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1. Introduction

In this paper, we consider the following problem
−(Φp(u′(t)))′ = DxFi(t, u(t) − u(ti+1)), t ∈ (si, ti+1], i = 0, 1, 2, ..., n,
Φp(u′(t)) = βi, t ∈ (ti, si], i = 1, 2, ..., n,
Φp(u′(s+

i )) = Φp(u′(s−i )), i = 1, 2, ..., n,
Φp(u′(0)) = β0, u(0) = u(T ) = 0,

(1.1)

where Φp(x) = |x|p−2x, p > 1, 0 = s0 < t1 < s1 < t2 < s2 < ... < tn < sn < tn+1 = T , βi are given
constants, and impulsive jumps starts abruptly at the points ti and keep the derivative constant on a
finite time interval (ti, si]. Here, Φp(u′(s±i )) = lim

s→s±
Φp(u′(s)), and the nonlinear functions DxFi(t, x) are

the derivatives of Fi(t, x) with respect to x for every i = 0, 1, 2, ..., n.
In recent years, variational methods and critical point theory have been widely used to study the

existence and multiplicity of solutions for impulsive differential equations which possess variational
structures under certain boundary conditions. In this field of research, the pioneering studies were
initiated by Tian-Ge [29] and Nieto-O’Regan [21]. Since this time, many scholars investigated
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different types of impulsive differential equations, such as second-order, fourth-order and fractional
order impulsive differential equations, by means of variational approach and critical point theory. For
some general and recent works, we refer the interested reader to [11, 12, 15, 20, 22, 23, 28, 32, 33, 35]
and some of references for additional details.

On the other hand, the p-Laplacian operator appears in non-Newtonian fluid flows, turbulent
filtration in porous media, some reaction-diffusion and many other application areas, so it has deep
background in physics [3, 10, 17]. In 1983, Leibenson [17] considered the one-dimensional turbulent
flow of a polytropic gas in a porous medium and introduced the p-Laplacian equation as follows:

(Φp(u′(t)))′ = f (t, u(t), u′(t)), (1.2)

where Φp(x) = |x|p−2x, p > 1. Obviously, when p = 2, the p-Laplacian equations reduce to the second-
order differential equations. Many important results relative to (1.2) have been achieved over the past
few decades, see for instance [4,6,9,31]. In 2008, Tian-Ge [29] first investigated a class of p-Laplacian
boundary value problem with impulsive effects via variational methods and obtained it has at least two
positive solutions. Since then, the impulsive differential equations with p-Laplacian operators have
received extensive attention. For example, in [5,13,14,19,25,26,30], authors studied different types of
p-Laplacian impulsive differential equations by applying variational methods and critical point theory.

Although the above works about impulsive differential equations have achieved many important
research results, they focused primarily on differential equations with instantaneous impulses, which
can’t describe all the phenomena in real life, such as earthquakes and tsunamis. Thus, the study of non-
instantaneous impulsive differential equations has attracted widespread attention in recent years. In
2013, Hernández-O’Regan [16] were inspired by a simplified situation concerning the hemodynamical
equilibrium of a person and introduced the non-instantaneous impulses, which start abruptly at some
points and remain active on a finite time interval. Obviously, non-instantaneous impulsive differential
equations are a natural generalization of impulsive differential equations. From then on, the existence
of solutions for non-instantaneous impulsive differential equations have been investigated by some
approaches, such as fixed point theory, theory of analytic semigroup and variational methods, see for
instance [1, 2, 7, 16, 24, 36]. In [1], Bai-Nieto studied the following linear differential equations with
non-instantaneous impulses and obtained the existence and uniqueness of weak solutions.


−u′′(t) = σi(t), t ∈ (si, ti+1], i = 0, 1, 2, ...,N,
u′(t) = αi, t ∈ (ti, si], i = 1, 2, ...,N,
u′(s+

i ) = u′(s−i ), i = 1, 2, ...,N,
u(0) = u(T ) = 0, u′(0) = α0,

where 0 = s0 < t1 < s1 < t2 < s2 < ... < tN < sN < tN+1 = T , the impulses start abruptly at the
points ti and keeps the derivative constants on finite interval (ti, si], σi ∈ L2((si, ti+1),R) and αi are
given constants. Here, u′(s±i ) = lim

s→s±
u′(s).

