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1. Introduction

As a generalization of integer-order calculus, one of the main advantages of fractional-order
calculus is that it can be considered as a superset of the integer one. It has the ability to accomplish
what the integer-order calculus can not. In the last few decades, it has received a lot of attention
because of its increasing applications in various fields, including bioengineering, economics, signal
and image processing, theology, biology and electrochemistry [1-4]. Compared with the traditional
integer-order model, the fractional-order differential model provides an effective tool to describe the
inherent memory and heredity effects of real materials and processes, it provides a powerful tool for
describing the memory and heredity of different things. Nowadays, fractional-order dynamical
systems have been widely used in electromagnetic wave, electrolyte polarization, viscoelastic,
economic, biology systems [5-9]. Moreover, there are strong links between fractional-order
derivative operators and fractional-order Brownian motion, continuous time random walk method and
generalized central limit theorem. In addition, fractional-order derivative operators allow the
long-term memory and nonlocal dependence of many anomalous processes. Some significant results
regarding fractional-order neural networks (FNNs) have been published, especially on the dynamics
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of such systems, such as finite time stability, asymptotic stability, Mittag-Lefller stability, application
and control of neural networks [10-15].

However, the FNNs they studied only contain one fractional-order derivative of the state in the
system. Mathematics and physics consider them as super damping. But the neuron’s state will change
its dynamic properties when the inertia exceeds a critical point. The inertia in neural networks will
increase the instability of the system. Furthermore, it has a profound meaning in biology, such as the
cuttlefish’s axon [16—18]. According to the biological background of the inertial neural system, the
fractional-order inertial neural network simulates the dynamic behavior of the neurons more closely.
Therefore, it is meaningful to consider damping in the system.

Integer-order neural networks with inertia have been studied a lot, and some exciting results have
been obtained. Such as exponential synchronization, the fixed-time synchronization are studied in
[19-22] and synchronization of coupled memristive neural networks (NNs) [23]. These inertial NNs
have two fractional orders in the differential equations. Compared with the traditional NNs with a
single order, the NNs with two different orders are more suitable to simulate the complex biological
neural networks, and they can be used in many other fields, such as biology and cybernetics. Therefore,
it is valuable to discuss the dynamics of FNNs with inertia. However, according to the enquires, most
of the researches studied the stability of the FNNs without inertia, like Ke and Henriquez et al. who
studied the asymptotic w-periodicity of FNNs [24, 25], etc. Researchers have studied the FNNs with
inertia, except that Gu et al. and Zhang et al. who considered the stability and synchronicity of
Riemann-Liouville FNNs with inertia [26, 27].

In 1983, Cohen and Grossberg proposed a generalized neural network and ecological model,
namely the Cohen-Grossberg neural network [28]. It contains many ecosystems and neural networks.
At present, parallel processing, associative memory, and especially optimization computation have
attracted wide interest. From the view of mathematics and physics, the Cohen-Grossberg neural
network is a model of super-damping (damping tending to infinity), and the system with damping
(weak damping) should also be considered in practical problems, that is, inertia should be considered
in a Cohen-Grossberg neural network.

In this paper, we extend the inertial Cohen-Grossberg neural network model from integral-order to
fractional-order. Inspired by the studies mentioned above, the existence and the S-asymptotic
w-periodic of the solution for fractional-order Cohen-Grossberg NNs with inertia (FCGNNIs) are
discussed in this paper.

The main features of this paper are as follows:

1) A fractional-order Cohen-Grossberg neural network model with an inertia term is proposed for
the first time. This model has practical application value in simulating complex biological neural
networks.

2) By proper variable substitution, the model with two different fractional-order derivatives is
simplified to a model with only one fractional-order derivative, which simplifies the study of the
problem.

3) The sufficient conditions for the existence and S-asymptotic w-periodic of the solution of the
system are given.

