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Abstract: By exploring the uniform integrability of a sequence of some order statistics (OSs), we
obtain the moment convergence conclusion of the sequence under some weak conditions even when
the corresponding population of interest has no moment of any positive order. As an application, we
embody the range of applications of a theorem presented in a reference dealing with the approximation
of the difference between the moment of a sequence of normalized OSs and the corresponding moment
of a standard normal distribution. By the aid of the embodied theorem, we explore the infinitesimal
type of the moments of errors when we estimate some population quantiles by relative OSs. Finally,
by the obtained conclusion, we can easily get a combination formula which seems hard to be proved
in other methods.
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1. Introduction

Order statistic (OS) plays an important role in nonparametric statistics. Under the assumption of
large sample size, relative investigations are mainly focused on asymptotic distributions of some
functions of these OSs. Among these studies, the elegant one provided by Bahadur in 1966 (see [1]) is
the central limit theorem on OSs. As was revealed there, under the situation of an absolute continuous
population, the sequence of some normalized OSs usually has an asymptotic standard normal
distribution. That is useful in the construction of a confidence interval for estimating some certain
quantile of the population. Comparatively, study on some moment convergence of the mentioned
sequence is also significant, for instance, if we utilize a sample quantile as an asymptotic unbiased
estimator for the corresponding quantile of the population, then the analysis of the second moment
convergence of the sequence is significant if we want to make an approximation of the mean square
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error of the estimate.
However, the analysis of moment convergence of OSs is usually very difficult, the reason, as was

interpreted by Thomas and Sreekumar in [2], may lie in the fact that the moment of OS is usually very
difficult to obtain.

For a random sequence, although it is well-known that the convergence in distribution does not
necessarily guarantee the corresponding moment convergence, usually, that obstacle can be sufficiently
overcome by the additional requirement of the uniform integrability of the sequence. For instance , we
can see [3] as a reference dealing with some extreme OSs under some populations. In that article
Wang et al. discussed uniform integrability of the sequence of some normalized extreme OSs and
derived equivalent moment expressions there.

Here in the following theorem we discuss the moment convergence for some common OSs rather
than extreme ones.

Theorem 1. For a population X distributed according to a continuous probability density function
(pd f ) f (x), let p ∈ (0, 1) and xp be the p−quantile of X satisfying f (xp) > 0. Let (X1, ..., Xn) be a
random sample arising from X and Xi:n be the i−th OS. If the cumulative distribution function (cdf)
F(x) of X has an inverse function G(x) satisfying

|G(x)|≤ B · x−q(1 − x)−q (1.1)

for some constants B > 0, q ≥ 0 and all x ∈ (0, 1), then for arbitrary δ > 0, we have

lim
n→∞

EXδ
i:n = xδp,

provided lim
n→+∞

i/n = p or equivalently rewritten as i/n = p + o(1).

Remark 1. Now we use the symbol dze for the integer part of a positive number z and mn,p for the
p-quantile of a random sample (X1, · · · , Xn), namely, mn,p = (Xpn:n + Xpn+1:n)/2 if pn is an integer and
mn,p = Xdpn+1e:n otherwise. As both limiting conclusions lim

n→∞
EXδ

dpne:n = xδp and lim
n→∞

EXδ
dpn+1e:n = xδp hold

under the conditions of Theorem 1 and mδ
n,p is always squeezed by Xδ

dpne:n and Xδ
dpn+1e:n, according to

the Sandwich Theorem, we have lim
n→∞

Emδ
n,p = xδp.

Remark 2. For a continuous function H(x) where x ∈ (0, 1), if

lim
x→0+

H(x) = lim
x→1−

H(x) = 0,

then there is a constant C > 0 such that the inequality |H(x)| ≤ C holds for all x ∈ (0, 1). By that
reason, the condition (1.1) can be replaced by the statement that there exists some constant V ≥ 0 such
that

lim
x→0+

G(x)xV(1 − x)V = lim
x→1−

G(x)xV(1 − x)V = 0.

Remark 3. As the conclusion is on moment convergence of OSs, one may think that the moment of
the population X in Theorem 1 should exist. That is a misunderstanding because the existence of the
moment of the population is actually unnecessary. We can verify that by a population according to
the well-known Cauchy distribution X ∼ f (x) = 1

π(1+x2) where x ∈ (−∞,+∞), in this case, the moment
EX of the population does not exist whereas the required conditions in Theorem 1 are satisfied. Even
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for some population without any moment of positive order, the conclusion of Theorem 1 still holds, for
instance, if f (x) = 1

x(ln(x))2 I[e,∞)(x) (where the symbol IA(x) or IA stands for the indicator function of a
set A), then we have the conclusion

G(x) = e
1

x−1 I(0,1)(x),

which leads to
lim
x→0+

G(x)x(1 − x) = lim
x→1−

G(x)x(1 − x) = 0,

and therefore the condition (1.1) holds, thus we can see that Theorem 1 is workable. That denies the
statement in the final part of paper [4] exclaiming that under the situation X ∼ f (x) = 1

x(ln(x))2 I[e,∞)(x)
any OS does not have any moment of positive order.

