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Abstract: Due to the vagueness and uncertainty of human cognition/judgments as related to
complicated decision-making problems, existing fuzzy decision-making approaches merely signal
fuzzy assessment values and lack degrees/levels of credibility for the fuzzy assessment values in
alternatives over attributes. As a result, the fuzzy evaluative value’s credibility degree highlights its
significance and importance in the fuzzy decision-making problem. To improve the degrees/levels of
credibility of fuzzy evaluation values, the fuzzy assessment values should be tightly linked to their
credibility measures, which would result in more abundant and reliable assessment information. The
major goal of this research was to describe new procedures for credible fuzzy numbers based on the
Dombi t-norm and Dombi t-conorm. Dombi operations can benefit from the operational parameter’s
best tractability. These operations are more generalized for credibility fuzzy numbers. Furthermore,
using the basic operational laws of Dombi t-norm and Dombi t-conorm, we develop a series of
fuzzy credibility Dombi aggregation operators, like the fuzzy credibility Dombi geometric aggregation
operator, fuzzy credibility Dombi ordered geometric aggregation operator and fuzzy credibility Dombi
hybrid geometric aggregation operator. To handle this sort of decision-making problem, an extended
TOPSIS (technique for order of preference by similarity to ideal solution) is proposed. Finally, we
present an example, along with a discussion of the comparative results to check the accuracy and
validation of the proposed methods, to confirm that their results are credible and feasible.
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1. Introduction

A newly defined model is not accessible in fuzzy theory unless it overcomes the shortcomings of
various previously specified theories and models. Routine mathematics is not always feasible because
of the ambiguity and uncertainty that plague many daily issues. Different methods such as the use of
the hypothesis of probability, rough set hypothesis and fuzzy set hypotheses have been suggested as
alternative approaches to address such challenges. Unfortunately, the majority of alternative
mathematics approaches has its own set of flaws and disadvantages. Most words, like authentic,
excellent, great and renowned are not measurable and, in reality are ambiguous. The definitions of
adjectives like wonderful, best, renowned, etc., differ from person to person. To handle such
ambiguous and uncertain information, Zadeh [1] initiated a study of possibility based on the
participation function, which assigns an enrollment grade in [0, 1] called a fuzzy set. However, the
fuzzy set failed to describe the uncertainty with only the degree of membership of the element and
cannot handle the complex problems. Atanassov [2, 3] established the generalized notion when he
added the degree of non-membership to the concept of a fuzzy set and created a new concept called an
intuitionistic fuzzy set (IFS). An IFS is defined by assigning two values from the range [0, 1], named
the membership degree µ and non-membership degree ν, under the condition µ + ν ≤ 1 for all
elements of the working universe. It has been frequently employed in a variety of fields, including
decision-making, risk analysis, marketing and forecasting. The IFS theory has its own limitations in
transmitting information on the degree of membership and degree of non-membership of an object. In
this case, IFS theory has failed to describe the uncertainty in daily-life applications. Therefore,
Yager [4,5] developed the concept of a Pythagorean fuzzy set (PyFS) as an extension of the IFS under
the condition µ2 + ν2 ≤ 1. Due to the vagueness and uncertainty of human cognitions for sophisticated
decision-making situations, existing fuzzy decision-making approaches merely signal fuzzy
assessment values and lack a degree of credibility regarding the use of fuzzy assessment values in the
appropriate assessment of alternatives over attributes. In fact, the majority of decision-making issues
involve human subjective judgments and hazy assessments in uncertain and ambiguous situations. As
a result, when decision-makers are more familiar with some traits but not so much with others, they
may assign fuzzy assessment values with the help of some degrees of credibility with respect to
distinct attributes. In 2002, Liu and Liu developed the expected value of fuzzy variable and fuzzy
expected value models [6]. Liu [7] developed a survey of credibility theory. Sufficient and necessary
conditions for credibility measure have been developed by Li and Liu [8]. A fuzzy group
decision-making model based on credibility theory and gray relative degree was developed by Rao
and Peng [9].

Multi-attribute decision-making (MADM) is a method for decision-making in which the best
alternative is to derived from the optimal decision in comparison to the finite possibilities given a
collection of many attributes. The MADM approach is gaining popularity among specialists since it
can be used in a variety of fields, including operations research, engineering technology and
management sciences [10–12]. Aggregation operators (AOs) play a critical role in solving MADM
challenges by integrating data into a single useful form. Decision-makers employ various assessment
techniques, like crisp numbers or interval numbers, to rate the attributes in real-world
decision-making. Since several AOs in a fuzzy information were introduced to handle
decision-making issues. To define and discuss various properties using fuzzy sets, Song et al. [13]
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explained its idea and discussed the main operational laws about fuzzy sets. The induced generalized
AOs and its application for solving decision-making issues using fuzzy sets were introduced by
Merigo and Gil-Lafuente [14]. Fuzzy information AOs are suitable and relevant in attractive research
areas, and are given strong consideration by researchers. Zhou and Chen [15] created a new distance
measure for pythagorean fuzzy sets (PFSs) as well as several new similarity measures.
Mohagheghi et al. [16] looked at several novel AOs in PFSs and how they could be used in
multi-criteria group decision-making (MCGDM) situations. The Hamacher T-conorm and T-norm,
which are extensions of the algebraic and Einstein T-conorm and T-norm, are more valid and
flexible [17]. The value of studying AOs using Hamacher operations, as well as their applications to
MADM issues, is considerable. Ejegwa [18] established a max-min composition for PFSs and applied
it in the field of study placement based on academic ability. For MADM, Tan et al. [19] developed
hesitant fuzzy Hamacher AOs. Senapati and Yager [20] developed Fermatean fuzzy AOs. The Dombi
t-norm and t-conorm constitute a priority of variability, and were introduced by Dombi in 1982 [21].
Liu et al. applied Dombi operations to IFSs and presented the multi-attribute group decision-making
(MAGDM) problem using the Dombi Bonferroni mean operator in the context of intuitionistic fuzzy
information [22]. The idea of bringing the MAGDM issue together to form single-valued
neutrosophic Dombi AOs was introduced in [23].

1.1. Relative work

The MADM approach is a method for decision-making in which the best alternative is to derived
from the optimal decision in comparison to a finite possibilities given a collection of many attributes.
There are three main steps in MADM; particularly, the decision process finds the optimal selection of
alternatives. The MADM process begins with the structure of the decision model, which is used to
formulate data information for each alternative based on criteria defined by each decision expert. The
second step then begins with the data information of all alternatives based on defined criteria
represented by each decision expert’s decision matrix and this decision matrix will be normalized if
needed. The final step of the decision process finalizes the decision for optimal selection of the
alternative. In the case of a group decision, the decision expert needs operators to aggregate the
multi-expert opinion to the single and collective decision information. To deal with this problem of
aggregating the information of MADM, different AOs were developed to aggregate the information.
The weighted average and weighted geometric are the most frequently used AOs in MADM
problems. These AOs have been intensely deliberated for different decision-making problems
addressed by various scholars [24–28]. The concept of weighted AOs for the fuzzy credibility number
(FCN) and Cubic numbers, as well as their decision-making approach for slope design schemes was
developed by Ye et al. [29, 30]. Hwang and Yoon [31] presented the TOPSIS to deal multi-attribute
decision-making problems. In [32], Chen presented the technique for order of preference by
similarity to ideal solution (TOPSIS) method using a fuzzy set environment to solve the
decision-making problems. He [33], introduced a Dombi hesitant fuzzy information AO based
typhoon disaster assessment. Shi and Ye [34] expanded Dombi operations to neutrosophic cubic sets
for MADM problems. Chen et al. [35] introduced k-means clustering for the aggregation of hesitant
fuzzy linguistic term sets (HFLTS) possibility distributions. In 2019, Chen et al. [36] introduced the
idea of fostering linguistic decision-making under the conditions of uncertainty, a proportional
interval type-2 hesitant fuzzy TOPSIS approach based on Hamacher AOs and optimization models.
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1.2. Motivation of the study

Due to the vagueness and uncertainty of human cognitions/judgments as related to complicated
decision-making problems, existing fuzzy decision-making approaches merely signal fuzzy
assessment values and lack degrees/levels of credibility for the fuzzy assessment values in alternatives
over attributes. As a result, the fuzzy evaluative value’s credibility degree highlights its significance
and importance in the fuzzy decision-making problem. To improve the degrees/levels of credibility of
fuzzy evaluation values, the fuzzy assessment values should be tightly linked to their credibility
measures, which results in more abundant and reliable assessment information. In some research
methodology frameworks, for example, each expert/reviewer is required, for a manuscript to give
his/her overall assessment and related credibility degree from 0 to 10. In this case, the expert can
choose any value of 5 that is equivalent to the fuzzy assessment value of 0.5, as well as 6, which is
equivalent to the credibility degree of 0.6, owing to some lack of the expert’s knowledge. So, it is
obvious that the fuzzy assessment value of 0.6 is more closely related to the credibility (correct)
degree of 0.5 in the pair of fuzzy values (0.5, 0.6), which is needed to enhance the credibility degree
of his/her overall assessment of the manuscript. Under this condition, they have fuzzy strategic assets
as well, but they always decide their credibility degrees to maintain the credibility levels/degrees of
the fuzzy evaluation values because human decisions in uncertain and unspecified circumstances are
never completely credible and correct. In an unclear context, the credibility measure of a fuzzy
evaluation value must be closely tied to the fuzzy evaluation value, which leads to more available and
accurate assessment. As a result, this study was purpose to develop the concept of a FCN, which is a
new interpretation of the fuzzy concept in which a pair of fuzzy numbers represents both a fuzzy
value and a credibility degree. The flexibility and emergence of Dombi operations is a motivation.
The Dombi operation is applied to FCNs so as to make the information more real and credible. This
method not only solves the MAGDM problem with FCNs, but it also makes the decision process more
credible and effective. Finding unknown weight vectors for decision-makers or criteria is a critical
issue. To address this issue, the entropy measure was used to find the unknown weight vectors for
decision-makers. The TOPSIS procedure was used to rank the alternatives.

