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1. Introduction

In this section, we will give the basic definitions and concepts that we need for other sections.
Assume that w is the set of all complex sequences v = (vk)∞k=1 and `∞, c and c0 describes the Banach

spaces of sequences and normed by ‖v‖∞ = supk |vk| .

In 1981, the difference sequence spaces E (∆) were proposed in [1]. These are Banach spaces
with norm:‖v‖∆ = |v1| + ‖∆v‖∞ . He showed that E ⊆ E (∆) , since there exists a sequence vk = (k)
(k = 1, 2, 3, ...) for which ∆vk = 1, so that although v is not convergent but, it is ∆-convergent. Later,
Et and Çolak [2] defined generalized difference sequence spaces. Recently, Ioan [3] introduced ∆m

p and
discussed the concept of p-convexity of this difference sequence.

Later on, Karakaş et al. [4] defined and discussed some basic topological and algebraic properties
of the sequence spaces E

(
∆m

p

)
for E = `∞, c and c0, where p,m ∈ N, ∆pv = (pvk − vk+1) and ∆m

p v =(
∆m

p vk

)
=

m∑
i=0

(−1)i
(

m
i

)
pm−ivk+i. In the case v ∈ E

(
∆m

p

)
(for E = `∞, c and c0) , we call ∆m

p -bounded, ∆m
p -

convergent and ∆m
p -zero, respectively. The sequence spaces `∞

(
∆m

p

)
, c

(
∆m

p

)
and c0

(
∆m

p

)
are Banach
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spaces with norm

‖v‖∆m
p

=

m∑
i=1

∣∣∣vi

∣∣∣ +
∥∥∥∆m

p v
∥∥∥
∞
.

The statistical convergence was discussed in [5] firstly. Later, this idea was given by Steinhaus [6]
and Fast [7] for complex number sequences. Recently, many mathematicians have studied the
topological properties of this type of convergence and its relation to summability (see [8–10] ).

We describe the natural density of a subset C of N as:

δ (C) = lim
n→∞

1
n
|{k ≤ n : k ∈ C}| ,

if the limit exists, where |.| is cardinality of set C.
Let v = (vk)∞k=1 be a sequence of complex numbers.The sequence v is statistically convergent to

complex number ` if, for every positive number ε, δ ({k ∈ N: |vk − `| ≥ ε}) has natural density zero. We
define ` as the statistical limit of (vk). Then, we have S t − lim vk = `. We describe the spaces of all
statistically convergent by S t. It is easily seen that the statistical limit is necessarily unique.

The ordered statistical convergence was presented by Gadjiev and Orhan [11]. After that Çolak [12]
defined and studied the concepts of β-density and statistical convergence of order β. Also, this has been
studied by many mathematicians in recent years (see [4, 8, 13]).

Lacunary sequence was described by Freedman et al. [14] as follows:
By Lacunary sequence Φ = (ur); r = 0, 1, 2, 3, ..., where u0 = 0,and hr = ur − ur−1 → ∞ as r → ∞.

We denote by Ir = (ur−1, ur] the intervals determined by Φ and qr = ur
ur−1

for r = 0, 1, 2, ...
Fridy and Orhan [15] have defined novel type of statistical convergence. In addition, the relationship

of this concept with summability was given by Fridy and Orhan [16]. Later, Lacunary statistical
convergence of order β was defined by Sengül and Et [17] as follows:

Let Φ = (ur) be a lacunary sequence, v = (vk) ∈ w and 0 < β ≤ 1. Let there exsit ` such that for
ε > 0. Then, we can say that the sequence v = (vk) is S β

Φ
-lacunary statistically convergent of order β.

lim
r→∞

1

hβr
|{k ∈ Ir : |vk − `| ≥ ε}| = 0,

where Ir = (ur−1, ur]. In the case, we write S β
Φ
− lim vk = `.

The definition of a modulus function is given by Nakano [18] as follows:
We assume that φ fulfils the following conditions
i) φ(v) = 0 if and only if v = 0,
ii) φ(v + v∗) ≤ φ(v) + φ(v∗), for all v, v∗ ≥ 0,
iii) φ is increasing,
iv) lim

z→0+
φ(v) = 0.

A modulus function can be bounded and unbounded.
We will give information about fractional difference sequences.
Recently, the topological properties of fractional difference sequences were first studied by

Baliarsingh [19]. Later, different properties of fractional difference sequences were examined by the
same author and his colleagues (see for details [20, 21]).

Baliarsingh [19], Baliarsingh and Dutta [21] defined the generalized fractional difference
operator ∆α : w→ w as follows:
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(∆αvk) =

∞∑
i=0

(−1)i Γ(α + 1)
i!Γ(α − i + 1)

vk+i, (1.1)

where Γ(n) =
∞∫
0

e−ttn−1dt.

