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1. Introduction

The spaciousness of fixed-point theory can be glanced in different fields by looking at its
applications. Fixed-point theorems say that functions must have at least one fixed point, under some
circumstances. We can see that these results are usually beneficial in the region of mathematics and
play a prissy character in detecting the existence and uniqueness of solutions of different mathematical
models. Some scientists gave circumstances to find fixed points, in this manner, Banach and
Caccioppoli gave Banach—Caccioppoli fixed-point theorem, which was started by Banach [6] in 1922
and was proved by Caccioppoli [7] in 1931. Banach—Caccioppoli fixed-point theorem guaranteed that
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if it seized, the function must have a fixed-point, under some circumstances. After this meritorious
result of Banach and Caccioppoli, the fixed-point theory has taken on new elevations.

Branciari [2] proved Banach—Caccioppoli fixed-point theorem on a class of generalized metric
spaces. In 2014, Jleli and Samet [1] coined a new concept of @-contraction mappings and established
numerous fixed-point theorems for such mappings in complete metric spaces (CMS). Samet et al. [5]
proved fixed-point theorems for a-y-contractive mappings. Ahmad et al. [4] proved fixed-point results
for generalized @-contractions. Arshad et al. [8] proved some fixed-point results by using generalized
contractions via triangular a-orbital admissibility in the sense of Branciari metric spaces.

Baghani et al. [3] (2017) presented a new generalization of the Banach fixed point theorem (BFPT)
by defining the notion of R-sets. The R-set is a non-empty set equipped with a binary relation (called
R-relation) having a special structure (see [3]). The metric defined on the ‘R-set is called an R-metric
space. The R-metric space contains partially ordered metric spaces and graphical metric spaces.
Khalehoghli et al. [19] extended the work in [3] to R-metric spaces, Ali et al. [20] extended the
work [19] to partial b-metric space and Khalil et al. [15] extended the work in [3] to ordered theoretic
fuzzy metric spaces. Further fixed-point results on R-(generalized) metric spaces have been provided
by Javed et al. [15] who initiated the notion of an R-structure and established the Banach contraction
principle.

We introduce the concept of R-a-0-contractions (ag-Ox-contractions), establish some fixed-
point theorems for these contractions in the sense of $R-complete metric spaces and some constructive
examples and an application are also imparted. After proving that these contractions have fixed points,
we give some examples to validate our results. For some necessary definitions and results, please
see [9-18].

This manuscript is organized as follows. In section 2, some rudimentary concepts as R-sequence,
Cauchy R-sequence, R-preserving, R-complete, R-continuous, R-convergent, @-contraction, a-6-
contraction, and a-admissible are given. In section 3, the concept of ag-Ox-contractions is introduced
and some fixed point results are proved in the sense of R-CMSs and some constructive examples are
also provided. In section 4, an application to non-linear fractional differential equations is provided.

2. Preliminaries

In this section, we recall some definitions that are necessary for the main work.
Definition 2.1. [3] Let(®B,R ) be an R-set. A sequence {f,} is said to be an R-sequence if
(V(U, k € N' :Ba)ER:Bw+k) or ( Vw, k e N’ .Bw+kinﬁw)-

Also, {B,} is called a Cauchy R-sequence if for every & > 0 there exists an integer N such that
Oy Pr) <€ if w=N and k = N. Itis clear that S,Rpy or LiRP.,-

Definition 2.2. [3] Let (B,R) be an R-set. A mapping &x: B - B is called R-preserving if
ExBRERS, whenever BRES.

Definition 2.3. [3] Let (B,R, D) be an R-MS and ‘R be a binary relation over B. Then B is said to
be R-regular if for each sequence {f,} such that B, ,RpB,+1, forall w € N, and S, — e, for some
e € B, then B, Re, forall w € N (briefly, (B, R, O) is called R-regular metric space).

Definition 2.4 [3] Let (B, R, O) be an R-MS. Then &x: B — B is called R-continuous at € B
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if for each R-sequence {f,} in B with £, = B, we have {g B, — ExB. Also, &g is said to be R-
continuous on B if &y is R-continuous at each f € B.

Definition 2.5. [3] Let (B, R, O) be an R-MS. Then B is said to be an R-CMS if every Cauchy K-
sequence is convergent in B.

Definition 2.6. [4] Let O: (0,00) — (1,00) be a function satisfying the below circumstances:
(©1) O is non-decreasing.
(@,) For a sequence {#,} S R*.

lim,,.0(B,) =1 lim,_ B, = 0.
(©3) There exist k € (0,1) and [ € (0, o] such that

o) —1

limt_,oo W =

Let (B,0) be a MS. A mapping &: B — B is said to be an O-contraction [4] if there exist k €
(0,1) and a function @ fulfiling (0,)- (®3) such that

D($p,§8) # 0= 0(D(P,£8)) < [6(D(B, O] VB, 5 €B.
Let (2 denote the set of all functions satisfying (0,) — (03).

