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1. Introduction

Fixed point theory is one of very important tools for proving the existence and uniqueness of the
solutions to various mathematical models like integral and partial differential equations, variational
inequalities, optimization and approximation theories, etc. It has gained a considerable importance
because of the Banach contraction mapping principle [5]. Since then, there have been many results
related to the mapping satisfying various types of contractive inequalities; we refer the reader
to [7, 16, 19, 21] and references therein. In recent years, there has been a trend to weaken the
requirement on the contraction by considering metric spaces endowed with a partial order;
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see [6, 14, 17, 18]. Recently, Gordji et al. [13] coined an exciting notion of the orthogonal sets and
after that, they introduced orthogonal metric spaces. The concepts of sequence, continuity and
completeness were redefined for these spaces. Further, they gave an extension of Banach contraction
principle (BCP) on this newly described shape and also applied their theorem to show the existence of
a solution for a differential equation that cannot be attained using BCP. Many authors generalized
BCP by using some control functions, see [15, 22].

First, we review some facts of O-metric spaces that we need in the sequel. The references [1–4, 8–
11, 20] are useful.

Definition 1.1. Let E , φ and ⊥⊆ E × E be a binary relation. If there is Ω0 ∈ E such that ω ⊥ Ω0 for
all ω ∈ E or Ω0 ⊥ ω for each ω ∈ E, then E is called an O-set. We show this O-set by (E,⊥).

The following example gives a view on O-sets.

Example 1.1. Let E = [0, 1). Define: Ω ⊥ ω iff Ωω < 1. Note that 1
2 ⊥ Ω for each Ω ∈ [0, 1). Hence

(E,⊥) is an O-set.

Definition 1.2. Let (E,⊥) be an O-set. A sequence {Ωn}n∈N is called an O-sequence if for each n,
Ωn ⊥ Ωn+1 or Ωn+1 ⊥ Ωn.

The concept of continuity in such spaces is defined as follows.

Definition 1.3. Let (E,⊥, do) be an O-metric space. Then Υ : E → E is O-continuous (or,
⊥-continuous) at a ∈ E provided that for each O-sequence {an}n∈N in E with an → a, then
Υ(an)→ Υ(a). Furthermore, Υ is ⊥-continuous on E if Υ is ⊥-continuous at each a ∈ E.

Remark 1.1. Note that every continuous mapping is ⊥-continuous. In the following, the converse is
not true.

Example 1.2. Take E = R. Consider that Ω ⊥ ω iff Ω = 0 or 0 , ω ∈ Z. Clearly, (E,⊥) is an O-set.
Given Υ : E → E,

Υ(Ω) =

1, if Ω ∈ Z,

0, if Ω ∈ E \ Z.

Such Υ is ⊥-continuous, but it is not continuous on Z. On the other hand, if {Ωn} is an arbitrary
O-sequence in E such that {Ωn} converges to Ω ∈ E, then we have the following cases:

(i) If Ωn = 0 for each n, then Ω = 0 and Υ(Ωn) = 1→ 1 = Υ(Ω);

(ii) If Ωn0 , 0 for some n0, then there is n ∈ Z such that Ωn ∈ Z for each n ≥ n0. Thus, Ω ∈ Z and
Υ(Ωn) = 1→ 1 = Υ(Ω).

It follows that Υ is ⊥-continuous on Z, but it is not continuous on Z.

In the sequel, the following definition will be needed.

Definition 1.4. Let (E,⊥, do) be an O-set with a metric do. We say that E is O-complete, if every
Cauchy O-sequence is convergent.

Remark 1.2. Note that every complete metric space is O-complete, but the converse is not true.
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In the following, the concepts of ⊥-preserving and weakly ⊥-preserving in O-metric spaces are
equivalent to the concepts of decreasing and increasing in metric spaces.

Definition 1.5. Let (E,⊥) be an O-set. We say that the mapping Υ : E → E is ⊥-preserving if
Υ(Ω) ⊥ Υ(ω), when Ω ⊥ ω. Also, we say that Υ : E → E is weakly ⊥-preserving if Υ(Ω) ⊥ Υ(ω) or
Υ(ω) ⊥ Υ(Ω) when Ω ⊥ ω.