In this study we acquired the following results by applying the ∆
α

p difference operator on the Eq (1.1)
and the results of Baliarsingh and Dutta [21] studies:

(∆α
pvk) =

∞∑
i=0

(−1)i p(α−i) Γ(α + 1)
i!Γ(α − i + 1)

vk+i,

(∆(α)
p vk) =

∞∑
i=0

(−1)i p(α−i) Γ(α + 1)
i!Γ(α − i + 1)

vk−i,

(∆−αp vk) =

∞∑
i=0

(−1)i p(−α−i) Γ(1 − α)
i!Γ(1 − α − i)

vk+i,

(∆(−α)
p vk) =

∞∑
i=0

(−1)i p(−α−i) Γ(1 − α)
i!Γ(1 − α − i)

vk−i.

Especially, for α = 1
2 , it procure that

• ∆
1
2
p vk = p1/2vk −

p−1/2

2 vk+1 −
p−3/2

8 vk+2 −
p−5/2

16 vk+3 −
5p−7/2

128 vk+4 −
7p−9/2

256 vk+5 −
21p−11/2

1024 vk+6 + ....

• ∆
( 1

2 )
p vk = p1/2vk −

p−1/2

2 vk−1 −
p−3/2

8 vk−2 −
p−5/2

16 vk−3 −
5p−7/2

128 vk−4 −
7p−9/2

256 vk−5 −
21p−11/2

1024 vk−6 + ....

• ∆
− 1

2
p vk = p−1/2vk +

p−3/2

2 vk+1 +
3p−5/2

8 vk+2 +
5p−7/2

16 vk+3 +
35p−9/2

128 vk+4 +
63p−11/2

256 vk+5 +
231p−13/2

1024 vk+6 + ....

• ∆
(− 1

2 )
p vk = p−1/2vk +

p−3/2

2 vk−1 +
3p−5/2

8 vk−2 +
5p−7/2

16 vk−3 +
35p−9/2

128 vk−4 +
63p−11/2

256 vk−5 +
231p−13/2

1024 vk−6 + ....
We define the operators, ∆α

p,∆
(α)
p ,∆−αp and ∆

(−α)
p can be explicit as triangles as follows:

∆α
p =



pα −p(α−1)α p(α−2)α(α−1)
2! −

p(α−3)α(α−1)(α−2)
3! ...

0 pα −p(α−1)α p(α−2)α(α−1)
2! ...

0 0 pα −p(α−1)α ...

0 0 0 pα ...
...

...
...

...
. . .


,

∆(α)
p =



pα 0 0 0 ...

−p(α−1)α pα 0 0 ...
p(α−2)α(α−1)

2! −p(α−1)α pα 0 ...

−
p(α−3)α(α−1)(α−2)

3!
p(α−2)α(α−1)

2! −p(α−1)α pα ...
...

...
...

...
. . .


,
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∆−αp =



p−α p(−α−1)α p(−α−2)α(α+1)
2!

p(−α−3)α(α+1)(α+2)
3! ...

0 p−α p(−α−1)α p(−α−2)α(α+1)
2! ...

0 0 p−α p(−α−1)α ...

0 0 0 p−α ...
...

...
...

...
. . .


,

∆(−α)
p =



p−α 0 0 0 ...

p(−α−1)α p−α 0 0 ...
p(−α−2)α(α+1)

2! p(−α−1)α p−α 0 ...
p(−α−3)α(α+1)(α+2)

3!
p(−α−2)α(α+1)

2! p(−α−1)α p−α ...
...

...
...

...
. . .


.

Note. Without loss of generality, we assume throughout that the series defined in (1.1) is convergent.
Moreover, if α is a positive integer, then the infinite sum defined in (1.1) reduces to a unite sum i.e.,

(∆αvk) =

α∑
i=0

(−1)i Γ(α + 1)
i!Γ(α − i + 1)

vk+i.

At the same time, when we take some notations of ∆α
p and ∆

(α)
p privately, we see that we will obtain

generalized private operators as follows:
i) If α = 1, p = 1 then the operator ∆α

p turns to ∆ and (∆vk) = vk − vk+1, described by Kızmaz [1].

ii) If α = m ∈ N, p = 1 then the operator ∆α
p reduces to ∆m and ∆mv = (∆mvk) =

m∑
j=0

(−1) j(m
j )vk+ j,

described by Et and Çolak [2].

iii) If α = m ∈ N, p ∈ N then the operator ∆
β
p reduces to ∆m

p and ∆m
p v = (∆m

p vk) =
m∑

j=0
(−1) j(m

j )pm− jvk+ j,

described by Karakaş et al. [4].
iv) If α = 1, p = 1 then the operator ∆

(α)
p reduces to ∆(1) and (∆vk) = vk − vk−1, described by

Malkowsky and Parashar [22].

v) If α = m ∈ N, p = 1 then the operator ∆
(α)
p reduces to ∆(m) and ∆(m)v = (∆(m)vk) =

m∑
j=0

(−1) j(m
j )vk− j,

described by Et [23].
We organized this study as follows:
In the second part, we will define ∆α

p,∆
(α)
p difference operators and examine some properties of this

operators.
In the third chapter, the concept of β. order statistical convergence for ∆α

p difference sequences
will be defined and some topological properties of this convergence will be examined. In addition, β.
order lacunary statistical concepts will be defined and the relationship of this convergence with β.

order statistical convergence will be examined.In the last section, we define the relationships between
the Caputo derivative and the Riemann-Liouville derivatives using the difference operator ∆α

p. In the
discussion section, we emphasized the importance of the study.
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2. Main results

In this section, we will define the fractional difference operators ∆α
p,∆

(α)
p , (α ∈ R) by making use of

the fractional difference operator, and we will give some properties of this operator.