On the basis of [1], Bai-Nieto-Wang [2] considered the following nonlinear differential equations
with non-instantaneous impulses via variational methods and critical point theory. They obtained the
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problem has at least two distinct nontrivial weak solutions.
−u′′(t) = DxFi(t, u(t) − u(ti+1)), t ∈ (si, ti+1], i = 0, 1, 2, ...,N,
u′(t) = αi, t ∈ (ti, si], i = 1, 2, ...,N,
u′(s+

i ) = u′(s−i ), i = 1, 2, ...,N,
u(0) = u(T ) = 0, u′(0) = α0,

where 0 = s0 < t1 < s1 < t2 < s2 < ... < tN < sN < tN+1 = T , the impulses start abruptly at the points
ti and keeps the derivative constants on finite interval (ti, si]. Here, u′(s±i ) = lim

s→s±
u′(s) and αi are given

constants.
In [36], Zhao-Luo-Chen considered the following fractional differential equations with non-

instantaneous impulses. They proved that the problem has at least one nontrivial weak solution, at
least two nontrivial weak solutions and does not admit any nontrivial solution by using critical point
theory and variational methods.

tDα
T (c

0Dα
t u(t)) = DxFi(t, u(t) − u(ti+1)), t ∈ (si, ti+1], i = 0, 1, 2, ...,N,

∆(tDα−1
T (c

0Dα
t u)(t) = βi, t ∈ (ti, si], i = 1, 2, ...,N,

tDα−1
T (c

0Dα
t u)(s−i ) =t Dα−1

T (c
0Dα

t u)(s+
i ), i = 1, 2, ...,N,

tDα−1
T (c

0Dα
t u)(0) = β0, u(0) = u(T ) = 0,

where 1
2 < α ≤ 1, 0Dγ

t and tD
γ
T denote the left and right Riemann–Liouville fractional derivatives of

order γ, respectively. c
0Dα

t is the left Caputo fractional derivative of order α, 0 = s0 < t1 < s1 <

t2 < s2 < ... < sN < tN+1 = T , βi are given constants, and the impulsive jump starts abruptly at the
fixed points ti and keeps the derivative constants on finite interval (ti, si]. Here, tDα−1

T (c
0Dα

t u)(s±i ) =

lim
s→s±

tDα−1
T (c

0Dα
t u)(s), and the nonlinear functions DxFi(t, x) are the derivatives of Fi(t, x) with respect to

x for every i = 0, 1, 2, ...,N.
Motivated by the above research, our aim of this paper is to study a class of non-instantaneous

impulsive differential equations with p-Laplacian operator. As far as we know, there is no paper
considered the problem (1.1) and the existence, multiplicity and nonexistence of solutions for it are
obtained via variational methods and critical point theory. So we generalize the existing results
in [1, 2, 36].

Throughout this paper, we need the following assumptions.

(H1) Fi(t, x) is measurable in t for every x ∈ R and continuously differentiable in x for a.e. t ∈ (si, ti+1],
and there exist functions m1 ∈ C(R+,R+), m2 ∈ L1((si, ti+1);R+) such that

|Fi(t, x)| ≤ m1(|x|)m2(t), |DxFi(t, x)| ≤ m1(|x|)m2(t)

for each x ∈ R and a.e. in t ∈ (si, ti+1].

(H2) There exist constant γ ∈ [0, p) and the functions b0, b1 ∈ L1(si, ti+1) such that

|Fi(t, x)| ≤ b0(t)|x|γ + b1(t)

for a.e. t ∈ (si, ti+1] and x ∈ R.

(H3) Fi(t, 0) = 0 for a.e. t ∈ (si, ti+1] and there exist constants µi > p and M > 0 such that 0 <

µiFi(t, x) ≤ xDxFi(t, x) for a.e. t ∈ (si, ti+1], x ∈ R with |x| > M, i = 0, 1, 2, ..., n.
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(H4) lim
|x|→0

sup Fi(t,x)
|x|µi < A∗ uniformly for a.e. t ∈ (si, ti+1] and x ∈ R, where

A∗ :=
1 − 2p−1Cp p

∑n
i=1 |βi−1 − βi|

2pCp p
∑n

i=0(ti+1 − si)
> 0,

and C is defined in Lemma 2.10.

(H5) Fi(t, x) = o(|x|µi) as |x| → 0 uniformly for a.e. t ∈ (si, ti+1] and x ∈ R.

(H6) m1(x) is nondecreasing function for any x ≥ 0.

(H7) m1(2Cx) < xp−1−
∑n

i=1 C|βi−1−βi |

2C
∑n

i=0

∫ ti+1
si

m2(t)dt
for all x > 0, where C is defined in Lemma 2.10.

Our main results are as follows.

Theorem 1.1. Assume that (H1) and (H2) hold. Then problem (1.1) has at least one nontrivial weak
solution.

Theorem 1.2. Assume that (H1), (H3) and (H4) hold. Then problem (1.1) has at least two nontrivial
weak solutions.

Theorem 1.3. Assume that (H1), (H3) and (H5) hold. Then problem (1.1) has at least two nontrivial
weak solutions.

Theorem 1.4. Assume that (H1), (H6) and (H7) hold. Then problem (1.1) has no nontrivial solution.