According to Theorem 1, we known that the OS Xi:n of interest is an asymptotic unbiased estimator
of the corresponding population quantile xp. Now we explore the infinitesimal type of the mean error
of the estimate and derive

Theorem 2. Let (X1, ..., Xn) be a random sample from X who possesses a continuous pd f f (x). Let
p ∈ (0, 1) and xp be the p−quantile of X satisfying f (xp) > 0 and Xi:n be the i−th OS. If the cdf F(x)
of X has an inverse function G(x) with a continuous derivative function G′′′(x) in (0, 1) and there is a
constant U ≥ 0 such that

lim
x→0+

(
G′′′(x) · xU(1 − x)U

)
= lim

x→1−

(
G′′′(x) · xU(1 − x)U

)
= 0, (1.2)

then under the assumption i/n = p + O(n−1) which indicates the existence of the limit lim
x→0+

i/n−p
1/n , the

following proposition stands

|E(Xi:n − xp)| = O(1/n). (1.3)

Remark 4. Obviously we can see that |E(mn,p − xp)| = O(1/n) under the conditions of Theorem 2.

For i.i.d random variables(RVs) X1, ..., Xn with an identical expectation µ and a common finite
standard deviation σ > 0, the famous Levy-Lindeberg central limit theorem reveals that the sequence
of normalized sums {∑n

i=1 Xi − nµ
√

nσ
, n ≥ 1

}
converges in distribution to the standard normal distribution N(0, 12) which we denote that as∑n

i=1 Xi − nµ
√

nσ
D
→N(0, 12).

In 1964, Bengt presented his work [5] showing that if it is further assumed that E|X1|
k < +∞ for

some specific positive k, then the m-th moment convergence conclusion

E
(∑n

i=1 Xi − nµ
√

nσ

)m

→ EZm, n→ +∞, (1.4)

holds for any positive m satisfying m ≤ k. Here and throughout our paper, we denote Z a RV of
standard normal distribution N(0, 12).
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Let f (x) be a continuous pdf of a population X and xr be the r−quantile of X satisfying f (xr) > 0.
Like the Levy-Lindeberg central limit theorem, Bahadur interpreted in [1] (1966) that for the OS Xi:n,
following convergence conclusion holds

f (xr)(Xi:n − xr)
√

r(1 − r)/n
D
→N(0, 12),

provided i/n→ r as n→ ∞.
Later in 1967, Peter studied moment convergence on similar topic. He obtained in [6] that for some

ε > 0, r ∈ (0, 1) and pn = i/n, if the limit condition

lim
x→∞

xε[1 − F(x) + F(−x)] = 0

holds, then the conclusion

E
(
Xi:n − x i

n+1

)k
=

 √
pn(1 − pn)/n

f (xpn)

k ∫ ∞

−∞

xk

√
2π

e−x2/2dx + o(n−k/2)

is workable for positive integer k and rn ≤ i ≤ (1 − r)n as n→ +∞.
In addition to the mentioned reference dealing with moment convergence on OSs, we find some

more desirable conclusions on similar topic provided by Reiss in reference [7] in 1989, from which we
excerpt the one of interest as what follows.

Theorem 3. Respectively let f (x) and F(x) be the pdf and cdf of a population X. Let p ∈ (0, 1) and
xp be the p−quantile of X satisfying f (xp) > 0. Assume that on a neighborhood of xp the cdf F(x)
has m + 1 bounded derivatives. If a positive integer i satisfies i/n = p + O(n−1) and E|Xs: j| < ∞ holds
for some positive integer j and s ∈ {1, ..., j} and a measurable function h(x) meets the requirement
|h(x)| ≤ |x|k for some positive integer k, then

Eh

n1/2 f (xp)(Xi:n − xp)√
p(1 − p)

 =

∫ ∞

−∞

h(x)d

Φ(x) + ϕ(x)
m−1∑
i=1

n−i/2S i,n(x)

 + O(n−m/2). (1.5)

Here the function ϕ(x) and Φ(x) are respectively the pdf and cdf of a standard normal distribution
while S i,n(x), a polynomial of x with degree not more than 3i − 1 and coefficients uniformly bounded
over n, especially

S 1,n(x) =

 2q − 1

3
√

p(1 − p)
+

√
p(1 − p) f ′(xp)

2( f (xp))2

 x2 +
np − i + 1 − p√

p(1 − p)
+

2(2p − 1)

3
√

p(1 − p)
.

Remark 5. By putting h(x) = x2 and m = 2, we derive under the conditions of Theorem 3 that as
n→ +∞,

E

n1/2 f (xp)(Xi:n − xp)√
p(1 − p)

2

=

∫ ∞

−∞

x2d
(
Φ(x) + ϕ(x)n

−1
2 S 1,n(x)

)
+ O(n−1)→ 1.

Therefore, we see that the sequenceE

n1/2 f (xp)(Xi:n − xp)√
p(1 − p)

2

, n ≥ N0


AIMS Mathematics Volume 7, Issue 9, 17061–17079.
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is uniformly bounded over n ≥ N0. Here N0 is the positive integer number that the moment EX2
i:n

exists when n ≥ N0. In accordance with the inequality |Eξ| ≤
√

Eξ2 if only the moment Eξ2 exists, the
sequence E

n1/2 f (xp)(Xi:n − xp)√
p(1 − p)

 , n ≥ N0


is also uniformly bounded, say, by a number L over n ∈ {N0,N0 + 1, ...}. Now that∣∣∣∣∣∣∣E n1/2 f (xp)(Xi:n − xp)√

p(1 − p)

∣∣∣∣∣∣∣ ≤ L, n ≥ N0,

we have

|E(Xi:n − xp)|≤ L[
√

p(1 − p)/ f (xp)]n−1/2, n ≥ N0. (1.6)

Under the conditions in Theorem 2, when we estimate a population quantile xp by an OS Xi:n, usually
the estimate is not likely unbiased, compared with the two conclusions (1.3) and (1.6), the result (1.3)
in Theorem 2 is more accurate.