Theorem 2.1. The operators E : w→ w for E ∈
{
∆α

p,∆
(α)
p ,∆−αp ,∆

(−α)
p

}
are linear over C.

Proof. The proof of the theorem is easily illustrated by the technique used by Baliarsingh and Dutta
in [21]. Therefore, we have omitted. �

Theorem 2.2. We have
i) ∆α

p ◦ ∆
γ
p ≡ ∆

γ
p ◦ ∆α

p ≡ ∆
α+γ
p .

ii) ∆
(α)
p ◦ ∆

(γ)
p ≡ ∆

(γ)
p ◦ ∆

(α)
p ≡ ∆

(α+γ)
p .

Proof. The proof can be seen obviously from Theorem 2.1. Therefore, we have omitted it. �

Theorem 2.3. If α be a proper fraction, then
i) ∆α

p ◦ ∆−αp ≡ ∆−αp ◦ ∆α
p ≡ Id.

ii) ∆
(α)
p ◦ ∆

(−α)
p ≡ ∆

(−α)
p ◦ ∆

(α)
p ≡ Id,

where Id is the identity operator in w.

Proof. i) Suppose v ∈ w and for α = 1, we have

(∆−1
p ◦ ∆p)vk = ∆−1

p (∆pvk)
= ∆−1

p (pvk − vk+1...)
= vk ≡ Id.

ii) The proof is done as in (i). �

Theorem 2.4. Let α be a natural number and v ∈ w, then,
i) (∆α

pvk) = (−1)α(∆(α)
p vk+α),

ii) (∆(α)
p vk) = (−1)α(∆α

pvk−α).

Proof. i) The induction method is used to prove the theorem. We have ∆vk = vk − vk+1 = (−1)(vk+1 −

vk) = ∆(1)vk+1 for α = 1, p = 1 and v ∈ w.
The Basis step is now complete. Let us assume that the theorem is true for a natural number s, i.e.,

(∆svk) = (−1)s(∆(s)vk+s).

Now, we take

∆s+1vk = ∆(∆svk)
= ∆((−1)s∆(s)vk+s), (by the assumption).
= (−1)s∆(s)vk+s − (−1)s∆(s)vk+s+1,

= (−1)s+1
[
∆(s)vk+s+1 − ∆(s)vk+s

]
= (−1)s+1∆(s)vk+s+1,(by Theorem 2.2).

This complement the proof.
ii) The proof is similar to (i). �
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Theorem 2.5. For α be a proper fraction and v ∈ w, we get

(∆α
p + ∆−αp )vk = 2vk +

∞∑
i=1

p(α−i) (α+)i−1 + (−1)i(α−)i−1

i!
vk+i,

where
(α+)i−1 = α(α + 1)(α + 2)...(α + i − 1)

and
(α−)i−1 = α(α − 1)(α − 2)...(α − i + 1).

Proof. The proof is straightforward from the definition, so we omit it. �

Let v = (vk) and z = (zk) be two sequences in w. We define the product of v and z as vz = (vkzk). Now,
the first forward and backward differences of vz are given by ∆p(vz) = (pvkzk − vk+1zk+1) and ∆

(1)
p (vz) =

(pvkzk − vk−1zk−1), respectively. The basic objective of this part is to find the -th difference of product
sequence vz where is a positive integer. So, we state the following theorems.

The proof of the following Theorem is straightforward , so we choose to state these results without
proof.

Theorem 2.6. (Leibnitz theorem) Let α be a positive integer and v, z ∈ w,

∆α
p(vkzk) =

∞∑
i=0

(αi )pα−i∆i
pvk∆

α−i
p zk+i

in particular, if α is an integer, then

∆α
p(vkzk) = pαvk∆

α
pzk + αpα−1∆pvk∆

α−1
p zk+1 +

α(α − 1)
2!

pα−2∆2
pvk∆

α−2
p zk+2 +

... + ∆α
pvkzk+α.

Using the above theorems, we get the following results.

Corollary 2.1. i) If (vk) = (1, 1, 1, ...) , then ∆α
pvk = ∆

(α)
p vk = α(p − 1)α.

ii) If (vk) = (1, 0, 1, 0, ...) , then ∆α
pvk = ∆

(α)
p vk =

(p−1)α+(−1)k(p+1)α

2 .

iii) If (vk) =
(

1
2k

)
then ∆α

pvk = ∆
(α)
p vk =

(2p−1)α

2α+k . In particular, ∆−1
p vk =

p−2
2k−1 .

iv) If (vk) =
(
zk
)

for |z| < 1, then ∆α
pvk = ∆

(α)
p vk = zk(p − z)α and ∆−αp vk = ∆

(α)
p vk =

zk pk−1

(p−z)α .