Remark 1.5. i The condition (H1) ensures the existence and continuity of Gateaux derivative φ′i(u), so
we can obtain ϕ′(u) exists and is continuous. Moreover, the condition (H2) ensures the functional
ϕ(u) is coercive. Hence, we can use minimization methods to prove the Theorem 1.1 holds.

ii The conditions (H3) and (H4) ensure ϕ(u) has mountain pass geometric structure. So we can obtain
the problem (1.1) has at least one nontrivial weak solution by using mountain pass theorem.
Furthermore, we can get another nontrivial weak solution of the problem (1.1) by applying
Lemma 2.7. Therefore, the Theorem 1.2 is proved. Similarly, we can prove Theorem 1.3 by
mean of the same methods.

iii In the case u is a nontrivial solution of problem (1.1), 〈ϕ′(u), u〉 = 0. The conditions (H6) and (H7)
ensure 〈ϕ′(u), u〉 > 0. Hence, we can use inequalities to prove the Theorem 1.4 holds.

Remark 1.6. If p = 2, problem (1.1) reduces to [2]. Furthermore, if p = 2 and DxFi(t, u(t)− u(ti+1)) =

σi(t), problem (1.1) reduces to [1]. So our problem (1.1) generalizes the works of [1, 2].

The paper is organized as follows. In Section 2, we give some preliminaries. In Section 3, we will
prove our main results.

2. Preliminaries

In this section, we first introduce some definitions, lemmas and theorems, which are used further in
this paper.
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Definition 2.1. ( [18], Minimizing sequence) Let X be a Banach space. A minimizing sequence of a
functional ϕ : X → R is a sequence {uk} ⊂ X, such that

lim
k→∞

ϕ(uk) = inf
u∈X

ϕ(u).

Definition 2.2. ( [18], Weakly lower semi-continuous) Let X be a Banach space. A functional ϕ : X →
R, is weakly lower semi-continuous, if

uk ⇀ u⇒ lim inf
k→∞

ϕ(uk) ≥ ϕ(u).

Definition 2.3. ( [18], Coercive) Let X be a Banach space. A functional ϕ : X → R, is called coercive
if, for every u ∈ X,

ϕ(u)→ +∞, if ‖u‖X → ∞.

Theorem 2.4. [18] If ϕ : X → (−∞,+∞] is coercive, then ϕ has a bounded minimizing sequence.

Theorem 2.5. [18] Let X be a reflexive Banach space and let ϕ : X → (−∞,+∞] be weakly lower
semi-continuous on X. If ϕ has a bounded minimizing sequence, then ϕ has a minimum on X.

Definition 2.6. ( [18], (PS) condition) Let X be a real reflexive Banach space. For any sequence
{uk} ⊂ X, if {ϕ(uk)} is bounded and ϕ′(uk)→ 0 as k → ∞ possesses a convergent subsequence, then we
say that ϕ satisfies the Palais-Smale condition.

Lemma 2.7. [34, Theorem 38.A] For the functional ϕ : M ⊂ X → [−∞,+∞] with M , ∅;
minu∈M ϕ(u) = α has a solution in case the following hold:

(i) X is a real reflexive Banach space;

(ii) M is bounded and weak sequentially closed;

(iii) ϕ is sequentially weakly lower semi-continuous on M.

Lemma 2.8. [18, Theorem 4.10] Let X be a Banach space and let ϕ ∈ C1(X,R). Assume that there
exist u0 ∈ X, u1 ∈ X, and a bounded open neighborhood Ω of u0 such that u1 ∈ X\Ω and inf

∂Ω
ϕ >

max{ϕ(u0), ϕ(u1)}. Let

Γ = {g ∈ C([0, 1], X)|g(0) = u0, g(1) = u1} and c = inf
g∈Γ

max
s∈[0,1]

ϕ(g(s)).

If ϕ satisfies the (PS )c-condition, then c is a critical value of ϕ and c > max{ϕ(u0), ϕ(u1)}.

Next, we recall the well-known Poincaré inequality∫ T

0
|u′(t)|pdt ≥ λ1

∫ T

0
|u(t)|pdt for all u ∈ W1,p

0 ([0,T ]),

where λ1 is the first eigenvalues of the following problem{
(|u′(t)|p−2u′(t))′ + λ|u(t)|p−2u(t) = 0, t ∈ [0,T ],
u(0) = u(T ) = 0.

(2.1)
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Moreover, it has been shown in [8] that all eigenvalues of the problem (2.1) are given by the
sequence of positive numbers

λk = (p − 1)
(
kπp

T

)p

for k = 1, 2, ...

where πp = 2π
p sin π

p
.

Let X := W1,p
0 ([0,T ]) equipped with the norm

‖u‖X =

(∫ T

0
|u′(t)|p

) 1
p

.

Obviously, X is a reflexive Banach space. We also define the norms in Lp([0,T ]), C[0,T ] as ‖u‖Lp =(∫ T

0
|u|pdt

) 1
p

and ‖u‖∞ = max
t∈[0,T ]

|u(t)|, respectively.