Remark 1.3. Every ⊥-preserving is weakly ⊥-preserving. But, the converse is not true.

Gordji et al. [13] considered a real extension of BCP.

Theorem 1.1. Let (E,⊥, do) be an O-complete metric space (not necessarily a complete metric space).
Suppose that Υ : E → E is ⊥-continuous, ⊥-preserving and an ⊥-contraction, i.e.,

do(ΥΩ,Υω) ≤ λdo(Ω, ω) f or all Ω ⊥ ω,

where 0 < λ < 1. Then Υ has a unique fixed point in E, say Ω∗. Also, Υ is a Picard operator, that is,
lim
n→∞

Υn(Ω) = Ω∗ for each Ω ∈ E.

2. Main results

First, let S denote the class of functions β : [0,∞) → [0, 1) such that β(vn) → 1 implies vn → 0 as
n → ∞. We begin with the following definition, which is useful to prove our main theorem. In fact,
we extend the results in [1] by orthogonality and obtain some fixed point results in O-metric spaces.

Definition 2.1. Let (E,⊥, do) be an O-metric space. A mapping Υ : E → E is said to be a Geraghty
⊥-contraction if, for Ω, ω ∈ E,

Ω ⊥ ω implies do(Υ(Ω),Υ(ω)) ≤ β(do(Ω, ω))do(Ω, ω), (2.1)

where β ∈ S.

Now, we give an example showing that every Geraghty contraction (for more details and results
using this concept, see [2–4]) is a Geraghty ⊥-contraction, but the converse is not true.

Example 2.1. Take E = [0, 3) endowed with the Euclidean metric. Consider that Ω ⊥ ω iff Ωω ≤ Ω.
Define Υ : E → E by

Υ(Ω) =


Ω

4
, if Ω ≤ 2,

0, if Ω > 2.

The following cases hold:

(i) If Ω = 0, ω ≤ 2, then Υ(Ω) = 0, Υ(ω) = ω
4 ;

(ii) If Ω = 0, ω > 2, then Υ(Ω) = 0 = Υ(ω);

(iii) If ω ≤ 1, Ω ≤ 2, then Υ(Ω) = Ω
4 , Υ(ω) = ω

4 ;
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(iv) If ω ≤ 1, Ω > 2, then Υ(Ω) = 0, Υ(ω) = ω
4 .

Given β : [0,∞) → [0, 1) as β(do(Ω, ω)) = 1
1+do(Ω,ω) , note that β(do(Ω, ω)) → 1 implies do(Ω, ω) → 0.

Also, |Υ(Ω) − Υ(ω)| ≤ |Ω−ω|
1+|Ω−ω|

. Hence, Υ is a Geraghty ⊥-contraction. But, Υ is not a Geraghty
contraction. Indeed, for Ω = 2 and ω = 5

2 , we have

|Υ(2) − Υ(
5
2

)| =
1
2
≮
|2 − 5

2 |

1 + |2 − 5
2 |

=
1
3
.

An additional importance for applications of orthogonal spaces is represented by the richness of the
structure of metric spaces that we may see in the following result.

Theorem 2.1. Let (E,⊥, do) be an O-complete metric space and let Υ : E → E be ⊥-continuous,
⊥-preserving and a Geraghty ⊥-contraction. Then Υ has a unique fixed point in E. Also, Υ is a Picard
operator.

Proof. We first show that Υ has a fixed point. Since E is an O-set, there is Ω0 ∈ E such that for every
ω ∈ E, Ω0 ⊥ ω or ω ⊥ Ω0. It follows that Ω0 ⊥ Υ(Ω0) or Υ(Ω0) ⊥ Ω0. Since Υ is ⊥-preserving, by
induction we obtain that

Ω0 ⊥ Υ(Ω0) ⊥ Υ2(Ω0) ⊥ Υ3(Ω0) ⊥ . . . ⊥ Υn(Ω0) ⊥ Υn+1(Ω0) ⊥ . . .