3. ∆α
p-statistical convergence

In this section, we also describe the concepts of ordered statistical convergence and lacunary
statistical by using difference operator ∆α

p. We examined some properties of these sequence spaces
and gave some inclusion theorems.

Now we will define the concepts of ordered statistical convergence and lacunary statistical
convergence with the help of the difference operator ∆α

p.
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Definition 3.1. Let v = (vk) ∈ w, 0 < β ≤ 1 and α be a proper fraction. The sequence v = (vk) is said
to be ∆α

p-statistically convergent of order β if there is a real number ` such that,

lim
n→∞

1
nβ

∣∣∣∣{k ≤ n :
∣∣∣∆α

pvk − `
∣∣∣ ≥ ε}∣∣∣∣ = 0

for every ε > 0. In this case we write S β
t − lim

k→∞
∆α

pvk → `. The set of ∆α
p-statistically convergent

sequences of order β will be denoted by S β
t

(
∆α

p

)
. In the case ` = 0, we shall write S β

0

(
∆α

p

)
.

The ∆α
p-statistical convergence of order β is well defined for 0 < β ≤ 1, but it is not well defined

for β > 1. For this let v = (vk) be defined as

vk =

{
1, k = 2n ( n = 1, 2, 3...)
0, k , 2n otherwise

.

Then we have for α = 1

∆pvk =

{
p, k = 2n ( n = 1, 2, 3...)
0, k , 2n otherwise

.

Then both
lim
n→∞

1
nβ

∣∣∣∣{k ≤ n :
∣∣∣∆α

pvk − p
∣∣∣ ≥ ε}∣∣∣∣ ≤ lim

n

n
2nβ

= 0

and
lim
n→∞

1
nβ

∣∣∣∣{k ≤ n :
∣∣∣∆α

pvk − 0
∣∣∣ ≥ ε}∣∣∣∣ ≤ lim

n

n
2nβ

= 0,

for β > 1, so that v = (vk) is ∆α
p-statistically convergent of order β both to p and 0. However, this is not

possible.

Theorem 3.1. Let β ∈ (0, 1] , α be a proper fraction and v = (vk), z = (zk) be sequences of real
sequences. Then,

i) If S β
t − lim

k→∞
∆α

pvk = `1 and c ∈ R, then S β
t − lim

k→∞
c∆α

pvk = c`1.

ii) If S β
t − lim

k→∞
∆α

pvk = `1 and S β
t − lim

k→∞
∆α

pzk = `2, then S β
t − lim

k→∞

(
∆α

pvk + ∆α
pzk

)
= `1 + `2.

Proof. i) In case c = 0 part of proof is trivial. To show c , 0.If c , 0, then

lim
n→∞

1
nβ

∣∣∣∣{k ≤ n :
∣∣∣∆α

pcvk − c`1

∣∣∣ ≥ ε}∣∣∣∣ ≤ lim
n→∞

1
nβ

∣∣∣∣∣∣
{

k ≤ n :
∣∣∣∆α

pcvk − `1

∣∣∣ ≥ ε

|c|

}∣∣∣∣∣∣ .
ii) Using the linear property of ∆α

p operator difference, we get the following inequality:

lim
n→∞

1
nβ

∣∣∣∣{k ≤ n :
∣∣∣∆α

p (vk + zk) − (`1 + `2)
∣∣∣ ≥ ε}∣∣∣∣

≤ lim
n→∞

1
nβ

∣∣∣∣∣{k ≤ n :
∣∣∣∆α

pvk − `1

∣∣∣ ≥ ε

2

}∣∣∣∣∣ + lim
n→∞

1
nβ

∣∣∣∣∣{k ≤ n :
∣∣∣∆α

pzk − `2

∣∣∣ ≥ ε

2

}∣∣∣∣∣ .
�

Theorem 3.2. Let 0 < β ≤ 1 and α be a proper fraction. If a sequence v = (vk) is ∆α
p-statistically

convergent of order β, then S β
t − lim

k→∞
∆α

pvk is unique.
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Proof. Assume that S β
t − lim

k→∞
∆α

pvk = `1 and S β
t − lim

k→∞
∆α

pvk = `2. Given ε ≥ 0, consider the following
sets:

C1 (ε) =

{
k ∈ N :

∣∣∣∆α
pvk − `1

∣∣∣ ≥ ε

2

}
and

C2 (ε) =

{
k ∈ N :

∣∣∣∆α
pvk − `2

∣∣∣ ≥ ε

2

}
,

hence we obtain δβ (C1 (ε)) = 0 since S β
t − lim

k→∞
∆α

pvk = `1 and δβ (C2 (ε)) = 0 since S β
t − lim

k→∞
∆α

pvk = `2.

Now, let C (ε) = C1 (ε) ∪ C2 (ε) . Thus, we get δβ (C (ε)) = 0 which implies N/δβ (C (ε)) = 0. Now, if
N/C (ε) , then we get

|`1 − `2| ≤
∣∣∣`1 − ∆α

pvk

∣∣∣ +
∣∣∣∆α

pvk − `2

∣∣∣
<
ε

2
+
ε

2
= ε.