Definition 2.7. [16] Let (B, D) be a MS and &: B — B be a self-mapping. We say that ¢ is an a-
O-contraction if there exist k € (0, 1) and two functions a: B X B — [0,00) and O € N such that

O(§B,£8) # 0 = a(B,6)0(O(§B,£6)) < [0(d(B,8)]*  VB,6 €B.
3. Main results
In this section, we introduce the concept of ag-Oy-contractions and some fixed-point results are
also imparted in the sense of R-CMSs.

Definition 3.1. Let (B, D) be an R-CMS and &gx: B — B be a mapping. We say that &g is an ag-
Og-contraction if there exist k € (0, 1) and two functions ag: B X B = [0,00) and O € N2 such that

O(§B,§8) # 0 = an(B, 5)0(D(xp, {nd) < [0(D(B, O], VB, 5 € B with fRS.

Definition 3.2. Let &x: B - Band ag: B X B — [0,0). We say that &k is ak-admissible if for
all 8,6 € B with fR6,

an(B,8) = 1= ag(éxpP,ixrd) = 1.

Example 3.3. Let 8= (0,1 =AUB = (O,l]\{i,é,%} U {i,%,%}. Define éx: B — Band ag: B X
B - [0,0) by

n(B) =2 F
and
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1
W,Vﬁ EA,(SEB.

Define the R-relation: SRS & B < §. Here, &, is ak-admissible. It is not a-admissible by

taking f = 1and 6§ = %

am(ﬁ’ 6) =

Example 3.4. Let B = (—2, 2]. Define the relation: fR6 & f+ 6 = 0.
Define the function ag: B X B — [0,00) by

min{f, &}

J € (0,2

5 = T+ max(p, 8}’ if 6,6 €(0,2]

(B:0) =1 maxips) : _
e , if B,6 €[0,-2)

0, otherwise.
Define the mapping &g: B — B by

( ] -11
1 if p € [—,—
_ 22

1+ max (1,5} otherwise.

Clearly, &g is ag-admissible. It is not a-admissible. Indeed, for f = 0 and § = —1, one has

a(0,—-1) =e° =1.

But,

@€, £-1) =a (1~ 3) =0

Remark 3.5. The above example shows that an ag-admissible mapping need not to be an «a-
admissible mapping. But the converse holds.

Theorem 3.6. Let (B, R, O)be an R-CMS and &y be a self-mapping, R -preserving, R -
continuous and ag: B X B — [0, ) be a function. Suppose that the below circumstances fulfill:
i)  Suppose there exist k € (0,1) and a function @ € 2 such that for all 8,5 € B with R,

O(wB, &nd) # 0= ag(B,8)0(D(np, rd)) < [0(D(B, )], (3.1

i) &g is ak-admissible.
i) &g is R-continuous.
iv)  There exists B, € B such that ByRExL, and ag (By, EwBo) = 1.
Then ¢y has a fixed point e € B. Moreover, if for every two fixed points e, f of {x we have
ax(e, f) = 1, then the fixed point is unique.

Proof. Let B, € B such that (V6 € BPyRG) or (V& € BSRB,). By condition (iii), ByRExB, or
EaBoRBo. For w € N, consider S, = &g fS,. Assume that &g, = ExPy4+1 for some w € N. Then
B, 1s a fixed point of & and the proof is completed. Let éxf3, # ExPuws1 for all w € N. Since &g

is R-preserving, (ExBoRExPwr1) OF ExBur1RéxP,). Hence, {B,} is an R-sequence. Again, by
condition (ii),
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aﬂi(ﬁ(m Eﬂiﬁ(u) = ai}i(ﬁw' ﬁw+1) =1 Vw € N. (32)
From (3.1) and (3.2), we get

1< Q(D(ﬁ(m Bw+1)) = @(D(Eﬂiﬁw—l' E‘.Rﬁw)

< aéR(.Bw—lf Bw)@(D(&RBw—ll EER.Bw) < [Q(D(ﬁw—ll ﬁw))]k (3-3)
By (6,), we have
D(,Bw’ .Ba)+1) < D(,Bw—ll .Bw)

Hence, the sequence {O(B,, Bw+1)} is decreasing and {O(B,,, Bu+1)} converges to a non-negative
real number r > 0 such that

lim 0O (B, Bw+1) =7 and O(By, By+1) =T (3.4
Then we prove that r = 0. Suppose that r > 0. Using (6,), (3.3) and (3.4), we get

1< 0(r) = 0(0(Bur Bus1) < [0(D(Bur,B))]