Set Ωn = Υn(Ω0) for n = 1, 2, . . .. Since Ωn ⊥ Ωn+1 for each n ∈ N, by (2.1),

do(Ωn+1,Ωn+2) = do(Υn+1(Ω0),Υn+2(Ω0))
≤ β(do(Ωn,Ωn+1))do(Ωn,Ωn+1)
≤ do(Ωn,Ωn+1).

Then {do(Ωn,Ωn+1)} is an ⊥-preserving sequence and is bounded below, so limn→∞ do(Ωn,Ωn+1) = r ≥
0. Assume r > 0, then, from (2.1), we have

do(Ωn+1,Ωn+2)
do(Ωn,Ωn+1)

≤ β(do(Ωn,Ωn+1)), n = 1, 2, . . .

The above inequality yields limn→∞ β(do(Ωn,Ωn+1)) = 1. Since β ∈ S, we get that r = 0. Then
limn→∞ do(Ωn,Ωn+1) = 0.

Now, we show that {Ωn} is a Cauchy O-sequence. On the contrary, assume that

lim sup
m,n→∞

do(Ωn,Ωm) > 0. (2.2)

By the triangle inequality,

do(Ωn,Ωm) ≤ do(Ωn,Ωn+1) + do(Ωn+1,Ωm+1) + do(Ωm+1,Ωm).

Hence from (2.1),

do(Ωn,Ωm) ≤ (1 − β(do(Ωn,Ωm)))−1[do(Ωn,Ωn+1) + do(Ωm+1,Ωm)].
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Since lim supm,n→∞ do(Ωn,Ωm) > 0 and limn→∞ do(Ωn,Ωn+1) = 0, we have

lim sup
m,n→∞

(1 − β(do(Ωn,Ωm)))−1 = ∞.

We obtain lim supm,n→∞ β(do(Ωn,Ωm)) = 1. But since β ∈ S, we get

lim sup
m,n→∞

do(Ωn,Ωm) = 0.

This contradicts (2.2), so {Ωn} is a Cauchy O-sequence in E. Since (E, do) is an O-complete metric
space, there is t ∈ E such that limn→∞Ωn = t. To prove that t is a fixed point of Υ, in the case that Υ is
⊥-continuous, one writes

t = lim
n→∞

Ωn = lim
n→∞

Υn(Ω0) = lim
n→∞

Υn+1(Ω0) = Υ( lim
n→∞

Υn(Ω0)) = Υ(t).

Hence Υ(t) = t, i.e., t is a fixed point.
Let Ω be another fixed point of Υ. So, we have

Υn(Ω) = Ω , Υn(ω) = ω, for each n ∈ N.

By choosing Ω0 in the first part of proof, we get

(Ω0 ⊥ Ω , Ω0 ⊥ ω) or (Ω ⊥ Ω0 , ω ⊥ Ω0).

Since Υ is ⊥-preserving, we infer that

(Υn(Ω0) ⊥ Υn(Ω) , Υn(Ω0) ⊥ Υn(ω)) for each n ∈ N

or
(Υn(Ω) ⊥ Υn(Ω0) , Υn(ω) ⊥ Υn(Ω0)) for each n ∈ N.

By the triangle inequality, we obtain

do(Ω,Υn(Ω0)) = do(Υn(Ω),Υn(Ω0))
≤ β(do(Υn−1(Ω),Υn−1(Ω0)))do(Υn−1(Ω),Υn−1(Ω0))
≤ do(Υn−1(Ω),Υn−1(Ω0))
= do(Ω,Υn−1(Ω0)). (2.3)

Since γn = do(Ω,Υn(Ω0)) is nonnegative and ⊥-preserving,

lim
n→∞

do(Ω,Υn(Ω0)) = γ ≥ 0.

