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Abstract: The higher order diffusion can be understood as a generalization to the classical fickian
diffusion. To account for such generalization, the Landau-Ginzburg free energy concept is applied
leading to a fourth order spatial operator. This kind of diffusion induces a set of instabilities in the
proximity of the critical points raising difficulties to study the convergence of Travelling Waves (TW)
solutions. This paper aims at introducing a system of two species driven by a mutual interaction
towards prospering and with a logistic term in their respective reactions. Previous to any analytical
finding of TW solutions, the instabilities of such solutions are studied. Afterwards, the Geometric
Perturbation Theory is applied to provide means to search for a linearized hyperbolic manifold in the
proximity of the equilibrium points. The homotopy graphs for each of the flows to the hyperbolic
manifolds are provided, so that analytical solutions can be obtained in the proximity of the critical
points. Additionally, the set of eigenvalues in the homotopy graphs tend to cluster and synchronize for
increasing values of the TW-speed.
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1. Introduction

Once a biological species arrives at a new territory, different dynamics may be expected; mainly
invasive, predatory or cooperative. The intention in this analysis is to study a particular form of
cooperative interaction between species in which the species carrying capacities are weakly impacted
by the existence of other species. This may be seen as a form of mutual cooperation while each specie
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preserves its own autonomy. When one of the species reaches a territory, it starts a mutual relation
with the already existing one to make both prosper. With a mutual interaction, we refer to a beneficial
intervention of one species over the other, while both preserve their own autonomy and maximum
capacity in a given area. Probably, both species feed on different nutrients and they simply agree to
mutually cooperate under specific conditions.

When the species move in their domain, a diffusion mechanism is given. In the present work, the
driving diffusion is provided by a spatial higher order operator. As it will be further justified later,
this allows us to model any heterogeneous pattern in the space, particularly to understand the mutual
cooperation in the proximity of the system critical points. Other approach to diffusion problems is
provided in [9], where the driving involving reaction-diffusion phenomena is studied for the Nagumo
equation based on graphs. The author provided conditions for the existence of spatially heterogeneous
stationary solutions.

The selection of an appropriate diffusion principle is of relevance and leads to a whole significant
discussion (see [16] and references therein). In this case, it is considered the generalization introduced
by the Landau-Ginzburg free energy [11, 12]. Considering that the free energy is a function of the
squared concentration gradient ∼ (∇u)2, the authors in [11] showed a generalized heterogeneous
diffusion that ends in a higher order operator. As a principle in this paper, the diffusion is assumed
as heterogeneous in the sense of [11], so that a non-homogeneous or non-monotone behaviour may be
expected in the proximity of the critical points. Similar approaches have been followed in [31] to model
the instabilities in the proximity of degenerate points leading to the Extended Fisher-Kolmogorov
(EFK) equation in bi-stable systems. Oscillating solutions profiles to the EFK have been shown in
[21, 31].

Note that higher order operators are source of current investigation. The De Giorgi’s conjecture
with solutions bounds have been dealt in [10] for an Allen-Cahn elliptic equation typically used to
model bistable systems in biology and chemistry.

Stability analyses to fourth order equations have been done in [25]. In this case, a bifurcation
approach with Lyapunov functions was followed for periodic and even solutions to the EFK equation.
Alternatively, in this paper, the Geometric Perturbation Theory is used together with homotopy
representations.

The higher order operators have been applied to model different phenomena in applied sciences
and in the frame of elliptic and hyperbolic equations. In [19], the authors found bi-laplacian parabolic
equations with Markovian properties in networks depending on the transmission conditions stated at
the network vertices. Further, in [23], an analysis is introduced for one-dimensional, elliptic higher
order operators with application to ramified structures. The higher order spatial operator has been used
to model the beam equation with general Wentzell boundary conditions in [32]. The authors classified
the operator as semibounded, symmetric and quasiaccretive.