1.3. Contribution of study

Considering the above discussion, we are obliged that the FCNs has an operative consistency to
reveal the debatable and possible items that appear in real-life problems. The newly proposed FCN
concept, which is based on the hybrid information of the fuzzy values and the degree of credibility,
can make the information expression more credible and reasonable. FCN operations and score
functions, as well as fuzzy credibility Dombi weighted geometric (FCDWG), fuzzy credibility Dombi
ordered weighted geometric (FCDOWG) and fuzzy credibility Dombi hybrid weighted geometric
(FCDHWG) operators, can be useful mathematical tools for modelling MADM problems with FCNs.
The proposed method not only solves the MADM problem with FCNs, but it also improves the
decision-making process credibility and effectiveness. This paper is organized as follows.
Preliminaries are presented in the 2nd section. In the 3rd section of the given paper, we define the
Dombi operational for FCNs and some basic properties. In the 4th section of the given paper, we
design the FCDWG operators by using the Dombi t-norm and t-conorm. In the 5th section, we
propose the measure of the generalized distance and weighted generalized distance for FCNs. In the
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6th section of the given paper, illustrative example based on an extended TOPSIS method. In
Section 7, a comparative analysis is presented to demonstrate the effectiveness of the proposed
method. Finally, in Section 8, the conclusion and future work are discussed.

2. Materials and methods

In this section of the article, the basic concepts of fuzzy sets and FCNs are presented, which will be
useful in certain studies.

Let W be the non-empty set. Then, the fuzzy set L in W is defined as follows [1]:

L = {(w, ιn(w)|w ∈ W},

where in the above equation, ιn(w) denotes the degree of the membership; it also belongs to [0,1].
However, the fuzzy set fails to describe the uncertainty with only the degree of membership of the
element, and it cannot handle the complex problems. Atanassov [2] defined the concept of the IFS in
which both the degree of membership and degree of non-membership are discussed; it is defined as
follows.

Let W be the non-empty set. Then, the IFS L in W is defined as follows [2]:

L = {(w, ιn(w), κn(w)|w ∈ W},

where ιn(w) and κn(w) represent the degree of membership and degree of non-membership respectively,
with the condition 0 ≤ ιn(w) + κn(w) ≤ 1.

Let W be the non-empty set. Then, the FCNs on W are defined as [29]

L = {(w, ιn(w), κn(w)|w ∈ W}

for all ιn : W → [0, 1] and κn : W → [0, 1], which denote the degree of member and the degree of
credibility related to ιn(w), respectively. Then, the pair (w, ιn(w), κn(w)) is called the FCNs.

Let L1 = (ι1, κ1) and L2 = (ι1, κ1) be two FCNs. Then, their relations are defined as follows [29]:
(1) L1 ⊇ L2 ⇔ ι1 ≥ ι1, κ1 ≥ κ1;
(2) L1 = L2 ⇔ L1 ⊇ L2 and L2 ⊇ L1;
(3) L1 ∪ L2 = (ι1 ∨ ι1, κ1 ∨ κ1) ;
(4) L1 ∩ L2 = (ι1 ∧ ι1, κ1 ∧ κ1) ;
(5) (L1)c = (1 − ι1, 1 − κ1).
To compare two FCNs, the score function is defined as follows [29]:

E(Ln) = [ιnκn + (ιn + κn)/2]/2, For E(Ln) ∈ [0, 1].

Hence, the ranking relationship of the two FCNs is defined as follows:
(1) If E(L1) m E(L2), then L1 m L2.
(2) If E(L1) = E(L2), then L1 = L2.
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2.1. Dombi operators

The terms t-norm and t-conorm are used in fuzzy set theory to construct a generalized union and the
intersection of the fuzzy sets [37]. The definitions and explanations of t-norm and t-conorm have been
provided by Roychowdhury and Wang [38]. Deschrijver et al. [37] proposed a generalized union and a
generalized intersection of IFSs based on a t-norm and t-conorm. Dombi [21], developed the concept
of a newly triangular norm, which is presented as the Dombi t-norm and t-conorm. These showed
good flexibility with the operational parameters. Until now, Dombi operations have not been extended
to aggregate FCNs. Hence, the Dombi product and Dombi sum are the special cases of t-norm and
t-conorm, respectively, which are given in the following definition.

Let ι and κ be any two real numbers. Then, the Dombi t-norm and Dombi t-conorm are defined as
follows [21]:

ι ⊗ κ = Dom(ι, κ) =
1

1 + {( 1−ι
ι

)σ + ( 1−κ
κ

)σ}1/σ
,

ι ⊕ κ = DomC(ι, κ) = 1 −
1

1 + {( ι
1−ι )

σ + ( κ
1−κ )

σ}1/σ
,

where σ � 1 and (ι, κ) ∈ [0, 1] ∗ [[0, 1].

3. Dombi operations of FCNs

This section provides the new work on FCNs. First, we define the Dombi operational laws for
FCNs with the help of the above expression that also discusses some basic properties on the basis of
Dombi operational laws, we define the weighted geometric operators to aggregate the fuzzy credibility
information.

Let L1 = (ι1, κ1) and L2 = (ι2, κ2) be two FCNs, where σ � 1, is an operational parameter and ς is
any scalar greater than 0. Then, the operational laws of FCNs are defined as follows:

(1) L1 ⊕ L2 =

〈
1 − 1

1+{( ι1
1−ι1

)σ+( ι2
1−ι2

)σ}1/σ
, 1 − 1

1+{( 1−κ1
κ1

)σ+( 1−κ2
κ2

)σ}1/σ

〉
;

(2) L1 ⊗ L2 =

〈
1

1+{( 1−ι1
ι1

)σ+( 1−ι2
ι2

)σ}1/σ
, 1

1+{( κ1
1−κ1

)σ+( κ2
1−κ2

)σ}1/σ

〉
;

(3) ς.L1 =

〈
1 − 1

1+{ς( ι1
1−ι1

)σ}1/σ
, 1 − 1

1+{ς( 1−κ1
κ1

)σ}1/σ

〉
;

(4) Lς1 =

〈
1

1+{ς( 1−ι1
ι1

)σ}1/σ
, 1

1+{ς( κ1
1−κ1

)σ}1/σ

〉
.

Example 1. Let L1 = (0.68, 0.49) and L2 = (0.67, 0.50) be two FCNs, and let σ = 2 be the Dombi
t-norm parameter, which is a natural number and ς = 3 be any scalar greater than 0. Now, we shall
apply Dombi operational laws to the FCNs, as follows:

L1 ⊕ L2 =

〈
1 −

1
1 + {( 0.68

1−0.68 )2 + ( 0.67
1−0.67 )2}1/2

, 1 −
1

1 + {(1−0.49
0.49 )2 + (1−0.50

0.50 )2}1/2

〉
= 〈0.746 13, 0.590 73〉,

L1 ⊗ L2 =

〈
1

1 + {( 1−0.68
0.68 )2 + (1−0.67

0.67 )2}1/2
,

1
1 + {( 0.49

1−0.49 )2 + ( 0.50
1−0.50 )2}1/2

〉
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= 〈0.594 81, 0.418 98〉,

ς.L1 =

〈
1 −

1
1 + {3( 0.68

1−0.68 )2}1/2
, 1 −

1
1 + {3(1−0.49

0.49 )2}1/2

〉
= 〈0.786 35, 0.643 21〉,

Lς1 =

〈
1

1 + {3(1−0.68
0.68 )2}1/2

,
1

1 + {3( 0.68
1−0.68 )2}1/2

〉
= 〈0.550 94, 0.213 65〉.