S ees
k(l)
< [0(D(B0,B1))] Yw EN. (3.5)
Letting w — o in (3.5), we get O(r) = 1 and by using (0,), we have r = 0. Therefore
limg, OBy, Bws1) = 0. (3.6)

Assume that there are w,p € N such that §, = B,,. We must prove that p = 1. Assume
thatp > 1. Using (3.1) and (3.2), we get

0(D(Ba Bs1)) = 0 (D(Burwr Burros1)) = 0 (D(EnBursrr EBurty))
< aiR(ﬁwﬂ)—lf .Bw+p)0 (D(&Rﬁwﬂ)—l' Eﬂ%ﬁwﬂo))

< [6/(D(Buro1.Bor))] 6.
Using (6,), we get
(DB, Bus1)) < O(Burtr-1-Buty)
and by (3.1), we obtain
6 (O(Busp-1:Bur)) = 0 (D(EnBuro-2: EnBusp-1))

< a5(Buso-2 Burep-1)0 (D(EnBurrp-2 EnBurrp-1))

< [0 (0(Bur-2 Bors-))]

< O(Burtp-1 Barts): (3.8)

By (0,), we deduce
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D(ﬁ(uﬂ)—lf Bw+p) < D(ﬁ(uﬂ)—lr ﬁw+p)-

Continuing this process, we obtain

D(ﬁw' ﬁw+1) < D(ﬁ(uﬂ)—lf Bw+p) < D(ﬁa)+p—2:ﬁ(u+p—1) << D(ﬁa)rﬁw+1);

which implies that p = 1 and that contradict our assumption. Therefore, p = 1. Now, we will prove
that &x has a fixed point. We now examine that {f,} is a Cauchy R-sequence and we adopt
conflicting that {f,} is not a Cauchy R -sequence. So there exists € >0 and we take two
subsequences of {f,,}, which are {#,, }and {B4 } with w, > o, > k for which,

D(ﬁwkl ﬁok) = g, D(.Ba)kr ﬁok—l) <e¢ and D(ﬁwkl .Bak_l) <e. (3'9)

Using the triangular inequality, we derive

S D(.Ba)kl ﬁok) < D(ﬁwk' ﬁak—l) + D(ﬁok—lt ﬁak)- (3'10)

Letting k — oo in (3.11), using (3.10) and (3.6), we get

liMgy000 (B Bay,) = €. (3.11)

By using (3.1), there exists a positive integer k, such that

O(BwpBo) >0 Y >0, >k =k,
0(£) < 0 (D(Buye1, Boe1) ) = O (O(EBur EnBor))
< a5 (B )0 (OB EnBir,))

<|e (D(ﬁwk,ﬁak))]k = [6()]*.

This is a contradiction, since k € (0,1), {B,} is a Cauchy R-sequence. Thus, there is e € B
such that B, = e as w — oo, then

e = limw_,ooﬁw+1 = limw—mofiﬁﬁw = fﬁRe'

So e is a fixed point of &g.
Now, assume that £ has two fixed points say e # f. Hence,

k
O(e, f) = O(we, &nf) < an(e, HO(D(Ene, & f)) < [0(D(e, N)]" < 6(D(e, ).
Which leads us to a contradiction. Thus, the fixed point is unique as required.

Theorem 3.7. Let (B,R,0) be an R-regular R-CMS and &i be a self-mapping, R-preserving
and ag: B X B — [0, ) be a function. Assume that the below situations hold:
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(1) Assume that there exist @ € 2 and k € (0,1) such that forall 8,6 € B with SRS,
O(§rB,éwd) # 0 = an(B, §)O(D(B,§8) < [0(D(B, 6)]*. (3.12)

(i1) &xis ag-admissible.
(iii) There exists By € B such that S, R &k Bo and ag (Lo, ExrPo) = 1.
(iv) If {B,} is an R-sequence in B such that a(B,, Bpy+1) =1 forall w and B, — B, then

there exists an R-subsequence {f,,} of {B,} such that a(ﬁwk,ﬁ) > 1 forall k.

Then & has a fixed point e € B. Moreover, if for every two fixed points e, f of {x we have
ax(e, f) = 1, then the fixed point is unique.