As seminal works precluding the proposed analysis, Fisher [27] and Kolmogorov, Petrovskii and
Piskunov [3] introduced a novel approach to study a class of problems dealing with the interaction of
genes and the behaviour of flames in combustion theory respectively. Such approach was based on a
fickian diffusion and a non-linear reaction term f (u) = u(1 − u). Solutions were obtained making use
of Travelling Waves (TW) to understand the spreading behaviour of the involved species. The authors
showed the existence of a minimal spreading TW-speed to account for positive monotone solutions.
Fisher conjectured that cooperativeness between species leads to the existence of a unique positive TW
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spreading at a minimum speed. In addition, he established that this speed is not perturbed in the region
where the species dominate. Such conjecture was proved by Kolmogorov, Petrovskii and Piskunov in
the classical paper [3]. More recently, it has been shown that the minimal TW-speed exists and is equal
to the spreading speed in the whole cooperative domain, not only in the proximity of the stationary
solutions given by the reaction term [17]. Furthermore, TW solutions have been proved to exist for
spread speeds beyond that minimal [2].

TW solutions to a Fisher-KPP model have been obtained in numerous situations. In all cases, the
objective consisted in determining the spreading-diffusive behaviour together with TW profiles. Some
remarkable analyses in the applied sciences are provided in [5, 6, 8]. It is to be remarked that the Fisher-
KPP model has been analyzed within the scope of fractional operators [34], higher order operators
[28, 29] and p-Laplacian Porous Medium Equations [1]. In a wider scope, TW solutions have been
explored based on a discrete system in small time-step limits regarded as singular perturbation to a
FitzHugh-Nagumo system (see [20])

The considered diffusion in the presented problem is given by a fourth order operator to account for
the non-homogeneous process involved in the dynamics close the system critical point. This approach
allows to analyze the instabilities in the central space manifold understood as perturbations. To further
justify this approach, consider that the mutual cooperation between species leads to their maximum
level of concentration in the media. Then, one species may instantaneously and randomly increases or
decreases depending on the media resources at a local region and time. The other species may increase
and decrease accordingly leading to an oscillatory behaviour that is modelled by the order four operator.
In addition, the fourth order operator can be justified to hold considering a population energy in the
same manner as the free energy concept introduced by Cohen and Murray in [11]. Indeed, the diffusion
is far from being homogeneous in the domain, as the natural philosophy for the species to move is to
select zones where the spatial gradients of each specie is maximized. This principle ends into a similar
diffusion idea as contemplated by [11] and concluding in a fourth order operator. In addition and to
propose the mutual interaction, consider the general definition of cooperative state as introduced in [7].
According to the mentioned reference, cooperativeness can be given as a coupling between species, so
that both increase or decrease accordingly. In our case, the dynamics is considered to be described by
a inter-specific ecological interaction of the simplest form wt = z and zt = w. Eventually, it shall be
stated that the species birth and mortality are introduced by a logistic term. Based on all the exposed,
the proposed problem is given by:

wt = −∆2w + w(a − w) + z,
zt = −∆2z + z(b − z) + w,

w0(x), z0(x) ∈ L2
loc(R) ∩ L∞(R) ∩ H4(R),

a > 0 , b > 0.

(1.1)

2. Preliminary results

The following weighted norm is defined for w (similar for z):

‖w‖α =

∫
R

α(y)
4∑

k=0

|Dkw(y)|2dy, (2.1)
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D = d
dy , w ∈ H4

α(R) ⊂ L2
α(R) ⊂ L2(R) and α(y) = ea0 |y|

4
3 (see [28], [29]), being a0 > 0 sufficiently

small.

Lemma 1. The space of functions w ∈ H4
α(R) ⊂ L2

α(R) ⊂ L2(R) with ‖w‖α norm is a Banach space.

Proof. Consider w, z ∈ H4
α ⊂ L2

α ⊂ L2:

‖w + z‖α =

∫
R

α(y)
4∑

k=0

|Dk(w + z)(y)|2dy ≤
∫
R

α(y)
4∑

k=0

[|Dk(w)(y)| + |Dk(z)(y)|]2dy

=

∫
R

α(y)
4∑

k=0

|Dk(w)(y)|2dy +

∫
R

α(y)
4∑

k=0

|Dk(z)(y)|2dy = ‖w‖α + ‖z‖α.