So, we get |`1 − `2| = 0, i.e. `1 = `2. �

Theorem 3.3. Let 0 < β ≤ γ ≤ 1 and α be a proper fraction. Then S β
t

(
∆α

p

)
⊆ S γ

t

(
∆α

p

)
and the inclusion

is strict for at least those β and γ for which there is a k ∈ N such that β < 1
k < γ.

Proof. The inclusion part of proof is trivial. To show the inclusion S β
t

(
∆α

p

)
⊆ S γ

t

(
∆α

p

)
is strict choose

α = 1 and defined a sequence v = (vk) by

vk =

{
p, k = n3 ( n = 1, 2, 3...) ,
0, k , n3 otherwise.

Then we have

∆pvk =


p2, k = n3 ( n = 1, 2, 3...) ,
−p, k + 1 = n3,

0, otherwise,

and so

lim
n→∞

1
nγ

∣∣∣∣{k ≤ n :
∣∣∣∆α

pvk − 0
∣∣∣ ≥ ε}∣∣∣∣ ≤ lim

n

2 3
√

n
nγ

= 0,

hence S γ
t − lim

k→∞
∆α

pvk = 0, i.e v ∈ S γ
t

(
∆α

p

)
for 1

3 < γ ≤ 1, but v < S β
t

(
∆α

p

)
for 0 < β ≤ 1

3 so that the

inclusion S β
t

(
∆α

p

)
⊂ S γ

t

(
∆α

p

)
is strict. This holds for 1

3 = β < γ < 1
2 for example, but there is no a k ∈ N

such that β < 1
k < γ. Therefore, the condition β < 1

k < γ is sufficient but not necessary for strictness of
inclusion S β

t

(
∆α

p

)
⊂ S γ

t

(
∆α

p

)
. �

Corollary 3.1. Let α be a proper fraction. If a sequence is ∆α
p-statistically convergent of order β to `,

for some 0 < β ≤ 1, then it is ∆α
p-statistically convergent to `, that is S β

t

(
∆α

p

)
⊆ S t

(
∆α

p

)
and inclusion is

strict at least for 0 < β < 1
2 .

Definition 3.2. Let Φ = (ur) be a lacunary sequence, 0 < β ≤ 1 and α be a proper fraction. The
sequence v = (vk) is said to be ∆α

p-lacunary statistically convergent of order β of fractional order α to
the number `, if there is a real number ` such that
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lim
n→∞

1

hβr

∣∣∣∣{k ∈ Ir :
∣∣∣∆α

pvk − `
∣∣∣ ≥ ε}∣∣∣∣ = 0,

for every ε > 0. In this case we write S β
Φ
− lim

k→∞
∆α

pvk → `. The set of ∆α
p-lacunary statistically convergent

sequences of order β will be denoted by S β
Φ

(
∆α

p

)
.

Theorem 3.4. Let Φ = (ur) be a lacunary sequence, v = (vk) , z = (zk) ∈ w, 0 < β ≤ 1 and α be a
proper fraction, then

i) If S β
Φ
− lim

k→∞
∆α

pvk = `1 and c ∈ R, then S β
Φ
− lim

k→∞
c∆α

pvk = c`1.

ii) If S β
Φ
− lim

k→∞
∆α

pvk = `1 and S β
Φ
− lim

k→∞
∆α

pzk = `2, then S β
Φ
− lim

k→∞

(
∆α

pvk + ∆α
pzk

)
= `1 + `2.

Theorem 3.5. Let Φ = (ur) be a lacunary sequence, 0 < β ≤ 1 and α be a proper fraction. If
lim
r→∞

inf qr > 1, then S β
t

(
∆α

p

)
⊂ S β

Φ

(
∆α

p

)
.

Proof. Suppose that lim
r→∞

inf qr > 1; then there exists δ > 0 such that qr > 1 + δ for sufficiently large r;
which implies that

hr

ur
≥

δ

δ + 1
⇒

(
hr

ur

)β
≥

(
δ

δ + 1

)β
⇒

1

uβr
≥

δβ

(δ + 1)β
≥

1

hβr
.

If vk → `
[
S β

(
∆α

p

)]
, then for every ε > 0 and for sufficiently large r, we have

1

uβr

∣∣∣∣{k ≤ ur :
∣∣∣∆α

pvk − `
∣∣∣ ≥ ε}∣∣∣∣

≥
1

kβr

∣∣∣∣{k ∈ Ir :
∣∣∣∆α

pvk − `
∣∣∣ ≥ ε}∣∣∣∣

≥
δβ

(δ + 1)β
1

hβr
.
∣∣∣∣{k ∈ Ir :

∣∣∣∆α
pvk − `

∣∣∣ ≥ ε}∣∣∣∣ ,
so v ∈ S β

Φ

(
∆m

p

)
. �

Theorem 3.6. Let Φ = (ur) be a lacunary sequence, 0 < β ≤ 1 and α be a proper fraction. If
lim
r→∞

sup qr < ∞, then S β
Φ

(
∆α

p

)
⊂ S β

t

(
∆α

p

)
.

