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1. Introduction 

The spaciousness of fixed-point theory can be glanced in different fields by looking at its 

applications. Fixed-point theorems say that functions must have at least one fixed point, under some 

circumstances. We can see that these results are usually beneficial in the region of mathematics and 

play a prissy character in detecting the existence and uniqueness of solutions of different mathematical 

models. Some scientists gave circumstances to find fixed points, in this manner, Banach and 

Caccioppoli gave Banach–Caccioppoli fixed-point theorem, which was started by Banach [6] in 1922 

and was proved by Caccioppoli [7] in 1931. Banach–Caccioppoli fixed-point theorem guaranteed that 
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if it seized, the function must have a fixed-point, under some circumstances. After this meritorious 

result of Banach and Caccioppoli, the fixed-point theory has taken on new elevations. 

Branciari [2] proved Banach–Caccioppoli fixed-point theorem on a class of generalized metric 

spaces. In 2014, Jleli and Samet [1] coined a new concept of 𝛩-contraction mappings and established 

numerous fixed-point theorems for such mappings in complete metric spaces (CMS). Samet et al. [5] 

proved fixed-point theorems for α-ψ-contractive mappings. Ahmad et al. [4] proved fixed-point results 

for generalized 𝛩-contractions. Arshad et al. [8] proved some fixed-point results by using generalized 

contractions via triangular α-orbital admissibility in the sense of Branciari metric spaces. 

Baghani et al. [3] (2017) presented a new generalization of the Banach fixed point theorem (BFPT) 

by defining the notion of ℜ-sets. The ℜ-set is a non-empty set equipped with a binary relation (called 

ℜ-relation) having a special structure (see [3]). The metric defined on the ℜ-set is called an ℜ-metric 

space. The ℜ-metric space contains partially ordered metric spaces and graphical metric spaces. 

Khalehoghli et al. [19] extended the work in [3] to ℜ-metric spaces, Ali et al. [20] extended the 

work [19] to partial b-metric space and Khalil et al. [15] extended the work in [3] to ordered theoretic 

fuzzy metric spaces. Further fixed-point results on ℜ-(generalized) metric spaces have been provided 

by Javed et al. [15] who initiated the notion of an ℜ-structure and established the Banach contraction 

principle. 

We introduce the concept of ℜ-𝛼 -𝛩 -contractions (𝛼ℜ -𝛩ℜ -contractions), establish some fixed-

point theorems for these contractions in the sense of ℜ-complete metric spaces and some constructive 

examples and an application are also imparted. After proving that these contractions have fixed points, 

we give some examples to validate our results. For some necessary definitions and results, p lease 

see [9–18]. 

This manuscript is organized as follows. In section 2, some rudimentary concepts as ℜ-sequence, 

Cauchy ℜ-sequence, ℜ-preserving, ℜ-complete, ℜ-continuous, ℜ-convergent, 𝛩-contraction, 𝛼-𝛩-

contraction, and 𝛼-admissible are given. In section 3, the concept of 𝛼ℜ-𝛩ℜ-contractions is introduced 

and some fixed point results are proved in the sense of ℜ-CMSs and some constructive examples are 

also provided. In section 4, an application to non-linear fractional differential equations is provided. 

2. Preliminaries 

In this section, we recall some definitions that are necessary for the main work. 

Definition 2.1. [3] Let(𝔅,ℜ ) be an ℜ-set. A sequence {𝛽𝜔} is said to be an ℜ-sequence if 

(∀𝜔, 𝑘 ∈ ℕ, 𝛽𝜔ℜ𝛽𝜔+𝑘) or ( ∀𝜔, 𝑘 ∈ ℕ, 𝛽𝜔+𝑘ℜ𝛽𝜔). 

Also, {𝛽𝜔}  is called a Cauchy ℜ-sequence if for every 휀 > 0  there exists an integer   such that 

𝔒(𝛽𝜔, 𝛽𝑘) < 휀 if 𝜔 ≥ 𝑁 and 𝑘 ≥ 𝑁. It is clear that 𝛽𝜔ℜ𝛽𝑘 𝑜𝑟 𝛽𝑘ℜ𝛽𝜔. 

Definition 2.2. [3] Let  (𝔅,ℜ)  be an ℜ-set. A mapping 𝜉ℜ: 𝔅 → 𝔅  is called ℜ-preserving if 

𝜉ℜ𝛽ℜ𝜉ℜ𝛿, whenever 𝛽ℜ𝛿. 

Definition 2.3. [3] Let (𝔅,ℜ,𝔒) be an ℜ-MS and ℜ be a binary relation over 𝔅. Then 𝔅 is said to 

be ℜ-regular if for each sequence {𝛽𝜔} such that 𝛽𝜔ℜ𝛽𝜔+1, for all 𝜔 ∈ ℕ, and 𝛽𝜔 → 𝑒, for some 

𝑒 ∈ 𝔅, then 𝛽𝜔ℜe, for all 𝜔 ∈ ℕ (briefly, (𝔅, ℜ, 𝔒) is called ℜ-regular metric space). 

Definition 2.4 [3] Let (𝔅, ℜ, 𝔒) be an ℜ-MS. Then 𝜉ℜ: 𝔅 → 𝔅 is called ℜ-continuous at 𝛽 ∈ 𝔅 
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if for each ℜ-sequence {𝛽𝜔} in 𝔅 with 𝛽𝜔 → 𝛽, we have 𝜉ℜ𝛽𝜔 → 𝜉ℜ𝛽. Also, 𝜉ℜ is said to be ℜ-

continuous on 𝔅 if 𝜉ℜ is ℜ-continuous at each 𝛽 ∈ 𝔅. 

Definition 2.5. [3] Let (𝔅, ℜ, 𝔒) be an ℜ-MS. Then 𝔅 is said to be an ℜ-CMS if every Cauchy ℜ-

sequence is convergent in 𝔅. 

Definition 2.6. [4] Let Θ: (0,∞) → (1,∞) be a function satisfying the below circumstances: 

(Θ1) Θ is non-decreasing. 

(Θ2) For a sequence {𝛽𝜔} ⊆ ℝ
+. 

𝑙𝑖𝑚𝜔→∞𝛩(𝛽𝜔) = 1 ⇔ 𝑙𝑖𝑚𝜔→∞𝛽𝜔 = 0. 

(Θ3) There exist 𝑘 ∈ (0,1) and 𝑙 ∈ (0,∞] such that 

𝑙𝑖𝑚𝑡→∞

𝛩(𝑡) − 1

(𝑡)𝑘
= 𝑙. 

Let (𝔅,𝔒) be a MS. A mapping 𝜉: 𝔅 → 𝔅 is said to be a𝑛 Θ-contraction [4] if there exist 𝑘 ∈

(0,1) and a function Θ fulfiling (Θ1)– (Θ3) such that 

𝔒(𝜉𝛽, 𝜉𝛿) ≠ 0 ⇒ Θ(𝔒(𝜉𝛽, 𝜉𝛿)) ≤ [Θ(𝔒(𝛽, 𝛿)]𝑘       ∀𝛽, 𝛿 ∈ 𝔅. 

Let 𝛺 denote the set of all functions satisfying (Θ1) − (Θ3). 

Definition 2.7. [16] Let (𝔅,𝔒) be a MS and 𝜉: 𝔅 → 𝔅 be a self-mapping. We say that 𝜉 is an 𝛼-

𝛩-contraction if there exist 𝑘 ∈ (0, 1) and two functions 𝛼: 𝔅 × 𝔅 → [0,∞) and 𝛩 ∈ 𝛺 such that 

𝔒(𝜉𝛽, 𝜉𝛿) ≠ 0 ⇒ 𝛼(𝛽, 𝛿)Θ(𝔒(𝜉𝛽, 𝜉𝛿)) ≤ [Θ(𝑑(𝛽, 𝛿)]𝑘      ∀𝛽, 𝛿 ∈ 𝔅. 

3. Main results 

In this section, we introduce the concept of 𝛼ℜ-𝛩ℜ-contractions and some fixed-point results are 

also imparted in the sense of ℜ-CMSs. 