(2.2)

Given a sequence {wn(y) : n ∈ N} ∈ H4
α, admit that it is Cauchy convergent with norm ‖·‖α. Then

for δ ≥ 0, there exists µ ∈ N such that for n,m > µ, ‖wn − wm‖α ≤ δ. Indeed:

|wn(y) − wm(y)| = |(wn − wm)(y)| ≤ |wn − wm||y| ≤ K
4∑

k=0

|Dk(wn − wm)(y)|2|y|

≤ Kα(y)
4∑

k=0

|Dk(wn − wm)(y)|2|y| ≤ K
∫

R
α(y)

4∑
k=0

|Dk(wn − wm)(y)|2dy|y|

= K‖wn − wm‖α|y| ≤ K δ|y|.

(2.3)

For a sufficiently big K. Note that α(y) ≥ 1, then for δ→ 0 in a finite ball BR(y), |wn(y) − wm(y)| → 0.
�

Consider a function w ∈ H4(R) and 0 ≤ t < ∞. The following mollifying norm is defined:

‖w‖H4 =

∫ ∞

−∞

e4u2
|ŵ(u, t)|2du, (2.4)

where the mollifying exponential weight = e4u2
satisfies the Ap-condition for p = 1 (see reference

[30]).
Now consider L0 = −∆2 the spatial operator so that wt = L0w (analogously for z). Admit

w0(x), z0(x) ∈ L2(R)∩ L∞(R)∩H4(R). The following lemma is shown for the species w. Similarly can
be done for z.

Lemma 2. For w0 ∈ L2(R):
‖w‖L2 ≤ ‖w0‖L2 . (2.5)

Now admit w0 ∈ H4(R) ∩ L2(R), then:

‖w‖H4 ≤ ‖w0‖H4 . (2.6)

In addition,
‖w‖H4 ≤ ‖w0‖

2
L2 , t ≥ 1. (2.7)

Further:
‖w‖α ≤ η‖w‖H4 ≤ η‖w0‖H4 ,

η

25
= max{w,D1w,D2w,D3w,D4w} (2.8)
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Proof. Consider the homogeneous wt = L0w. Then, a solution is given as w(x, t) = etL0w0(x). In the
Fourier domain (u), one has:

ŵ(u, t) = et(−u4) ŵ0(u). (2.9)

Then:
‖w‖2L2 =

∫ ∞

−∞

|e−2tu4
| |ŵ0(u)|2du ≤ sup

u∈R
(e−2u4t)

∫ ∞

−∞

|ŵ0(u)|2du = ‖w0‖
2
L2 . (2.10)

Given the defined mollifying norm in (2.4), the following holds:

‖w‖H4 =

∫ ∞

−∞

e4u2
|ŵ(u, t)|2du =

∫ ∞

−∞

e4u2
|et(−2u4)| |ŵ0(u)|2du

≤ sup
u∈R

(e−2u4t)
∫ ∞

−∞

e4u2
|ŵ0(u)|2du = ‖w0‖H4 .

(2.11)

Assume now w0 ∈ L2(R):

‖w‖H4 =

∫ ∞

−∞

e4u2
|ŵ(u, t)|2du ≤ sup

u∈R
(e4u2

e−2u4t)
∫ ∞

−∞

|ŵ0(u)|2du. (2.12)

Operating:

‖w‖H4 ≤

(
1
t

)1/2

‖w0‖
2
L2 , ‖w‖H4 ≤ ‖w0‖

2
L2 , (2.13)

for t ≥ 1. Now:

‖w‖α =

∫
R

α(y)
4∑

k=0

|Dkw(y)|2dy ≤
∫
R

e4y2
4∑

k=0

|Dkw(y)|2dy ≤ η
∫
R

e4y2
|w(y)|2dy ≤ η‖w‖H4 , (2.14)

where η

25 = max{w,D1w,D2w,D3w,D4w}.
The scaling variable η is defined based on the Hölder continuous inclusion for Sobolev spaces (see

[35], p. 79). Consequently, derivatives up to the third order can be considered as regular. The fourth
order derivative is hence a controlling variable. The exponential mollifying kernel allows us to bound
the norm ‖·‖α provided the order four derivation exists leading to a finite η.