The results are new. It is of theoretical significance and practical value to study the dynamic
characteristics of the FCGNNI further.
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Consider the following FCGNNI:

n

D (o) = =D} (0:(0) = ail () hioi(1)) = Z a;;fi(o (1) = (1], (1.1)

J=1

foralli = 1,2,...,n, t > 0, where D¢ is the R-L fractional-order derivative with order (0 < o <
1); oi(), a(.) > 0, hi(.), I;(t) and y; > 0O are the state variable, the abstract amplification function,
the behavior function, the external input and the damping coeflicient of the ith neuron at time #; a;;
represents the connection weight; f;(.) is the activation function of the jth neuron.
The system’s initial conditions are
{U"(s) = Pols). <0, i=1,2,..n, (1.2)
D (0i(s)) = Yo,(s),

where ¢,.(s) and ¥, (s) are bounded and continuous in (—oo, 0].
Remark. If @ = 1, (1.1) is the integer-order Cohen-Grossberg NNs with inertia:

D . . n
LI - 3270 _ oot = . afio0) - Lo,

=

a2 T ar

i=1,2,..,n.
2. Preliminaries

The discussion in this paper has been established on the following assumptions (i, j = 1,2, ..., n):
H; : o;(.) and «;(.) are bounded. That is, there exist @, > 0, @; > 0 and A; > 0 such that

0<a, <o) <a;, lo;() < A,
H, : f;(.) is bounded and Lipschitz-continuous. That is, there exist /; > 0 and f ;> 0 such that
1fi(s) = [0 < Lls =L 1FiO] < F ;.
Hj : Let pi(&) = ai({)hi(), its derivative is bounded with p.> 0 and p; > 0. That is,
0<p < pi(G) <P
H, : I;(¢) is bounded with the boundary /; > 0. That is, |[;(¢)| < 1.
Let y,(t) = D}o(t) + n;o(t), n; > 0, from (1.1) one gets

Dioi(t) = —nioi(0) + xi(0),
Dixi(t) = —ni(n; = yoo i) = (vi = nixi(0) 2.1
—a(o{(t)[hi(oi(1) — 21 a;; fi(o (1) = Li(D)].
]:
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3. Results

In this section, three theorems about the existence and the S —asymptotic w—periodic of the solution
to the system given by (1.1) are proposed.
Theorem 3.1. Under the assumptions H; — Hy, if

[a+1)> [{Ll%{ﬂi +nilni — vil + p; + Z |a;j|(a;l; + AjJ_c,') + AL}

J=1

+ max{l + |y; — q}1T°, 3.1

1<i<n

then, the system given by (1.1) has a unique solution on [0, 7] (T > 0).

Proof. Derive from Lemma 2 and (2.1):

oi(t) = —n;D;oi(t) + D x (1),
xi() = =i — ) Dy o) — (yi — 1) Dy xi(1) (3.2)
=D;%a;(oi(1)[hi(oi(1)) — '21 a;jfi(oi(t) = L;(D)].
i

Let
U(t) = {u@®lu) = ({1(1), (), ... §u(0), x1(2), x2(0), ---’Xn(t))T’no-i(t)’Xi(t) € C[0,7],i = 1,2,...,n}, it
is clear that it is a Banach space, where the norm is ||[U|| = sup ). (loi()| + [xi(D)])-

0<t<T i=1
Define P: U(t) — U(¢) as

(Pu)(t) = {(Po1)(1), (Po2)(@), ..., (Poy)(), (Px)(@), (Px2)(D), ..., (Pxn) (D},
where
(PE)(@) = —miD;%oi(t) + D%y (1),
(Pxi)(0) = —ni(m; — yi)D; o i(8) — (vi — i)D" x i) (3.3)
=D;a;(oi(1)[hi(o (1)) — '21 a;ifi(oi(®) - LIi()].
i