For each v ∈ X, we have∫ T

0
(Φp(u′(t)))′v(t)dt =

∫ t1

0
(Φp(u′(t)))′v(t)dt +

n∑
i=1

∫ si

ti
(Φp(u′(t)))′v(t)dt

+

n−1∑
i=1

∫ ti+1

si

(Φp(u′(t)))′v(t)dt +

∫ T

sn

(Φp(u′(t)))′v(t)dt

= −

∫ T

0
|u′(t)|p−2u′(t)v′(t)dt +

n∑
i=1

(|u′(t−i )|p−2u′(t−i )

− |u′(t+
i )|p−2u′(t+

i ))v(ti) +

n∑
i=1

(|u′(s−i )|p−2u′(s−i )

− |u′(s+
i )|p−2u′(s+

i ))v(si),

which combined with (1.1) yields that∫ T

0
(Φp(u′(t)))′v(t)dt = −

∫ T

0
|u′(t)|p−2u′(t)v′(t)dt +

n∑
i=1

(βi−1 − βi)v(ti)

−

n−1∑
i=0

(∫ ti+1

si

DxFi(t, u(t) − u(ti+1))dt
)

v(ti+1).

(2.2)

On the other hand,∫ T

0
(Φp(u′(t)))′v(t)dt = −

n∑
i=0

∫ ti+1

si

DxFi(t, u(t) − u(ti+1))v(t)dt

+

n∑
i=1

∫ si

ti

d
dt

(βi)v(t)dt

= −

n∑
i=0

∫ ti+1

si

DxFi(t, u(t) − u(ti+1))v(t)dt.

(2.3)
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Thus, according to v(tn+1) = v(T ) = 0, (2.2), and (2.3), we have

−

∫ T

0
|u′(t)|p−2u′(t)v′(t)dt +

n∑
i=1

(βi−1 − βi)v(ti)

= −

n∑
i=0

∫ ti+1

si

DxFi(t, u(t) − u(ti+1))(v(t) − v(ti+1))dt.

(2.4)

Definition 2.9. A function u ∈ X is said to be a weak solution of problem (1.1) if (2.4) holds for any
v ∈ X.

We define the following functional on X

ϕ(u) =
1
p
‖u‖p

X −

n∑
i=1

(βi−1 − βi)u(ti) −
n∑

i=0

φi(u), (2.5)

where

φi(u) =

∫ ti+1

si

Fi(t, u(t) − u(ti+1))dt.

For u and v fixed in X and λ ∈ [−1, 1], by Lemma 2.10, we have

|u(t) − u(ti+1)| ≤ 2‖u‖∞ ≤ 2C‖u‖X. (2.6)

Hence,
|u(t) − u(ti+1) + λθ(v(t) − v(ti+1))| ≤ 2C(‖u‖X + ‖v‖X), for θ ∈ (0, 1), (2.7)

and

lim
λ→0

1
λ

[Fi(t, u(t) − u(ti+1) + λ(v(t) − v(ti+1))) − Fi(t, u(t) − u(ti+1))]

=DxFi(t, u(t) − u(ti+1))(v(t) − v(ti+1)), for a.e. t ∈ (si, ti+1].

It follows from condition (H1), (2.7) and mean value theorem that∣∣∣∣∣1λ [Fi(t, u(t) − u(ti+1) + λ(v(t) − v(ti+1))) − Fi(t, u(t) − u(ti+1))]
∣∣∣∣∣

=|DxFi(t, u(t) − u(ti+1) + λθ(v(t) − v(ti+1))(v(t) − v(ti+1))|
≤2C‖v‖X max

z∈[0,2C(‖u‖X+‖v‖X)]
m1(z)m2(t) ∈ L1((si, ti+1];R+).

for some θ ∈ (0, 1). By Lebesgue’s dominated convergence theorem, we obtain that φi has at every
point u a directional derivative

〈φ′i(u), v〉 =

∫ ti+1

si

DxFi(t, u(t) − u(ti+1))(v(t) − v(ti+1))dt. (2.8)

Moreover,

|〈φ′i(u), v〉| ≤
∫ ti+1

si

|DxFi(t, u(t) − u(ti+1))||(v(t) − v(ti+1))|dt
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≤2C
∫ ti+1

si

m2(t)dt max
z∈[0,2C(‖u‖X+‖v‖X)]

m1(z)‖v‖X.

Thus, φ′i ∈ X∗ (The space X∗ is the topological dual of X). Suppose uk ⇀ u in X, then uk → u on
[0,T ] [18, Proposition 1.2]. Furthermore, by (2.8), we obtain

‖φ′i(uk) − φ′i(u)‖ ≤ 2C
∫ ti+1

si

|DxFi(t, uk(t) − uk(ti+1)) − DxFi(t, u(t) − u(ti+1))|dt.

Hence, φ′i(u) is continuous from X to X∗, ϕ ∈ C1(X,R) and

〈ϕ′(u), v〉 =

∫ T

0
|u′|p−2u′v′dt −

n∑
i=1

(βi−1 − βi)v(ti)

−

n∑
i=0

∫ ti+1

si

DxFi(t, u(t) − u(ti+1))(v(t) − v(ti+1))dt.