�

3. Instabilities of travelling waves

The TW formulation of (1.1) is provided under the change w(x, t) = W(ξ), ξ = x − λt ∈ R, λ is
the TW-speed and W : R → (0,∞) belongs to L2

loc(R) ∩ L∞(R). In addition, in the proximity of the
stationary solutions given by the logistic reaction, W ∈ L2(R) ∩ L∞(R) ∩ H4

α(R) or, when specified
W ∈ L2(R) ∩ L∞(R) ∩ H4(R). Analogously, a TW-profile is defined for z(x, t) as Z(ξ).

The TW instabilities means that for any δ1 > 0 and δ2 > 0 arbitrary small, there exists a sequence
of solutions (wn, zn) such that for

‖wn(0) −W(x)‖H4
α
≤ δ1, ‖zn(0) − Z(x)‖H4

α
≤ δ2, (3.1)

then
‖wn(t) −W(x + λt)‖H4

α
≥ ε1, ‖zn(t) − Z(x + λt)‖H4

α
≥ ε2, (3.2)

AIMS Mathematics Volume 7, Issue 9, 17210–17224.



17215

for ε1 and ε2 sufficiently small. The coming results will provide the required evidences to support the
TW instabilities definition. The convergence in the TW set of solutions is not regular due to the higher
order diffusion that induces oscillations.

In this chapter, the aim is to provide an analytical approach to show the instabilities of TW.
In the TW domain, the system (1.1) reads:

λW ′ = W (4) −W(a −W) − Z,
λZ′ = Z(4) − Z(b − Z) −W.

(3.3)

This system can be expressed with the standard representation:

W1

W2

W3

W4

Z1

Z2

Z3

Z4



′

=



W2

W3

W4

λW2 + aW1 + Z1 −W2
1

Z2

Z3

Z4

λZ2 + bZ1 + W1 − Z2
1


(3.4)

The partial derivatives with W j and Z j for j = 1, 2, 3, 4 are continuous, then solutions exist.
The instabilities of TW close to the critical points are shown based on a set of results that were

introduced for the Kuramoto equation in [33], for an extension of the Cahn-Hilliard equation in [14]
and for a order six diffusion in [18]. Following a similar structured set of evidences to that in [14], the
obtained results are divided into four lemmas.

Lemma 3. Considering the space of functions H4, H4
α and L2, then:

‖w‖L2 ≤ β1‖w‖H4 , ‖w‖L2 ≤ β2‖w‖α

Proof. Consider the weighted norm defined in (2.4):

‖w‖H4 =

∫ ∞

−∞

e4u2
|ŵ(u, t)|2du ≥ inf

u∈(−∞,∞)
{e4u2
}

∫ ∞

−∞

|ŵ(u, t)|2du = ‖w‖2L2 . (3.5)

Then β1 = 1. Now and considering (2.1):

‖w‖2L2 ≤

∫
R

4∑
k=0

|Dkw(y)|2dy ≤
∫
R

α(y)
4∑

k=0

|Dkw(y)|2dy = ‖w‖α, (3.6)

a.e. in R. Then, it suffices to admit β2 = 1.
�

Define the distance between the actual solutions and the TW solutions as: r(x, t) = w(x, t)−W(x−λt)
and s(x, t) = z(x, t) − Z(x − λt) so that the linearized problem (1.1) in the proximity of the null critical
points is expressed as:

rt = −∆2r + ra + s = L0r + M(r, s),
st = −∆2s + sb + r = L0s + N(r, s).

(3.7)

Then, the following lemma holds:
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Lemma 4. The mappings M,N : H4 → L2 are bounded continuous.