Theorem 1. Let L =(ι, κ), L1 = (ι1, κ1) and L2 = (ι2, κ2) be three FCNs. Then, we have the following
equations:

(1) L1 ⊕ L2 = L2 ⊕ L1,

(2) L1 ⊗ L2 = L2 ⊗ L1,

(3) ς(L1 ⊕ L2) = ςL1 ⊕ ςL2, ς � 0,
(4) (L1 ⊗ L2)ς = Lς1 ⊗ L

ς

2,

(5) ς1L ⊕ ς2L = (ς1 ⊕ ς2)L,
(6) Lς1 ⊗ Lς2 = L(ς1⊗ς2).

Proof. For these three FCNs L, L1 and L2 where ς, ς1, ς2 � 0, we obtain

L1⊕L2=

〈
1 − 1

1+{( ι1
1−ι1

)σ+( ι2
1−ι2

)σ}1/σ
, 1 − 1

1+{( 1−κ1
κ1

)=+( 1−κ2
κ2

)σ}1/σ

〉
〈
1 − 1

1+{( ι2
1−ι2

)σ+( ι1
1−ι1

)σ}1/σ
, 1 − 1

1+{( 1−κ2
κ2

)σ+( 1−κ1
κ1

)σ}1/σ

〉
= L2⊕L1,

L1 ⊗ L2 =

〈
1

1+{( 1−ι1
ι1

)σ+( 1−ι2
ι2

)σ}1/σ
, 1

1+{( κ1
1−κ1

)σ+( κ2
1−κ2

)σ}1/σ

〉
=

〈
1

1+{( 1−ι2
ι2

)σ+( 1−ι1
ι1

)σ}1/σ
, 1

1+{( κ2
1−κ2

)σ+( κ1
1−κ1

)σ}1/σ

〉
= L2 ⊗ L1.

Let m = 1− 1
1+{( ι1

1−ι1
)=+( ι2

1−ι2
)σ}1/σ

; then, we have m
1−m= {( ι1

1−ι1
)σ+( ι2

1−ι2
)σ}1/σ. Therefore,

( m
1−m )σ= ( ι1

1−ι1
)σ+( ι2

1−ι2
)σ. Using the above terms, we get

ς(L1⊕L2)=ς
〈
1− 1

1+{( ι1
1−ι1

)σ+( ι2
1−ι2

)σ}1/σ
, 1− 1

1+{( 1−κ1
κ1

)σ+( 1−κ2
κ2

)σ}1/σ

〉
=

〈
1 − 1

1+{ς( ι1
1−ι1

)σ+ς( ι2
1−ι2

)σ}1/σ
, 1 − 1

1+{ς( 1−κ1
κ1

)σ+ς( 1−κ2
κ2

)σ}1/σ

〉
ςL1 ⊕ ςL2 =

〈
1 − 1

1+{ς( ι1
1−ι1

)σ}1/σ
, 1 − 1

1+{ς( 1−κ1
κ1

)σ}1/σ

〉
⊕

〈
1 − 1

1+{ς( ι2
1−ι2

)σ}1/σ
, 1 − 1

1+{ς( 1−κ2
κ2

)σ}1/σ

〉
=

〈
1 − 1

1+{ς( ι1
1−ι1

)σ+ς( ι2
1−ι2

)σ}1/σ
, 1 − 1

1+{ς( 1−κ1
κ1

)σ+ς( 1−κ2
κ2

)σ}1/σ

〉
= ς(L1⊕L2),
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(L1 ⊗ L2)ς =

〈
1

1+{( ι1
1−ι1

)σ+( ι2
1−ι2

)σ}1/σ
, 1

1+{( 1−κ1
κ1

)σ+( 1−κ2
κ2

)σ}1/σ

〉ς
=

〈
1

1+{ς( ι1
1−ι1

)σ+ς( ι2
1−ι2

)σ}1/σ
, 1

1+{ς( 1−κ1
κ1

)σ+ς( 1−κ2
κ2

)σ}1/σ

〉
=

〈
1

1+{ς( ι1
1−ι1

)σ}1/σ
, 1

1+{ς( 1−κ1
κ1

)σ}1/σ

〉
⊗

〈
1

1+{ς( ι2
1−ι2

)σ}1/σ
, 1

1+{ς( 1−κ2
κ2

)σ}1/σ

〉
= L

ς

1 ⊗ L
ς

2,

ς1L ⊕ ς2L =

〈
1 − 1

1+{ς1( ι
1−ι )

σ}1/σ
, 1 − 1

1+{ς1( 1−κ
κ )σ}1/σ

〉
⊕

〈
1 − 1

1+{ς2( ι
1−ι )

σ}1/σ
, 1 − 1

1+{ς2( 1−κ
κ )σ}1/σ

〉
=

〈
1 − 1

1+{(ς1+ς2)( ι
1−ι )

σ}1/σ
, 1 − 1

1+{(ς1+ς2)( 1−κ
κ )σ}1/σ

〉
= (ς1 ⊕ ς2)L,

Lς1 ⊗ Lς2 =

〈
1

1+{ς1( 1−ι
ι )σ}1/σ

, 1
1+{ς1( κ

1−κ )σ}1/σ

〉
⊗

〈
1

1+{ς2( 1−ι
ι )σ}1/σ

, 1
1+{ς2( κ

1−κ )σ}1/σ

〉
=

〈
1

1+{(ς1+ς2)( 1−ι
ι )σ}1/σ

, 1
1+{(ς1+ς2)( κ

1−κ )σ}1/σ

〉
= L(ς1+ς2).

�

4. Dombi weighted geometric operators for FCNs

This section of the given paper provides a the detailed discussion of newly designed fuzzy credibility
Dombi geometric AOs, which have been derived by using the Dombi operational laws of FCNs. First,
we define the FCDWG operators and some basic properties in detail. Next, we define the FCDOWG
operator, which means that we have to find the score and accuracy function of the FCNs; then, we have
to apply our proposed operator, i.e., the FCDOWG operator, to aggregate the FCNs to select the best
option. Lastly, we define the FCDHWG operator with the help of Dombi operational laws. With this
operator, here, we first multiply the associated weighted vectors and the given alternatives; then, our
new proposed operator (FCDHWG) is applied to select the best option. Now, we respectively define
these operators as follows.

Definition 1. Let LN = (ιN , κN) for all (N = 1, 2, ..., n) represent FCNs. Thus, the FCDWG operator is
defined as

FCDWGρ(L1, L2, ..., Ln) =
n
⊕

N=1
(ρN LN),

where the weight vector ρ = (ρ1, ρ2, ..., ρn)T of ρN for all (N = 1, 2, ..., n), with ρN � 0 and
n∑

N=1
ρN = 1.

With this, we will prove the following theorem.

Theorem 2. Let LN = (ιN , κN) for all (N = 1, 2, 3...n), represent FCNs. Then, the aggregated value for
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the FCDWG operator is also an FCN:

FCDWGρ(L1, L2, ..., Ln) =
n
⊗

N=1
(ρN LN)

=

〈
1

1+{
n∑

N=1
ρN ( ιN

1−ιN
)σ}1/σ

, 1

1+{
n∑

N=1
ρN ( 1−κN

κN
)σ}1/σ

〉
,

where ρN = (ρ1, ρ2, ..., ρn)T is the weight of Ln, with 0 ≤ ρN ≤ 1 and
n∑

N=1
ρN = 1.

Proof. This theorem can be proved by using the mathematical induction method.
For n = 2, on the basis of Dombi operations for FCNs, we have the following results:

L1 ⊗ L2 = (ι1, κ1) ⊗ (ι2, κ2),

L1 ⊗ L2 =

〈
1

1+{ρ1( ι1
1−ι1

)σ+ρ2( ι2
1−ι2

)σ}1/σ
, 1

1+{ρ1( 1−κ1
κ1

)σ+ρ2( 1−κ2
κ2

)σ}1/σ

〉
=

〈
1

1+{
2∑

N=1
ρN ( ιN

1−vN
)σ}1/σ

, 1

1+{
2∑

N=1
ρN ( 1−κN

κN
)σ}1/σ

〉
,

which is valid for n = 2.
For n = k, we have

FCDWGρ(L1, L2, ..., Lk) =
k
⊗

N=1
(ρN LN)

=

〈
1

1+{
k∑

N=1
ρN ( ιN

1−ιN
)σ}1/σ

, 1

1+{
k∑

N=1
ρN ( 1−κN

κN
)σ}1/σ

〉
.

For n = k + 1, we have

FCDWGρ(L1, L2, ..., Lk+1) =
k
⊗

N=1
(ρN LN) ⊗ (ρk+1Lk+1)

=


〈

1

1+{
k∑

N=1
ρN ( ιN

1−ιN
)σ}1/σ

, 1

1+{
k∑

N=1
ρN ( 1−κN

κN
)σ}1/σ

〉
⊗

〈
1 − 1

1+{ρk+1( ιk+1
1−ιk+1

)=}1/=
, 1 − 1

1+{ρk+1( 1−κk+1
κk+1

)=}1/=

〉


=

〈
1

1+{
k+1∑
N=1

ρN ( ιN
1−ιN

)σ}1/σ
, 1

1+{
k+1∑
N=1

ρN ( 1−κN
κN

)σ}1/σ

〉
,

,

which is true for n = k + 1. Therefore, from the above proof, it is obvious that it is true for any n. �

In the next theorem, we discuss some characteristics of the FCDWG operator and its properties.