(2.9)

Then, it is clear that the critical points of ϕ correspond to weak solutions of problem (1.1).

Lemma 2.10. For any u ∈ X, there exist a constant C > 0 such that ‖u‖∞ ≤ C‖u‖X.

Proof. For any u ∈ X, it follows from mean value theorem that

u(τ) =
1
T

∫ T

0
u(s)ds

for some τ ∈ [0,T ]. Thus, for t ∈ [0,T ], by Hölder and Poincaré inequality,

|u(t)| =

∣∣∣∣∣∣u(τ) +

∫ t

τ

u′(s)ds

∣∣∣∣∣∣ ≤ |u(τ)| +
∫ T

0
|u′(s)|ds

≤
1
T

∣∣∣∣∣∣
∫ T

0
u(s)ds

∣∣∣∣∣∣ + T
1
q

(∫ T

0
|u′(s)|pds

) 1
p

≤T−
1
p

(∫ T

0
|u(s)|pds

) 1
p

+ T
1
q

(∫ T

0
|u′(s)|pds

) 1
p

=T−
1
p ‖u‖Lp + T

1
q ‖u‖

1
p

X ≤
(
(λ1T )−

1
p + T

1
q
)
‖u‖X,

where 1
p + 1

q = 1. Hence, there exist a constant C = (λ1T )−
1
p + T

1
q > 0 such that ‖u‖∞ ≤ C‖u‖X. �

3. Main results

Lemma 3.1. The functional ϕ : X → R is weakly lower semi-continuous.

Proof. Let uk ⇀ u in X, then uk → u on [0,T ]. Furthermore, it follows from the continuity and

AIMS Mathematics Volume 7, Issue 9, 17269–17285.



17277

convexity of ‖u‖
p
X

p that lim inf
k→+∞

‖uk‖
p
X

p ≥
‖u‖pX

p . Thus, we have

lim inf
k→+∞

ϕ(uk) = lim inf
k→+∞

(‖uk‖
p
X

p
−

n∑
i=1

(βi−1 − βi)uk(ti)

−

n∑
i=0

∫ ti+1

si

Fi(t, uk(t) − uk(ti+1))dt
)

≥
‖u‖p

X

p
−

n∑
i=1

(βi−1 − βi)u(ti) −
n∑

i=0

∫ ti+1

si

Fi(t, u(t) − u(ti+1))dt

=ϕ(u).

(3.1)

Therefore, ϕ is weakly lower semi-continuous. �

Proof of Theorem 1.1. By condition (H2), Lemma 2.10 and (2.5), we have

ϕ(u) =
1
p
‖u‖p

X −

n∑
i=1

(βi−1 − βi)u(ti) −
n∑

i=0

∫ ti+1

si

Fi(t, u(t) − u(ti+1))dt

≥
1
p
‖u‖p

X −

n∑
i=1

|βi−1 − βi|‖u‖∞ −
n∑

i=0

∫ ti+1

si

(b0(t)|u(t) − u(ti+1)|γ + b1(t))dt

≥
1
p
‖u‖p

X −

n∑
i=1

C|βi−1 − βi|‖u‖X − 2γCγ‖u‖γX

n∑
i=0

∫ ti+1

si

b0(t)dt

−

n∑
i=0

∫ ti+1

si

b1(t)dt.

(3.2)

Since γ ∈ [0, p), (3.2) implies that lim
‖u‖→∞

ϕ(u) = +∞, i.e., ϕ is coercive. By using Lemma 3.1 and

Theorem 2.4, we obtain that ϕ satisfies all the conditions of Theorem 2.5. Thus ϕ has a minimum on
X, which is a critical point of ϕ. Hence, problem (1.1) has at least one nontrivial weak solution. �

Proof of Theorem 1.2. We need four steps to complete the proof.
Step 1. ϕ(u) satisfies (PS) condition on X.
Let {uk} ⊂ X such that ϕ(uk) is a bounded sequence and lim

k→∞
ϕ′(uk) = 0. Obviously,∣∣∣∣∣∣∣

n∑
i=1

(βi−1 − βi)u(ti)

∣∣∣∣∣∣∣ ≤
n∑

i=1

|βi−1 − βi|‖u‖∞ ≤
n∑

i=1

|βi−1 − βi|C‖u‖X. (3.3)

Since µiFi(t, x) − xDxFi(t, x) is continuous for t ∈ (si, ti+1] and |x| ≤ M, there is constant C0 > 0
such that

µiFi(t, x) ≤ xDxFi(t, x) + C0, t ∈ (si, ti+1], |x| ≤ M.