Proof. Let By € B suchthat (V& € B, ByRS) or (V6 € B, dRPBy). By condition (iii), LoRExB, or
EaPoRBo.For w € N, consider B, = xS, . Assume &gf, = Enfps+r for some w € N. Then
B 1s a fixed point of g and the proof is completed. Let {xf, # {xfo,+1 for all w € N. Since &g

is R -preserving, (ExPBuRERLw+1) OF (ExfwriRERP,) . Hence, {B,} is an R -sequence. By
condition (1),

ag (B EnPw) = an(Bu Bw+1) = 1 Vw € N. (3.13)
From (3.12) and (3.13), we get

1< @D((ﬁwrﬁw+1)) = @(D(&R Bow-1 &.Rﬁw))
< ai}i(ﬁw—lt ﬁw)Q(D(fiRﬁw—li &Rﬁw))

< [0(0Bu-1,B)]" (3.14)
By (0,), we have
D(.Bw: ﬁw+1) < D(.Bw—l' .Bw)

Hence, the sequence {O(f,, Bw+1)} is decreasing and {O(B,,, Bu+1)} converges to a non-negative
real number r = 0. We have

limg, 50 O(Buw, Bow+1) =1 and O(By, fu+1) =T (3.15)
Then we prove that v = 0. Suppose that r > 0. Using (6,), (3.14) and (3.15), we get

1<0()=09y Lysi1) < [Q(D(,Bw—lub)w))]k

< .-

< [6(D(Bo, B1))]* V. € N. (3.16)

Letting w — oo in (3.16), we get O(r) = 1 and by using (0,) we have r = 0 and therefore,

limw—»ooD(,Bwﬂ :Bw+1) =0. (317)
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Assume that there are w,p € N such that f,,= B,4+,. Then we prove that p = 1. Assume
that p > 1. By (3.12) and (3.13), we deduce

@(D(.Bw: ,Bco+1)) =0 (D(.Bwﬂa’ .Ba)+p+1)) =0 (D(Eﬂiﬁwﬂ)—l' &R.Baﬁp))

< am(ﬁwﬂ)—lf ﬁa)+p)6 (D(Eﬂiﬁaﬁp—l' Eﬂiﬁ(uﬂ)))

k
< |0 (9(Buto-1.Bu+))] - (3.18)
Using (0,), we obtain
Q(D(ﬁw 'ﬁw+1)) < D(ﬁwﬂo—l' ﬁw+p)
and by using (3.12), we derive
0 (D(ﬁwﬂa—l: ﬁw+p)) =0 (D(’fﬂ%ﬁwﬂa—b ’fiRﬁwﬂa—l))
< ag (.Ba)+p—2» ﬁw+p—1)9 (D(f‘ﬁﬁwﬂ)—z' Eﬂ%ﬁa)ﬂo—l))
k
< [9 (D(ﬁw+p—2' Bw+p—1))]
< (O(Bursp-1. Bur) ) (3.19)
By (61),
’D(.Bwﬂ)—lf ﬁw+p) < D(.Bwﬂo—lr .Bw+p)-
Continuing this process, we obtain
D(.Bwl ﬁw+1) < D(.Bwﬂo—l: ﬁw+p) < D(ﬁwﬂ)—z' .Bw+p—1) << D(.Bw; .Bw+1)r (3-20)

which implies that p = 1 and that contradict our assumption. Therefore, p = 1. Now, we will prove
that g has a fixed point. We now verify that {f,} is a Cauchy R-sequence. We assume conflicting

that {f,} is not a Cauchy R-sequence. Then there exists ¢ > 0 and we yield two subsequences of
{B»} whichare {f,, }and {B,,} with w, > g, >k for which

O(Buoyr Boy) = €O(Basyr Boy-1) < € (3.21)

Using the triangular inequality, we obtain

€< ’D(.Bwkf ,Bak) < D(.Bwk' .Bcrk—l) + D(,ng_l, .Bak)- (3-22)
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Letting k — ooin (3.22) and using (3.21) and (3.17), we obtain

lim 0O (B Boy,) = €. (3.23)
By using (3.12), there exists a positive integer k, such that
O(BwpBo) >0 Vo >0, >k =k

So,

0() < 0 (D(Bur1,Ba41)) = 0 (O(EB S8,
< a5 (Buy B )© (D(EtBorys E8r,))

= [9 (D(ﬁwk’ﬁak))]k = [6(a)]",

which is a contradiction since k € (0,1). Thus, {£,} is a Cauchy R-sequence. Then there is e € B
such that f, 2 e as w = o and let U = {w € N: {gB, = éxe}. Then we get the following two
cases.

Case 1. Assume that U = co. Then there is a subsequence {ﬁwk} of {B,} such that ﬁwk+1 =
{nBuw, = $me, Vk € N. Recall that B, — e,s0 e = {ge.

Case 2. Assume U < . Then there is wy € N such that &gf, # {re, Vw = wy, in particular,
B, #+e and OB, e) >0 and also DB, éxe) > 0,Vw = wy. Then we know that
(BoRe) or (eRB,)Vw € N. So, we have

azw(Bye) =1 Vo = w,

and we get
aﬂ%(ﬁwfe)a(b(‘fi}{ﬁwf fiRe)) < [Q(D(ﬁw'e))]k Vo 2 Wo-
Since
lim,.O(B, €) =0,
by (6,),

limy, 00 (O(nPuw $ne)) = 1,
which implies
limg, 00 (D (EnBw, $ne)) = 0.