The first thing is to prove that PUs C Uy, where Us = {u(t) € U(¢) : ||ul| < 6},

S @O+ 3 Jayif + DT
2

i

=1
0> — .
[Na+1)- [{gggz{m +nilmi — yil + pi} + {g%{l + lyi —nil}1T®

Derive from H; and H; that

{ai(m(t)) — a;(0(1) = aj(£)(oi(1) — Ti(1)), (3.4)

ai(oi(Ohi(oi(1) — A(TO(TH1)) = pENoi(t) — Tut)),
where &; and Ei are between o; and ;.
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From (3.3), one has

n

sup Z(I(PGi)(t)l +1(Px(®)

0<t<T = 1

[l Pul|

IA

Su
o<,<pr r( )

a-1
F( )f(t 2" i(2)ldz

771"71 71' a—1
+— @) f(t )" oi(2)ldz

lyi — il ) 1
F( ) f(l li(2)ldz

+ﬁ f (t — 2)* (o i(2)hi(o(2)) — Ti(0)h(0)ldz

f (t— 2" Mo(2)ldz

f (t = 2" [@lh <0>|+alZ|aU|f + 1)z}

j=1

f (t— 2" Moi(2)ldz

"T(@)

IA

ni + nilni — vil + p;
su {
O<t<pT Zl I'(a)

L+lyi—nil 2!
t— @) f (t— lxi(2)ldz

a|hiO) + a; 2oy lailf; + ail; [
¥ = Zia kol f(t—z)“_ldz}
I'(a) 0
i+ nilni = vil + p; -
1sis§ (@) }f(t 2" Ulldz
L+lyi—

771 a-1
+¥22’§{—r() f (1= 2" Ulldz

ilhi(0)| + @; Z: |aij|fj +al;

J=1 a-1
+ t—2)"dz
I'(a) 0 (=2

IA
8
)

loa|| T
Ta+1)

IA

[max{nm; + n;ln; — yil + p;} + max{l + |y; — nil}]
1<i<n 1<i<n

S E (RO + X lalf; + 1)

i=1 j=1
+ T
T(a+ 1)

ST
[+ 1)
[Na+1)- [{2?32{771' +nilni — il + pi} + {Ei’i{l + lyi =il 1T

< [max{n; + niln; — vil + p;} + max{1 + |y; — n;|}]
1<i<n 1<i<n

+

T(a + 1)
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Therefore, PUs C Us.

Let
Then,
[|Pu — Pul|
AIMS Mathematics

INa+1)

INa+1)

0.

M(Z) = (O-l (t)’ O-Z(I)a ey O-n(t)v\/l(t),/\/Z(t)’ ’Xn(t))T € U(t)a
u(t) = @10, T2(0), e Tu(0), X1 (0, XD, 0. X, (D) € U(D).

IA

IA

IA

IA

n

sup Z{IP@)(I) — (Pa) @] + |Px)(1) = (Px)(D)l}

O<r<t '

n

sup Z{niDt_a/'O-i(t) = o0l + D i) = Xi(0)|

0<i<T “=3
+niln; — vilD; *loi(t) — oi(O] + lyi — mil Dy [y i(t) = x;(0)
+D;|a;i(oi()hi(oi(1) — a;(Ti(t))hi(T (D))

+D; (i) ) lagll (o) = £ 0)

j=1
+D;lai(oi(1)) — ai(@ (D))l Z laijll fi(@ ()]

=1
+D;|ai(oi(1)) — a; ()LD}

su {[ni + nilmi — vil + p; + ajla;ll;
OStSPt;U nimi —vil+p ]Z:;jj

n _ 1 s
N Ajaif, + Adi—— f (t = 2" or(2) — Tz
]Z::‘ Y I'(@) Jo
1 !
#(1+ i = mi)—— f (1 = 2" — B2l
I'a) Jo

max{n; + nin; — yil + p; + Z ajlajill;

1<i<n
=1
n _ 1 f 1
+ A‘la'ilfi"'AiIi}_f(t_Z)a_ llee — ulldz
]Z:; I (@) Jo
1<i<n

1 !
+max{1 + y; — qil} — f (t - 2 lu - Tilldz
YT @) J,

[{Islg{ﬂi +nilni — vil + p; + Z; ajlajll;
]:

(3.5)
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+ ) Ajlalfy + A+ max{L+ fy; = )] [

. T(a+1)
< lu -l (3.6)

One can see from (3.6) that P is a contraction mapping. Hence, there exists a unique fixed point
u*(t), which satisfies P(u*(t)) = u*(¢). That is,

o (t) = —n D0 (t) + D) (D),
xi(@) = —ni(m; — y)D; o (1) — (yi =)D X (D)
=D a;(a; () [hi(o} (D) — _Zl aii fi(o(0) = I(D)].
i

Therefore, the system described by (1.1) has a unique solution. O

Theorem 3.2. If H; — H, are satisfied and
Ia+1) > [{nax{m + milni — vil + p; + Ay} + {nax{l + lyi = mil} 1T,
<i<n <i<n

then system (1.1) has at least one solution in [0, T'].

Proof. Let
U(t) = {l/l(t)ll/l(t) = (O-I(t)’ ceey O-n(t)’X] (t)’ ""Xn(t))T’ O-l(t)’Xl(t) € C[O’ t]a l = 1? 2’ ceey n}7
V(1) = (v(@®)v(t) = (0,0, ...,0, vi(£), va (1), ..., va(E)T},
one can see that U(f) and V(¢) are Banach spaces with the norms

ludl = sup Z(Im(t)l @D vl = sup > ol

0<t<T 0<t<T -1

separately.
Respectively define operators Q : U(t) — U(t) and R : V(t) — V(¢) as follows:

(Qu)(?) = (Qa1)(1), (QT2)(1), ... (QT,)(D), (Qx1)(1), (OQx2)(E), ey (X)),
(Rv)(?) = (0,0, ...,0, (Rv))(®), (Rv2)(?), ..., (Rv,)(®))", where
(Qo)(t) = —n;D; %o (t) + D x (1),

(Qx)(®) = =i =)D oi(t) = (i = 1) D xi(0)
—D;“a;(o{(1)(hi(o (1)) — Ii(1)), (3.7)

(RV,')(I) = DI_QCX,'(O'I'(I)) i] Cl,‘jfj(O'j(l‘),l. = 1, 2, N
j=

Let

n

SO + 1+ 3, af 1T
J=

> — )
Ia+1) - [?ii’i{"" +nilmi — yil + p;} + gr<ll_a<);{1 + lyi = mil} 1T
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Bs ={u(®) e U@®),v(t) € V(1) : |lul]] <6, ||| < 6}.

It will begin with the proof that Qu + Rv € B, where u,v € Bs.

Based on (3.2),
|Qu + Rv|

then Qu + Rv € B;.

AIMS Mathematics

IA

IA

IA

IA

IA

IA

[1Qul| + [|IRv|
D, o Dy
sup ;{n (D) + D7 (o)
+niln; — vilD; o (O] + lyi — mil D, (o)l
+D; “|ai(oi(1)(hi(oi(1)) — 1;(1))|}
+ sup Z{Dt_qla’i(o-i(t))l Z ajl fi(o (O}
T

0<t<T i= j=1
sup > {(g; + +mils = il + p)D; lo(1)]
0<1<T ‘=

+(1+ lyi = nD D Wil + Dy e (|hi(0)] + 1)}

n n
+sup > (> D @laiiif )
0<t<T =7 5=

_ .1 ! o
max{n; + +niln; — vil + pi}=—= | (t—2) lulldz
1<i<n F(a) 0

1 !
+ {Qg{l +lyi — 771'”@ f(; (t — 20" Mulldz
. a 1 t a—1
+ Z] T + fo (- " dz

\ — C - 1 ' a-1
+;ai;|aij|fj@f0(t_z) dz

grglia;{m +nilni — il + pi}r(a m l)Ilull
+ grsll;a;;{l +lyi — ml}r(a = l)Ilull
n n _ Toz
+ _i h,’ 0)| + I,' + il )=/
;au o) ;Iajlf,)r(wr 5
[max{n; + niln; — vil + p;}
1<i<n
TS
+ L+ lyi =il =/
{2?2,5{ lyi—n l}]F(a+ D
n n _ Ta
;aa ) ]Z:ljlajlfpr(a+ 5