Remark 6. For a random sample (Y1,Y2, ...,Yn) from a uniformly distributed population Y ∼ U[0, 1],
we write Yi:n the i−th OS. Obviously, conditions in Theorem 3 are fulfilled for any positive integer
m ≥ 2. That yields

E

n1/2(Yi:n − p)√
p(1 − p)

2

=

∫ ∞

−∞

x2d
(
Φ(x) + ϕ(x)n−1/2S 1,n(x)

)
+ O(n−1) = 1 + O(n−1/2),

and

E

n1/2(Yi:n − p)√
p(1 − p)

6

=

∫ ∞

−∞

x6d

Φ(x) + ϕ(x)
5∑

i=1

n−i/2S i,n(x)

 + O(n−3)

=

∫ ∞

−∞

x6ϕ(x)dx +

5∑
i=1

αi(n)n−i/2 + O(n−3)

= 15 +

5∑
i=1

αi(n)n−i/2 + O(n−3),

where for each i = 1, 2, ..., 5, αi(n) is uniformly bounded over n.
As is above analyzed, we conclude that under the assumption i/n = p + O(n−1),

E (Yi:n − p)2
∼ p(1 − p)n−1 and E (Yi:n − p)6

∼ 15p3(1 − p)3n−3. (1.7)

Based on Theorems 1 and 3, here we give some alternative conditions to those in Theorem 3 to
embody its range of applications including situations even when the population X in Theorem 3 has no
definite moment of any positive order. We obtain:

Theorem 4. Let (X1, ..., Xn) be a random sample derived from a population X who has a continuous
pdf f (x). Let p ∈ (0, 1) and xp be the p−quantile of X satisfying f (xp) > 0 on a neighborhood of xp

and the following three conditions hold,

AIMS Mathematics Volume 7, Issue 9, 17061–17079.
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(i) The cdf F(x) of X has an inverse function G(x) satisfying

|G(x)|≤ B · x−Q(1 − x)−Q (1.8)

for some constants B > 0,Q ≥ 0 and all x ∈ (0, 1).

(ii) F(x) has m + 1 bounded derivatives where m is a positive integer.

(iii) Let i/n = p + O(n−1) and ai:n = xp + O(n−1) as n→ +∞.

Then the following limiting result holds as n→ +∞

E

 f (xp)(Xi:n − ai:n)√
p(1 − p)/n

m

= EZm + O(n−1/2). (1.9)

Remark 7. For the mean Xn of the random sample (X1, ..., Xn) of a population X whose moment EXm

exists, according to conclusion (1.4), we see

E(Xn − µ)m =

(
σ
√

n

)m

EZm + o(n−m/2),

which indicates that the m−th central moment of sample mean E(Xn − µ)m is usually of infinitesimal
O(n−m/2).

Here under the conditions of Theorem 4, if EXi,n = xp + O(n−1) (we will verify in later section that
for almost all continuous populations we may encounter, this assertion holds according to Theorem 2),
then by Eq (1.9), we are sure that the central moment E(Xi:n − EXi:m)m is also of an infinitesimal
O(n−m/2). Moreover, by putting ai:n = xp, we derive under the assumptions of Theorem 4 that

E

 f (xp)(Xi:n − xp)√
p(1 − p)/n

m

= EZm + O(n−1/2).

Similar to Remark 1, we can also show by Sandwich Theorem that

E

 f (xp)(mn,p − xp)√
p(1 − p)/n

m

= EZm + O(n−1/2) (1.10)

indicating that if we use the sample p−quantile mn,p to estimate xp, the corresponding population
p−quantile, then E(mn,p − xp)m = O(n−m/2).

For estimating a parameter of a population without an expectation, estimators based on functions
of sample moments are always futile because of uncontrollable fluctuation. Alternatively, estimators
obtained by some functions of OSs are usually workable. To find a desirable one of that kind,
approximating some moment expressions of OSs is therefore significant. For instance, let a
population X be distributed according to a pd f

f (x, θ1, θ2) =
θ2

π[θ2
2 + (x − θ1)2]

,−∞ < x < +∞, (1.11)

AIMS Mathematics Volume 7, Issue 9, 17061–17079.



17067

where constants θ2 > 0 and θ1 is unknown. Here x0.56 = 0.19076θ2 + θ1 and x0.56 + x0.44 = 2x0.5 = 2θ1.
To estimate x0.5 = θ1, we now compare estimators mn,0.5 and (mn,0.56 + mn,0.44)/2. Under large sample
size, we deduce according to conclusion (1.10) that

E
(mn,0.56 + mn,0.44

2
− θ1

)2
= E

(
(mn,0.56 − x0.56) + (mn,0.44 − x0.44)

2

)2

≤
E(mn,0.56 − x0.56)2 + E(mn,0.44 − x0.44)2

2

=
0.44 × 0.56
( f (x0.56))2 n−1 + O(n−3/2)

= 0.2554πθ2n−1 + O(n−3/2),

whereas

E
(
mn,0.5 − θ1

)2
= 0.785πθ2n−1 + O(n−3/2).

Obviously, both estimators mn,0.5 and (mn,0.56 + mn,0.44)/2 are unbiased for θ1. For large n, the main
part 0.2554πθ2n−1 of the mean square error (MSE) E[(mn,0.56 + mn,0.44)/2 − θ1]2 is even less than one-
third of 0.785πθ2n−1, the main part of the MSE E

(
mn,0.5 − θ1

)2. That is the fundamental reason why
Sen obtained in [8] the conclusion that the named optimum mid-range (mn,0.56 + mn,0.44)/2 is more
effective than the sample median mn,0.5 in estimating θ1.