Definition 3.1. Let (𝔅,𝔒) be an ℜ-CMS and 𝜉ℜ: 𝔅 → 𝔅 be a mapping. We say that 𝜉ℜ  is an 𝛼ℜ-

𝛩ℜ-contraction if there exist 𝑘 ∈ (0, 1) and two functions 𝛼ℜ: 𝔅 × 𝔅 → [0,∞) and 𝛩 ∈ 𝛺 such that 

𝔒(𝜉𝛽, 𝜉𝛿) ≠ 0 ⇒ 𝛼ℜ(𝛽, 𝛿)𝛩(𝔒(𝜉ℜ𝛽, 𝜉ℜ𝛿) ≤ [𝛩(𝔒(𝛽, 𝛿)]𝑘, ∀𝛽, 𝛿 ∈ 𝔅 with 𝛽ℜ𝛿. 

Definition 3.2. Let 𝜉ℜ: 𝔅 → 𝔅  and 𝛼ℜ: 𝔅 × 𝔅 → [0,∞) . We say that 𝜉ℜ  is 𝛼ℜ -admissible if for 

all 𝛽, 𝛿 ∈ 𝔅 with 𝛽ℜ𝛿, 

𝛼ℜ(𝛽, 𝛿) ≥ 1 ⇒ 𝛼ℜ(𝜉ℜ𝛽, 𝜉ℜ𝛿) ≥ 1. 

Example 3.3. Let 𝔅 = (0,1] = 𝐴 ∪ 𝐵 = (0,1]\{
1

4
,
1

3
,
1

2
} ∪ {

1

4
,
1

3
,
1

2
} . Define 𝜉ℜ: 𝔅 → 𝔅  and 𝛼ℜ: 𝔅 ×

𝔅 → [0,∞) by 

𝜉ℜ(𝛽) =
5

3
𝛽 

and 
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𝛼ℜ(𝛽, 𝛿) =
1

𝑚𝑎𝑥 {𝛽, 𝛿}
, ∀𝛽 ∈ 𝐴, 𝛿 ∈ 𝐵. 

Define the ℜ -relation: 𝛽ℜ𝛿 ⇔ 𝛽 ≤ 𝛿 . Here, 𝜉ℜ  is 𝛼ℜ -admissible. It is not 𝛼 -admissible by 

taking 𝛽 = 1 and 𝛿 =
1

2
. 

Example 3.4. Let 𝔅 = (−2, 2]. Define the relation: 𝛽ℜ𝛿 ⟺ 𝛽 + 𝛿 ≥ 0. 

Define the function 𝛼ℜ: 𝔅 × 𝔅 → [0,∞) by 

𝛼ℜ(𝛽, 𝛿) =

{
 

 
𝑚𝑖𝑛{𝛽, 𝛿}

1 + 𝑚𝑎𝑥{𝛽, 𝛿}
, 𝑖𝑓 𝛽, 𝛿 ∈ (0,2]

ℯ−𝑚𝑎𝑥{𝛽,𝛿},                     𝑖𝑓 𝛽, 𝛿 ∈ [0, −2)
0,                             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

Define the mapping 𝜉ℜ: 𝔅 → 𝔅 by 

𝜉ℜ(𝛽) =

{
 

             1                                    𝑖𝑓 𝛽 ∈ [
−1

2
,
1

2
]

𝑚𝑖𝑛 {1, 𝛽}

1 + 𝑚𝑎𝑥 {1, 𝛽}
                𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

Clearly, 𝜉ℜ is 𝛼ℜ-admissible. It is not 𝛼-admissible. Indeed, for 𝛽 = 0 and 𝛿 = −1, one has 

𝛼(0,−1) = ℯ0 = 1. 

But, 

𝛼(𝜉(0), 𝜉(−1)) = 𝛼 (1, − 
1

2
) = 0. 

Remark 3.5. The above example shows that an 𝛼ℜ -admissible mapping need not to be an 𝛼 -

admissible mapping. But the converse holds. 

Theorem 3.6. Let (𝔅, ℜ, 𝔒) be an ℜ -CMS and 𝜉ℜ  be a self-mapping, ℜ -preserving, ℜ -

continuous and 𝛼ℜ: 𝔅 × 𝔅 → [0,∞) be a function. Suppose that the below circumstances fulfill: 

i) Suppose there exist 𝑘 ∈ (0, 1) and a function 𝛩 ∈ 𝛺 such that for all 𝛽, 𝛿 ∈ 𝔅 with 𝛽ℜ𝛿, 

𝔒(𝜉ℜ𝛽, 𝜉ℜ𝛿) ≠ 0 ⇒ 𝛼ℜ(𝛽, 𝛿)𝛩(𝔒(𝜉ℜ𝛽, 𝜉ℜ𝛿)) ≤ [𝛩(𝔒(𝛽, 𝛿))]𝑘.   (3.1) 

ii) 𝜉ℜ is 𝛼ℜ-admissible. 

iii) 𝜉ℜ is ℜ-continuous. 

iv) There exists 𝛽0 ∈ 𝔅 such that 𝛽0ℜ𝜉ℜ𝛽0 and 𝛼ℜ (𝛽0, 𝜉ℜ𝛽0) ≥ 1. 

Then 𝜉ℜ has a fixed point ℯ ∈ 𝔅. Moreover, if for every two fixed points 𝑒, 𝑓 of 𝜉ℜ we have 

𝛼ℜ(𝑒, 𝑓) ≥ 1, then the fixed point is unique. 

Proof. Let 𝛽0 ∈ 𝔅  such that (∀𝛿 ∈ 𝔅𝛽0ℜ𝛿) or (∀𝛿 ∈ 𝔅𝛿ℜ𝛽0) . By condition (iii), 𝛽0ℜ𝜉ℜ𝛽0  or 

𝜉ℜ𝛽0ℜ𝛽0. For 𝜔 ∈ ℕ, consider 𝛽𝜔 = 𝜉ℜ
𝜔𝛽𝑜. Assume that 𝜉ℜ𝛽𝜔 = 𝜉ℜ𝛽𝜔+1 for some 𝜔 ∈ ℕ. Then 

𝛽𝜔 is a fixed point of 𝜉ℜ and the proof is completed. Let 𝜉ℜ𝛽𝜔 ≠ 𝜉ℜ𝛽𝜔+1 for all 𝜔 ∈ ℕ. Since 𝜉ℜ 

is ℜ -preserving, (𝜉ℜ𝛽𝜔ℜ𝜉ℜ𝛽𝜔+1) or (𝜉ℜ𝛽𝜔+1ℜ𝜉ℜ𝛽𝜔) . Hence, {𝛽𝜔}  is an ℜ -sequence. Again, by 

condition (ii), 



16873 

AIMS Mathematics  Volume 7, Issue 9, 16869–16888. 

𝛼ℜ(𝛽𝜔, 𝜉ℜ𝛽𝜔) = 𝛼ℜ(𝛽𝜔, 𝛽𝜔+1) ≥ 1        ∀𝜔 ∈ ℕ.     (3.2) 

From (3.1) and (3.2), we get 

1 < 𝛩(𝔒(𝛽𝜔, 𝛽𝜔+1)) = 𝛩(𝔒(𝜉ℜ𝛽𝜔−1, 𝜉ℜ𝛽𝜔) 

≤ 𝛼ℜ(𝛽𝜔−1, 𝛽𝜔)𝛩(𝔒(𝜉ℜ𝛽𝜔−1, 𝜉ℜ𝛽𝜔) ≤ [𝛩(𝔒(𝛽𝜔−1, 𝛽𝜔))]
𝑘
.  (3.3) 

By (𝛩1), we have 

𝔒(𝛽𝜔, 𝛽𝜔+1) < 𝔒(𝛽𝜔−1, 𝛽𝜔). 