We show that γ = 0. On the contrary, suppose that γ > 0. By passing to subsequences, if necessary,
assume that limn→∞ β(γn) = λ exists. From (2.3), we deduce that λγ = γ, so λ = 1. Since β ∈ S, we
obtain that

γ = lim
n→∞

γn = lim
n→∞

do(Ω,Υn(Ω0)) = 0.
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This contradiction implies that γ = 0. Similarly, limn→∞ do(ω,Υn(Ω0)) = 0. Therefore,

do(Ω, ω) ≤ do(Ω,Υn(Ω0)) + do(Υn(Ω0), ω) −→ 0 (as n→ ∞).

Consequently, do(Ω, ω) = 0, so Ω = ω.
Finally, suppose that ω is an arbitrary element in E. Similarly,

(Ω0 ⊥ Ω , Ω0 ⊥ ω) or (Ω ⊥ Ω0 , ω ⊥ Ω0)

and
(Υn(Ω0) ⊥ Υn(Ω) , Υn(Ω0) ⊥ Υn(ω))

or
(Υn(Ω) ⊥ Υn(Ω0) , Υn(ω) ⊥ Υn(Ω0))

for each n ∈ N. By the triangle inequality, we get

do(Ω,Υn(ω)) = do(Υn(Ω),Υn(ω))
≤ β(do(Υn−1(Ω),Υn−1(ω)))do(Υn−1(Ω),Υn−1(ω))
≤ do(Υn−1(Ω),Υn−1(ω))
= do(Ω,Υn−1(ω)).

Similar to the above reasoning, limn→∞ do(Ω,Υn(ω)) = 0. So Υ is a Picard operator.

In the following example, we show that Theorem 2.1 is a genuine generalization of Theorem 2.1
in [1].

Example 2.2. According to Example 2.1 and by using Theorem 2.1, one can see that Υ has a unique
fixed point. However, Υ is not a Geraghty contraction; so, by Theorem 2.1 in [1], we cannot find any
fixed point for Υ.

We have the following corollary.

Corollary 2.1. The notions of O-completeness and O-continuity on O-metric spaces are weaker than
the concepts of completeness and continuity on metric spaces. Therefore, Theorem 2.1 is a
generalization of the corresponding results in [1].

3. Application to ordinary differential equations

In this section, our purpose is to apply Theorem 2.1 to prove the existence of a solution for the
following first-order problem: 

Ω′(`) = γ(`,Ω(`)), ` ∈ J = [0, L]

Ω(0) = Ω(L).

(3.1)

LetA denote the class of functions ψ : [0,∞)→ [0,∞) such that

AIMS Mathematics Volume 7, Issue 9, 17393–17402.
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(i) ψ is increasing;

(ii) for each ξ > 0, ψ(ξ) < ξ;

(iii) β(ξ) =
ψ(ξ)
ξ
∈ S.

Assume that γ : J × R→ R is an integrable function so that

(k1) γ(`, ξ) ≥ 0 for all ξ ≥ 0 and ` ∈ J;

(k2) there are ψ ∈ A and λ > 0 such that for all ξ, µ ∈ R with ξ, µ ≥ 0 and µ − ξ ≥ 0 and for ` ∈ J, we
have

0 ≤ γ(`, µ) + λµ − [γ(`, ξ) + λξ] ≤ λ(µ − ξ).

Theorem 3.1. Under the above conditions, the ordinary differential equation (3.1) has a unique
positive solution.

Proof. Take E = {Ω ∈ C(J) : Ω(`) ≥ 0 , for all ` ∈ J}. Consider the following O-relation on E:

x ⊥ y iff y(`) − x(`) ≥ 0 for each ` ∈ J.

Define do(x, y) = sup{|x(`) − y(`)| : ` ∈ J} for all x, y ∈ E. Clearly, (E, do) is a metric space. We
show that E is O-complete (not necessarily complete). Take the Cauchy O-sequence {xn} ⊆ E. Now,
we show that {xn} is converging to an element x in C(J). To ensure this, it suffices that x ∈ E. Fix ` ∈ J.
Since xn(`) ≥ 0 for each n ∈ N, the convergence of this real sequence to x(`) implies that x(`) ≥ 0.
But, ` ∈ J is arbitrary; therefore, x ≥ 0 and consequently, x ∈ E.
Problem (3.1) can be expressed as

Ω′(`) + λΩ(`) = γ(`,Ω(`)) + λΩ(`), ` ∈ J = [0, L]

Ω(0) = Ω(L).