By statistical comparison of the scores presented in following Table 1 standing for 30 returns of
closing prices of German Stock Index(DAX), Mahdizadeh and Zamanzade reasonably applied the
previously mentioned Cauchy distribution (1.11) as a stock market return distribution with θ1 and θ2

being respectively estimated as θ̂1 = 0.0009629174 and θ̂2 = 0.003635871 (see [9]).

Table 1. Scores for 30 returns of closing prices of DAX.

0.0011848 -0.0057591 -0.0051393 -0.0051781 0.0020043 0.0017787
0.0026787 -0.0066238 -0.0047866 -0.0052497 0.0004985 0.0068006
0.0016206 0.0007411 -0.0005060 0.0020992 -0.0056005 0.0110844
-0.0009192 0.0019014 -0.0042364 0.0146814 -0.0002242 0.0024545
-0.0003083 -0.0917876 0.0149552 0.0520705 0.0117482 0.0087458

Now we utilize (mn,0.56 + mn,0.44)/2 as a quick estimator of θ1 and derive a value 0.00105955 which
roughly closes to the estimate value 0.0009629174 in reference [9].

Even now there are many estimate problems (see [10] for a reference) dealing with situations when
a population have no expectation, as above analysis, further study on moment convergence for some
OSs may be promising.

2. Preparation of main proof

Lemma 1. (see [11] and [12]) For a random sequence {ξ1, ξ2, · · ·} converging in distribution to a RV

ξ which we write as ξn
D
→ ξ , if d > 0 is a constant and the following uniform integrability holds

lim
s→∞

sup
n

E|ξn|
dI|ξn |

d≥s = 0,

AIMS Mathematics Volume 7, Issue 9, 17061–17079.
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then lim
n→∞

E|ξn|
d = E|ξ|d and accordingly lim

n→∞
Eξn

d = Eξd.

Remark 8. As discarding some definite number of terms from {ξ1, ξ2, · · ·} does not affect the
conclusion lim

n→∞
E|ξn|

d = E|ξ|d, the above condition lim
s→+∞

sup
n

E|ξn|
dI|ξn |

d≥s = 0 can be replaced by

lim
s→+∞

sup
n≥M

E|ξd
n |I|ξd

n |≥s = 0 for any positive constant M > 0.

Lemma 2. For p ∈ (0, 1) and a random sample (ξ1, ξ2, · · · , ξn) from a population possessing a
continuous pdf f (x), if the p-quantile xp of the population satisfies f (xp) > 0, then for the i-th OS ξi:n

where i/n = p + o(1), we have ξi:n
D
→ xp.

Proof. Obviously, the sequence { f (xp)(ξi:n−xp)
√

p(1−p)/n
, n = 1, 2, ...} has an asymptotic standard normal distribution

N(0, 12), thus we see that the statistic ξi:n converges to xp in probability. That leads to the conclusion

ξi:n
D
→ xp by the reason that, for a sequence of RVs, the convergence to a constant in probability is

equivalent to the convergence in distribution.

3. Proof of theorems

Clarification before presenting the proof:

• Under the assumption i/n = p + o(1) when n → ∞, we would better think of i as a function of n
and use the symbol an instead of i. Nevertheless, for simplicity concern, we prefer no adjustment.
• Throughout our paper, C1, C2, · · · are some suitable positive constants.

3.1. Proof of Theorem 1

As i
n → p ∈ (0, 1) when n→ ∞, we only need care large numbers n, i and n − i.

Let an integer K > δq be given and M > 0 be such a number that if n ≥ M, then all the following
inequalities i − 1 − δq > 0, n − i − δq > 0, n − i − K > 0 and i+K

n < v =
1+p

2 hold simultaneously. Here
the existence of v in the last inequality is ensured by the fact i+K

n → p as n→ ∞.
According to Lemmas 1 and 2 as well as Remark 8, to prove Theorem 1 we only need to show that

lim
sδ→+∞

sup
n≥M

E|Xδ
i:n|I|Xδ

i:n |≥sδ = 0. (3.1)

That is
lim

s→+∞
sup
n≥M

∫
|u|≥s

|u|δ
n!

(i − 1)!(n − i)!
F i−1(u) f (u)[1 − F(u)]n−idu = 0.

To show that equation, it suffices for us to prove respectively

lim
s→+∞

sup
n≥M

∫ +∞

s
|u|δ

n!
(i − 1)!(n − i)!

F i−1(u) f (u)[1 − F(u)]n−idu = 0

and

lim
s→+∞

sup
n≥M

∫ −s

−∞

|u|δ
n!

(i − 1)!(n − i)!
F i−1(u) f (u)[1 − F(u)]n−idu = 0.

AIMS Mathematics Volume 7, Issue 9, 17061–17079.
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Equivalently by putting x = F(u), we need to prove respectively

lim
t→1−

sup
n≥M

∫ 1

t
|Gδ(x)|

n!
(i − 1)!(n − i)!

xi−1(1 − x)n−idx = 0 (3.2)

as well as

lim
t→0+

sup
n≥M

∫ t

0
|Gδ(x)|

n!
(i − 1)!(n − i)!

xi−1(1 − x)n−idx = 0.

As both proofs are similar in fashion, we chose to prove the Eq (3.2) only. Actually, according to the
given condition |G(x)|≤ Bx−q(1 − x)−q, we see

lim
t→1−

sup
n≥M

∫ 1

t
|Gδ(x)|

n!
(i − 1)!(n − i)!

xi−1(1 − x)n−idx

≤ Bδ lim
t→1−

sup
n≥M

∫ 1

t

n!
(i − 1)!(n − i)!

xi−1−δq(1 − x)n−i−δqdx

≤ Bδ lim
t→1−

sup
n≥M

∫ 1

t

n!
(i − 1)!(n − i)!