Hence, the sequence {𝔒(𝛽𝜔, 𝛽𝜔+1)} is decreasing and {𝔒(𝛽𝜔, 𝛽𝜔+1)} converges to a non-negative 

real number 𝑟 ≥ 0 such that 

𝑙𝑖𝑚𝜔→∞𝔒(𝛽𝜔, 𝛽𝜔+1) = 𝑟 and 𝔒(𝛽𝜔, 𝛽𝜔+1) ≥ 𝑟.     (3.4) 

Then we prove that 𝑟 = 0. Suppose that 𝑟 > 0. Using (𝛩1), (3.3) and (3.4), we get 

1 < 𝛩(𝑟) = 𝛩(𝔒(𝛽𝜔, 𝛽𝜔+1)) ≤ [𝛩(𝔒(𝛽𝜔−1 , 𝛽𝜔))]
𝑘
 

≤ ⋯ 

≤ [𝛩(𝔒(𝛽0, 𝛽1))]
𝑘𝜔

∀𝜔 ∈ ℕ.        (3.5) 

Letting 𝜔 → ∞ in (3.5), we get 𝛩(𝑟) = 1 and by using (𝛩2), we have 𝑟 = 0. Therefore 

𝑙𝑖𝑚𝜔→∞𝔒(𝛽𝜔, 𝛽𝜔+1) = 0.        (3.6) 

Assume that there are 𝜔, 𝔭 ∈ ℕ  such that  𝛽𝜔 = 𝛽𝜔+𝔭 . We must prove that  𝔭 = 1 . Assume 

that 𝔭 > 1. Using (3.1) and (3.2), we get 

𝛩(𝔒(𝛽𝜔, 𝛽𝜔+1)) = 𝛩 (𝔒(𝛽𝜔+𝔭, 𝛽𝜔+𝔭+1)) = 𝛩 (𝔒(𝜉ℜ𝛽𝜔+𝔭−1, 𝜉ℜ𝛽𝜔+𝔭)) 

≤ 𝛼ℜ(𝛽𝜔+𝔭−1, 𝛽𝜔+𝔭)𝛩 (𝔒(𝜉ℜ𝛽𝜔+𝔭−1, 𝜉ℜ𝛽𝜔+𝔭)) 

≤ [𝛩 (𝔒(𝛽𝜔+𝔭−1 , 𝛽𝜔+𝔭))]
𝑘

.          (3.7) 

Using (𝛩1), we get 

𝛩(𝔒(𝛽𝜔 , 𝛽𝜔+1)) < 𝔒(𝛽𝜔+𝔭−1 , 𝛽𝜔+𝔭) 

and by (3.1), we obtain 

𝛩 (𝔒(𝛽𝜔+𝔭−1, 𝛽𝜔+𝔭)) = 𝛩 (𝔒(𝜉ℜ𝛽𝜔+𝔭−2, 𝜉ℜ𝛽𝜔+𝔭−1)) 

≤ 𝛼ℜ(𝛽𝜔+𝔭−2, 𝛽𝜔+𝔭−1)𝛩 (𝔒(𝜉ℜ𝛽𝜔+𝔭−2, 𝜉ℜ𝛽𝜔+𝔭−1)) 

≤ [𝛩 (𝔒(𝛽𝜔+𝔭−2, 𝛽𝜔+𝔭−1))]
𝑘

 

< 𝔒(𝛽𝜔+𝔭−1, 𝛽𝜔+𝔭).            (3.8) 

By (𝛩1), we deduce 
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𝔒(𝛽𝜔+𝔭−1, 𝛽𝜔+𝔭) < 𝔒(𝛽𝜔+𝔭−1, 𝛽𝜔+𝔭). 

Continuing this process, we obtain 

𝔒(𝛽𝜔, 𝛽𝜔+1) < 𝔒(𝛽𝜔+𝔭−1, 𝛽𝜔+𝔭) < 𝔒(𝛽𝜔+𝔭−2, 𝛽𝜔+𝔭−1) < ⋯ < 𝔒(𝛽𝜔, 𝛽𝜔+1), 

which implies that 𝔭 = 1 and that contradict our assumption. Therefore, 𝔭 = 1.  ow, we will prove 

that 𝜉ℜ  has a fixed point. We now examine that  𝛽𝜔}  is a Cauchy ℜ -sequence and we adopt 

conflicting that  𝛽𝜔}  is not a Cauchy ℜ -sequence. So there exists  휀 > 0  and we take two 

subsequences of  𝛽𝜔}, which are  𝛽𝜔𝑘} and {𝛽𝜎𝑘} with 𝜔𝑘 > 𝜎𝑘 > 𝑘 for which, 

𝔒(𝛽𝜔𝑘 , 𝛽𝜎𝑘) ≥ 휀, 𝔒(𝛽𝜔𝑘 , 𝛽𝜎𝑘−1) < 휀 𝑎𝑛𝑑 𝔒(𝛽𝜔𝑘, 𝛽𝜎𝑘−1) < ɛ.  (3.9) 

Using the triangular inequality, we derive 

휀 ≤ 𝔒(𝛽𝜔𝑘 , 𝛽𝜎𝑘) ≤ 𝔒(𝛽𝜔𝑘 , 𝛽𝜎𝑘−1) + 𝔒(𝛽𝜎𝑘−1, 𝛽𝜎𝑘).   (3.10) 

Letting 𝑘 → ∞ in (3.11), using (3.10) and (3.6), we get 

𝑙𝑖𝑚𝜔→∞𝔒(𝛽𝜔𝑘 , 𝛽𝜎𝑘) = 휀.        (3.11) 

By using (3.1), there exists a positive integer 𝑘0 such that 

𝔒(𝛽𝜔𝑘 , 𝛽𝜎𝑘) > 0         ∀𝜔𝑘 > 𝜎𝑘 > 𝑘 ≥ 𝑘0, 

𝛩(휀) ≤ 𝛩 (𝔒(𝛽𝜔𝑘+1, 𝛽𝜎𝑘+1)) = 𝛩 (𝔒(𝜉ℜ𝛽𝜔𝑘 , 𝜉ℜ𝛽𝜎𝑘)) 

≤ 𝛼ℜ(𝛽𝜔𝑘 , 𝛽𝜎𝑘)𝛩 (𝔒(𝜉ℜ𝛽𝜔𝑘 , 𝜉ℜ𝛽𝜎𝑘)) 

≤ [𝛩 (𝔒(𝛽𝜔𝑘 , 𝛽𝜎𝑘))]
𝑘

= [𝛩(휀)]𝑘. 

This is a contradiction, since 𝑘 ∈ (0,1) , {𝛽𝜔}  is a Cauchy ℜ -sequence. Thus, there is ℯ ∈ 𝔅 

such that 𝛽𝜔 → ℯ as 𝜔 → ∞, then 

ℯ = 𝑙𝑖𝑚𝜔→∞𝛽𝜔+1 = 𝑙𝑖𝑚𝜔→∞𝜉ℜ𝛽𝜔 = 𝜉ℜℯ. 

So ℯ is a fixed point of 𝜉ℜ. 

 ow, assume that 𝜉ℜ  has two fixed points say 𝑒 ≠ 𝑓. Hence, 

𝔒(𝑒, 𝑓) = 𝔒(𝜉ℜ𝑒, 𝜉ℜ𝑓) ≤ 𝛼ℜ(𝑒, 𝑓)𝛩(𝔒(𝜉ℜ𝑒, 𝜉ℜ𝑓)) ≤ [𝛩(𝔒(𝑒, 𝑓))]
𝑘
< 𝛩(𝔒(𝑒, 𝑓)). 

Which leads us to a contradiction. Thus, the fixed point is unique as required. 

Theorem 3.7. Let (𝔅,ℜ ,𝔒)  be an ℜ -regular ℜ -CMS and 𝜉ℜ be  a self-mapping, ℜ -preserving 

and 𝛼ℜ: 𝔅 × 𝔅 → [0,∞) be a function. Assume that the below situations hold: 
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(i) Assume that there exist 𝛩 ∈ 𝛺 and 𝑘 ∈ (0, 1) such that for all 𝛽, 𝛿 ∈ 𝔅 with 𝛽ℜ𝛿, 

𝔒(𝜉ℜ𝛽, 𝜉ℜ𝛿) ≠ 0 ⇒ 𝛼ℜ(𝛽, 𝛿)𝛩(𝔒(𝜉𝛽, 𝜉𝛿) ≤ [𝛩(𝔒(𝛽, 𝛿)]
𝑘.   (3.12) 

(ii) 𝜉ℜ is 𝛼ℜ-admissible. 