Thus, ¢ 3 e = e. Hence, e is the fixed point of &g. Similarly, to the proof of Theorem 3.6, we can
easily deduce that g has a unique fixed point.

Theorem 3.8. Let (B, R, O) bean R-CMS and &x: B — B be a self-mapping, R-preserving, R-
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continuous and ag: B X B — [0,00) be a function. Assume that there exist ® € 2 and k € (0,1)
such that

O(éxB, &xS) + 0= 0(O(ExB. Ex8)) < [0(U(B, 8))]k,Vﬁ, 5 € B with RS and k € (0, 1). (3.24)

U(B,6) = max{D(B,8), D(B, éf), O(, i), ZLAALZCEN, (3.25)

(1) &éx 1s ax-admissible.
(ii) There exists Sy € B such that ByREzBy and ax(Bo, Exfo) = 1.
Then &g has a fixed point e € B.

Proof. Let By € B such that (V5 € BByRS) or (V6 € BSRP,). By condition (ii), ByRéxBy or
EaPoRPy. For w € N, consider B, = &g B,. Assume that &gxf, = épPy,+1 for some w € N.
Then B,is a fixed point of &g and the proof is completed. Let {xf,, # xfw+1 for all w € N.

Since &g is R-preserving, (ExBoRExLw+1) OF ((xfuwr1RERP,)- Hence, {B,} is an R-sequence.
By condition (i), for all w € N,

aER(BwJ Emﬁw) = 1’ aﬂ%(fmﬁwffé}iﬁw) = 1.
So,

O(DErBu Erbui1)) < an(ExBu-1,é2Bw)O(D(ErBuw-1, Exbu))

< [0(U(EnBu-1, EnB))] " (3.26)

From (3.25),

OExBu-1,$nBw) OEnBu-1, EnénBu—-1), OnBuw Enénbu)
U(nrBuw-1,¢nPew) = max OCnPu-1, $nénBu-1)OEnPuws Enénbe)
1+ D(&Rﬁw—l' &.Rﬁw)

= max{O({xBu-1, $nénPw-1) OEnPu-1, EnénBuw-1)r Onuw Ennbuw)}
= max{O(§nBuw-1, $nBw) OnPuw Enbuw+1)}- (3.27)

If for some w € N,

UnBuw-1, €% Bw) = OCnBuwr EnBuw+1)
then by (3.26)

6(D(Enfu Exburs)) < [0(D(Enu )]

which implies that

In [6(D(nBuw EnPuri))] < KIn[O(D(ErBu, EnBusi))]-

This is a contradiction to k € (0,1). By (3.27), one writes for all w € N,
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U¢nBuw-1,¢0Pw) = OCaPu-1,$nPuw)
and by (3.26)

0(D(EnBur EnBursn)) < [O(OEnBu-1 ExB))] < [0(D Bz Enfu-1)]’

< < [0(28,&m)]" .

So, we have

1 < 0(D(Enfo Exbusrs)) < [0(DB, &), Vo eN. (3.28)

Letting w — oo in (3.28), we deduce

O(D (B EnBur1)) = 1.

Then from (05),

limg, 50 OEnBw $nbw+1) = 0.
By (03) there exist 7 € (0,1) and [ € (0, o] such that

lim Q(D(&Rﬁw' ‘fﬁR.BaHl)) -1 =1
@ [D(&Rﬁw' ‘fﬁR.BaHl)]r .

Assume that [ € (0, ). In this case, let u = é With the help of limit’s definition, there exists

wo € N, such that

O(OCwBu §nPuwr)) =1
[D(&Rﬁw: fiRﬁaHl)]r

This implies that

@(D(f‘ﬁﬁw'fﬂiﬁw+l)) -1 o
DCobu énburd] L UTW Vo= oo

Then,

w[D(fﬁiﬁw' gﬂ%ﬁaﬁl)]r = Bw[@(D(ESRﬁw' fiRﬁaHl)) - 1]’ Yo 2 w,

where B = 1/u-

Now, suppose that [ = o and u > 0 is a random positive number. With the help of limit’s
definition, there exists w, € N such that

O (OB Enfur)) =1
Do &bl |2 VO
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which implies

w[D(fiR.Bw» Eﬁiﬁa&l)]r < Bw[@(D(EERBw'EER.Bw+1)) - 1]: Vw 2 Wy,

where B = 1/u~ In all cases, there exists B > 0 such that

w[D(EER.Bw’ f&RBaﬁl)]r = Bw[@(D(EER.Bw: S;SRBaHl)) - 1]’ Vw 2 Wo,
limwﬁmw[D(&Rﬁw' 'Sﬂiﬁaﬁl)]r = 0. (329)

So there exists w; € N such that

1
wr

D(&R.Ba)rfi}iﬁaﬁl) S Vo 2 w;. (3'30)