(1 − x)n−i−δqdx

≤ Bδ lim
t→1−

sup
n≥M

n!
(i − 1)!(n − i)!

(1 − t)n−i−K(1 − t)K+1−δq

≤ Bδ lim
t→1−

sup
n≥M

n!(1 − t)n−i−K

(i − 1)!(n − i)!
≤ C1 lim

x→0+
sup
n≥M

n! × n
i!(n − i)!

xn−i−K . (3.3)

Here the positive number C1 > 0 exists because n/i = 1/p + o(1) where p ∈ (0, 1).
Now applying the Stirling’s formula n! =

√
2πn(n/e)ne

θ
12n where θ ∈ (0, 1) (see [13]), we have

lim
x→0+

sup
n≥M

n! × n
i!(n − i)!

xn−i−K

≤ C2 lim
x→0+

sup
n≥M

√
2πn(n/e)n

× n
√

2πi(i/e)i√2π(n − i)((n − i)/e)n−i
xn−i−K

≤ C3 lim
x→0+

sup
n≥M

nn × n

ii
√

n − i(n − i)n−i
xn−i−K

= C3 lim
x→0+

sup
n≥M

nn

ii(n − i)n−i

n
√

n − i
xn−i−K

= C3 lim
x→0+

sup
n≥M

1(
i
n

)i(
1 − i

n

)n−i

n
√

n − i
xn−i−K

= C3 lim
x→0+

sup
n≥M

1[(
i
n

) i
n
(
1 − i

n

)1− i
n
]n

n
√

n − i
xn−i−K . (3.4)

Noting that

(
i
n

)
i
n (1 −

i
n

)1− i
n → pp(1 − p)1−p,
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as n→ ∞, we see that there exists a positive constant, say Q > 0 such that

(
i
n

)
i
n (1 −

i
n

)1− i
n ≥ Q · pp(1 − p)1−p

for all n. Consequently,

lim
x→0+

sup
n≥M

1[(
i
n

) i
n
(
1 − i

n

)1− i
n
]n

n
√

n − i
xn−i−K

≤ lim
x→0+

sup
n≥M

1[
Qpp(1 − p)1−p

]n
n
√

n − i
xn−i−K

≤ C4 lim
x→0+

sup
n≥M

1[
Qpp(1 − p)1−p

]n

√
nxn−i−K . (3.5)

Due to the assumptions i+K
n < v =

1+p
2 < 1 as n ≥ M, we derive

lim
x→0+

sup
n≥M

1[
Qpp(1 − p)1−p

]n

√
nxn−i−K

≤ lim
x→0+

sup
n≥M

1[
Qpp(1 − p)1−p

]n

√
nxn−vn

= lim
x→0+

sup
n≥M

[
x1−v

Qpp(1 − p)1−p

]n
√

n

≤ lim
u→0+

sup
n≥1

un√n. (3.6)

Finally, by the fact that if u > 0 is given sufficiently small, then the first term of the sequence{
un√n, n ≥ 1

}
is the maximum, thus we can confirm

lim
u→0+

sup
n≥1

un√n = lim
u→0+

u = 0. (3.7)

Combining the five conclusions numbered from (3.3) to (3.7), we obtain Eq (3.2).

3.2. Proof of Theorem 2

Here we would like to assume U > 1 (or we may use U + 2 instead of U).
By the reason interpreted in Remark 2 and according to condition (1.2), we see that there is a

constant A > 0 satisfying

|G′′′(x) · xU(1 − x)U |≤ A. (3.8)

Now we define Y = F(X) and Yi:n = F(Xi:n) or equivalently X = G(Y) and Xi:n = G(Yi,n), we have
G(p) = xp. Obviously, the conclusions in Remark 6 are workable here.

By the Taylor expansion formula we have

G(Yi:n) = G(p) + G′(p)(Yi:n − p) +
G′′(p)

2!
(Yi:n − p)2 +

1
3!

G′′′(ξ)(Yi:n − p)3,
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where
ξ ∈ (min(Yi:n, p),max(Yi:n, p)).

Noting that almost surely 0 < min(Yi:n, p) < ξ < max(Yi:n, p) < 1, we obtain

|EG(Yi:n) −G(p) −G′(p)E(Yi:n − p) −
G′′(p)

2
E(Yi:n − p)2|

= |E[
G′′′(ξ)

3!
(Yi:n − p)3]| ≤

1
6
|E[Aξ−U(1 − ξ)−U(Yi:n − p)3]|

≤
1
6
|E{A[p(1 − p)]−UY−U

i:n (1 − Yi:n)−U(Yi:n − p)3}|

≤
1
6
|E{A[p(1 − p)]−U(Yi:n − p)3}|

≤
1
6

A[p(1 − p)]−U
√

E(Yi:n − p)6 = O(n−3/2) (3.9)

by Eq (3.8). Here the last step is in accordance to (1.7).
Now we can draw the conclusion that

EG(Yi:n) −G(p) −G′(p)E(Yi:n − p) −
1
2

G′′(p)E(Yi:n − p)2 = o(n−1). (3.10)

That is

EXi:n − xp −G′(p)(
i

n + 1
− p) −

1
2

G′′(p)E(Yi:n − p)2 = o(n−1), (3.11)

provided i/n = p + O(n−1).
Still according to conclusion (1.7), we have

E(Yi:n − p)2 = O(n−1).

Finally, as i/n = p + O(n−1) also guarantees i/(n + 1) − p = O(n−1), we can complete the proof of
E(Xi:n − xp) = O(n−1) or equivalently

|E(Xi:n − xp)| = O(n−1)

by the assertion of (3.11).