(iii) There exists 𝛽0 ∈ 𝔅 such that 𝛽0 ℜ 𝜉ℜ 𝛽0 and 𝛼ℜ (𝛽0, 𝜉ℜ𝛽0) ≥ 1. 

(iv) If {𝛽𝜔} is an ℜ-sequence in 𝔅 such that 𝛼(𝛽𝜔, 𝛽𝜔+1) ≥ 1 for all 𝜔 and 𝛽𝜔 → 𝛽, then 

there exists an ℜ-subsequence {𝛽𝜔𝑘} of {𝛽𝜔} such that 𝛼(𝛽𝜔𝑘 , 𝛽) ≥ 1 for all 𝑘. 

Then 𝜉ℜ has a fixed point ℯ ∈ 𝔅. Moreover, if for every two fixed points 𝑒, 𝑓 of 𝜉ℜ we have 

𝛼ℜ(𝑒, 𝑓) ≥ 1, then the fixed point is unique. 

Proof. Let 𝛽0 ∈ 𝔅 such that (∀𝛿 ∈ 𝔅, 𝛽0ℜ𝛿) or (∀𝛿 ∈ 𝔅, 𝛿ℜ𝛽0). By condition (iii), 𝛽0ℜ𝜉ℜ𝛽0 or 

𝜉ℜ𝛽0ℜ𝛽0. For 𝜔 ∈ ℕ,  consider 𝛽𝜔 = 𝜉ℜ
𝜔𝛽𝑜 . Assume 𝜉ℜ𝛽𝜔 = 𝜉ℜ𝛽𝜔+1  for some 𝜔 ∈ ℕ . Then 

𝛽𝜔 is a fixed point of 𝜉ℜ and the proof is completed. Let 𝜉ℜ𝛽𝜔 ≠ 𝜉ℜ𝛽𝜔+1 for all 𝜔 ∈ ℕ. Since 𝜉ℜ 

is  ℜ -preserving, ( 𝜉ℜ𝛽𝜔ℜ𝜉ℜ𝛽𝜔+1) or (𝜉ℜ𝛽𝜔+1ℜ𝜉ℜ𝛽𝜔) . Hence, {𝛽𝜔}  is an  ℜ -sequence. By 

condition (i), 

𝛼ℜ(𝛽𝜔, 𝜉ℜ𝛽𝜔) = 𝛼ℜ(𝛽𝜔, 𝛽𝜔+1) ≥ 1         ∀𝜔 ∈ ℕ.    (3.13) 

From (3.12) and (3.13), we get 

1 < 𝛩𝔒((𝛽𝜔 , 𝛽𝜔+1)) = 𝛩(𝔒(𝜉ℜ 𝛽𝜔−1, 𝜉ℜ𝛽𝜔)) 

≤ 𝛼ℜ(𝛽𝜔−1, 𝛽𝜔)𝛩(𝔒(𝜉ℜ𝛽𝜔−1, 𝜉ℜ𝛽𝜔)) 

≤ [𝛩(𝔒(𝛽𝜔−1, 𝛽𝜔))]
𝑘
.          (3.14) 

By (𝛩1), we have 

𝔒(𝛽𝜔, 𝛽𝜔+1) < 𝔒(𝛽𝜔−1, 𝛽𝜔). 

Hence, the sequence {𝔒(𝛽𝜔, 𝛽𝜔+1)} is decreasing and {𝔒(𝛽𝜔, 𝛽𝜔+1)} converges to a non-negative 

real number 𝑟 ≥ 0. We have 

lim𝜔→∞𝔒(𝛽𝜔, 𝛽𝜔+1) = 𝑟 and 𝔒(𝛽𝜔, 𝛽𝜔+1) ≥ 𝑟.    (3.15) 

Then we prove that 𝑟 = 0. Suppose that 𝑟 > 0. Using (𝛩1), (3.14) and (3.15), we get 

1 < 𝛩(𝑟) = 𝛩𝔒(𝛽𝜔, 𝛽𝜔+1) ≤ [𝛩(𝔒(𝛽𝜔−1, 𝛽𝜔))]
𝑘
 

≤ ⋯ 

≤ [𝛩(𝔒(𝛽0, 𝛽1))]
𝑘𝜔

∀𝜔. ∈ ℕ.       (3.16) 

Letting 𝜔 → ∞ in (3.16), we get 𝛩(𝑟) = 1 and by using (𝛩2) we have 𝑟 = 0 and therefore, 

𝑙𝑖𝑚𝜔→∞𝔒(𝛽𝜔, 𝛽𝜔+1) = 0.       (3.17) 
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Assume that there are  𝜔, 𝔭 ∈ ℕ  such that 𝛽𝜔 , = 𝛽𝜔+𝔭 . Then we prove that  𝔭 = 1 . Assume 

that 𝔭 > 1. By (3.12) and (3.13), we deduce 

𝛩(𝔒(𝛽𝜔, 𝛽𝜔+1)) = 𝛩 (𝔒(𝛽𝜔+𝔭, 𝛽𝜔+𝔭+1)) = 𝛩 (𝔒(𝜉ℜ𝛽𝜔+𝔭−1, 𝜉ℜ𝛽𝜔+𝔭)) 

≤ 𝛼ℜ(𝛽𝜔+𝔭−1, 𝛽𝜔+𝔭)𝛩 (𝔒(𝜉ℜ𝛽𝜔+𝔭−1, 𝜉ℜ𝛽𝜔+𝔭)) 

≤ [𝛩 (𝔒(𝛽𝜔+𝔭−1, 𝛽𝜔+𝔭))]
𝑘

.          (3.18) 

Using (𝛩1), we obtain 

𝛩(𝔒(𝛽𝜔 , 𝛽𝜔+1)) < 𝔒(𝛽𝜔+𝔭−1, 𝛽𝜔+𝔭) 

and by using (3.12), we derive 

𝛩 (𝔒(𝛽𝜔+𝔭−1, 𝛽𝜔+𝔭)) = 𝛩 (𝔒(𝜉ℜ𝛽𝜔+𝔭−2, 𝜉ℜ𝛽𝜔+𝔭−1)) 

≤ 𝛼ℜ(𝛽𝜔+𝔭−2, 𝛽𝜔+𝔭−1)𝛩 (𝔒(𝜉ℜ𝛽𝜔+𝔭−2, 𝜉ℜ𝛽𝜔+𝔭−1)) 

≤ [𝛩 (𝔒(𝛽𝜔+𝔭−2, 𝛽𝜔+𝔭−1))]
𝑘

 

< (𝔒(𝛽𝜔+𝔭−1, 𝛽𝜔+𝔭)).           (3.19) 

By (𝛩1), 

𝔒(𝛽𝜔+𝔭−1, 𝛽𝜔+𝔭) < 𝔒(𝛽𝜔+𝔭−1, 𝛽𝜔+𝔭). 

Continuing this process, we obtain 

𝔒(𝛽𝜔, 𝛽𝜔+1) < 𝔒(𝛽𝜔+𝔭−1, 𝛽𝜔+𝔭) < 𝔒(𝛽𝜔+𝔭−2, 𝛽𝜔+𝔭−1) < ⋯ < 𝔒(𝛽𝜔, 𝛽𝜔+1),  (3.20) 

which implies that 𝔭 = 1 and that contradict our assumption. Therefore, 𝔭 = 1.  ow, we will prove 

that 𝜉ℜ has a fixed point. We now verify that  𝛽𝜔} is a Cauchy ℜ-sequence. We assume conflicting 

that  𝛽𝜔} is not a Cauchy ℜ-sequence. Then there exists 휀 > 0 and we yield two subsequences of 

 𝛽𝜔} which are  𝛽𝜔𝑘} and {𝛽𝜎𝑘} with 𝜔𝑘 > 𝜎𝑘 > 𝑘 for which 

𝔒(𝛽𝜔𝑘 , 𝛽𝜎𝑘) ≥ 휀𝔒(𝛽𝜔𝑘 , 𝛽𝜎𝑘−1) < 휀.      (3.21) 

Using the triangular inequality, we obtain 

휀 ≤ 𝔒(𝛽𝜔𝑘 , 𝛽𝜎𝑘) ≤ 𝔒(𝛽𝜔𝑘 , 𝛽𝜎𝑘−1) + 𝔒(𝛽𝜎𝑘−1, 𝛽𝜎𝑘).    (3.22) 
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Letting 𝑘 → ∞in (3.22) and using (3.21) and (3.17), we obtain 

𝑙𝑖𝑚𝜔→∞𝔒(𝛽𝜔𝑘 , 𝛽𝜎𝑘) = 휀.         (3.23) 

By using (3.12), there exists a positive integer 𝑘0 such that 

𝔒(𝛽𝜔𝑘 , 𝛽𝜎𝑘) > 0         ∀𝜔𝑘 > 𝜎𝑘 > 𝑘 ≥ 𝑘0. 