We take S, # ¢z, forevery w,o € Nwithw # ¢ and

O(OxBuw $nPuw+2))
< ag(§xPow-1, $rBuw+1)O(O(EnBu-1, $nbw+1))

< [0(U(EnBu-1 ExBusD)] - (3.31)

OEnBu-1, ExBuw+1), OlnBu-1, Enénbu-1) OlnBuw+1 EnénBus1),
U(nBuw-1,$nPw+1) = max OEnBu-1.8n¢nBuw-1)0EnBw+1.EnEnBw+1) . (3.32)
1+D(€mﬁw—1-fﬂ%ﬁm+1)

We know that @ is non-decreasing, and so we get from (3.31) and (3.32),

@(D(f‘ﬁlgw—ll fﬁRﬂaﬁl)): @(D(&Rﬁw—ll fﬁR.Bw)): @(D(’fmﬁaﬁl! fﬁRﬁaﬁz)): “
O (O(nBuw SnPuw+2)) < [max OxPu-1, §xPw)OCnPuw+1 ExPu+2) :
1+ D(fmﬁw—l' fﬂ%ﬂa&l)

That is,

O(D(éxBu-1, ExBu+1)), @(Dﬁmﬁw—vfﬂ*ﬁw”'}r. (3.33)

0O w» w+2)) =
( (&RB EER'B 2)) = [max{ Q(D(Eﬁw+1' fﬁw+2))

Let I be the set of w € N such that

Aa) = maX{Q(D(f‘Rﬁw—l' f‘.RﬁaHl)): Q(D(&R ﬁw—l: E%ﬁw))' @(D(Eﬁtﬁw+1r S;iRﬁaHZ))}

= 0(O(EnBu-1, Enburr)).

If |I| < oo, then there exists w3 € N such that for every w > w3,

AIMS Mathematics Volume 7, Issue 9, 16869—16888.



16881

max{@ (D(&R.Bw—li EﬁRBaﬁl))’ @(D(fﬂiﬁw—ll EER.Bw)), Q(D(EER.B(LHL S;ERB(LHZ))}

= max{@ (D(Eﬂiﬁw—l» Eﬂiﬁaﬁl))' 0 (D(Eﬂiﬁaﬁlr fﬁ}iﬁwﬂ))}-

In this case, we get from (3.33),

0(D(EnBur EnBurz)) < [Max{0(D(EnBu-1 EnBurs)) O(DEnBusr ExBurz)))]

Letting w — oo in the above inequality and using (3.29), we deduce

Q(D(&Rﬁa)lfﬂiﬁw+2)) — lasw — oo,

If |I| = oo, then we can find a sequence of {A,} so that

Ay = 0(O(ExBow-1, ErBu+1)) for w large enough.

In this case, we derive from (3.33),

1 < 0(D(EnBur EnBurz)) < [0(OEnBu-1, Exfus)]” < [@(D(fmﬁw—zlfmﬁw))]kz
< - < [0(D(Bo, ExB) )

for o large enough.
Letting w — oo, we get

O(OCnBur b)) = 135w — . (3.34)
Using (6,), we obtain

lim 500 O¢RBuw EnPuwrz) = 0,
and by the condition (03), there exists w, € N such that

O(nBuwr bwBur2) S == V> wy. (3.35)

Let w; = max{ w,, w;}. Then we consider two cases.

Casel.If 0 > 2 isodd, then o0 = 2L + 1, L = 1and using (3.30), for all w = w5, we get

D(f‘ﬁﬁ(mfﬁﬁﬁw+a) < D(Eﬁﬁﬁw' fiRﬁaHl) + D(&Rﬁw'&ﬁﬁw+2)

+ o+ OCnBu+2rr SwBw+rzr+1)

L S !
o (w+1)1/r (w+2L)1/r.

Case2. If o0 > 2 iseven, then 0 = 2L, L = 1land using (3.30) and (3.35) Vw = w3, we get
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(fﬁR.Bw» fﬁRBwﬂr) < D(EﬁRBaﬂ fSRBaHZ) + D(S;SRBaHZ: EER,Bw+3)
+ o+ OD(nBu+2i-1: SnBw+21)

< ! + ! + ! <Z -
T o'l (w+2)'r (w+2L—1)r = & ith

l=w

In both cases, we obtain

0 1
OCnBuw ErBuw+s) < Zi=wi1—/T,Vw > wzand o > 1.

From the convergence of the series Z% (since %> 1), we obtain that {{gf,} is a Cauchy ‘R-
L/r

sequence. Since (B, R, D) is an R-CMS, there is B* € B such that {zpB, - B as w - o and
we can suppose that éxf* # . Assume that O(B*, éxB*) > 0. Using (3.24), we get

0(D(EnBuss ExB)) < [0(UERBw )], Vw EN,

where

O(EnBu EnBur1)O(B*, ExB*
U(fmﬁw,m=max{o(fmﬁw.ﬁ*).s(fmﬁw,fmﬁwﬂ),o(ﬁ*,fmﬁw), U tnfui1) O inf )}.