3.3. Proof of Theorem 4

As EZ = 0, the proposition holds when m = 1, now we only consider the case of m ≥ 2. By
Theorem 1, we see EX2

i:n → x2
p, therefore E|Xs: j| exists for some integer j and s ∈ {1, ..., j} and

Theorem 3 is workable here when we put h(x) = xm. We derive

E

n1/2 f (xp)(Xi:n − xp)√
p(1 − p)

m

=

∫ ∞

−∞

xmd

Φ(x) + ϕ(x)
m−1∑
i=1

n−i/2S i,n(x)

 + O(n−m/2)

= EZm +

m−1∑
i=1

(
n−i/2

∫ ∞

−∞

xmd
(
ϕ(x)S i,n(x)

))
+ O(n−m/2). (3.12)
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Moreover, for given positive integer m ≥ 2, as the coefficients in polynomial S i,n(x) are uniformly
bounded over n and ϕ′(x) = −xϕ(x), the sequence of the integrals{∫ ∞

−∞

xmd
(
ϕ(x)S i,n(x)

)
, n = 1, 2, ...

}
is also uniformly bounded over n. That indicates that

E

n1/2 f (xp)(Xi:n − xp)√
p(1 − p)

m

= EZm + O(n−1/2) (3.13)

according to conclusion (3.12).
As a consequence, we can conclude that for explicitly given m ≥ 2 the sequenceE

n1/2 f (xp)(Xi:n − xp)√
p(1 − p)

m

, n = 1, 2, ...

 (3.14)

is uniformly bounded over n. Moreover,due to the inequality

∣∣∣∣∣∣∣E
n1/2 f (xp)(Xi:n − xp)√

p(1 − p)


∣∣∣∣∣∣∣ ≤

√√
E

n1/2 f (xp)(Xi:n − xp)√
p(1 − p)

2

,

we see that the sequence E

n1/2 f (xp)(Xi:n − xp)√
p(1 − p)

 , n = 1, 2, ...


is also uniformly bounded over n.

Now that ai:n = xp + O(n−1), we complete the proof by the following reasoning

E

n1/2 f (xp)(Xi:n − ai:n)√
p(1 − p)

m

= E

n1/2 f (xp)(Xi:n − xp)√
p(1 − p)

+
n1/2 f (xp)(xp − ai:n)√

p(1 − p)

m

=

m∑
u=0

(mu
) n1/2 f (xp)(xp − ai:n)√

p(1 − p)

m−u

E

n1/2 f (xp)(Xi:n − xp)√
p(1 − p)

u
=

m∑
u=2

(mu
) n1/2 f (xp)(xp − ai:n)√

p(1 − p)

m−u

E

n1/2 f (xp)(Xi:n − xp)√
p(1 − p)

u + O(n−1/2)

=

m∑
u=2

(mu
) n1/2 f (xp)(xp − ai:n)√

p(1 − p)

m−u (
EZu + O(n−1/2)

) + O(n−1/2)

= EZm + O(n−1/2). (3.15)

AIMS Mathematics Volume 7, Issue 9, 17061–17079.



17073

4. Some verifications and one application

4.1. Verification examples

Now we consider the applicability of our theorems obtained so far. As other conditions can be
trivially or similarly verified, here we mainly focus on the verification of condition (1.2).
Example 1: Let the population X have a Cauchy distribution with a pdf f (y) = 1

π(1+y2) ,−∞ < y < +∞,

correspondingly the inverse function of the cdf of X can be figured out to be

G(x) = −
1

tan(πx)
, 0 < x < 1,

satisfying
lim
x→0+

G′′′(x)x5(1 − x)5 = lim
x→1−

G′′′(x)x5(1 − x)5 = 0.

Example 2: For X ∼ f (x) = 1
x(ln(x))2 I[e,∞)(x), we have

G(x) = e
1

x−1 I(0,1)(x),

and
lim
x→0+

G′′′(x)x(1 − x) = lim
x→1−

G′′′(x)x(1 − x) = 0.

Example 3: For X ∼ N(0, 12), on that occasion, f (y) = 1
√

2π
e−

y2
2 , f ′(y) = −y f (y) and y = G(x) ⇔ x =

F(y) =
∫ y

−∞

1
√

2π
e−

t2
2 dt, therefore, as x→ 0+, we have

(G(x))2

− ln (x(1 − x))
∼

(G(x))2

− ln x
=

y2

− ln(F(y))
y→−∞
∼
−2yF(y)

f (y)

= −2
[
(yF(y))′

( f (y))′

]
= −2

[
F(y) + y f (y)
−y f (y)

]
= −2

[
F(y)
−y f (y)

− 1
]
.

Noting that as x = F(y)→ 0+ or equivalently y→ −∞,

F(y)
−y f (y)

∼
f (y)

− f (y) − y f ′(y)
=

f (y)
− f (y) + y2 f (y)

=
1

−1 + y2 → 0, (4.1)

we have as x→ 0+,
(G(x))2

− ln (x(1 − x))
→ 2.

By the same fashion, we can show as x→ 1− that

(G(x))2

− ln (x(1 − x))
→ 2.