Theorem 3. (Idempotent) Let us consider a collection LN = (ιN , κN), where (N = 1, 2, 3...n) denote
the FCNs. When LN = L = (ι, κ), the FCDWG(L1, L2, ..., Ln) = L.

AIMS Mathematics Volume 7, Issue 9, 17286–17312.
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Proof. LN = (ιN , κN) = L, where (N = 1, 2, 3...n). Then, we have

FCDWGρ(L1, L2, ..., Ln) =
n
⊗

N=1
(ρN LN)

=

〈
1

1+{
n∑

N=1
ρN ( ιN

1−ιN
)σ}1/σ

, 1

1+{
n∑

N=1
ρN ( 1−κN

κN
)σ}1/σ

〉
=

〈
1

1+{( ι
1−ι )

σ}1/σ
, 1

1+{
n∑

N=1
ρN ( 1−κ

κ )σ}1/σ

〉
=

〈
1

1+ ι
1−ι
, 1

1+ 1−κ
κ

〉
= (ι, κ) = L.

Thus, FCDWGρ(L1, L2, ..., Ln) = L holds. �

Theorem 4. (Boundednes) Suppose LN = (ιN , κN) (N = 1, 2, 3...n) be a collection of FCNs; then, a set
L− = (minN(ιN),minN (κN)) and L+ = (maxN(ιN),maxN (κN)) are the minimum and maximum FCNs,
respectively. Then, we have

L− ≤ FCDWGρ(L1, L2, ..., Ln) ≤ L+.

Proof. If L− = (minN(ιN),minN (κN)) and L+ = (maxN(ιN),maxN (κN)) are the minimum and maximum
FCNs, respectively, then L− ≤ LN ≤ L+ can hold. Hence, we have the subsequent inequalities:

1

1+{
n∑

N=1
ρN ( ι−

1−ι− )σ}1/σ
≤ 1

1+{
n∑

N=1
ρN ( ι

1−ι )
σ}1/σ
≤ 1

1+{
n∑

N=1
ρN ( ι+

1−ι+ )σ}1/σ
,

1

1+{
n∑

N=1
ρN ( 1−κ−

κ−
)σ}1/σ

≤ 1

1+{
n∑

N=1
ρN ( 1−κ

κ )σ}1/σ
≤ 1

1+{
n∑

N=1
ρN ( 1−κ+

κ+
)σ}1/σ

.

Therefore, L− ≤ FCDWGρ(L1, L2, ..., Ln) ≤ L+. �

Theorem 5. (Monotonicity) Let LN = (ιN , κN), where (N = 1, 2, 3...n) is a number of FCNs if LN ≤ L
∗

N
∀ N. Then,

FCDWGρ(L1, L2, ..., Ln) ≤ FCDWGρ(L
∗

1, L
∗

2, ..., L
∗

n).

Proof. If LN ≤ L
∗

N ,
n
⊗

N=1
(ρN LN) ≤

n
⊗

N=1
(ρN L

∗

N) can hold. Then, there is

FCDWGρ(L1, L2, ..., Ln) ≤ FCDWGρ(L
∗

1, L
∗

2, ..., L
∗

n).

�

Definition 2. Let LN = (ιN , κN) be a collection of FCNs. Then, the FCDOWG operator is defined as

FCDOWGρ(L1, L2, ..., Ln) =
n
⊗

N=1
(ρN LN),

where ρ = (ρ1, ρ2, ..., ρn)T is the weight vector of LN , with 0 ≤ ρN ≤ 1; also,
n∑

N=1
ρN = 1, where the

permutation (ε(1), ε(2), ..., ε(n)) applies for Lε(N−1) ≥ Lε(N).

AIMS Mathematics Volume 7, Issue 9, 17286–17312.



17296

Theorem 6. Let LN = (ιN , κN) be a family of FCNs. Then, the aggregated value of the FCDOWG is
still an FCN, which is as follows:

FCDOWGρ(L1, L2, ..., Ln) =
n
⊗

N=1
(ρN LN)

=

〈
1

1+{
n∑

N=1
ρN (

ιε(N)
1−ιε(N)

)σ}1/σ
, 1

1+{
n∑

N=1
ρN (

1−κε(N)
κε(N)

)σ}1/σ

〉
,

where ρ = (ρ1, ρ2, ..., ρn)T is the weight vector of LN , with 0 ≤ ρN ≤ 1 and
n∑

N=1
ρN = 1.

Proof. By the similar proof process of Theorem 2 one easily verifies the above equation, which is
omitted here. �

Definition 3. Let LN = (ιN , κN), where (N = 1, 2, 3...n) is a collection of FCNs. Then, the FCDHWG
operator can be defined as follows:

FCDHWGρ(L1, L2, ..., Ln) =
n
⊗

N=1
(ρN LN(ε))

=

〈
1

1+{
n∑

N=1
ρN (

ιε(N)
1−ιε(N)

)σ}1/σ
, 1

1+{
n∑

N=1
ρN (

1−κε(N)
κε(N)

)σ}1/σ

〉
,

where LN(ε) represents the N th largest weighted credibility fuzzy values L j(LN = nρN LN ,N = 1, 2, ..., n),

and ρ = (ρ1, ρ2, ..., ρn)T represents the weight vector of LN with 0 ≤ ρN ≤ 1 and
n∑

N=1
ρN = 1,where n is

the balancing coefficient.

Theorem 7. Let LN = (ιN , κN) be a family of FCNs. Then, the aggregated value of the FCDHWG is
still an FCN, which is as follows:

FCDHWGρ(L1, L2, ..., Ln) =
n
⊗

N=1
(ρN LN(ε))

=

〈
1

1+{
n∑

N=1
ρN (

ιε(N)
1−ιε(N)

)σ}1/σ
, 1

1+{
n∑

N=1
ρN (

1−κε(N)
κε(N)

)σ}1/σ

〉
,

where LN(ε) represents the largest permutation values from the collection of FCNs, i.e.,
LN(ε) = nρN LN ,N = 1, 2, ..., n) and ρ = (ρ1, ρ2, ..., ρn)T is the weight vector of LN with 0 ≤ ρN ≤ 1 and

n∑
N=1

ρN = 1, where n is the balancing coefficient.

Proof. By the similar proof process of Theorem 2 one easily verifies the above equation, which is
omitted here. �

5. Entropy measure for credibility fuzzy sets

In this portion, we purpose the measure of generalized distance and weighted generalized distance
for credibility fuzzy sets. Subsequently, by utilizing the measure of generalized distance, we propose
the credibility fuzzy entropy measure for FCNs to measure the fuzziness of FCNs.
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5.1. Distance measure for fuzzy credibility sets

Definition 4. Suppose Lx =
(
ιLx , κLx

)
and Gx =

(
ιGx , κGx

)
be two FCNs. Then, the generalized distance

measure (GDM) between any two FCNs for any φ � 0 ∈ R is define as

dg (Lx,Gx) =

 1
2n

n∑
x=1

(∣∣∣(ιLx)
2 − (ιGx)

2
∣∣∣φ +

∣∣∣(κLx)
2 − (κGx)

2
∣∣∣φ)

1
φ

.

Definition 5. Suppose Lx =
(
ιLx , κLx

)
and Gx =

(
ιGx , κGx

)
be two FCNs. Then, the weighted GDM

between any two FCNs for any φ � 0 ∈ R is define as

dwg (Lx,Gx) =

 1
2n

n∑
x=1

ωx

(∣∣∣(ιLx)
2 − (ιGx)

2
∣∣∣φ +

∣∣∣(κLx)
2 − (κGx)

2
∣∣∣φ)

1
φ

,

where ωx(x = 1, 2, ..., n) denotes the weight vector with the condition that ωx ≥ 0 and
n∑

x=1
ωx = 1.

Definition 6. Let Lx =
{
ιLx(w), κLx(w)

}
be a set of FCNs (x = 1, 2) . Then, the GDM defined in

Definition 4 is reduced as follows:

dwg(L1, L2) =

(
1
2

(∣∣∣(ιL1)
2 − (ιL2)

2
∣∣∣φ +

∣∣∣(κL1)
2 − (κL2)

2
∣∣∣φ)) 1

φ

, φ � 0 (∈ R) .

For any two L1, L2 ∈ FCN, the following properties must be satisfied by the given GDMs.

(1) 0 ≤ d(L1, L2) ≤ 1,
(2) d(L1, L2) = 1⇔ L1 = L2,

(3) d(L1, L2) = d(L2, L1).

5.2. Entropy measure for fuzzy credibility sets

In this portion, we propose an entropy measure for FCNs based on the distance measure by using
the idea of Guo and Song [39].