Proof. The proof of this theorem can be easily done using the similar work of Fridy Orhan [15]. �

From Theorems 3.5 and 3.6 we get the following result.

Corollary 3.2. Let Φ = (ur) be a lacunary sequence, 0 < β ≤ 1 and α be a proper fraction. Then
S β

Φ

(
∆α

p

)
= S β

t

(
∆α

p

)
if 1 < lim

r→∞
inf qr < lim

r→∞
sup qr < ∞.

Definition 3.3. Let Φ = (ur) be a lacunary sequence, 0 < β ≤ 1, α be a proper fraction and q ∈ R+. A
sequence (vk) is said to be strongly Nβ

Φ,q(∆α
p)-summable (or strongly NΦ,q(∆α

p)-summable of order β) if
there is a real number ` such that

lim
k→∞

1

hβr

∑
k∈Ir

∣∣∣∆α
pvk − `

∣∣∣q = 0,
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where Ir = (ur−1, ur].In this case, we write Nβ
Φ,q(∆α

p) − lim vk = `. The set of all strongly Nβ
Φ,q(∆α

p)-
summable sequences will be denoted by

Nβ
Φ,q(∆α

p) =

v = (vk) : lim
k→∞

1

hβr

∑
k∈Ir

∣∣∣∆α
pvk − `

∣∣∣q = 0, for some `

 .
Theorem 3.7. Nβ

Φ,q(∆α
p) is a Banach space normed by

‖vk‖∆αp ,Φ =

∞∑
i=1

∣∣∣vi

∣∣∣ + sup
r

 1

hβr

∑
k∈Ir

∣∣∣∆α
pvk

∣∣∣q
1
q

, 1 ≤ q < ∞. (3.1)

Proof. The proof of the theorem can be done similarly to Theorem 2.4 in the study of Sengül and
Et [17]. �

Theorem 3.8. Nβ
Φ,q(∆α

p) is a BK-space normed by (3.1).

Now we will give the relationship between lacunary statistical convergence and lacunary
summability defined with the help of the ∆α

p operator with the following theorem.

Theorem 3.9. Let Φ = (kr) be a lacunary sequence, v = (vk) , z = (zk) ∈ w, 0 < β ≤ 1, α be a proper
fraction and q ∈ R+, then

i) If vk → `
[
Nβ

Φ,q(∆α
p)
]
, then vk → `

[
S β

Φ

(
∆α

p

)]
and the inclusion is strict,

ii) If vk → `
[
l∞

(
∆α

p

)]
and zk → `

[
S Φ

(
∆α

p

)]
, then vk → `

[
NΦ,q(∆α

p)
]
.

Proof. The inclusion part of the proof is easy. In order to establish ”the inclusion is strict”, let Φ be
given, choose α = m, β = 1; q = 1 and define a sequence v = (vk) by ∆m

p to be 1, 2, ..., [hr] at the first[√
hr

]
integers in Ir, and ∆m

p = 0 otherwise
It is clear that v is not ∆m

p bounded. Since

1
hr

∣∣∣∣{k ∈ Ir :
∣∣∣∆α

pvk − `
∣∣∣ ≥ ε}∣∣∣∣ =

[√
hr

]
hr

→ 0, as r → ∞

and
1
hr

∑
k∈Ir

∣∣∣∆α
pvk − 0

∣∣∣ =

[√
hr

] ([√
hr

]
+ 1

)
2hr

→
1
2
, as r → ∞.

From (1.1) we have v ∈ S Φ

(
∆m

p

)
, v < NΦ(∆m

p ). �

We will give the following relations between the lacunary summability concept defined with the
help of the ∆α

p operator according to the modulus function and the lacunary statistical convergence.

Definition 3.4. Let Φ = (ur) be a lacunary sequence, 0 < β ≤ 1, α be a proper fraction and q = (qk)
be a sequence of strictly positive real numbers. A sequence (vk) is said to be strongly Nβ

Φ,q(∆α
p, φ)-

summable (or strongly NΦ,q(∆α
p , φ)- summable of order β) if there is a real number ` such that

lim
k→∞

1

hβr

∑
k∈Ir

[
φ
(∣∣∣∆α

pvk − `
∣∣∣)]qk

= 0,
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where Ir = (ur−1, ur] and φ is a modulus function. In this case, we write Nβ
Φ,q(∆α

p, φ) − lim vk = `. The
set of all strongly Nβ

Φ,q(∆α
p, φ)-summable sequences will be described as:

Nβ
Φ,q(∆α

p, φ) =

v = (vk) : lim
k→∞

1

hβr

∑
k∈Ir

[
φ
(∣∣∣∆α

pvk − `
∣∣∣)]qk

= 0, for some `

 .
Theorem 3.10. Let β, η ∈ (0, 1] be reel number such that β ≤ η, φ be a modulus function and Φ = (ur)
be a lacunary sequence, then Nβ

Φ,q(∆α
p, φ) ⊂ S η

Φ

(
∆α

p

)
.