Proof.
‖M(r, s)‖L2 ≤ ‖M(r, s)‖H4 ≤ a‖r‖H4 + ‖s‖H4 ≤ a‖r0‖H4 + ‖s0‖H4 ≤ aω1 + ω2, (3.8)

being ω1 = ‖w0(x) −W(x0)‖H4 and ω2 = ‖z0(x) − Z(x0)‖H4 . Analogously:

‖N(r, s)‖L2 ≤ ‖N(r, s)‖H4 ≤ bω2 + ω1. (3.9)

�

Note that the last lemma applies to H4
α as well, i.e. M,N : H4

α → L2. For this purpose, it suffices to
consider the bound introduced in (2.8).

The single parameter (t) representation for the homogeneous equation wt = −∆2w is as follows
(similar for z):

g(x, t) = e−∆2t. (3.10)

The operator L0 = −∆2 is an infinitesimal generator of a strongly continuous semigroup for t > 0 (see
[26] for a complete discussion). Now, consider the following operators introduced to represent (1.1) as
an abstract evolution:

Tw0,t : H4
α(R)→ H4

α(R); Gz0,t : H4
α(R)→ H4

α(R), (3.11)

defined as:

Tw0,t(u) = g(x, t) ∗ w0(x) +

∫ t

0
g(x, t − s) ∗ w(x, s)(a − w(x, s))ds +

∫ t

0
g(x, t − s) ∗ z(x, s)ds, (3.12)

Gz0,t(u) = g(x, t) ∗ z0(x) +

∫ t

0
g(x, t − s) ∗ z(x, s)(b − z(x, s))ds +

∫ t

0
g(x, t − s) ∗ w(x, s)ds, (3.13)

Lemma 5. The continuous semigroup etL0 generated by L0 satisfies:∫ 1

ε

‖etL0‖L2→H4 = β5 < ∞,

∫ 1

ε

‖etL0‖L2→H4
α

= β6 < ∞, (3.14)

where 0 < ε � 1.

Proof. The following evolution, in the Fourier domain, holds for the homogenous problem wt = L0w

ŵ(u, t) = e−tu4
ŵ0(u). (3.15)

Considering the following norms:

‖w‖H4 ≤ ‖e−2tu4
‖H4 ‖w0‖H4 ≤ sup

u∈(−∞,∞)
{e4u2−2tu4

}‖w0‖
2
L2 , (3.16)

So that:
‖e−2tu4

‖L2→H4 ≤ sup
u∈(−∞,∞)

{e4u2−t2u4
} < et−1/2

, 0 < t ≤ 1. (3.17)
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Integrating with t ∈ (ε, 1], a finite β5 holds. Particularly, an assessment of the mentioned integral for
ε = 0.01 has been done with the help of the Γ function, i.e.

∫
et−1/2

∼ Γ
(
−2,−t−1/2

)
. Considering the

integration between ε and one, an approximated value of β5 = 72, 86 is obtained.
To obtain a value for β6:

‖w‖α =

∫
R

α(u)
4∑

k=0

|Dkŵ(u)|2du ≤ 2η
∫
R+

ea0u4/3
|ŵ(u)|2du

≤ 2η
∫
R+

ea0u4/3−2tu4
|ŵ0(u)|2du ≤ 2η sup

u∈(0,∞)
{ea0u4/3−2tu4

}‖w0‖
2
L2 < eB1t−1/2

‖w0‖
2
L2 ,

(3.18)

where B1 > 0 is a suitable constant. Then:

‖e−2tu4
‖L2→H4

α
‖w0‖

2
L2 ≤ ‖w‖α, (3.19)

which provides
‖e−2tu4

‖L2→H4
α
≤ eB1 t−1/2

. (3.20)

Note that β6 can be obtained after integration with regards to t in the interval (ε, 1]. Note that given
any B1 > 0 and finite, a dedicated value for β6 can be obtained similarly as done for the integration
involved previously in β5. �

Finally, the spectrum of L0 is studied in the following lemma:

Lemma 6. There exists, at least, one eigenvalue with positive .real part in the L0 spectrum.