Definition 7. Let L = {L1, L2, ..., Ln} be a fuzzy credibility sets (FCS s), where Lx =
{
ιLx(w), κLx(w)

}
is

a set of FCNs for x = 1, 2, ..., n. Then, the entropy measure is defined for FCNs as follows:

E(L) =
1
n

n∑
x=1

{1 − (
d
(
Lx, Lc

x
))} 1 +

(
vLx

)2

2

 ,
where vLx = 1

√
1 − ι2ω (n) − κ2

ω (n) is the degree of hesitancy function.

5.3. MAGDM problems for fuzzy credibility numbers

In this real-world situation, the importance of decision-making issues grows as the social
atmosphere warms. As a result, an expert’s ability to reach a reasonable and skillful conclusion is
adversely affected in this situation. Group decision-making processes in real-world situations depend
on the feedback of a group of skilled professionals to arrive at an effective approach. As a result,
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MAGDM has a described skill and regulatory system to improve and evaluate competing criteria in
all areas of decision-making that is used to achieve the most effective and practical decision-making
outcomes. We also explored and suggest an extended TOPSIS method using FCNs. The problems of
MAGDM can also be addressed in decision matrix form, where the columns and rows represents the
alternatives and criteria/attributes, respectively. Thus, the decision matrix is represented by Dn×m. A
set {Y1,Y2, ...,Yn} is considered, which represents n alternatives; another set {c1, c2, ..., cm} represents m
criteria/attributes. Suppose D(k) =

[
L(k)

i j

]
n×m

=
〈
ι(k)
Li j
, κ(k)

Li j

〉
n×m,

(k ∈ 1, 2, ..., e) denotes the fuzzy credibility
decision matrix.

D(k)
n×m =

Y1

Y2
...

Yn



c1 c2 c2 · · · cm(
ι(k)
L11
, κ(k)

L11

) (
ι(k)
L12
, κ(k)

L12

) (
ι(k)
L13
, κ(k)

L13

)
· · ·

(
ι(k)
L1m
, κ(k)

L1m

)(
ι(k)
L21
, κ(k)

L21

) (
ι(k)
L22
, κ(k)

L22

) (
ι(k)
L23
, κ(k)

L23

)
· · ·

(
ι(k)
L2m
, κ(k)

L2m

)
...

...
...

. . .
...(

ι(k)
Ln1
, κ(k)

Ln1

) (
ι(k)
Ln2
, κ(k)

Ln2

) (
ι(k)
Ln3
, κ(k)

Ln3

)
· · ·

(
ι(k)
Lnm
, κ(k)

Lnm

)


.

It should be noted that in the context of decision-making, all of the data about the weights of decision-
makers and criteria are unknown.

5.4. TOPSIS method

This method comprises five parts. In the first part, we normalize the data. In the second part, we
need to compute the weight of the decision-maker. In the third part, we compute the attribute weight.
In the fourth part, we calculate the weight of the criteria by utilizing the proposed entropy measure.
In the final part, we determine the ranking method on the basis of the degree of similarity to the ideal
solution with positive ideal solutions (PISs) and negative ideal solutions (NISs).

For the proof of the FCN MAGDM problem, we utilized the TOPSIS method, for which the
following steps of the procedure were developed.

Step-1 In this step, we have to represent the data in the form of a matrix with alternatives and criteria
in the form of FCNs.

Step-2 Normalization of the decision metrics (N)k. Only two types of attributes exist for the MAGDM
problem; one is the benefit and the other one is cost.

(N)k = {
(
ιki j , κki j

)(
κki j , ιki j

) for benefit,
for cost.

Step-3 This step consists of five steps, which are given below.

(a). The opinion of each single decision matrix is closer to the group decision ideal solution
(GDIS), and as a result, the computation of the best group ideal solution (GIS) is done by taking
the average of all of the outlooks of each single decision matrix. Here, in this step, we take the
fuzzy credibility weighted average of the decision values of the alternatives corresponding to the
criteria, which is given by the decision-makers, considering equal weights of the decision-makers
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at the initial stage, as follows:

GDIS =


GDIS 11 GDIS 12 · · · GDIS 1n

GDIS 21 GDIS 22 · · · GDIS 2n
...

...
. . .

...

GDIS m1 GDIS m2 · · · GDIS mn

 ,
where

GDIS i j =

ς∑
k=1

1
ς

N(k)
i j

=


1

1 +
ς∑

k=1
{ς(

ι(k)
i j

1−ι(k)
i j

)σ}1/σ
,

1

1 +
ς∑

k=1
{ς(

1−κ(k)
i j

κ(k)
i j

)σ}1/σ

 .
(b). Compute the group right ideal solution (GRIS) and left ideal solution (GLIS) as follows:

GRIS =


GRIS 11 GRIS 12 · · · GRIS 1n

GRIS 21 GRIS 22 · · · GRIS 2n
...

...
. . .

...

GRIS m1 GRIS m2 · · · GRIS mn

 ,
where

GRIS i j =
{(

N(k)
i j

)
: maxk

[
sc

(
N(k)

i j

)]}
,

and

GLIS =


GLIS 11 GLIS 12 · · · GLIS 1n

GLIS 21 GLIS 22 · · · GLIS 2n
...

...
. . .

...

GLIS m1 GLIS m2 · · · GLIS mn

 ,
where

GLIS i j =
{(

N(k)
i j

)
: mink

[
sc

(
N(k)

i j

)]}
.

(c). In this step, we compute the distance by applying Definition 4 of the decision matrix N(k)
i j to

GDIS , GRIS and GLIS . The distances are shown symbolically as DGDIS , DGRIS and DGLIS ,
respectively, where

DGDIS (k)
i =

 1
2n

n∑
u=1

(∣∣∣∣(ιNk
i j
)2 − (ιIi j)

2
∣∣∣∣φ +

∣∣∣∣(κNk
i j
)2 − (κIi j)

2
∣∣∣∣φ)

1
φ

,

DGRIS (k)
i =

 1
2n

n∑
u=1

(∣∣∣∣(ιNk
i j
)2 − (ιRi j)

2
∣∣∣∣φ +

∣∣∣∣(κNk
i j
)2 − (κRi j)

2
∣∣∣∣φ)

1
φ

,
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DGLIS (k)
i =

 1
2n

n∑
u=1

(∣∣∣∣(ιNk
i j
)2 − (ιLi j)

2
∣∣∣∣φ +

∣∣∣∣(κNk
i j
)2 − (κLi j)

2
∣∣∣∣φ)

1
φ

,

for i = 1, 2, ...,m and k = 1, 2, ..., e.

(d). In this step, we compute the closeness indices (CI) by following the model proposed by
Yue [40].

CI(k) =

m∑
i=1

DGRIS (k)
i +

m∑
i=1

DGLIS (k)
i

m∑
i=1

DGDIS (k)
i +

m∑
i=1

DGRIS (k)
i +

m∑
i=1

DGLIS (k)
i

for k = 1, 2, ..., e.

(e). In this step, we calculate the decision matrix weights, as follows:

w(k) =
CI(k)

e∑
k=1

CI(k)
.

Step-4 In this step, we discuss the following three parts.

(a). In this step, the weights of attributes are computed by means of the proposed credibility fuzzy
entropy measure; the revised GDIS (RvGDIS ) is calculated for this as follows:

RvGDIS i j =

e∑
k=1

w(k)N(k)
i j

=


1

1 +
e∑

k=1
{w(k)(

ι(k)
i j

1−ι(k)
i j

)σ}1/σ
,

1

1 +
e∑

k=1
{w(k)(

1−κ(k)
i j

κ(k)
i j

)σ}1/σ

 .
(b). In this step, using Definition 7, each attribute is computed in accordance with the credibility
fuzzy entropy measure, which follows as

EM j = E
(
RvDGIS 1 j,RvDGIS 2 j, ...,RvDGIS m j

)
, j = 1, 2, ..., n.

(c). In this step, we compute the attribute weights, which follows as

AW j =
1 − EM j

n −
n∑

u=1
EM j

, j = 1, 2, ..., n.

Step-5 This step also comprises the following four steps.

(a). In this step, the attributes weight vector is used; the calculation of the weighted normalized
decision matrix is as follows:

DM(N)(k)
i j =

n∑
j=1

AW jN
(k)
i j
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=

 1
1 + {AW j(

ιi j

1−ιi j
)σ}1/σ

,
1

1 + {AW j(
1−κi j

κi j
)σ}1/σ

 ,
for each k = 1, 2, ..., e.

(b). In this step, the weighted normalized decision-matrix DM(N)(k)
i j , which computes the PIS (k)

and NIS (k) for each DMk is utilized as follows:

PIS i j =
{(

DM(N)(k)
i j

)
: maxk

[
sc

(
DM(N)(k)

i j

)]}
, ( j = 1, 2, ..., n) ,

NIS i j =
{(

DM(N)(k)
i j

)
: mink

[
sc

(
DM(N)(k)

i j

)]}
, ( j = 1, 2, ..., n) .