S,
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16897

Next, let u(t) € Bs,

U(0) = {@@)fu() = @10), T2(8), o0, Tn(0), X1 (0, X20), oo (D) € B},

1Qu — Qul| <

IA

IA

<

n

sup > (D "lori(t) = 0] + D ilt) = Xi(0)
0<i<T =4

+nilni — vilD; *loi(t) — oD + lyi — mil D[y i() = x (D)
+D; (o i(t)hi(oi(1)) — ai(Ti(t))hi(T:(1))]
+D;Nai(oi(1)) — ai(Ti()I(1)}

n

sup > {[ni + mini = vil + B, + Ad1D;|oi() = (o)
0<i<T

+(1 + lyi = DDy i(0) =}, (D1}

_ 1 ! _ _
max{n; + n,ln; — vil + D, + Adi}=—— f (t — 20" lu - ldz
1<i<n F(a) 0

1 !
+ 1+ Yi — Nily=—— t— a-l - d
{Islzgg{ | g l}r(a) fo( 2"l alldz

[Ilgl;i)fl{ﬂi +nilni — yil + p; + A}

+max{l + [y; — nil}] Nl — ull

I<isn T @+ 1)
llee — ul|.

Therefore, Q is a contraction mapping.
Then, it comes to prove that R is continuous and compact.
Since a;(-) and f;(-) are continuous, one can see that R is continuous.

Let v(¢) € Bs, one has

IRN@ < oi‘?PTZ D;°la; (al(z)>|2|aulﬁ<fr](r>>|
< ZDI_aaizmzﬂ?]
i=1 j=1
n _ n _ 1 A "
= ZaiZmiﬂfjm fo (t—2)""dz
<

Z Z “"“’Jlffr( Ty

i=1 j=1

which means that R is uniformly bounded in Bs.
Next, it will be proved that (Qv)(¢) is uniformly continuous.
In fact, for v € Bs, when O < #; < t,, one has

|(Rvi)(12) = (Rvi)(1)]

AIMS Mathematics

@ f (t2 =2 1al(cr,<z>>2a,m<a,<z)>dz

j=1

(3.8)
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e f (- 2" a(rf,(z))zauﬁ(oj(z))dzl

= F( ) f (t, — 2" al(a,(z))Za,]f](g-j(Z))dZ

+@ f; (tr — 2 ai((2)) Z a;; fi(o (2))dz

1
<’ -9 (o) Z aii (o (@)dz]
T(e) £
= F( )f (-2 = (- 2" ey (m(z))Za,jfj(aj(z))dz

j=1

+ﬁ j: 2(tz - 2" ai(oi(2)) Z a;i fi(o(2))dz]

IA

Fa )f (1 =2 = (1 = )" 'l (UI(Z))IZIalJIIfJ(U,(Z))IdZ

j=1

T )f (—2)" 1ICL(UI(Z))IZ:Iclz,IIfJ(UJ(Z))Ia’Z

j=1

= Z|a,,|f o f (1= 2" = (62— 2" "Nz

a—1
F( )f (, —2)" dz}

= Z Ia,]lf,r( Pl =) =5+ (2 = )]

= Z la”lffl"( )[tl +2(t — 1) - 12]. (3.9)

The right side of (3.9) tends to O when #; — #,. Therefore, R(Bs) is a compact set. It comes out
from the Arzela-Ascoli theorem that R is compact. Therefore, Q is a contraction mapping and R
is continuous and compact. According to Lemma 3, there exists at least one u*(f) € Bs such that
Qu*(t) + Ru*(t) = u*(¢). That is,
oi(t) = —n; Do (1) + D) (1),
X () = —ni(mi — y)D; o (1) — (Bi — n) DX (1) (3.10)
=D a(o;(D))[hi(o (1) — Zl a;j fi(o7 () — (D],
J:

which means that the system described by (1.1) has at least one solution. O

Theorem 3.3. If the assumptions H, — H, are satisfied, I;(t + w) = I;(¢) for a certain constant w > 0,