Proof. One possibility is to study the Evans functions close to the critical points. Indeed, Evans
functions roots are common with the characteristic polynomial in the linear approach [15]. Thus, the
eigenvalues are obtained to the characteristic polynomial. For this purpose, a numerical approach has
been followed for certain values in the involved parameters, in this case a = b = 1. The characteristic
polynomial is assessed in the proximity of the stationary solutions W1 = 1, Z1 = 1 on one side and
W1 = 0, Z1 = 0 on the other. Further, the effect of the TW-speed is considered. The set of equation
(3.4) are transformed into the standard matrix in the proximity of W1 = 0, Z1 = 0 (Note that similarly
applies for W1 = 1, Z1 = 1 by simple translation).

W1

W2

W3

W4

Z1

Z2

Z3

Z4



′

=



0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
1 λ 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
1 0 0 0 1 λ 0 0





W1

W2

W3

W4

Z1

Z2

Z3

Z4


(3.21)

The characteristic polynomial is computed as:

P(γ) = γ8 − γ52λ − γ42 + γ2λ2 + 2γλ = 0. (3.22)
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It can be easily checked that (3.22) has positive solutions. To support this, and without loss of
generality, the homotopy representation is provided for different values of the TW-speed (Figures 1, 2
and 3). Note that the positive real part eigenvalues increases for increasing values in the TW-speed.
This permits to show the proposed lemma.

Finally, it can inferred from Figures 1, 2 and 3 that the eigenvalues tend to cluster. Note that the
complex eigenvalues form a pair of complex conjugate for increasing values in the TW-speed. The
mutual interaction between species make them to synchronize, so that the local instabilities in the
proximity of the null critical points share the species oscillating frequencies. Further, this precludes
the existence of convergent TW profiles for increasing values of λ. In other words, it is conjectured ε1

and ε2 in (3.2) decreases for increasing values in the TW-speed.

Figure 1. Evolution of eigenvalues for two TW speeds, 0 (left) and 1 (right). Note that there
exists at least one eigvenvalue with positive real part. It has been considered a = b = 1.

Figure 2. Evolution of eigenvalues for two TW speeds, 15 (left) and 60 (right). Note that
there exists at least one eigvenvalue with positive real part. It has been considered a = b = 1.
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Figure 3. Evolution of eigenvalues for two TW speeds, 100 (left) and 1000 (right). Note that
there exists at least one eigvenvalue with positive real part. It has been considered a = b = 1.

�

4. Geometric perturbation theory and travelling waves profiles

Denote as M the 8-Dimensional manifold with the flow given in (3.4). The assessment of TW-
profiles under the M flow is difficult in a general case. Hence, the intention is to define two perturbed
manifolds with similar behaviour compared to M so as to study the asymptotic evolution in the
proximity of the critical points. Let start by the equilibrium point W1 = a and Z1 = b. The perturbed
manifold Mθ close to M reads:

Mθ = {W1, ..,W4,Z1, ..,Z4 / a −W1 = θ1 , b − Z1 = θ2}, (4.1)

then the associated flows are given as:

θ(4)
1 = −λθ′1 + b + aθ1 , θ

(4)
2 = −λθ′2 + a + bθ2 . (4.2)

The Fenichel invariant manifold theorem (as formulated in [4, 22, 24]) is used to assess the
asymptotic approximation in the flow (4.2). Firstly, it shall be shown that the manifold M defined
by (3.4) is a normal hyperbolic manifold. This means that the set of eigenvalues to M close the
equilibrium points have non-zero real part in the transversal space. As shown in expression (3.22)
there exists a null eigenvalue. The associated space is given by the vector (a, 0, 0, 0, b, 0, 0, 0) that is
tangent (not transversal) to the manifold M. The remaining eigenvalues have non-zero real part for any
value in the TW-speed (see Figures 1, 2 and 3). As a consequence, it is possible to conclude on the M
hyperbolicity.