So, 

𝛩(휀) ≤ 𝛩 (𝔒(𝛽𝜔𝑘+1, 𝛽𝜎𝑘+1)) = 𝛩 (𝔒(𝜉ℜ𝛽𝜔𝑘 , 𝜉ℜ𝛽𝜎𝑘)) 

≤ 𝛼ℜ(𝛽𝜔𝑘 , 𝛽𝜎𝑘)𝛩 (𝔒(𝜉ℜ𝛽𝜔𝑘 , 𝜉ℜ𝛽𝜎𝑘)) 

≤ [𝛩 (𝔒(𝛽𝜔𝑘 , 𝛽𝜎𝑘))]
𝑘

= [𝛩(휀)]𝑘, 

which is a contradiction since 𝑘 ∈ (0,1). Thus, {𝛽𝜔} is a Cauchy ℜ-sequence. Then there is ℯ ∈ 𝔅 

such that 𝛽𝜔 → ℯ  as 𝜔 → ∞  and let 𝑈 = {𝜔 ∈ ℕ: 𝜉ℜ𝛽𝜔 = 𝜉ℜℯ} . Then we get the following two 

cases. 

Case 1. Assume that 𝑈 = ∞ . Then there is a subsequence {𝛽𝜔𝑘}  of {𝛽𝜔}  such that 𝛽𝜔𝑘+1 =

𝜉ℜ𝛽𝜔𝑘 = 𝜉ℜℯ, ∀𝑘 ∈ ℕ. Recall that 𝛽𝜔 → ℯ, so ℯ = 𝜉ℜℯ. 

Case 2. Assume  𝑈 < ∞ . Then there is 𝜔0 ∈ ℕ  such that 𝜉ℜ𝛽𝜔 ≠ 𝜉ℜℯ, ∀𝜔 ≥ 𝜔0 , in particular, 

𝛽𝜔 ≠ ℯ  and 𝔒(𝛽𝜔, ℯ) > 0  and also 𝔒(𝜉ℜ𝛽𝜔, 𝜉ℜℯ) > 0, ∀𝜔 ≥ 𝜔0.  Then we know that 

(𝛽𝜔ℜℯ) or (ℯℜ𝛽𝜔)∀𝜔 ∈ ℕ. So, we have 

𝛼ℜ(𝛽𝜔, ℯ) ≥ 1        ∀𝜔 ≥ 𝜔0 

and we get 

𝛼ℜ(𝛽𝜔, ℯ)𝛩(𝔒(𝜉ℜ𝛽𝜔, 𝜉ℜℯ)) ≤ [𝛩(𝔒(𝛽𝜔, ℯ))]
𝑘         ∀𝜔 ≥ 𝜔0. 

Since 

𝑙𝑖𝑚𝜔→∞𝔒(𝛽𝜔, ℯ) = 0, 

by (𝛩2), 

lim𝜔→∞𝛩(𝔒(𝜉ℜ𝛽𝜔, 𝜉ℜℯ)) = 1, 

which implies 

lim𝜔→∞(𝔒(𝜉ℜ𝛽𝜔, 𝜉ℜℯ)) = 0. 

Thus, 𝜉 ℜ ℯ = ℯ. Hence, ℯ is the fixed point of 𝜉ℜ. Similarly, to the proof of Theorem 3.6, we can 

easily deduce that 𝜉ℜ has a unique fixed point. 

Theorem 3.8. Let (𝔅, ℜ, 𝔒) be an ℜ-CMS and 𝜉ℜ: 𝔅 → 𝔅 be a self-mapping, ℜ-preserving, ℜ-
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continuous and 𝛼ℜ: 𝔅 × 𝔅 → [0,∞) be a function. Assume that there exist 𝛩 ∈ 𝛺 and 𝑘 ∈ (0, 1) 

such that 

𝔒(𝜉ℜ𝛽, 𝜉ℜ𝛿) ≠ 0 ⇒ 𝛩(𝔒(𝜉ℜ𝛽, 𝜉ℜ𝛿)) ≤ [𝛩(𝑈(𝛽, 𝛿))]
𝑘
, Ɐ𝛽, 𝛿 ∈ 𝔅 with 𝛽ℜ𝛿 and 𝑘 ∈ (0, 1).  (3.24) 

𝑈(𝛽, 𝛿) = max {𝔒(𝛽, 𝛿),𝔒(𝛽, 𝜉ℜ𝛽),𝔒(𝛿, 𝜉ℜ𝛿),
𝔒(𝛽,𝜉ℜ𝛽)𝔒(𝛿,𝜉ℜ𝛿)

1+𝔒(𝛽,𝛿)
}.   (3.25) 

(i) 𝜉ℜ is 𝛼ℜ-admissible. 

(ii) There exists 𝛽0 ∈ 𝔅 such that 𝛽0ℜ𝜉ℜ𝛽0 and 𝛼ℜ(𝛽0, 𝜉ℜ𝛽0) ≥ 1. 

Then 𝜉ℜ has a fixed point ℯ ∈ 𝔅. 

Proof. Let 𝛽0 ∈ 𝔅  such that (∀𝛿 ∈ 𝔅𝛽0ℜ𝛿) or (∀𝛿 ∈ 𝔅𝛿ℜ𝛽0) . By condition (ii), 𝛽0ℜ𝜉ℜ𝛽0  or 

𝜉ℜ𝛽0ℜ𝛽0.  For 𝜔 ∈ ℕ , consider 𝛽𝜔 = 𝜉ℜ
𝜔𝛽𝑜.  Assume that 𝜉ℜ𝛽𝜔 = 𝜉ℜ𝛽𝜔+1  for some 𝜔 ∈ ℕ . 

Then 𝛽𝜔 is a fixed point of 𝜉ℜ  and the proof is completed. Let 𝜉ℜ𝛽𝜔 ≠ 𝜉ℜ𝛽𝜔+1  for all 𝜔 ∈ ℕ. 

Since 𝜉ℜ  is ℜ -preserving, (𝜉ℜ𝛽𝜔ℜ𝜉ℜ𝛽𝜔+1) or (𝜉ℜ𝛽𝜔+1ℜ𝜉ℜ𝛽𝜔) . Hence, {𝛽𝜔}  is an ℜ -sequence. 

By condition (i), for all 𝜔 ∈ ℕ, 

𝛼ℜ(𝛽𝜔, 𝜉ℜ𝛽𝜔) ≥ 1,           𝛼ℜ(𝜉ℜ𝛽𝜔, 𝜉ℜ𝛽𝜔) ≥ 1. 