AIMS Mathematics Volume 7, Issue 9, 16889-16906.
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and
L+ni(tyi—=n)—p; >0,

§=min(2n + p — [1+niy; = n)l = A Y laijif; = ) lali@;,
j=1 j=1

1<i<n

2yi =)+ p,— (1 +myi =)l = A Y laylf; = D lagll@ = 2aili} > 0,
j=1 j=1

i =1,2,...,n, then the solution of the system described by (1.1) is S-asymptotic w-periodic, where
0<T < oo,

Proof. Let o’ (t) = (o1(1), 05(2), - - - , 0,(2)) be a solution of the system given by (1.1) with the initial
values o;(s) = ¢;(s),(i=1,2,--- ,n, s <0).
From the assumptions H; and Hj3,

ai(oi(t + w)) — ai(oi(D) = @i(&)]oi(t + w) — (D],

a;(oi(t + w)hi(oi(t + w)) — a;(c())hi(o(1)) = pié)loi(t + w) — oi(D)],

where &; is between 0 and ¢;.
From the conditions in Theorem 3.3,

L+ ni(yi =m) = p, 2 1+ ni(yi =m) = pi(&) 2 1 +ni(yi =m:) = p; > 0,
then it follows from (3.2) and Lemma 5 that

Dot + w) — oy(D)]?

IA

2[o(t + w) — (DD} (ot + w) — oi(1)]

= 20t + w) — cOI[-nioi(t + w) + xi(t + W) + Mo(1) — xi(1)]
=2t + w) — O] + 201 + w) = Tt + w) — xi(D)]
2[xi(t + w) — xi(DID; [xit + w) — xi()]

2[xi(t + w) = xiON-1:(n: — y)loi(t + w) — 74(D)]

=i = m)lxi(t + w) — xi(0)]

—lai(oi(t + w)hi(oi(t + w)) — ai(Ti(H)hi(0:(1))]

n

Har(oi(t + W) ) a (ot + w) = ailei(0) ) aifie (1))
J=1 j=1

DY [yt + w) — xi(0)]?

IA

+ai(oi(t + w))IiEt + w) — a;(di (D) (D]}
= 2yt + w) = xiON-1:(n; — y)loi(t + w) — oi(?)]
—(vi = 1)t + w) = xi(O] = pi(EDloi(t + w) — oi(1)]
+Hai(oi(t + w)) Z a;j[ fi(oi(t + w)) — fi(oj(1))]
=)

n

el + w)) = o)) Y aiifilo (1)

J=1
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+Hai(oi(t + w)) — ai(oi())]1;(1)}.

Therefore,
DH{[oi(t + w) — (D + [xi(t + w) — xi(D]*}

= 2piloi(t+w) - (O] - 20y —m)lxi(t + w) —)(i(l)]2
+[2 + 2n;(y; — 1) = 2pi(ENoi(t + w) — o (D] it + w) — xi(D)]

+H2a,(0i(t + W) xi(t + w) — xi(®)] Z a;i[ fi(oj(t + w)) — fi(oj(D)]
=

n

+2[ai(oi(t + w)) — ai(Ti(O)]xi(t + w) _)(i(t)][z a;;fi(o () + I(D)]

=

—2nilori(t + w) — o (O = 20y = M)yt + w) = xi (D)
+2 + 20y = 1) = 2p lloi(t + w) = Ti(O)lyilt + w) = xi(0)]

IA

+2a;lxi(t + w) = xi (D) Z laijlljloi(t + w) — o ()] + 4a; L]yt + w) — xi(?)]

j=1
F2Al0i(t + w) = Ol + @) = xi (0] ) laglf,
j=1
2l + w) — o)
+1 +ni(yi —m) — Bi]{[O'i(t +w) — oD + [yt + ) — xi(0)]*}