In conclusion, for x→ 0+ as well as for x→ 1−,

(G(x))2
∼ −2 ln (x(1 − x)). (4.2)
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Accordingly, there exists a positive M > 0 such that for all x ∈ (0, 1),

(G(x))2
≤ M|ln(x(1 − x))|= −Mln(x(1 − x)). (4.3)

No matter if x→ 0+ or x→ 1−, we get

|G′′′(x)| =

∣∣∣∣∣∣− f ′′(y) f (y) + 3( f ′(y))2

( f (y))5

∣∣∣∣∣∣ =

∣∣∣∣∣∣−(y2 − 1)( f (y))2 + 3(−y f (y))2

( f (y))5

∣∣∣∣∣∣
=

2y2 + 1
( f (y))3

|y|→∞
∼

2y2

( f (y))3 = 2
(G(x))2

( f (G(x)))3 ∼
−4 ln(x(1 − x))

( f (G(x)))3 . (4.4)

Here the last step holds in accordance to Eq (4.2).
For x→ 0+ as well as for x→ 1−,

−4 ln(x(1 − x))
( f (G(x)))3 = 4

− ln(x(1 − x))(
1
√

2π

)3
exp(−3(G(x))2

2 )
=

4(
√

2π)3 [− ln(x(1 − x))]

exp
(
−

3(G(x))2

2

)
= 4(

√
2π)3 [− ln(x(1 − x))]

[
exp

(
(G(x))2

)] 3
4

≤ 4(
√

2π)3 [− ln(x(1 − x))]
[
exp (−Mln(x(1 − x)))

] 3
4

= 4(
√

2π)3 [− ln(x(1 − x))] (x(1 − x))
−3M

4 . (4.5)

Thus we can see the achievement of condition (1.2) by

lim
x→0+

(
G′′′(x) · xM(1 − x)M

)
= lim

x→1−

(
G′′′(x) · xM(1 − x)M

)
= 0. (4.6)

Remark 9. For a RV X with a cdf F(x) possessing an inverse function G(x), we can prove that if σ > 0
and µ ∈ (−∞,+∞) are constants, then the cdf of the RV σX +µ will have an inverse function σG(x)+µ.
Thus for the general case X ∼ N(µ, σ2), we can still verify the condition (1.2).

Example 4: For a population X ∼ U[a, b], G(x) = (b − a)x + a is the inverse function of the cdf of X.
As G

′′′

(x) = 0, the assumption of condition (1.2) holds.
Generally, for any population distributed over an interval [a, b] according to a continuous pd f f (x),

if G′′′(0+) and G′′′(1−) exist, then the condition (1.2) holds.
For length concern, here we only point out without detailed proof that for a population X according

to a distribution such as Gamma distribution (including special cases such as the Exponential and the
Chi-square distributions) and beta distribution and so on, the requirement of condition (1.2) can be
satisfied.

4.2. An application in obtaining a combination formula

For a random sample (X1, ..., Xn) derived from a population X which is uniformly distributed over
the interval [0, 1], the moment of the i−th OS EXi:n = i/(n + 1) → p if i/n → p ∈ (0, 1) as n → ∞.
Let ai:n = i/n. According to conclusion (1.9) where f (xp) = 1 and xp = p ∈ (0, 1), we have for integer
m ≥ 2,

E (Xi:n − ai:n)m =

∫ 1

0

(x − i
n )mn!

(i − 1)!(n − i)!
xi−1(1 − x)n−idx + o(n−m/2)
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= EZm (p(1 − p))
m
2 n−

m
2 + o(n−m/2). (4.7)

That results in

n!
∫ 1

0
(nx − i)mxi−1(1 − x)n−idx

(i − 1)!(n − i)!nm = EZm(p − p2)
m
2 n−

m
2 + o(n−m/2), (4.8)

or equivalently

n!
∑m

j=0[
(

m
j

)
n j(−i)m− jB(i + j, n + 1 − i)]

(i − 1)!(n − i)!nm = EZm(p − p2)
m
2 n−

m
2 + o(n−m/2).

Consequently we have the following equation

n!
∑m

j=0[
(

m
j

)
n j(−i)m− j Γ(i+ j)Γ(n+1−i)

Γ(i+ j+n+1−i) ]

(i − 1)!(n − i)!nm = EZm(p − p2)
m
2 n−

m
2 + o(n−m/2),

which yields

n!
∑m

j=0[
(

m
j

)
n j(−i)m− j (i−1+ j)!

(n+ j)! ]

(i − 1)!nm = EZm(p − p2)
m
2 n−

m
2 + o(n−m/2). (4.9)

As i/n→ p ∈ (0, 1) when n→ +∞, the above equation indicates that∑m
j=0[

(
m
j

)
n j(−i)m− j (i−1+ j)!(n+m)!

(i−1)!(n+ j)! ]

n2m = EZm(p − p2)
m
2 n−

m
2 + o(n−m/2). (4.10)

For convenience sake, now we denote
∑v

k=u = 0 and
∏v

k=u = 1 if v < u. Noting for given explicit
integers m ≥ 2 and j ∈ {0, 1, ...,m} the expression(

m
j

)
n j(−i)m− j (i − 1 + j)!(n + m)!

(i − 1)!(n + j)!
=

(
m
j

)
(−1)m− j

im− j
j∏

k=1

[(i − 1) + k]


n j

m∏
k= j+1

(n + k)

 (4.11)

is a multinomial of i and n. We see that the nominator of the LHS of Eq (4.10) is also a multinomial
which we now denote as

m∑
j=0

[(
m
j

)
n j(−i)m− j (i − 1 + j)!(n + m)!

(i − 1)!(n + j)!

]
:=

m∑
s=0

m∑
t=0

a(m)
s,t im−snm−t.

Equivalently, we derive

m∑
j=0


(
m
j

)
(−1)m− j[im− j

j∏
k=1

(i − 1 + k)][n j
m∏

k= j+1

(n + k)]

 =

2m∑
k=0

∑
s+t=k

a(m)
s,t im−snm−t.