So, 

𝛩(𝔒(𝜉ℜ𝛽𝜔, 𝜉ℜ𝛽𝜔+1)) ≤ 𝛼ℜ(𝜉ℜ𝛽𝜔−1, 𝜉ℜ𝛽𝜔)𝛩(𝔒(𝜉ℜ𝛽𝜔−1, 𝜉ℜ𝛽𝜔)) 

≤ [𝛩(𝑈(𝜉ℜ𝛽𝜔−1, 𝜉ℜ𝛽𝜔))]
𝑘
.       (3.26) 

From (3.25), 

𝑈(𝜉ℜ𝛽𝜔−1, 𝜉ℜ𝛽𝜔) = max{

𝔒(𝜉ℜ𝛽𝜔−1, 𝜉ℜ𝛽𝜔),𝔒(𝜉ℜ𝛽𝜔−1, 𝜉ℜ𝜉ℜ𝛽𝜔−1),𝔒(𝜉ℜ𝛽𝜔, 𝜉ℜ𝜉ℜ𝛽𝜔),

𝔒(𝜉ℜ𝛽𝜔−1, 𝜉ℜ𝜉ℜ𝛽𝜔−1)𝔒(𝜉ℜ𝛽𝜔, 𝜉ℜ𝜉ℜ𝛽𝜔)

1 + 𝔒(𝜉ℜ𝛽𝜔−1, 𝜉ℜ𝛽𝜔)

} 

= max{𝔒(𝜉ℜ𝛽𝜔−1, 𝜉ℜ𝜉ℜ𝛽𝜔−1),𝔒(𝜉ℜ𝛽𝜔−1, 𝜉ℜ𝜉ℜ𝛽𝜔−1),𝔒(𝜉ℜ𝛽𝜔, 𝜉ℜ𝜉ℜ𝛽𝜔)} 

= max{𝔒(𝜉ℜ𝛽𝜔−1, 𝜉ℜ𝛽𝜔),𝔒(𝜉ℜ𝛽𝜔, 𝜉ℜ𝛽𝜔+1)}.      (3.27) 

If for some 𝜔 ∈ ℕ, 

𝑈(𝜉ℜ𝛽𝜔−1, 𝜉ℜ 𝛽𝜔) = 𝔒(𝜉ℜ𝛽𝜔, 𝜉ℜ𝛽𝜔+1), 

then by (3.26) 

𝛩(𝔒(𝜉ℜ𝛽𝜔, 𝜉ℜ𝛽𝜔+1)) ≤ [𝛩(𝔒(𝜉ℜ𝛽𝜔, 𝜉ℜ𝛽𝜔+1))]
𝑘
, 

which implies that 

ln [𝛩(𝔒(𝜉ℜ𝛽𝜔, 𝜉ℜ𝛽𝜔+1))] ≤ 𝑘ln[𝛩(𝔒(𝜉ℜ𝛽𝜔, 𝜉ℜ𝛽𝜔+1))]. 

This is a contradiction to 𝑘 ∈ (0,1). By (3.27), one writes for all 𝜔 ∈ ℕ, 



16879 

AIMS Mathematics  Volume 7, Issue 9, 16869–16888. 

𝑈(𝜉ℜ𝛽𝜔−1, 𝜉ℜ𝛽𝜔) = 𝔒(𝜉ℜ𝛽𝜔−1, 𝜉ℜ𝛽𝜔), 

and by (3.26) 

𝛩(𝔒(𝜉ℜ𝛽𝜔, 𝜉ℜ𝛽𝜔+1)) ≤ [𝛩(𝔒(𝜉ℜ𝛽𝜔−1, 𝜉ℜ𝛽𝜔))]
𝑘
≤ [𝛩(𝔒(𝜉ℜ𝛽𝜔−2, 𝜉ℜ𝛽𝜔−1))]

𝑘2

 

≤ ⋯ ≤ [𝛩(𝔒(𝛽, 𝜉ℜ𝛽))]
𝑘𝜔

. 

So, we have 

1 ≤ 𝛩(𝔒(𝜉ℜ𝛽𝜔, 𝜉ℜ𝛽𝜔+1)) ≤ [𝛩(𝔒(𝛽, 𝜉ℜ𝛽))]
𝑘𝜔

,     ∀𝜔 ∈ ℕ.  (3.28) 

Letting 𝜔 → ∞ in (3.28), we deduce 

𝛩(𝔒(𝜉ℜ𝛽𝜔, 𝜉ℜ𝛽𝜔+1)) → 1. 

Then from (𝛩2), 

lim𝜔→∞𝔒(𝜉ℜ𝛽𝜔, 𝜉ℜ𝛽𝜔+1) = 0. 

By (𝛩3) there exist 𝑟 ∈ (0,1) and 𝑙 ∈ (0,∞] such that 

𝑙𝑖𝑚𝜔→∞

𝛩(𝔒(𝜉ℜ𝛽𝜔, 𝜉ℜ𝛽𝜔+1)) − 1

[𝔒(𝜉ℜ𝛽𝜔, 𝜉ℜ𝛽𝜔+1)]𝑟
= 𝑙. 

Assume that 𝑙 ∈ (0,∞). In this case, let 𝑢 =
𝑙

2
. With the help of limit’s definition, there exists 

𝜔0 ∈ ℕ, such that 

|
𝛩(𝔒(𝜉ℜ𝛽𝜔, 𝜉ℜ𝛽𝜔+1)) − 1

[𝔒(𝜉ℜ𝛽𝜔, 𝜉ℜ𝛽𝜔+1)]𝑟
− 𝑙| ≤ 𝑢,       ∀𝜔 ≥ 𝜔0. 

This implies that 

𝛩(𝔒(𝜉ℜ𝛽𝜔, 𝜉ℜ𝛽𝜔+1)) − 1

[𝔒(𝜉ℜ𝛽𝜔, 𝜉ℜ𝛽𝜔+1)]𝑟
≥ 𝑙 − 𝑢 = 𝑢,         ∀𝜔 ≥ 𝜔0. 

Then, 

𝜔[𝔒(𝜉ℜ𝛽𝜔, 𝜉ℜ𝛽𝜔+1)]
𝑟 ≤ 𝐵𝜔[𝛩(𝔒(𝜉ℜ𝛽𝜔, 𝜉ℜ𝛽𝜔+1)) − 1], ∀𝜔 ≥ 𝜔0, 

where 𝐵 = 1
𝑢⁄ . 

 ow, suppose that 𝑙 = ∞  and 𝑢 > 0  is a random positive number. With the help of limit’s 

definition, there exists 𝜔0 ∈ ℕ such that 

|
𝛩(𝔒(𝜉ℜ𝛽𝜔, 𝜉ℜ𝛽𝜔+1)) − 1

[𝔒(𝜉ℜ𝛽𝜔, 𝜉ℜ𝛽𝜔+1)]𝑟
− 𝑙| ≥ 𝑢,       ∀𝜔 ≥ 𝜔0, 
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which implies 

𝜔[𝔒(𝜉ℜ𝛽𝜔, 𝜉ℜ𝛽𝜔+1)]
𝑟 ≤ 𝐵𝜔[𝛩(𝔒(𝜉ℜ𝛽𝜔, 𝜉ℜ𝛽𝜔+1)) − 1],       ∀𝜔 ≥ 𝜔0, 

where 𝐵 = 1
𝑢⁄ . In all cases, there exists 𝐵 > 0 such that 

𝜔[𝔒(𝜉ℜ𝛽𝜔, 𝜉ℜ𝛽𝜔+1)]
𝑟 ≤ 𝐵𝜔[𝛩(𝔒(𝜉ℜ𝛽𝜔, 𝜉ℜ𝛽𝜔+1)) − 1], ∀𝜔 ≥ 𝜔0, 

𝑙𝑖𝑚𝜔→∞𝜔[𝔒(𝜉ℜ𝛽𝜔, 𝜉ℜ𝛽𝜔+1)]
𝑟 = 0.     (3.29) 

So there exists 𝜔1 ∈ ℕ such that 

𝔒(𝜉ℜ𝛽𝜔, 𝜉ℜ𝛽𝜔+1) ≤
1

𝜔
1
𝑟⁄
       ∀𝜔 ≥ 𝜔1.      (3.30) 

We take 𝛽𝜔 ≠ 𝜉ℜ𝛽𝜎 for every 𝜔, 𝜎 ∈ ℕ with 𝜔 ≠ 𝜎 and 

𝛩(𝔒(𝜉ℜ𝛽𝜔, 𝜉ℜ𝛽𝜔+2)) 

≤ 𝛼ℜ(𝜉ℜ𝛽𝜔−1, 𝜉ℜ𝛽𝜔+1)𝛩(𝔒(𝜉ℜ𝛽𝜔−1, 𝜉ℜ𝛽𝜔+1)) 