1+ OCnBuw,B7)

Letting w — oo, we obtain

0(0O(B", &) < [0(D(B" )] < (DB, &xB")).

Therefore, f* = égB*. It is a contradiction to the hypothesis that &; does not have a periodic
point. Thus, &g has a periodic point f* of period q. Assume that the set of fixed-points of &g is
empty. Then we have g > 1 and B* # {zS*. Using (1), we deduce

(08", &xB") = 0 (D(En"B", & 75"))

< ay (&7 B €a67)0 (O(&a 6", 62" 87))

1

< [6(D(B",&xB7))] < 0(D(B",&xB")).

It is a contradiction. Thus, the set of fixed-point of &y is non-empty, that is, i has at least one
fixed-point. Now, presume that u, §* € B are two fixed-points of &y and

(uRB™) or (B*Ru),  so (xuRixB™) or (§xf Réxw).
Then

OB u) = O(xB’ Snu) > 0.
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Using (3.24), we obtain

0(D(8",w) = 0(D(Ewf", &) < [0(D(B*, )] < (D", W),

which is a contradiction. Then i has only one fixed point.
Example 3.9. Consider B = (—2,0] and

0, ifg=9¢
O(B,6) = {max{ﬁ 6}, otherwise. VB SEDB.
Take BRS < B+ 6 = 0.Then (B,R, O)is an R-MS but it is not a metric space. For this, let § =
—landé = —%, then O(B,5) = max {—1, —%} = —1, does not belong to [0, +).

Define the function ag: B X B — [0, ) by

1, if 3,6 € [0,2]
ag(B,8) = e~ mintBs}  ifp § € (0,-2)
0, otherwise.
Define the mapping ¢x: B — B by
( 1 ifg € [_—11] u {1},
— 2 2

Eﬁ){(ﬁ) - { min{l,ﬁ} . , )
k1+max{1,ﬁ} ﬁe( ) ( ]\{}

Then (B,R, D) isan R-CMS, but it is not a CMS. Here, we show that it is not a CMS. For this,
assume f, = %— 2 is a Cauchy sequence, letting limit as w — +oo then {f,} converges to —2.
Hence, it is not a CMS that is clear from the definition of completeness.

If SRL © &+ B =0 then it is easy to realize that EgORERL © Exd + ExB = 0. So, &y is
R-preserving.

Assume {f,} is an R-sequence convergent to [5. Then

B 0, iff=6=0
hm O(Bw. B) = hm {max{ﬁw,ﬁ} otherwise’
Then clearly, this implies that
if $pB = $xé =0
Sim Onhu, inb) = {maX{stﬁw.fmﬁ} otherwise’

It shows that &g is R-continuous.
Also, &i is ag-admissible, but not an a-admissible mapping. Here, we show that it is not «a-

admissible. For this, assume that B is not an R-set and we take f = —1 and § = —%. Then,
. 1
a (—1,—%) = min{-lg) _ 15 1,
and
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a(f(—l),f(—%)) = a(—%, 1) =021

Given 0:(0,0) — (1,2) as O(t) = e'.
Note that &g does not fulfill to be an a-@-contraction, but it verifies all the conditions of the

3
agx-Ox-contraction. Take f = —; and § = —1. Then « (—;,—1) = ez2. Also,

a (—% —1) e<D(_%_%)> = (e%)e_% =e<£ ekD(_%’_l) = ek,

. . . . 1 .
So &g is not an @ — @-contraction, but &g is an ag-Ox-contraction for each k € [5, 1). Clearly, if

there exists By € B suchthat ByRExLy, then ak(Boy, ExPo) = 1. Hence, all conditions of Theorem 3.6
are fulfilled and &y has a fixed point e = 1.

4. Application

Within this part, we apply Theorem 3.6 to investigate the existence and uniqueness of a solution
of a nonlinear fractional differential equation (see [17]) given by

drp(t) = f(t, )t € (0,1), ye 2D,

with boundary conditions
p(0) =0,p'(0) =1 1 €(0)1),

where d? means the Caputo fractional derivative of order y, which is given as

drf(t) = ;J(t— )V (s)ds m—1<y<nn=][y]l+1),
" rn-v)

and f:[0,1] Xx R » R* is a continuous function. We consider 8 = €([0,1], R), from [0,1] into R
with supremum |B| = Sup |B(t)].
te[0,1]

The Riemann-Liouville fractional integral of order y (see [18]) is given by

1

o= f(9ds (> 0.