(c). In this step, we compute the weighted distances for the weighted DM(N)(k) from PIS (k) and
NIS (k), as follows:

DIS +k
i =

 1
2n

n∑
j=1

AW j

(∣∣∣(ιDM(N)k)2 − (ιPIS k)2
∣∣∣φ +

∣∣∣(κDM(N)k)2 − (κPIS k)2
∣∣∣φ)

1
φ

,

and

DIS −k
i =

 1
2n

n∑
j=1

AW j

(∣∣∣(ιDM(N)k)2 − (ιNIS k)2
∣∣∣φ +

∣∣∣(κDM(N)k)2 − (κNIS k)2
∣∣∣φ)

1
φ

∀ i = 1, 2, ...,m.

(d). In this step, For each DMk, the revised closeness indices (RCIs) of the alternatives are
calculated as follows:

RCIk
i =

DIS −k
i

DIS +k
i + DIS −k

i

.

Step-6 In this step, the computed weights of decision-makers w(k) final revised closeness indices are
aggregated to obtain the final revised closeness index (FRCIi) corresponding to each alternative,
as follows:

FRCIi =

e∑
k=1

wk.RCIk
i .

The calculated FRCI value is ranked by descending order, where the finest alternative has the
largest value.

6. Illustrative example based on extended TOPSIS method

Here, the steps of the proposed method were applied to the numerical example, which has been
discussed above. We demonstrate the characteristics and advantages of the proposed technique by
performing comparison of the offered technique and the existing technique using the FCNs.

Example 2. This example was adopted from [41, 44]. This section provides a numerical illustration
of the technique proposed in this study. Assume a company intends to adopt an enterprise resource
planning (ERP) system. The first stage is to identify an operation team DM1,DM2 and
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DM3comprised of the chief information officer and two senior members from a relevant department.
After gathering all available information about ERP vendors and systems, the operation team selects
seven different ERP systems Yi (i = 1, 2, · · · , 7) as applicants. To assist with this decision-making, the
company hires some external professional organizations (or experts). To analyze the alternatives, the
project manager chooses six attributes, which are Function, Technology, Strategic fitness, Vendor
ability, Vendor financial status and Vendor reputation, represented by c1, c2, c3, c4, c5 and c6,
respectively. The decision-making committee is required to utilize FCNs to express the best option.

Step-1 In this step of the proposed method, we represent the data in the form of a matrix with
alternatives and criteria, which is expressed as the expert’s information (DM1,DM2,DM3) in the form
of FCNs; it is represented as follows.

Table 1. Expert information.

c1 c2 c3 c4 c5 c6

DM1

Y1 (0.84, 0.34) (0.43, 0.39) (0.67, 0.5) (0.31, 0.21) (0.4, 0.78) (0.3, 0.71)
Y2 (0.6, 0.11) (0.23, 0.35) (0.72, 0.31) (0.11, 0.25) (0.53, 0.59) (0.41, 0.82)
Y3 (0.79, 0.19) (0.11, 0.21) (0.71, 0.41) (0.34, 0.25) (0.39, 0.91) (0.13, 0.51)
Y4 (0.63, 0.51) (0.49, 0.33) (0.61, 0.43) (0.49, 0.37) (0.13, 0.42) (0.45, 0.59)
Y5 (0.57, 0.36) (0.5, 0.15) (0.7, 0.32) (0.33, 0.44) (0.29, 0.6) (0.4, 0.65)
Y6 (0.4, 0.39) (0.78, 0.91) (0.3, 0.13) (0.71, 0.51) (0.84, 0.43) (0.67, 0.31)
Y7 (0.53, 0.13) (0.59, 0.42) (0.41, 0.45) (0.82, 0.59) (0.34, 0.39) (0.5, 0.21)
DM2

Y1 (0.61, 0.15) (0.16, 0.35) (0.61, 0.35) (0.55, 0.17) (0.53, 0.62) (0.47, 0.74)
Y2 (0.66, 0.11) (0.43, 0.23) (0.93, 0.08) (0.02, 0.06) (0.51, 0.77) (0.09, 0.99)
Y3 (0.88, 0.09) (0.05, 0.06) (0.56, 0.17) (0.43, 0.13) (0.07, 0.89) (0.44, 0.61)
Y4 (0.59, 0.32) (0.24, 0.48) (0.68, 0.53) (0.34, 0.21) (0.34, 0.51) (0.39, 0.61)
Y5 (0.71, 0.31) (0.35, 0.41) (0.73, 0.44) (0.22, 0.49) (0.24, 0.69) (0.21, 0.74)
Y6 (0.53, 0.07) (0.62, 0.89) (0.47, 0.44) (0.74, 0.61) (0.61, 0.16) (0.61, 0.55)
Y7 (0.51, 0.34) (0.77, 0.51) (0.09, 0.39) (0.99, 0.61) (0.15, 0.35) (0.35, 0.17)
DM3

Y1 (0.85, 0.25) (0.14, 0.23) (0.78, 0.38) (0.29, 0.39) (0.15, 0.88) (0.18, 0.83)
Y2 (0.94, 0.04) (0.39, 0.19) (0.63, 0.18) (0.48, 0.49) (0.07, 0.61) (0.35, 0.56)
Y3 (0.73, 0.13) (0.19, 0.39) (0.87, 0.35) (0.41, 0.13) (0.46, 0.88) (0.18, 0.81)
Y4 (0.82, 0.12) (0.55, 0.21) (0.53, 0.33) (0.46, 0.23) (0.43, 0.63) (0.47, 0.51)
Y5 (0.61, 0.33) (0.28, 0.41) (0.74, 0.34) (0.37, 0.32) (0.29, 0.63) (0.14, 0.65)
Y6 (0.15, 0.46) (0.88, 0.88) (0.18, 0.18) (0.83, 0.81) (0.85, 0.14) (0.78, 0.29)
Y7 (0.07, 0.43) (0.61, 0.63) (0.35, 0.47) (0.56, 0.51) (0.25, 0.23) (0.38, 0.39)
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Step-2 In this step, we normalize the data.

Table 2. Normalized expert information DM1.
NDM1 c1 c2 c3 c4 c5 c6

Y1 (0.84, 0.34) (0.39, 0.43) (0.67, 0.5) (0.21, 0.31) (0.4, 0.78) (0.71, 0.3)
Y2 (0.6, 0.11) (0.35, 0.23) (0.72, 0.31) (0.25, 0.11) (0.53, 0.59) (0.82, 0.41)
Y3 (0.79, 0.19) (0.21, 0.11) (0.71, 0.41) (0.25, 0.34) (0.39, 0.91) (0.51, 0.13)
Y4 (0.63, 0.51) (0.33, 0.49) (0.61, 0.43) (0.37, 0.49) (0.13, 0.42) (0.59, 0.45)
Y5 (0.57, 0.36) (0.15, 0.5) (0.7, 0.32) (0.44, 0.33) (0.29, 0.6) (0.65, 0.4)
Y6 (0.4, 0.39) (0.91, 0.78) (0.3, 0.13) (0.51, 0.71) (0.84, 0.43) (0.31, 0.67)
Y7 (0.53, 0.13) (0.42, 0.59) (0.41, 0.45) (0.59, 0.82) (0.34, 0.39) (0.21, 0.5)

Table 3. Normalized expert information DM2.
NDM2 c1 c2 c3 c4 c5 c6

Y1 (0.61, 0.15) (0.35, 0.16) (0.61, 0.35) (0.17, 0.55) (0.53, 0.62) (0.74, 0.47)
Y2 (0.66, 0.11) (0.23, 0.43) (0.93, 0.08) (0.06, 0.02) (0.51, 0.77) (0.99, 0.09)
Y3 (0.88, 0.09) (0.06, 0.05) (0.56, 0.17) (0.13, 0.43) (0.07, 0.89) (0.61, 0.44)
Y4 (0.59, 0.32) (0.48, 0.24) (0.68, 0.53) (0.21, 0.34) (0.34, 0.51) (0.61, 0.39)
Y5 (0.71, 0.31) (0.41, 0.35) (0.73, 0.44) (0.49, 0.22) (0.24, 0.69) (0.74, 0.21)
Y6 (0.53, 0.07) (0.89, 0.62) (0.47, 0.44) (0.61, 0.74) (0.61, 0.16) (0.55, 0.61)
Y7 (0.51, 0.34) (0.51, 0.77) (0.09, 0.39) (0.61, 0.99) (0.15, 0.35) (0.17, 0.35)

Table 4. Normalized expert information DM3.
NDM3 c1 c2 c3 c4 c5 c6

Y1 (0.85, 0.25) (0.23, 0.14) (0.78, 0.38) (0.39, 0.29) (0.15, 0.88) (0.83, 0.18)
Y2 (0.94, 0.04) (0.19, 0.39) (0.63, 0.18) (0.49, 0.48) (0.07, 0.61) (0.56, 0.35)
Y3 (0.73, 0.13) (0.39, 0.19) (0.87, 0.35) (0.13, 0.41) (0.46, 0.88) (0.81, 0.18)
Y4 (0.82, 0.12) (0.21, 0.55) (0.53, 0.33) (0.23, 0.46) (0.43, 0.63) (0.51, 0.47)
Y5 (0.61, 0.33) (0.41, 0.28) (0.74, 0.34) (0.32, 0.37) (0.29, 0.63) (0.65, 0.14)
Y6 (0.15, 0.46) (0.88, 0.88) (0.18, 0.18) (0.81, 0.83) (0.85, 0.14) (0.29, 0.78)
Y7 (0.07, 0.43) (0.63, 0.61) (0.35, 0.47) (0.51, 0.56) (0.25, 0.23) (0.39, 0.38)
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Step-3 Here, the GDIS is calculated as shown in the following table.