≤ [𝛩(𝑈(𝜉ℜ𝛽𝜔−1, 𝜉ℜ𝛽𝜔+1))]
𝑘
.         (3.31) 

𝑈(𝜉ℜ𝛽𝜔−1, 𝜉ℜ𝛽𝜔+1) = max {
𝔒(𝜉ℜ𝛽𝜔−1, 𝜉ℜ𝛽𝜔+1),𝔒(𝜉ℜ𝛽𝜔−1, 𝜉ℜ𝜉ℜ𝛽𝜔−1),𝔒(𝜉ℜ𝛽𝜔+1, 𝜉ℜ𝜉ℜ𝛽𝜔+1),

𝔒(𝜉ℜ𝛽𝜔−1,𝜉ℜ𝜉ℜ𝛽𝜔−1)𝔒(𝜉ℜ𝛽𝜔+1,𝜉ℜ𝜉ℜ𝛽𝜔+1)

1+𝔒(𝜉ℜ𝛽𝜔−1,𝜉ℜ𝛽𝜔+1)

}. (3.32) 

We know that 𝛩 is non-decreasing, and so we get from (3.31) and (3.32), 

𝛩(𝔒(𝜉ℜ𝛽𝜔, 𝜉ℜ𝛽𝜔+2)) ≤ [max{

𝛩(𝔒(𝜉ℜ𝛽𝜔−1, 𝜉ℜ𝛽𝜔+1)),𝛩(𝔒(𝜉ℜ𝛽𝜔−1, 𝜉ℜ𝛽𝜔)),𝛩(𝔒(𝜉ℜ𝛽𝜔+1, 𝜉ℜ𝛽𝜔+2)),

𝔒(𝜉ℜ𝛽𝜔−1, 𝜉ℜ𝛽𝜔)𝔒(𝜉ℜ𝛽𝜔+1, 𝜉ℜ𝛽𝜔+2)

1 + 𝔒(𝜉ℜ𝛽𝜔−1, 𝜉ℜ𝛽𝜔+1)

}]

𝑘

. 

That is, 

𝛩(𝔒(𝜉ℜ𝛽𝜔, 𝜉ℜ𝛽𝜔+2)) ≤ [max {
𝛩(𝔒(𝜉ℜ𝛽𝜔−1, 𝜉ℜ𝛽𝜔+1)), 𝛩(𝔒(𝜉ℜ𝛽𝜔−1, 𝜉ℜ𝛽𝜔)),

𝛩(𝔒(𝜉𝛽𝜔+1, 𝜉𝛽𝜔+2))
}]

𝑘

. (3.33) 

Let 𝐼 be the set of 𝜔 ∈ ℕ such that 

𝐴𝜔 = max{𝛩(𝔒(𝜉ℜ𝛽𝜔−1, 𝜉ℜ𝛽𝜔+1)), 𝛩(𝔒(𝜉ℜ 𝛽𝜔−1, 𝜉ℜ𝛽𝜔)), 𝛩(𝔒(𝜉ℜ𝛽𝜔+1, 𝜉ℜ𝛽𝜔+2))} 

= 𝛩(𝔒(𝜉ℜ𝛽𝜔−1, 𝜉ℜ𝛽𝜔+1)). 

If |𝐼| < ∞, then there exists 𝜔3 ∈ ℕ such that for every 𝜔 ≥ 𝜔3,  
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max{𝛩(𝔒(𝜉ℜ𝛽𝜔−1, 𝜉ℜ𝛽𝜔+1)), 𝛩(𝔒(𝜉ℜ𝛽𝜔−1, 𝜉ℜ𝛽𝜔)), 𝛩(𝔒(𝜉ℜ𝛽𝜔+1, 𝜉ℜ𝛽𝜔+2))} 

= max{𝛩(𝔒(𝜉ℜ𝛽𝜔−1, 𝜉ℜ𝛽𝜔+1)), 𝛩(𝔒(𝜉ℜ𝛽𝜔+1, 𝜉ℜ𝛽𝜔+2))}. 

In this case, we get from (3.33), 

𝛩(𝔒(𝜉ℜ𝛽𝜔, 𝜉ℜ𝛽𝜔+2)) ≤ [max{𝛩(𝔒(𝜉ℜ𝛽𝜔−1, 𝜉ℜ𝛽𝜔+1)), 𝛩(𝔒(𝜉ℜ𝛽𝜔+1, 𝜉ℜ𝛽𝜔+2))}]
𝑘
. 

Letting 𝜔 → ∞ in the above inequality and using (3.29), we deduce 

𝛩(𝔒(𝜉ℜ𝛽𝜔, 𝜉ℜ𝛽𝜔+2)) → 1 as 𝜔 → ∞. 

If |𝐼| = ∞, then we can find a sequence of {𝐴𝜔} so that 

𝐴𝜔 = 𝛩(𝔒(𝜉ℜ𝛽𝜔−1, 𝜉ℜ𝛽𝜔+1)) for 𝜔 large enough. 

In this case, we derive from (3.33), 

1 < 𝛩(𝔒(𝜉ℜ𝛽𝜔, 𝜉ℜ𝛽𝜔+2)) ≤ [𝛩(𝔒(𝜉ℜ𝛽𝜔−1, 𝜉ℜ𝛽𝜔+1))]
𝑘
≤ [𝛩(𝔒(𝜉ℜ𝛽𝜔−2, 𝜉ℜ𝛽𝜔))]

𝑘2

 

≤ ⋯ ≤ [𝛩(𝔒(𝛽0, 𝜉ℜ𝛽2))]
𝑘𝜔 

for ω large enough. 

Letting 𝜔 → ∞, we get 

𝛩(𝔒(𝜉ℜ𝛽𝜔, 𝜉ℜ𝛽𝜔+2)) → 1 as 𝜔 → ∞.      (3.34) 

Using (𝛩2), we obtain 

lim 𝜔→∞𝔒(𝜉ℜ𝛽𝜔, 𝜉ℜ𝛽𝜔+2) = 0, 

and by the condition (𝛩3), there exists 𝜔2 ∈ ℕ such that 

𝔒(𝜉ℜ𝛽𝜔, 𝜉ℜ𝛽𝜔+2) ≤
1

𝜔
1
𝑟⁄
           ∀𝜔 > 𝜔2.      (3.35) 

Let 𝜔3 = max{𝜔0, 𝜔1}. Then we consider two cases. 

Case1. If 𝜎 > 2 is odd, then 𝜎 = 2𝐿 + 1, 𝐿 ≥ 1and using (3.30), for all 𝜔 ≥ 𝜔3, we get 

𝔒(𝜉ℜ𝛽𝜔, 𝜉ℜ𝛽𝜔+𝜎) ≤ 𝔒(𝜉ℜ𝛽𝜔, 𝜉ℜ𝛽𝜔+1) + 𝔒(𝜉ℜ𝛽𝜔, 𝜉ℜ𝛽𝜔+2) 

+⋯+𝔒(𝜉ℜ𝛽𝜔+2𝐿 , 𝜉ℜ𝛽𝜔+2𝐿+1) 

≤
1

𝜔
1
𝑟⁄
+

1

(𝜔 + 1)
1
𝑟⁄
+⋯+

1

(𝜔 + 2𝐿)
1
𝑟⁄
. 

Case2. If 𝜎 > 2 is even, then 𝜎 = 2𝐿, 𝐿 ≥ 1and using (3.30) and (3.35) ∀𝜔 ≥ 𝜔3, we get 
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(𝜉ℜ𝛽𝜔, 𝜉ℜ𝛽𝜔+𝜎) ≤ 𝔒(𝜉ℜ𝛽𝜔, 𝜉ℜ𝛽𝜔+2) + 𝔒(𝜉ℜ𝛽𝜔+2, 𝜉ℜ𝛽𝜔+3) 

+⋯+𝔒(𝜉ℜ𝛽𝜔+2𝐿−1, 𝜉ℜ𝛽𝜔+2𝐿) 

≤
1

𝜔
1
𝑟⁄
+

1

(𝜔 + 2)
1
𝑟⁄
+⋯+

1

(𝜔 + 2𝐿 − 1)
1
𝑟⁄
≤ ∑

1

𝑖
1
𝑟⁄

∞

𝑖=𝜔

. 