Proof. Let v ∈ Nβ
Φ,q(∆α

p, φ), ε > 0 be given and
∑
1

and
∑
2

denote the sums over k ∈ Ir,
∣∣∣∆α

pvk − `
∣∣∣ ≥ ε

and
∣∣∣∆α

pvk − `
∣∣∣ < ε respectively. As hβr ≤ hηr for each r, Then we have

lim
k→∞

1

hβr

∑
k∈Ir

[
φ
∣∣∣∆α

pvk − `
∣∣∣]qk

≥
1
hηr

∑
1

[
φ
(∣∣∣∆α

pvk − `
∣∣∣)]qk

+
∑

2

[
φ
(∣∣∣∆α

pvk − `
∣∣∣)]qk


≥

1
hηr

∑
1

[
φ
(∣∣∣∆α

pvk − `
∣∣∣)]qk

≥
1
hηr

∑
1

[
φ(ε)

]qk

≥
1
hηr

∑
1

min
([
φ(ε)

]g ,
[
φ(ε)

]G
)

=
1
hηr

∣∣∣∣{k ∈ Ir :
∣∣∣∆α

pvk − `
∣∣∣ ≥ ε}∣∣∣∣ ×min

([
φ(ε)

]g ,
[
φ(ε)

]G
)
.

Hence v ∈ S η
Φ

(
∆α

p

)
. Where, q = (qk) is bounded and 0 < g = infk qk ≤ qk ≤ supk qk = G < ∞. �

Corollary 3.3. Let β ∈ (0, 1] be reel number such that β ≤ η, φ be a modulus function and Φ = (ur) be
a lacunary sequence, then Nβ

Φ,q(∆α
p, φ) ⊂ S β

Φ

(
∆α

p

)
.

4. Relation with Caputo and Riemann-Liouville derivative

Using (∆α
pvk) =

∞∑
i=0

(−1)i p(α−i) Γ(α+1)
i!Γ(α−i+1)vk+i delta difference operator we defined in this section, we

defined the relationships between Caputo derivative and Riemann-Liouville derivatives. We have the
following definitons

i) Caputo Derivative: For f (p) = pα,

c
0Di

p f (p) =

p∫
0

(p − τ)−i f
′

(τ)dτ

=
1

Γ(1 − i)

p∫
0

(p − τ)−i ατα−1dτ
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=
α

Γ(1 − i)

p∫
0

(p − τ)−i τα−1dτ

=

α
Γ(1−i) pα−iΓ(1 − i)Γ(α)

Γ(α − i + 1)

=
Γ(α + 1)

Γ(α − i + 1)
pα−i,

c
0Di

p f (p) =
Γ(α + 1)

Γ(α − i + 1)
pα−i.

ii) Riemann-Liouville Derivative: For f (p) = pα

RL
0 Di

p f (p) =
1

Γ(1 − i)
d

dp

p∫
0

(p − τ)−i f (τ)dτ

=
1

Γ(1 − i)
d

dp

p∫
0

(p − τ)−i ταdτ

=
1

Γ(1 − i)
d

dp

[
p1−i+αΓ(1 − i)Γ(1 + α)

Γ(2 − i + α)

]
=

Γ(1 + α)
Γ(2 − i + α)

(1 − i + α)pα−i

=
Γ(1 + α)

(1 − i + α)Γ(1 − i + α)
(1 − i + α)pα−i

=
Γ(1 + α)

Γ(1 − i + α)
pα−i,

RL
0 Di

p f (p) =
Γ(α + 1)

Γ(α − i + 1)
pα−i,

(see [24]).
Then,

(∆α
pvk) =

∞∑
i=0

(−1)i pα−i Γ(α + 1)
i!Γ(α − i + 1)

vk+i

=

∞∑
i=0

(−1)i

Γ(i + 1)

(
c
0Di

p f (p)
)

vk+i

=

∞∑
i=0

(−1)i

Γ(i + 1)

(
RL
0 Di

p f (p)
)

vk+i,

we obtained the Caputo derivative in this work. This is new in the literature. We will try to get other
fractional derivatives in the future works.
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5. Conclusions

Recently, sequence spaces have been applied to different disciplines. For example, sequence spaces
have been adapted to circuit and system analysis by Leake [25]. The difference operator was used
by Kawamura et al. [26] in earthquake prediction. Convergence plays an important role in convex
programming, mathematical modeling, and numerical analysis problems (see for details [27]). In
addition, the concept of statistical convergence is one of the most studied subjects in recent years.
Statistical convergence is related to probability theory in statistics, and this relationship has been
demonstrated by many mathematicians. This convergence was used, especially in approximation
theory (see [28]). In this study, we examined some inclusion theorems by defining a new difference
operator and obtaining new statistical convergent and lacunary statistical convergent sequence spaces.
The obtained results are important for the summability theory in classical analysis. Researchers
working in this field can create new studies by taking advantage of this study.
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2. M. Et, R. Çolak, On some generalized difference sequence spaces, Soochow Journal of
Mathematics, 21 (1995), 377–386.