Table 5. Group decision ideal solution (GDIS).
c1 c2 c3 c4 c5 c6

Y1 (.7151, .7306) (.2951, .6854) (.6695, .5730) (.2140, .5593) (.2251, .1725) (.7503, .6318)
Y2 (.6721, .9160) (.2321, .6264) (.7097, .7734) (.0977, .6502) (.1148, .3040) (.6797, .6619)
Y3 (.7846, .8543) (.0966, .8650) (.6585, .6574) (.1485, .6014) (.1142, .1042) (.5952, .6762)
Y4 (.6491, .6009) (.2820, .5219) (.5927, .5454) (.2457, .5559) (.1962, .4493) (.5625, .5591)
Y5 (.6181, .6650) (.2234, .5906) (.7221, .6224) (.3919, .6795) (.2696, .3527) (.6737, .7018)
Y6 (.2261, .6186) (.8923, .1725) (.2483, .6762) (.5952, .2195) (.7151, .6854) (.3369, .2836)
Y7 (.1148, .6517) (.4929, .3040) (.1430, .5691) (.5625, .0171) (.2054, .6611) (.2140, .5730)

Table 6. Group decision right ideal solution (GDRIS).
GDRIS c1 c2 c3 c4 c5 c6

Y1 (0.84, 0.34) (0.39, 0.43) (0.67, 0.5) (0.17, 0.55) (0.53, 0.62) (0.83, 0.18)
Y2 (0.94, 0.04) (0.04, 0.23) (0.72, 0.31) (0.49, 0.48) (0.51, 0.77) (0.99, 0.09)
Y3 (0.79, 0.19) (0.19, 0.39) (0.87, 0.35) (0.25, 0.34) (0.46, 0.88) (0.51, 0.13)
Y4 (0.63, 0.51) (0.51, 0.33) (0.68, 0.53) (0.37, 0.49) (0.43, 0.63) (0.51, 0.47)
Y5 (0.71, 0.31) (0.31, 0.41) (0.73, 0.44) (0.44, 0.33) (0.29, 0.63) (0.65, 0.14)
Y6 (0.4, 0.39) (0.39, 0.88) (0.47, 0.44) (0.81, 0.83) (0.84, 0.43) (0.31, 0.67)
Y7 (0.51, 0.34) (0.51, 0.77) (0.41, 0.45) (0.61, 0.99) (0.34, 0.39) (0.17, 0.35)

Table 7. Group decision left ideal solution (GDLIS).
GDLIS c1 c2 c3 c4 c5 c6

Y1 (0.61, 0.15) (0.23, 0.14) (0.61, 0.35) (0.21, 0.31) (0.15, 0.88) (0.83, 0.18)
Y2 (0.6, 0.11) (0.19, 0.39) (0.63, 0.18) (0.06, 0.02) (0.07, 0.61) (0.99, 0.09)
Y3 (0.73, 0.13) (0.06, 0.05) (0.56, 0.17) (0.13, 0.41) (0.07, 0.89) (0.51, 0.13)
Y4 (0.82, 0.12) (0.48, 0.24) (0.53, 0.33) (0.21, 0.34) (0.13, 0.42) (0.51, 0.47)
Y5 (0.57, 0.36) (0.15, 0.5) (0.7, 0.32) (0.49, 0.22) (0.29, 0.6) (0.65, 0.14)
Y6 (0.53, 0.07) (0.89, 0.92) (0.18, 0.18) (0.51, 0.71) (0.61, 0.16) (0.31, 0.67)
Y7 (0.07, 0.43) (0.42, 0.95) (0.09, 0.39) (0.51, 0.56) (0.25, 0.23) (0.17, 0.35)
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Table 8. Distance results for GDIS/GDRIS/GDLIS.
Y1 Y2 Y3 Y4 Y5 Y6 Y7

Distance GDIS
DM1 0.25771 0.34885 0.41348 0.06499 0.20148 0.29823 0.27191
DM2 0.24810 0.42043 0.40733 0.13837 0.24996 0.28916 0.35805
DM3 0.32907 0.35792 0.42571 0.15981 0.23807 0.38675 0.19851
Distance GDRIS
DM1 0.10273 0.19063 0.10345 0.08861 0.08277 0.16286 0.12753
DM2 0.11843 0.21565 0.15857 0.10250 0.05908 0.1884 0.06667
DM3 0.18577 0.4857 0.10007 0.13627 0.06748 0.13389 0.22532
Distance GDLIS
DM1 0.14808 0.14046 0.08845 0.13863 0.04613 0.13781 0.15763
DM2 0.16383 0.16849 0.09240 0.13212 0.09630 0.10184 0.22362
DM3 0.12666 0.26464 0.18898 0.12275 0.08413 0.22384 0.08300

Table 9. CI results.
CI1 CI2 CI3

0.42152 0.42392 0.45284

Table 10. Weight of DMs.
w1 w2 w3

0.32467 0.32652 0.34880

Step-4

Table 11. RvGDIS .
RvGDIS c1 c2 c3 c4 c5 c6

Y1 (.717, .938) (.293, .909) (.670, .802) (.215, .788) (.223, .201) (.751, .886)
Y2 (.673, .994) (.231, .859) (.707, .959) (.098, .877) (.113, .402) (.676, .889)
Y3 (.783, .985) (.097, .987) (.660, .886) (.148, .833) (.115, .115) (.596, .903)
Y4 (.650, .834) (.279, .734) (.591, .770) (.245, .780) (.196, .630) (.561, .784)
Y5 (.617, .891) (.223, .822) (.722, .855) (.390, .903) (.270, .479) (.673, .920)
Y6 (.223, .849) (.892, .201) (.246, .903) (.596, .269) (.717, .909) (.335, .365)
Y7 (.113, .880) (.493, .402) (.144, .784) (.561, .017) (.206, .890) (.215, .802)

Table 12. Attribute weights (AWs).
AW1 AW2 AW3 AW4 AW5 AW6

0.1904 0.1589 0.1777 0.1604 0.1477 0.1649
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Step-5

Table 13. Weighted normalized expert information DM1.
c1 c2 c3 c4 c5 c6

Y1 (.923, .910) (.615, .892) (.828, .849) (.398, .932) (.634, .656) (.857, .933)
Y2 (.774, .977) (.574, .954) (.859, .926) (.454, .980) (.745, .825) (.918, .897)
Y3 (.896, .957) (.400, .980) (.853, .890) (.454, .923) (.624, .401) (.719, .975)
Y4 (.796, .834) (.552, .867) (.787, .881) (.594, .866) (.279, .903) (.779, .881)
Y5 (.752, .903) (.306, .862) (.846, .922) (.662, .926) (.515, .818) (.820, .900)
Y6 (.604, .891) (.962, .639) (.504, .974) (.722, .718) (.931, .899) (.525, .749)
Y7 (.721, .972) (.644, .813) (.622, .873) (.782, .577) (.572, .913) (.395, .858)

Table 14. Weighted normalized expert information DM2.
c1 c2 c3 c4 c5 c6

Y1 (.781, .967) (.574, .970) (.787, .912) (.338, .836) (.745, .805) (.875, .872)
Y2 (.816, .977) (.428, .892) (.969, .987) (.137, .996) (.730, .669) (.995, .983)
Y3 (.943, .981) (.138, .991) (.751, .964) (.271, .892) (.163, .455) (.793, .885)
Y4 (.767, .917) (.698, .952) (.834, .833) (.398, .923) (.572, .866) (.793, .903)
Y5 (.848, .921) (.635, .912) (.865, .877) (.705, .956) (.451, .752) (.875, .958)
Y6 (.721, .985) (.953, .794) (.677, .877) (.796, .686) (.802, .972) (.750, .794)
Y7 (.704, .910) (.723, .652) (.190, .890) (.796, .059) (.314, .926) (.335, .918)

Table 15. Weighted normalized expert information DM3.
c1 c2 c3 c4 c5 c6

Y1 (.928, .940) (.428, .974) (.893, .901) (.614, .938) (.314, .480) (.923, .965)
Y2 (.972, .992) (.370, .907) (.801, .962) (.705, .871) (.163, .812) (.758, .918)
Y3 (.861, .972) (.615, .964) (.940, .912) (.271, .899) (.689, .480) (.913, .965)
Y4 (.912, .974) (.400, .837) (.727, .919) (.427, .879) (.662, .799) (.719, .872)
Y5 (.781, .914) (.635, .941) (.871, .916) (.540, .913) (.515, .799) (.820, .973)
Y6 (.287, .860) (.948, .461) (.342, .962) (.914, .560) (.936, .976) (.501, .631)
Y7 (.147, .874) (.810, .800) (.560, .863) (.722, .830) (.464, .957) (.611, .909)