From (H3), we have

µiFi(t, x) ≤ xDxFi(t, x) + C0, t ∈ (si, ti + 1], x ∈ R. (3.4)
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Let µ := min{µi, i = 0, 1, 2, ..., n}, then µ > p. By (3.3) and (3.4), we have

µϕ(uk) − 〈ϕ′(uk), uk〉

=
µ − 1

p
‖uk‖

p
X − (µ − 1)

n∑
i=1

(βi−1 − βi)u(ti)

−

n∑
i=0

∫ ti+1

si

µFi(t, uk(t) − uk(ti)) − Fi(t, uk(t) − uk(ti))(uk(t) − uk(ti))dt

≥
µ − 1

p
‖uk‖

p
X − (µ − 1)

n∑
i=1

|βi−1 − βi|C‖uk‖X −C0

n∑
i=0

(ti+1 − si),

(3.5)

which implies that {uk} is bounded in X. Since X is a reflexive Banach space, going to a subsequence
if necessary, we may assume that uk ⇀ u in X, then uk → u in Lp[0,T ] and uk → u a.e. t ∈ [0,T ].

Since lim
k→∞

ϕ′(uk) = 0 and {uk} converges weakly to some u, one has

〈ϕ′(uk) − ϕ′(u), uk − u〉 → 0, as k → +∞. (3.6)

From (2.9), we have

〈ϕ′(uk) − ϕ′(u), uk − u〉

=

∫ T

0
(|u′k(t)|

p−2u′k(t) − |u
′(t)|p−2u′(t))(u′k(t) − u′(t))dt

−

n∑
i=0

∫ ti+1

si

(DxFi(t, uk(t) − uk(ti+1)) − DxFi(t, u(t) − u(ti+1)))

× (uk(t) − uk(ti+1) − u(t) + u(ti+1))

≥

∫ T

0
(|u′k|

p−2 − |u′|p−2)(u′k − u′)dt

−

n∑
i=0

∫ ti+1

si

|DxFi(t, uk(t) − uk(ti+1)) − DxFi(t, u(t) − u(ti+1))|

× |uk(t) − uk(ti+1) − u(t) + u(ti+1)|.

(3.7)

In view of assumption (H1) and

|uk(t) − uk(ti+1) − u(t) + u(ti+1)| ≤|uk(t) − u(t)| + |uk(ti+1) − u(ti+1)|
≤2‖uk − u‖∞ → 0, as k → ∞,

we obtain that the second term on the right hand of (3.7) converges to 0 as k → ∞.
By [27, Eq (2.2)], there exist cp, dp > 0 such that∫ T

0
(|u′k(t)|

p−2u′k(t) − |u
′(t)|p−2u′(t))(u′k(t) − u′(t))dt

≥

cp

∫ T

0
|u′k(t) − u′(t)|pdt, if p ≥ 2.

dp

∫ T

0
|u′k(t)−u′(t)|2

(|u′k(t)|+|u′(t)|)2−p dt, if 1 < p < 2.
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If p ≥ 2, it follows from (3.6) and (3.7) that ‖uk − u‖X → 0 as k → ∞.
If 1 < p < 2, by Hölder’s inequality, one has∫ T

0
|u′k(t) − u′(t)|pdt

≤

(∫ T

0

|u′k(t) − u′(t)|2

(|u′k(t) + u′(t)|)2−p dt
) p

2
(∫ T

0
(|u′k(t)| + |u

′(t)|)pdt
) 2−p

2

≤

(∫ T

0

|u′k(t) − u′(t)|2

(|u′k(t) + u′(t)|)2−p dt
) p

2

2
(p−1)(2−p)

2

(∫ T

0
(|u′k(t)|

p + |u′(t)|p)dt
) 2−p

2

≤2
(p−1)(2−p)

2

(∫ T

0

|u′k(t) − u′(t)|2

(|u′k(t) + u′(t)|)2−p dt
) p

2

(‖uk‖X + ‖u‖X)
(2−p)p

2 .

(3.8)

It follows from 1 < p < 2 and (3.8) that∫ T

0
(|u′k(t)|

p−2 − |u′(t)|p−2)(uk(t) − u(t))dt

≥
2

(p−1)(p−2)
p dp

(‖uk‖X + ‖u‖X)2−p

(∫ T

0
|u′k(t) − u′(t)|pdt

) 2
p

=
2

(p−1)(p−2)
p dp‖uk − u‖2X

(‖uk‖X + ‖u‖X)2−p .