3. I. Tincu, On some p-convex sequences, Acta Universitatis Apulensis, 11 (2006), 249–257.
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12. R. Çolak, Statistical convergence of order α, In: Modern methods in analysis and its applications,

New Delhi: Anamaya Pub., 2010, 129.

AIMS Mathematics Volume 7, Issue 9, 17091–17104.

http://dx.doi.org/https://doi.org/10.4153/CMB-1981-027-5
http://dx.doi.org/https://doi.org/10.2298/FIL1816565K
http://dx.doi.org/https://doi.org/10.1017/CBO9781316036587
http://dx.doi.org/https://doi.org/10.31801/cfsuasmas.628863
http://dx.doi.org/https://doi.org/10.1524/anly.1985.5.4.301
http://dx.doi.org/https://doi.org/10.1216/rmjm/1030539612


17104

13. A. Karakaş, ∆m
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14. A. Freedman, J. Sember, M. Raphael, Some Cesàro-type summability spaces, P. Lond. Math. Soc.,

37 (1978), 508–520. https://doi.org/10.1112/plms/s3-37.3.508
15. J. Fridy, C. Orhan, Lacunary statistical convergence, Pacific J. Math., 160 (1993), 43–51.
16. J. Fridy, C. Orhan, Lacunary statistical summability, J. Math. Anal. Appl., 173 (1993), 497–504.

https://doi.org/10.1006/jmaa.1993.1082
17. H. Sengül, M. Et, On lacunary statistical convergence of order α, Acta Math. Sci., 34 (2014),

473–482. https://doi.org/10.1016/S0252-9602(14)60021-7
18. H. Nakano, Concave modulars, J. Math. Soc. Japan, 5 (1953), 29–49.

https://doi.org/10.2969/jmsj/00510029
19. P. Baliarsingh, Some new difference sequence spaces of fractional order and their dual spaces,

Appl. Math. Comput., 219 (2013), 9737–9742. https://doi.org/10.1016/j.amc.2013.03.073
20. P. Baliarsingh, On a fractional difference operator, Alex. Eng. J., 55 (2016), 1811–1816.

https://doi.org/10.1016/j.aej.2016.03.037
21. P. Baliarsingh, S. Dutta, On the classes of fractional order difference sequence

spaces and their matrix transformations, Appl. Math. Comput., 250 (2015), 665–674.
https://doi.org/10.1016/j.amc.2014.10.121

22. E. Malkowsky, S. Parashar, Matrix transformations in spaces of bounded and convergent difference
sequences of order m, Analysis, 17 (1997), 87–98. https://doi.org/10.1524/anly.1997.17.1.87

23. M. Et, On some topological properties of generalized difference sequence spaces,
International Journal of Mathematics and Mathematical Sciences, 24 (2000), 716581.
https://doi.org/10.1155/S0161171200002325

24. D. Baleanu, A. Fernandez, A. Akgül, On a fractional operator combining proportional and classical
differintegrals, Mathematics, 8 (2020), 360. https://doi.org/10.3390/math8030360

25. R. Leake, Monotone resolution sequence spaces and mappings, IEEE T. Circuits, 27 (1980), 800–
804. https://doi.org/10.1109/TCS.1980.1084892

26. H. Kawamura, A. Tani, M. Yamada, K. Tsunoda, Real time prediction of earthquake
ground motions and structural responses by statistic and fuzzy logic, Proceedings of
First International Symposium on Uncertainty Modeling and Analysis, 1990, 534–538.
https://doi.org/10.1109/ISUMA.1990.151311

27. S. Regmi, Optimized iterative methods with applications in diverse disciplines, New York: Nova
Science Publisher, 2021.

28. G. Anastassiou, O. Duman, Towards intelligent modeling: statistical approximation theory, Berlin:
Springer, 2011. http://dx.doi.org/10.1007/978-3-642-19826-7

c© 2022 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 7, Issue 9, 17091–17104.

http://dx.doi.org/https://doi.org/10.1112/plms/s3-37.3.508
http://dx.doi.org/https://doi.org/10.1006/jmaa.1993.1082
http://dx.doi.org/https://doi.org/10.1016/S0252-9602(14)60021-7
http://dx.doi.org/https://doi.org/10.2969/jmsj/00510029
http://dx.doi.org/https://doi.org/10.1016/j.amc.2013.03.073
http://dx.doi.org/https://doi.org/10.1016/j.aej.2016.03.037
http://dx.doi.org/https://doi.org/10.1016/j.amc.2014.10.121
http://dx.doi.org/https://doi.org/10.1524/anly.1997.17.1.87
http://dx.doi.org/https://doi.org/10.1155/S0161171200002325
http://dx.doi.org/ https://doi.org/10.3390/math8030360
http://dx.doi.org/https://doi.org/10.1109/TCS.1980.1084892
http://dx.doi.org/https://doi.org/10.1109/ISUMA.1990.151311
http://dx.doi.org/http://dx.doi.org/10.1007/978-3-642-19826-7
http://creativecommons.org/licenses/by/4.0

	Introduction
	 Main results
	p-statistical convergence 
	 Relation with Caputo and Riemann-Liouville derivative
	Conclusions