Table 16. PIS results.
PIS c1 c2 c3 c4 c5 c6

PIS1 (0.90, 0.96) (0.96, 0.64) (0.86, 0.93) (0.66, 0.93) (0.93, 0.90) (0.92, 0.90)
PIS2 (0.94, 0.98) (0.95, 0.79) (0.97, 0.98) (0.71, 0.96) (0.80, 0.97) (0.99, 0.98)
PIS3 (0.97, 0.99) (0.81, 0.80) (0.94, 0.91) (0.71, 0.87) (0.94, 0.98) (0.92, 0.97)
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Table 17. NIS results.
NIS
NIS1 (0.60, 0.89) (0.31, 0.86) (0.50, 0.97) (0.40, 0.93) (0.62, 0.40) (0.40, 0.86)
NIS2 (0.70, 0.91) (0.70, 0.95) (0.19, 0.90) (0.80, 0.06) (0.16, 0.46) (0.34, 0.92)
NIS3 (0.14, 0.87) (0.40, 0.84) (0.34, 0.96) (0.27, 0.90) (0.31, 0.48) (0.50, 0.63)

Table 18. Revised CI.
Y1 Y2 Y3 Y4 Y5 Y6 Y7

RCI1 0.5195 0.5493 0.4020 0.4793 0.4594 0.5621 0.4553
RCI2 0.5861 0.6440 0.4820 0.5997 0.6168 0.5752 0.3041
RCI3 0.5654 0.5665 0.5970 0.5610 0.5902 0.4915 0.4297

Step-6

Table 19. FRCI results.
FRCI Y1 Y2 Y3 Y4 Y5 Y6 Y7

0.55356 0.58608 0.49402 0.5466 0.5556 0.5421 0.3974

Here, the value of Y2 is large; hence, it is the best alternative.

Figure 1. Graphical representation of proposed method.
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7. Comparative analysis

A comparative analysis was done to demonstrate the advantage of the proposed TOPSIS-based
methodology over existing methods [42, 43] in the context of solving MAGDM problems. It is clear
from the following table, thus the highest value of the following result are in the same position. So, as
a consequence, the proposed TOPSIS-based methodology is more accurate, feasible and effective as
a tool to solve MAGDM problems with completely unknown information among decision-makers, as
well as unknown criteria.

Table 20. Comparison of FRCI results.
Y1 Y2 Y3 Y4 Y5 Y6 Y7

Existing Method [42] 0.4948 0.6094 0.4424 0.4708 0.4654 0.4982 0.3191
Existing Method [43] 0.1123 0.5598 0.0946 0.1615 0.3443 0.3145 0.0913
FCDWG (Proposed) 0.55356 0.58608 0.49402 0.5466 0.5556 0.5421 0.3974

Here, in this table, we present a comparison of the results of the proposed technique.

Table 21. Ranking of alternatives.
AO Ranking Finest Alternative

Existing Method [42] Y2 > Y6 > Y1 > Y4 > Y5 > Y3 > Y7 Y2

Existing Method [43] Y2 > Y5 > Y6 > Y4 > Y1 > Y3 > Y7 Y2

Proposed Method Y2 > Y5 > Y1 > Y4 > Y6 > Y3 > Y7 Y2

Consequently, the proposed method is accurate, effective and more generalizable as a tool to solve
MAGDM problems.

8. Results and discussion

The results and outcome of our proposed work are that we have taken the data in the form of FCNs
and used the Dombi t-norm and t-conorm basic operational laws to develop a series of geometric AOs.
Furthermore, we have applied these AOs to MAGDM issues to select the best option from the given
data. Also, we have developed and explained a stepwise algorithm in which some steps have been
defined and also quantified through a numerical example. The advantages of our proposed method are
summarized as follows:

(1) Our proposed method is scalable to meet the requirements of a variety of situations by adjusting
its own parameters.

(2) The FCNs of our proposed method can reliably depict more general decision-making problems.
(3) With the aid of the TOPSIS, our proposed method applies the satisfaction level of the alternative

to the ideal solutions to make the decision.
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9. Conclusions

This paper introduced a new FCN notion, which is expressed by a couple of fuzzy values related to
both the fuzzy argument and the degree of credibility in the real state of uncertainty and fuzziness, and
it is based on a new extension of the fuzzy notion. Normally, there are many types of decision-making
problems, but we have focused on only two types, i.e., MADM and MAGDM during any decision
problems. But, we have taken the MAGDM problems and obtained the best results on the basis of
our proposed work, which is also defined on the basis of the Dombi t-norm and t-conorm; as a result,
we have obtained a series of AOs, i.e., FCDWG, FCDOWG and FCDHWG operators. Furthermore,
we applied the TOPSIS procedure to MCGDM. Finally, a comparison with other methods was done
to check the accuracy of our new work. And, a numerical example was solved and verified by using
a known (existing) method; the results confirmed that the best results was achieved by our proposed
work. Also, the main benefit of using the FCNs is that they provide a credible and accurate degree for
the decision-making problems. Regarding future work, this study may be applied to many practical
applications like the Einstein t-norm and t-conorm and Yager t-norm and t-conorm to select the best
possible outcome using the FCNs.

Acknowledgments

This work was supported by the Higher Education Commission (HEC) of Pakistan under a
National Research Program for Universities (NRPU) grant, Project no. 10701. Therefore, the authors
are thankful to the NRPU and HEC for financial support.

Conflict of interest

All authors declare no conflicts of interest regarding this study.

References

1. L. A. Zadeh, Fuzzy sets, Inf. Control, 8 (1965), 338–353. https://doi.org/10.1016/S0019-
9958(65)90241-X

2. K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Set. Syst., 20 (1986), 87–96.
https://doi.org/10.1016/S0165-0114(86)80034-3

3. K. T. Atanassov, Intuitionistic fuzzy logics as tools for evaluation of data mining processes, Knowl.-
Based Syst., 80 (2015), 122–130. https://doi.org/10.1016/j.knosys.2015.01.015

4. R. R. Yager, Pythagorean membership grades in multicriteria decision making, IEEE T. Fuzzy Syst.,
22 (2013), 958–965. http://doi.org/10.1109/TFUZZ.2013.2278989

5. R. R. Yager, A. M. Abbasov, Pythagorean membership grades, complex numbers, and decision
making, Int. J. Intel. Syst., 28 (2013), 436–452. https://doi.org/10.1002/int.21584

6. B. D. Liu, Y. K. Liu, Expected value of fuzzy variable and fuzzy expected value models, IEEE T.
Fuzzy Syst., 10 (2002), 445–450. https://doi.org/10.1109/TFUZZ.2002.800692

AIMS Mathematics Volume 7, Issue 9, 17286–17312.

http://dx.doi.org/https://doi.org/10.1016/S0019-9958(65)90241-X
http://dx.doi.org/https://doi.org/10.1016/S0019-9958(65)90241-X
http://dx.doi.org/https://doi.org/10.1016/S0165-0114(86)80034-3
http://dx.doi.org/https://doi.org/10.1016/j.knosys.2015.01.015
http://dx.doi.org/http://doi.org/10.1109/TFUZZ.2013.2278989
http://dx.doi.org/https://doi.org/10.1002/int.21584
http://dx.doi.org/https://doi.org/10.1109/TFUZZ.2002.800692


17310

7. B. D. Liu, A survey of credibility theory, Fuzzy Optim. Decis. Making, 5 (2006), 387–408.
https://doi.org/10.1007/s10700-006-0016-x

8. X. Li, B. D. Liu, A sufficient and necessary condition for credibility measures, Int. J. Uncertain.
Fuzz., 14 (2006), 527–535. https://doi.org/10.1142/S0218488506004175

9. C. J. Rao, J. Peng, Fuzzy group decision making model based on credibility theory and gray relative
degree, Int. J. Inf. Tech. Decis., 8 (2009), 515–527. https://doi.org/10.1142/S0219622009003533

10. C. L. Hwang, J. M. Lin, Group decision making under multiple criteria: Methods and applications,
Berlin, Heidelberg: Springer, 2012. https://doi.org/10.1007/978-3-642-61580-1

11. Z. H. Xu, Uncertain multi-attribute decision making: Methods and applications, Berlin,
Heidelberg: Springer, 2015. https://doi.org/10.1007/978-3-662-45640-8

12. J. Q. Wang, J. Ren, Approach to group decision-making with different forms of preference
information, J. Syst. Eng. Electron., 12 (2005), 2057–2059.

13. Q. Song, A. Kandel, M. Schneider, Parameterized fuzzy operators in fuzzy decision making, Int. J.
Intell. Syst., 18 (2003), 971–987. https://doi.org/10.1002/int.10124
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