(3.9)

In view of (3.6)–(3.9), one has ‖uk − u‖X → 0 as k → ∞.
Thus, {uk} converges strongly to u in X.
Step 2. ϕ(u) has mountain pass geometric structure.
By condition (H4), there exists ε ∈ (0, 1) such that

Fi(t, x) ≤ (1 − ε)A∗|x|µi

uniformly for a.e. t ∈ (si, ti+1] and x ∈ R with |x| ≤ 1. Taking ρ = 1
2C , where C is listed in Lemma 2.10,

then
‖u‖∞ ≤

1
2

and |u(t) − u(ti)| ≤ 1

for each u ∈ X with ‖u‖X = ρ. Thus, for every u ∈ X, we have

ϕ(u) =
1
p
‖u‖p

X −

n∑
i=1

(βi−1 − βi)u(ti) −
n∑

i=0

∫ ti+1

si

Fi(t, u(t) − u(ti+1))dt

≥
1

2pCp p
−

1
2

n∑
i=1

|βi−1 − βi| − (1 − ε)A∗
n∑

i=0

∫ ti+1

si

|u(t) − u(ti+1)|µidt

≥
1

2pCp p
−

1
2

n∑
i=1

|βi−1 − βi| − (1 − ε)A∗
n∑

i=0

(ti+1 − si)

≥
1

2pCp p
−

1
2

n∑
i=1

|βi−1 − βi| − A∗
n∑

i=0

(ti+1 − si) + εA∗
n∑

i=0

(ti+1 − si)

=εA∗
n∑

i=0

(ti+1 − si) = η > 0

(3.10)
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In view of (3.10), we have ϕ(u) ≥ η > 0 = ϕ(0) for any u ∈ ∂Ωρ. Thus,

inf
u∈∂Ωρ

ϕ(u) > ϕ(0).

It follows from condition (H3) that there exist constants ci, di > 0 such that

Fi(t, x) ≥ ci|x|µi − di, x ∈ R, a.e. t ∈ (si, ti+1], i = 1, 2, ..., n.

Let ξ > 0 and w ∈ X with ‖w‖X = 1, and w(t) is not constant for a.e. t ∈ [0, t1]. Thus, we have

ϕ(ξw) =
1
p
‖ξw‖p

X −

n∑
i=1

(βi−1 − βi)ξw(ti) −
n∑

i=0

∫ ti+1

si

Fi(t, ξw(t) − ξw(ti+1))dt

≤
ξp

p
+ ξ

n∑
i=1

|βi−1 − βi|C‖w‖X −
n∑

i=0

∫ ti+1

si

(ci|ξw(t) − ξw(ti+1)|µi − di)dt

≤
ξp

p
+ Cξ

n∑
i=1

|βi−1 − βi| −

n∑
i=0

∫ ti+1

si

ciξ
µi |w(t) − w(ti+1)|µidt

+

n∑
i=0

di(ti+1 − si).

(3.11)

Let Pi =
∫ ti+1

si
ci|w(t) − w(ti+1)|µidt, then we have

0 ≤ Pi ≤ (2C)µici(ti+1 − si), i = 0, 1, 2, ..., n.

Since w(t) is not constant for a.e. t ∈ [0, t1], we have P0 =
∫ t1

0
c0|w(t) − w(t1)|µ0dt > 0. From (3.11),

we have

ϕ(ξw) ≤
ξp

p
+ Cξ

n∑
i=1

|βi−1 − βi| −

n∑
i=0

Piξ
µi +

n∑
i=0

di(ti+1 − si).

Since µi > p, the above formula implies ϕ(ξw) → −∞ as ξ → +∞. Hence, there exist ξ0 with
‖ξ0w‖X > ρ such that infu∈∂Ωρ

ϕ(u) > ϕ(ξ0w). It follows from Steps 1–2 and Lemma 2.8 that there exists
u∗ ∈ X such that

ϕ′(u∗) = 0 with ϕ(u∗) > max{ϕ(0), ϕ(ξ0w)} ≥ ϕ(0) = 0. (3.12)

Hence, u∗ is a nontrival weak solution of problem (1.1).
Step 3. For some i = 1, 2, ..., n, βi−1 , βi, we will prove that ϕ(u) has a nonzero local minimum u∗

in Ωρ.
Since Ωρ is closed-convex set, then Ωρ is sequentially weakly closed. Moreover, ϕ(u) is continuous

differential and sequentially weakly lower semi-continuous on X as the sum of a convex function and
of a weakly continuous one. Therefore, it follows from Lemma 2.7 that there exists a u∗ ∈ Ωρ such that
ϕ(u∗) = minΩρ

ϕ(u).
By condition (H3), we have Fi(t, 0) = 0 for a.e. t ∈ (si, ti+1] and Fi(t, x) ≥ 0 for a.e. t ∈ (si, ti+1] and

x ∈ R. Thus, φi(u) =
∫ ti+1

si
Fi(t, u(t) − u(ti+1))dt ≥ 0. Let

û(t) =

βi−1 − βi, if t = ti,

0, if t ∈ [0,T ] and t , ti;
(3.13)
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then û ∈ Ωρ. By (2.5) and (3.13), we have ϕ(̂u) ≤ −(βi−1 − βi)2 < 0. So

ϕ(u∗) ≤ ϕ(̂u) < 0 (3.14)

which implies that u∗ , 0.
Step 4. u∗ and u∗ are different and both bounded.
From (3.12) and (3.14), we have

ϕ(u∗) > 0 > ϕ(u∗), (3.15)

thus u∗ and u∗ are different. In view of the inf–max characterization of u∗ in Lemma 2.8 and (3.11), we
have

ϕ(u∗) = inf
g∈Γ

max
s∈[0,1]

ϕ(g(s)) ≤ max
s∈[0,1]

ϕ(ξ0ws) ≤ max
s∈[0,1]

h(s), (3.16)

where

h(s) =
ξ

p
0 sp

p
+

n∑
i=1

|βi−1 − βi|Cξ0s −
n∑

i=0

Piξ
µi
0 sµi +

n∑
i=0

di(ti+1 − si).

