve the second example via using various parameters. Figure 3 is dedicated to illustrate the
numerical, analytical solutions and errors obtained by selecting m = 2, s = 0.00001 and the fractional
order of α = 0.15. Considerable results are derived which are shown point by point by Table 3. Indeed,
we depict the results by selecting m = 3, s = 0.001 and α = 0.9 in Figure 4. The values of solutions
and errors can be seen in Table 4.
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Figure 3. Simulations for m = 2, s = 0.00001 and α = 0.15 of Example 2.
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Figure 4. Simulations for m = 3, s = 0.001 and α = 0.9 of Example 2.

Table 3. Approximate solution (AS), exact solution (ES) and absolute error (AE) for m = 2,
s = 0.00001 and α = 0.15 for Example 2.

(y, s) AS ES AE

(0.1,0.1) 0.1700 0.1717 0.0016
(0.3,0.3) 0.3673 0.3739 0.0066
(0.5,0.5) 0.4388 0.4456 0.0068
(0.7,0.7) 0.4380 0.4414 0.0034
(0.9,0.9) 0.3985 0.3990 4.5253e-04
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Table 4. Numerical results for m = 3, s = 0.001 and α = 0.9 for Example 2.

(y, s) AS ES AE

(0.1,0.1) 0.1717 0.1702 0.0015
(0.3,0.3) 0.3676 0.3739 0.0062
(0.5,0.5) 0.4456 0.4392 0.0064
(0.7,0.7) 0.4384 0.4414 0.0030
(0.9,0.9) 0.3989 0.3990 8.8942e-05

5. Conclusions

In this study, we presented an accurate numerical technique to approximate the source term of
the time-fractional Burger problem containing HH derivative. The introduced method is relied on
the energy boundary functions to obtain a linear system. Moreover, the suggested method is applied to
solve the examples using different values of m and α to prove that our method is applicable for different
parameters. In fact, two examples are solved to illustrate the accuracy and validity of the proposed
technique. Furthermore, the figures of solutions and absolute errors are demonstrated, successfully.
Also, tables demonstrating values of solutions and related errors are provided for each example.
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