By Eq (4.10), we see for any given p ∈ (0, 1), if i/n→ p ∈ (0, 1) as n→ +∞, then∑2m
k=0

∑
s+t=k a(m)

s,t im−snm−t

n3m/2 = EZm (p(1 − p))
m
2 + o(1). (4.12)
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Noting that ∑
s+t=k

a(m)
s,t im−snm−t =

∑
s+t=k

a(m)
s,t pm−s

 n2m−k + o(n2m−k),

we see in accordance to (4.12) that∑2m
k=0[(

∑
s+t=k a(m)

s,t pm−s)n2m−k + o(n2m−k)]
n3m/2 = EZm(p − p2)

m
2 + o(1). (4.13)

That indicates that if a non-negative integer k satisfies 2m − k > 3m/2, or equivalently 0 ≤ k < m/2,
then the coefficient of n2m−k in the nominator of LHS of Eq (4.13) must be zero for any given p ∈ (0, 1),
namely ∑

s+t=k

a(m)
s,t pm−s = 0, s + t = k < m/2

holds for any p ∈ (0, 1). Thereby, for the case of non-negative integers s and t satisfying s+t = k < m/2,
we see that the equation a(m)

s,t = 0 surely holds.
It is funny to notice that for big m, we immediately have the following three corresponding equations

m∑
j=0

(−1)m− j

(
m
j

)
= 0,

m∑
j=2

(
m
j

)
(−1)m− j j( j − 1)

2
= 0,

and
m−1∑
j=2

(
m
j

)
(−1)m− j j( j − 1)

2
(m − j)(m + j + 1)

2
= 0,

according to the conclusions a(m)
0,0 = 0, a(m)

1,0 = 0 and a(m)
1,1 = 0.

As for the structure of a(m)
s,t when s ≥ 2, t ≥ 1 and m > 2(s + t), obviously s < m − t holds on this

occasion and the term a(m)
s,t im−snm−t in the multinomial

m∑
j=0


(
m
j

)
(−1)m− j[im− j

j∏
k=1

(i − 1 + k)][n j
m∏

k= j+1

(n + k)]


=

m∑
j=0


(
m
j

)
(−1)m− j[im− j

j−1∏
k=0

(i + k)][n j
m∏

k= j+1

(n + k)]


=

m∑
j=0


(
m
j

)
(−1)m− j[im− j+1

j−1∏
k=1

(i + k)][n j
m∏

k= j+1

(n + k)]


= (

s∑
j=0

+

m−t∑
j=s+1

+

m∑
j=m−t+1

)


(
m
j

)
(−1)m− j[im− j+1

j−1∏
k=1

(i + k)][n j
m∏

k= j+1

(n + k)]


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is also the term a(m)
s,t im−snm−t in the multinomial

m−t∑
j=s+1


(
m
j

)
(−1)m− j[im− j+1

j−1∏
k=1

(i + k)][n j
m∏

k= j+1

(n + k)]

 .
Noting for given j ∈ {s, ...,m − t}, the monomial ∑

1≤u1<u2<...<us≤ j−1

u1u2...rs

 im−s

is the term with degree m − s in the polynomial of i

[im− j+1
j−1∏
k=1

(i + k)],

while the monomial  ∑
j+1≤v1<v2<...<vt≤m

v1v2...vt

 nm−t

is the term with degree m − t in the polynomial of n

[n j
m∏

k= j+1

(n + k)],

we see for s + t < m/2,

a(m)
s,t =

m−t∑
j=s+1

(mj
)
(−1)m− j

∑
1≤u1<...<us≤ j−1

u1...us

∑
j+1≤v1<...<vt≤m

v1...vt

 .
Now that am

s,t = 0 holds provided s + t = k < m/2 according to Eq (4.13), we conclude the following
Theorem.

Theorem 5. If s,t and m are integers satisfying s ≥ 2, t ≥ 1 and m > 2(s + t), then

m−t∑
j=s+1

(mj
)
(−1)m− j

∑
1≤u1<u2<...<us≤ j−1

u1...us

∑
j+1≤v1<v2<...<vt≤m

v1...vt

 = 0.

Example 5: For big integer m, according to Theorem 5, we have a(m)
2,1 = 0 and a(m)

2,2 = 0.
Correspondingly, we obtain equations

m−1∑
j=3

(mj
)
(−1)m− j (

∑ j−1
i=1 i)2 − (

∑ j−1
i=1 i2)

2
(m + j + 1)(m − j)

2

 = 0,

and
m−2∑
j=3

(mj
)
(−1)m− j (

∑ j−1
i=1 i)2 − (

∑ j−1
i=1 i2)

2

(
∑m

i= j+1 i)2 − (
∑m

i= j+1 i2)

2

 = 0.

Both equations can be verified by the aid of Maple software.
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5. Conclusions

Let real δ > 0 and integer m > 0 be given. For a population satisfying condition (1.1), no matter
if the population has an expectation or not, the moment of Xδ

i:n exists and the sequence {EXδ
i:n, n ≥ 1}

converges for large i and n satisfying i/n → p ∈ (0, 1). Under some further trivial assumptions, for
large integer n the m−th moment of the standardized sequence {Xi:n, n ≥ 1} can be approximated by the
m−th moment of a standard normal distribution EZm.

Due to the fact that the existence requirement of some expectation Xs: j in Theorem 3 has always
been hard to be verified for a population without an expectation, for a long time, real-life world data
corresponding to that population of interest has been unavailable in the vast majority of references.
Now that the alternative condition (1.8) is presented, maybe things will improve in the future and we
still have a long way to go.
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