(3.2)

This problem is equivalent to the integral equation

Ω(`) =

∫ L

0
G(`, h)[γ(h,Ω(h)) + λΩ(h)]dh,

where

G(`, h) =


eλ(L+h−`)

eλL − 1
, 0 ≤ h < ` ≤ L,

eλ(h−`)

eλL − 1
, 0 ≤ ` < h ≤ L.

Define Γ : E → E as

Γu(`) =

∫ L

0
G(`, h)[γ(h, u(h)) + λu(h)]dh.

Note that a fixed point of Γ is a solution of (3.2). We claim that the hypotheses of Theorem 2.1 hold.

AIMS Mathematics Volume 7, Issue 9, 17393–17402.
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Step 1) Γ is ⊥-preserving.

For x ⊥ y and ` ∈ J,

Γy(`) =

∫ L

0
G(`, h)[γ(h, y(h)) + λy(h)]dh

≥

∫ L

0
G(`, h)[γ(h, x(h)) + λx(h)]dh = Γx(`)

which yields that Γy(`) − Γx(`) ≥ 0. Therefore, Γx ⊥ Γy.

Step 2) Γ is a Geraghty ⊥-contraction.

For x ⊥ y and ` ∈ J, condition (k2) implies that

do(Γy,Γx) = sup
`∈J
|Γy(`) − Γx(`)|

≤ sup
`∈J

∫ L

0
G(`, h)|γ(h, y(h)) + λy(h) − γ(h, x(h)) − λx(h)|dh

≤ sup
`∈J

∫ L

0
G(`, h).λ.ψ(y(h) − x(h))dh.

As ψ is increasing, ψ(y(h) − x(h)) ≤ ψ(do(x, y)). Then

do(Γy,Γx) ≤ sup
`∈J

∫ L

0
G(`, h).λ.ψ(y(h) − x(h))dh

≤ λ.ψ(do(x, y)). sup
`∈J

∫ L

0
G(`, h)dh

= λ.ψ(do(x, y)). sup
`∈J

1
eλL − 1

(1
λ

eλ(L+h−`)
∣∣∣`
0

+
1
λ

eλ(h−`)
∣∣∣L
`

)
= λ.ψ(do(x, y)).

1
λ(eλL − 1)

(eλL − 1) = ψ(do(x, y))

=
ψ(do(x, y))

do(x, y)
do(x, y) = β(do(x, y))do(x, y).

For x ⊥ y, we get
do(Γx,Γy) ≤ β(do(x, y))do(x, y).

Hence, Γ is a Geraghty ⊥-contraction.

Step 3) Γ is ⊥-continuous.

Let {xn} ⊆ E be an O-sequence converging to x ∈ E. Thus, xn+1 ⊥ xn or xn ⊥ xn+1 for each n.
Hence, xn ≥ xn+1 or xn+1 ≥ xn. Therefore, xn(`) − x(`) ≥ 0 or x(`) − xn(`) ≥ 0 for all ` ∈ J and
n ∈ N. In the case that xn(`) − x(`) ≥ 0 for each n, condition (k2) implies that

do(Γxn ,Γx) ≤ sup
`∈J

∫ L

0
G(`, h).λ.ψ(xn(h) − x(h))dh

≤ β(do(xn, x))do(xn, x).
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Thus,
do(Γxn,Γx) ≤ β(do(xn, x))do(xn, x),

for each n ∈ N. This implies that Γxn → Γx. In the case that x(`) − xn(`) ≥ 0 for each n, the
similar argument shows that Γxn → Γx. Consequently, Γ is ⊥-continuous.

By Theorem 2.1, we deduce the uniqueness of a solution of (3.1).

4. Conclusions

In this study, we have defined the notion of Geraghty ⊥-contraction mappings and have established
a fixed point theorem for such mappings in the setting of O-complete metric space which is not
necessarily complete. Further, as an application, we solved an ordinary differential equation with the
help of our main theorem.
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