IA

2(y; = )it + w) = xi (O + @ Z lai|l;[oj(t + w) — o ()]

=

@ ) lagllilyilt + @) = i + 281, + 2L it + w) = xi (O}

J=1

+A; ) laylf Lot + w) = i OF + e + w) = i)

=1
= {2+ 1+n(y;—n)— p +A Zn: |aij|?j]}[0','(t +w) - (D]
=1
H+ni(yi = mi) = p, = 2(yi =) + A Zn: lailf;
=1
+ Z L@ + 2@l + w) — xi0)
=1
+ Zn: |a; L@, [0 j(t + w) — ;O] + 2,1, (3.11)
=1

From (3.11),
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DY S [t + w) — O + Dt + ) — xiOP)

i=1

< Z[—Zﬂi +1+n(yi—m) - p+ A; Z |aij|?j

i=1 j=1
+ Z lajillia;][oi(t + w) - (O]
j=1
# A+ my=m)l =20y =) = p.+ A; ) lalFf
i=1 j=1

+ Z laijllja; + 2a; 1} [xi(t + w) _Xi(t)]z + Z 2a;l;
j=1 i=1

IA

—6 Z{[Ui(t + ) = a(OF + it + w) = (O} + A, (3.12)
i=1

where 6 = lfilin{zﬂi +p —[1+n(yi—n)] = A; 21 |aij|?j - 21 lajillia;, 2(yi —m) + p. — [1 +ni(yi —m)] —
<i<n —l j= j= —l

Ai 2 |aij|?j -2 |aij|lj5i —2a;l;}, and A = ] 2a;1;.
j=1 j=1

i=1
Therefore,

Dot + @) = O + [yt + ) = i) < =D Y {lolt + w) — (D]

i=1 i=1
+xi(r + w) = xil(O1} + D (A)
< =D Y (ot + w) - oD

i=1
5 AT®

+xi(t + w) = xi(O1°} + et )’

forO<t<Z"<+oo.

Let P(1) = Y{[oi(t + w) — (O + [xi(r + w) — xi (D).
i=1

Obviously, P(0) > 0, and

P(t) < -6D;°P .
(0 < =D PO+ o
From Lemma 4,
P@) < E, (-061Y),
0= I'a+1) ( )
then .
(¢ — o) < E,(—61%).
;{[a( +0) = iOF) < Fm s Eal=61)
Therefore,

lim[o(t + w) —o()]> =0, i=1,2,..,n.
>0

AIMS Mathematics Volume 7, Issue 9, 16889-16906.



16902

from Definition 4, one sees that the solution of the system given by (1.1) is § —asymptotic w—periodic.
O

Remark. Among Theorems 3.1-3.3, under the condition of Theorem 3.1, we reveal that the system
given by (1.1) has a unique solution; under the condition of Theorem 3.2, we reveal that the system
given by (1.1) has at least one solution; if the solution of the system given by (1.1) exists and the
conditions in Theorem 3.3 are satisfied, we reveal that the solution of the system given by (1.1) is
S-asymptotic w-periodic.

4. Numerical example

In this section, a numerical example is simulated to verify the results.
Example. Consider the following FCGNNI:

2
D (o) = =D} (0:(0) = ail () hii(1)) = Z a;jfi(o (1) = (1], (4.1)

=1

where i =1,2, 0 <a < 1.

Let
a=0.75 y =15v=13, n1=04,7,=0.2,
53 1
- Q4 — = 2 i
ai(oy) = 20( U%), a2(02) 500( T+ U%)

hi(oy) = 2.6071, ha(02) = 6072,
fi(oj) = 0.1sin(o (1)), (j = 1,2),
I, = 0.1c0s2§t, i=1,2. w=3m,
ay; =0.15,a;, =0.1,a,; = 0.15,a,, = 0.15.
Therefore, the parameters in Theorem 3.3 are

a, =03, @, =045, a,=0.106, @, =0.212, A; =0.15,A; = 0.106,

fi=h=1, L;=01,ij=12 p =07,p, = L17,p = 1.1667,, = 1.1925.