Obviously, h(s) is continuous on [0, 1]. (3.16) implies ϕ(u∗) is bounded above and so is ϕ(u∗) by (3.15).
For ũ ∈ X, similar as (3.5), we obtain

µϕ(̃u) − 〈ϕ′(̃u), ũ〉 ≥
µ − 1

p
‖̃u‖p

X − (µ − 1)
n∑

i=1

|βi−1 − βi|C‖̃u‖X −C0

n∑
i=0

(ti+1 − si). (3.17)

For u∗ and u∗ are both critical points of ϕ, moreover ϕ(u∗) and ϕ(u∗) are both bounded above, (3.17)
implies that u∗ and u∗ are both bounded in X. �

Proof of Theorem 1.3. According to condition (H5) and (3.10), for any ε > 0, there exists a η :=
εA∗

∑n
i=0(ti+1 − si) such that the functional ϕ(u) ≥ η > 0. By the similar proof of Theorem 1.2, we can

obtain Theorem 1.3 holds, and we omit the rest of proof of it. �

Proof of Theorem 1.4. Let u be a nontrivial solution of problem (1.1), then we obtain

0 = 〈ϕ′(u), u〉 =‖u‖p
X −

n∑
i=1

(βi−1 − βi)u(ti)

−

n∑
i=0

∫ ti+1

si

DxFi(t, u(t) − u(ti+1))(u(t) − u(ti+1))dt.

By virtue of condition (H6), (2.6), we have

m1(|u(t) − u(ti)|) ≤ m1(2C‖u‖X).

Furthermore, in view of conditions (H1) and (H7), we obtain

0 ≥‖u‖p
X −

n∑
i=1

|βi−1 − βi||u(ti)|

−

n∑
i=0

∫ ti+1

si

|DxFi(t, u(t) − u(ti+1))||(u(t) − u(ti+1))|dt
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≥‖u‖p
X −

n∑
i=1

|βi−1 − βi|C‖u‖X

−

n∑
i=0

∫ ti+1

si

m1(|u(t) − u(ti+1)|)m2(t)|u(t) − u(ti+1)|dt

≥‖u‖p
X −

n∑
i=1

|βi−1 − βi|C‖u‖X − 2C‖u‖X · m1(2C‖u‖X)
n∑

i=0

∫ ti+1

si

m2(t)dt > 0,

which is a contradiction. Hence, problem (1.1) has no nontrivial solution. �

4. Examples

Example 4.1. Let T = 1, consider the following problem
−(|u′(t)|2u′(t))′ = DxFi(t, u(t) − u(ti+1)), t ∈ (si, ti+1], i = 0, 1,
(|u′(t)|2u′(t)) = 0.1, t ∈ (t1, s1],
|u′(s+

1 )|2u′(s+
1 ) = |u′(s−1 )|2u′(s−1 ),

|u′(0)|2u′(0) = 0.2, u(0) = u(1) = 0,

(4.1)

where p = 4, n = 1, 0 = s0 < t1 = 1
16 < s1 = 15

16 < t2 = 1, and DxFi(t, u(t) − u(ti+1)) = (1 + t)(u(t) −
u(ti+1))2. It is easy to verify that the conditions (H1) and (H2) are satisfied. Hence, the problem (4.1)
has at least one nontrivial weak solution by Theorem 1.1. �

Example 4.2. Let T = 1, consider the following problem
−(|u′(t)|u′(t))′ = DxFi(t, u(t) − u(ti+1)), t ∈ (si, ti+1], i = 0, 1,
(|u′(t)|u′(t)) = 0.01, t ∈ (t1, s1],
|u′(s+

1 )|u′(s+
1 ) = |u′(s−1 )|u′(s−1 ),

|u′(0)|2u′(0) = 0.02, u(0) = u(1) = 0,

(4.2)

where p = 3, n = 1, 0 = s0 < t1 = 1
8 < s1 = 7

8 < t2 = 1, µi = 4 and DxFi(t, u(t) − u(ti+1)) =

t(u(t) − u(ti+1))5. By simple calculations, we obtain C ≈ 1.3282 and A∗ ≈ 0.0511. It is obvious that all
conditions of Theorem 1.2 hold. So the problem (4.2) has at least two nontrivial weak solutions.

�
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