The next step is to show that Mθ is locally invariant. For this purpose, the formulation of the
Fenichel theorem provided in [4] is considered: For any I > 0, any open J with λ ∈ J and for any
value of k ∈ N, there exists a κ such that for θ1, θ2 ∈ (0, κ) the manifold Mθ is invariant. Then, for k ≥ 1
consider the Mθ flows:

ϕMθ

1 = λW2 + b + a(a −W1), ϕMθ

2 = λZ2 + a + b(b − Z1), (4.3)

AIMS Mathematics Volume 7, Issue 9, 17210–17224.



17220

which are Ck(I × J × [0, κ]) close to the equilibrium point W1 = a, Z1 = b. In addition, consider the
following flows associated to M (3.4):

ϕM
1 = λW2 + aW1 + Z1 −W2

1 , ϕ
M
2 = λZ2 + bZ1 + W1 − Z2

1 . (4.4)

Now, the assessment of κ requires to compute the distance between the flows in M and Mθ. For this
purpose, consider that the involved functions are measurable a.e. in I (including measures in the the
norm (2.1)), then making an elementary assessment:

‖ϕMθ

1 − ϕ
M
1 ‖ ≤ ‖a −W1‖‖a −W1‖ ≤ κ‖a −W1‖. (4.5)

The hyperbolic condition is hence kept between M and Mθ for the ϕ1 flows. It suffices to consider
κ ∈ (0,∞) in the proximity of the equilibrium where W1 → a. In the same manner, the hyperbolic
condition is kept under the flows ϕMθ

2 and ϕM
2 :

‖ϕMθ

2 − ϕ21M‖ ≤ ‖b − Z1‖‖b − Z1‖ ≤ κ‖b − Z1‖. (4.6)

For Z1 → b and κ ∈ (0,∞).

Following a similar approach, the manifold Mσ is defined in the proximity of the null critical point
W1 = 0, Z1 = 0:

Mσ = {W1, ..,W4,Z1, ..,Z4 / W1 = σ1 ,Z1 = σ2}, (4.7)

where σ1 and σ2 are sufficiently small. To apply the Fenichel invariant theorem, admit σ1, σ2 ∈ (0, ς),
so that the manifold Mσ is shown to be invariant under the flows:

ϕMσ

1 = λW2 + aW1 + σ2, ϕ
Mθ

2 = λZ2 + bZ1 + σ1, (4.8)

which are Ck(I × J × [0, ς]) close to the null critical point. The assessment of ς is done similarly as for
κ. Admit the involved function in Mσ flows are measurable a.e. in I including (2.1), then:

‖ϕMσ

1 − ϕ
M
1 ‖ ≤ ‖W1‖‖W1‖ ≤ ς‖W1‖. (4.9)

Similarly:
‖ϕMσ

2 − ϕ
M
2 ‖ ≤ ‖Z1‖‖Z1‖ ≤ ς‖Z1‖. (4.10)

Again, the hyperbolic condition is kept between M and Mσ for ς ∈ (0,∞) in the proximity of the
equilibrium where W1 → 0 and Z1 → 0 .

The linearized associated flows to Mσ are then:

σ(4)
1 = λσ′1 + aσ1 + σ2 , σ

(4)
2 = λσ′2 + bσ2 + σ1. (4.11)

Note that precise solutions can be obtained for the linearized flows in (4.2) and (4.11) by simple
standard means and after solving the characteristic polynomial (3.22) (note that to this end a = b = 1).

The eigenvalues associated to the Mθ flows in (4.2) and Mσ flows in (4.11) are represented for
different values of λ (Figures 4 and 5). Note that the eigenvalues in each of the asymptotic manifolds
behave similarly as the eigenvalues of M (Figures 1, 2 and 3), i.e. the eigenvalues tend to cluster and to
synchronize their corresponding frequencies for the case of complex conjugates. The searched precise
solutions close the critical points can be obtained by simple exponential bundles of solutions given by
each of the corresponding eigenvalues represented in 4 and 5.
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Figure 4. Representation of Mθ eigenvalues for two values of TW-speed, 1 (left) and 100
(right). Note that for increasing values in the TW-speed, the asymptotic behaviour of Mθ

approaches M. This can be shown comparing the Figure 3 left graph that provides the set
of eigenvalues for λ = 100. The eigenvalues similarity between M and Mθ validates the
Geometric Perturbation Theory assessment done.