After calculating, one has
IL+myi—=m)-p,}=027>0, 1+ 772(72 - 772) P, =0.0275 > 0,

0= 1m<ii<%{2m TP [+ mCyi = 1)l = A Z |a11|f 2 lai|lia;,

2yi=n) +p, — [L+nlyi —n)] = Ai Z Jaijlf; = Z laijll e = 2003} = 1.3827 > 0.

Due to Theorem 3.3, the solution of the system given by (4.1) is S-asymptotic 3r—periodic.
The states of o7;(f) and o,(¢) are shown in Figure 1. It is clear that the numerical simulation is
consistent with Theorem 3.3.
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1
0o 50 100 150
t

Figure 1. Time response curves for the state variables o(¢) and 0, (¢) in Example

5. Conclusions

To date, scholars have done a lot of research on the dynamic behavior of inertial neural networks,
and most of them focused on the chaos, bifurcation, stability and synchronization dynamics of NNs
with inertia. But the existence of the solution and the S-asymptotic w-periodic have not been studied.
In this article, the existence and the S-asymptotic w-period of the solution in for FCGNNIs are
discussed. By employing the contraction mapping principle and the differential mean-value theorem,
the existence and the S-asymptotic w-periodic of the solution in the system, namely, Theorems
3.1-3.3. Finally, an example is simulated to demonstrate the correctness and validity of the results,
which has a particular significance in both theory and application. The idea is innovative and
meaningful. Similarly, the stability of other types of FNNs can be studied by using the methods
employed in the theorems, including fractional-order inertial BAM neural networks, fractional-order
inertial BAM Cohen-Grossberg neural networks, etc.
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Definition 1. [4] The R-L fractional-order integral of the function u(¢) is defined as

WD u(t) = %q) f (t — )4 u@r)dr, (5.1)

where I'(1) = fom le7'dt, where 0 < g < 1.
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Definition 2. [4] The R-L fractional-order derivative is defined as

BDI(x) = DD () = (n > dxn G _Vt()tz — (5.2)
where the order « is a positive real number, andn — 1 < a < n.
Definition 3. [4] The Mittag-Leffler function with one parameter is
oo p
E,(s) = kz_; T (5.3)

where p > 0 and s € C.

Definition 4. [19] If p(¢r) € C,([0, +0), R), there exists w > 0 such that lim [p(¢t + w) — p(1)] = 0
then p(¢) is S —asymptotic w—periodic and w is an asymptotic period of t;(;;o

Lemma 1. [2] If s(t) e C"[0,+0),n—1<g<nm—-1<p<m,nmeZ", r=max{n,m}, then
(DDA = r( +1)’

(2)D!(ks (1) + hsy(1)) = kD?s,(t) + hD{s,(t), where k and h are constants.

(3)D'D;s(r) = D s(r), D, D, " s(t) = D, " s(2).

Lemma 2. [26] If s(7) € R is derivable in [0,6](60 > 0)and 0 < g < I,n—1 < p < n, then
(HDI'D{s(t) = DI s(2),

(2)D;"D?s(t) = D; 7" 5(¢).

Lemma 3. [29] Z is a Banach space, C is a closed convex and nonempty subset of Z, and G, G,
are operators which satisfy

where A is a constant.

(1) G1x + G,y € C whenever x,y € C;

(2) G is compact and continuous;

(3) G, is a contraction mapping;

then there exists x € C which satisfies G;x + Gox = x.

Lemma 4. [24] If s(r) € C[0, +00), and there exist d; > 0 and d, > 0 which satisfy s(r) <
—dlD S(I) + d,, then
s(t) < drE (—d,1?). (5.4)

Lemma 5. [26] If v(¢) has a continuous derivative, then

1
5D;Irz(t) <v(t)DIv(t), 0<g<1. (5.5)
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