f() =

Firstly, we give the reasonable form of a nonlinear fractional differential equation and then inquest
the existence of a solution by the fixed-point theorem. Now, we assume the below fractional differential
equations

drp(t) = f(t.B(®)(t € (0,1),y € (1,2]), 4.1)

with the integral boundary conditions
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pO) =0, pO)=1 (I€(1D),

where
i.  f:[0,1] x R - R™" is a continuous function.
ii. B(t):[0,1] » R is continuous,

so that

for all t € [0,1] and for all 8,8 € B such that B(t) —5(t) =0, L is a constant with LJI < 1
where

__ 12t

T Ty+1) R-kD)HIry+1)

Here, &y is ag -admissible. Also, there exists So(t) € B such that By(t)RExBy(t)
and am(ﬁo(t), ¢xBo (t)) > 1. Then the differential equation (4.1) has a unique solution.

Proof. We take the below ‘R relation on B:
BRS(t) iff B(t) + 6(t) =0 forall t € [0,1].
The given function O(B,6) = Sup |[B(t) —6(@)| VL, €B is an R-CM. We define a
telo,1]

mapping éx: B - B by
EnB(©) = 155 Jo (6= )£ (5, B(9))ds + s Jo Us (s = m)Y = f (m, B(m))dm)ds, (4.2)

forall t € [0,1]. Equation (4.1) has a solution a function 8 € B iff B(t) = éxB(t) forallt € [0,1].
For the purpose to check the existence of a fixed point of &g, we are going to examine that &g is R-
preserving, an R-contraction and R-continuous.

Let for all t € [0,1] so that B(t)RS(t), which means that B(t) + §(t) = 0, and clearly from
Eq (4.2),

Sx B(t) + Exd(t) = 0.
This implies that
$nB ()RR (D).
Hence, &y is R-preserving. Forall ¢ € [0,1] and B(£)RS (L), we get
EnB(t) = $md (8)

f(t — )7 (s,B(s))ds +

1 S -1
= Tl’)o E)[(s —m)Y~1f(m, f(m))dm |ds

2t
(2 - kz)l”()/)of

— [ e = 577 £ (5,8())ds + s (5 (s = m)Y £ (m, 8(m))dm) s

Next, we show that &g is an R-contraction. For t € [0,1] so that B(t)RS(t), we obtain

AIMS Mathematics Volume 7, Issue 9, 16869—16888.
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1€xB(8) — Exd (D]

k s
_ 1 _ -1 _
e )f(t s (s,B(s))ds + = kz)l"( )Of (!(s m)Y f(m,ﬁ(m))dm) ds

k s
G )f(t—s)l’ (s, 8(5))ds+(2 kz)l“( )bf(!(S—m)y‘lf(mﬁ(m))dm>ds

! -1
= Ty)!(t — )Y f(s,B()) = f(s,8(s))|ds

k /s
2t i
T2 IOrm) J (!(5 = m)’ " f(m, p(m)) — f(m,5(m))|dm> ds

t k s
LB=8l(, ., 2LB=3 I
< ) Of (t —s)" tds + ) J ( Of (s —m)” dm) ds

LIB =61  2kY*'LIB + 81 ()
“Iry+1) Q-k)Dry+2)
! 26745 (y) N\ _
rorD GG + 2)) = LJ|B - b].

cup-a

From the fact L/ < 1. Let us take @(t) = e’’,vt > 0. Then
an(B(6),8(1))0(d(Enp, &)
= ay(B(D), 5(8))e(@EnbEnd)e Cnfin®)
< ax(B(1), 5(1))eL1a(B.8)e ED
< an(B (1), 8(£))e(kaB.)e Y
< [etw 7" ~ [oaes, o)1

where k = LJI and k € (0,1). This implies that &g is an R-contraction.
Suppose {B,} is an R-sequence in B such that {B,} converge to f € B. Because &y is R-
preserving, {8,} isan R-sequence for each n € N. Because &y isan R-contraction, we have

an(B(£), 8(6))0 (d(Enfa(t), ExB (D)) < [O(d(Ba(t), B .
As rlll_r)l;lo d(ﬁn(t),ﬁ(t)) = 0 forall T > 0, then it is clear that

Tlli_{fgod(fmﬁn(t), ExB () = 0.

Hence, &x is R-continuous. Thus, all circumstances of Theorem 3.6 are fulfilled. This implies
that B(t) is the fixed point of &g.
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5. Conclusions

In this manuscript, the notion of the concept of ak-Ox-contractions is introduced and some fixed-
point results are proved in the sense of R-CMSs by using an ag-Og-contraction. Some constructive
examples and applications to the fractional differential equation are also imparted. This work can also
be extended in the sense of R-extended metric spaces, R-controlled metric spaces, R-double
controlled metric spaces, R-triple controlled metric spaces, and many other structures.
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