Figure 5. Representation of Mσ eigenvalues for two values of TW-speed, 1 (left) and 100
(right). Note that for increasing values in the TW-speed, the asymptotic behaviour of Mσ

approaches M. This can be shown comparing the Figure 3 left graph that provides the set
of eigenvalues for λ = 100. The eigenvalues similarity between M and Mσ validates the
Geometric Perturbation Theory assessment done.
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5. Conclusions

The proposed couple system (1.1) has been analyzed providing evidences of TW instabilities in
the proximity of the critical points. The sets of eigenvalues to the linearized problem, close to the
critical points, exhibit a clustering and synchronizing behaviour for increasing values in the TW-speed.
The Geometric Perturbation Theory application has led to the existence and precise assessment of two
asymptotic manifolds to the hyperbolic manifold M in (3.4). The flows associated to such manifolds
provide linearized equations whose eigenvalues behave similarly to those in M for increasing values in
the TW-speed. This permits to validate the Geometric Perturbation Theory approach followed. Finally,
it is remarked that the eigenvalues provided in Figures 4 and 5 characterize the TW tail in the proximity
of the critical point. As a future research topic to explore, it shall be further understood the relationship
between the TW convergence and the clustering and synchronizing properties shown in the sets of
eigenvalues close the critical points for increasing values in the TW-speed. It is conjectured that such
tendency precludes that the convergence, in the sense of (3.2), in the TW profile is given for increasing
values of TW-speeds.
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31. V. Rottschäfer, A. Doelman, On the transition from the Ginzburg-Landau equation to the extended
Fisher-Kolmogorov equation, Physica D, 118 (1998), 261–292. https://doi.org/10.1016/S0167-
2789(98)00035-9

32. A. Favini, G. R. Goldstein, J. A. Goldstein, S. Romanelli, Classification of general Wentzell
boundary conditions for fourth order operators in one space dimension, J. Math. Anal. Appl., 333
(2007), 219–235. https://doi.org/10.1016/j.jmaa.2006.11.058

33. W. Strauss, G. Wang, Instabilities of travelling waves of the Kuramoto-Sivashinsky equation, Chin.
Ann. Math. B, 23 (2002), 267–276. https://doi.org/10.1142/S0252959902000250

34. X. Cabre, J. Roquejoffre, The influence of fractional diffusion in Fisher-KPP equations, Comm.
Math. Phys., 320 (2013), 679–722. https://doi.org/10.1007/s00220-013-1682-5

35. S. Kesavan, Topics in Functional Analysis and Applications, New Age International (formerly
Wiley-Eastern), 1989.

© 2022 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 7, Issue 9, 17210–17224.

http://dx.doi.org/https://doi.org/10.1007/s00020-020-02610-8
http://dx.doi.org/https://doi.org/10.1512/iumj.1972.21.21017
http://dx.doi.org/https://doi.org/10.1137/S0036141002418637
http://dx.doi.org/https://doi.org/10.1007/978-1-4612-5561-1
http://dx.doi.org/https://doi.org/10.1111/j.1469-1809.1937.tb02153.x
http://dx.doi.org/http://www.jstor.org/stable/24902842
http://dx.doi.org/https://doi.org/10.1090/S0002-9947-09-04615-7
http://dx.doi.org/https://doi.org/10.1016/S0167-2789(98)00035-9
http://dx.doi.org/https://doi.org/10.1016/S0167-2789(98)00035-9
http://dx.doi.org/https://doi.org/10.1016/j.jmaa.2006.11.058
http://dx.doi.org/https://doi.org/10.1142/S0252959902000250
http://dx.doi.org/https://doi.org/10.1007/s00220-013-1682-5
http://creativecommons.org/licenses/by/4.0

	Introduction
	Preliminary results
	Instabilities of travelling waves
	Geometric perturbation theory and travelling waves profiles
	Conclusions