In both cases, we obtain 

𝔒(𝜉ℜ𝛽𝜔, 𝜉ℜ𝛽𝜔+𝜎) ≤ ∑
1

𝑖
1
𝑟⁄
,∞

𝑖=𝜔 ∀𝜔 ≥ 𝜔3 and 𝜎 ≥ 1. 

From the convergence of the series ∑
1

𝑖
1
𝑟⁄
  (since 

1

𝑟
> 1) , we obtain that {𝜉ℜ𝛽𝜔}  is a Cauchy ℜ -

sequence. Since (𝔅,ℜ,𝔒)  is an ℜ -CMS, there is 𝛽∗ ∈ 𝔅  such that 𝜉ℜ𝛽𝜔 → 𝛽∗  as 𝜔 → ∞  and 

we can suppose that 𝜉ℜ𝛽
∗ ≠ 𝛽∗. Assume that 𝔒(𝛽∗, 𝜉ℜ𝛽

∗) > 0. Using (3.24), we get 

𝛩(𝔒(𝜉ℜ𝛽𝜔+1, 𝜉ℜ𝛽
∗)) ≤ [𝛩(𝑈(𝜉ℜ𝛽𝜔, 𝛽

∗))]
𝐾
, ∀𝜔 ∈ ℕ, 

where 

𝑈(𝜉ℜ𝛽𝜔, 𝛽
∗) = max {𝔒(𝜉ℜ𝛽𝜔, 𝛽

∗),𝔒(𝜉ℜ𝛽𝜔, 𝜉ℜ𝛽𝜔+1),𝔒(𝛽
∗, 𝜉ℜ𝛽𝜔),

𝔒(𝜉ℜ𝛽𝜔, 𝜉ℜ𝛽𝜔+1)𝔒(𝛽
∗, 𝜉ℜ𝛽

∗)

1 + 𝔒(𝜉ℜ𝛽𝜔, 𝛽
∗)

}. 

Letting 𝜔 → ∞, we obtain 

𝛩(𝔒(𝛽∗, 𝜉ℜ𝛽
∗)) ≤ [𝛩(𝔒(𝛽∗, 𝛽∗))]

𝐾
< 𝛩(𝔒(𝛽∗, 𝜉ℜ𝛽

∗)). 

Therefore, 𝛽∗ = 𝜉ℜ𝛽
∗. It is a contradiction to the hypothesis that 𝜉ℜ does not have a periodic 

point. Thus, 𝜉ℜ has a periodic point 𝛽
∗ of period 𝑞. Assume that the set of fixed-points of 𝜉ℜ is 

empty. Then we have 𝑞 > 1 and 𝛽∗ ≠ 𝜉ℜ𝛽
∗. Using (1), we deduce 

𝛩(𝔒(𝛽∗, 𝜉ℜ𝛽
∗)) = 𝛩 (𝔒(𝜉ℜ

𝑞𝛽∗, 𝜉ℜ
𝑞+1𝛽∗)) 

≤ 𝛼ℜ(𝜉ℜ
𝑞−1𝛽∗, 𝜉ℜ

𝑞𝛽∗)𝛩 (𝔒(𝜉ℜ
𝑞𝛽∗, 𝜉ℜ

𝑞+1𝛽∗)) 

≤ [𝛩(𝔒(𝛽∗, 𝜉ℜ𝛽
∗))]

𝑘𝑞

< 𝛩(𝔒(𝛽∗, 𝜉ℜ𝛽
∗)). 

It is a contradiction. Thus, the set of fixed-point of 𝜉ℜ is non-empty, that is, 𝜉ℜ has at least one 

fixed-point.  ow, presume that 𝑢, 𝛽∗ ∈ 𝔅 are two fixed-points of 𝜉ℜ and 

(𝑢ℜ𝛽∗) or (𝛽∗ℜ𝑢), so (𝜉ℜ𝑢ℜ𝜉ℜ𝛽
∗) or (𝜉ℜ𝛽

∗ℜ𝜉ℜ𝑢). 

Then 

𝔒(𝛽∗, 𝑢) = 𝔒(𝜉ℜ𝛽
∗, 𝜉ℜ 𝑢) > 0. 
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Using (3.24), we obtain 

𝛩(𝔒(𝛽∗, 𝑢)) = 𝛩(𝔒(𝜉ℜ𝛽
∗, 𝜉ℜ𝑢)) ≤ [𝛩(𝔒(𝛽∗, 𝑢))]

𝑘
< 𝛩(𝔒(𝛽∗, 𝑢)), 

which is a contradiction. Then 𝜉ℜ has only one fixed point. 

Example 3.9. Consider 𝔅 = (−2, 0] and 

𝔒(𝛽, 𝛿) = {
0,                     if 𝛽 = 𝛿

max{𝛽, 𝛿},         otherwise.
            ∀ 𝛽, 𝛿 ∈ 𝔅. 

Take 𝛽ℜ𝛿 ⟺ 𝛽 + 𝛿 ≥ 0. Then (𝔅,ℜ,𝔒)is an ℜ-MS but it is not a metric space. For this, let 𝛽 =

−1 and 𝛿 = −
1

2
, then 𝔒(𝛽, 𝛿) = max {−1,−

1

2
} = −1, does not belong to [0, +∞). 

Define the function 𝛼ℜ: 𝔅 × 𝔅 → [0,∞) by 

𝛼ℜ(𝛽, 𝛿) = {

1,                    if 𝛽, 𝛿 ∈ [0,2]

ℯ−min{𝛽,𝛿}         if 𝛽, 𝛿 ∈ (0,−2)

0,               otherwise.

 

Define the mapping 𝜉ℜ: 𝔅 → 𝔅 by 

𝜉ℜ(𝛽) =

{
 

 1                        if 𝛽 ∈ [
−1

2
,
1

2
] ∪ {1},

min{1, 𝛽}

1 + max{1, 𝛽}
                   if 𝛽 ∈ (−2,

−1

2
) ∪ (

1

2
, 2] ∖ {1}.

 

Then (𝔅,ℜ,𝔒) is an ℜ-CMS, but it is not a CMS. Here, we show that it is not a CMS. For this, 

assume 𝛽𝜔 =
1

𝜔
− 2 is a Cauchy sequence, letting limit as 𝜔 → +∞ then {𝛽𝜔} converges to −2. 

Hence, it is not a CMS that is clear from the definition of completeness. 

If 𝛿ℜ𝛽 ⇔ 𝛿 + 𝛽 ≥ 0  then it is easy to realize that 𝜉ℜ𝛿ℜ𝜉ℜ𝛽 ⇔ 𝜉ℜ𝛿 + 𝜉ℜ𝛽 ≥ 0.  So, 𝜉ℜ  is 

ℜ-preserving. 

Assume {𝛽𝜔} is an ℜ-sequence convergent to 𝛽. Then 

lim
𝜔→∞

𝔒(𝛽𝜔, 𝛽) = lim
𝜔→∞

{
0,                      if 𝛽 = 𝛿 = 0

max{𝛽𝜔, 𝛽} ,         otherwise
. 

Then clearly, this implies that 

lim
𝜔→∞

𝔒(𝜉ℜ𝛽𝜔, 𝜉ℜ𝛽) = lim
𝜔→∞

{
0,                           if 𝜉ℜ𝛽 = 𝜉ℜ𝛿 = 0

max{𝜉ℜ𝛽𝜔, 𝜉ℜ𝛽} ,                    otherwise
. 

It shows that 𝜉ℜ is ℜ-continuous. 

Also, 𝜉ℜ is 𝛼ℜ-admissible, but not an 𝛼-admissible mapping. Here, we show that it is not 𝛼-

admissible. For this, assume that 𝔅 is not an ℜ-set and we take 𝛽 = −1 and 𝛿 = −
1

2
. Then, 

𝛼 (−1,−
1

2
) = ℯ−min

{−1,−
1
2
}
= ℯ1 > 1, 

and 



16884 

AIMS Mathematics  Volume 7, Issue 9, 16869–16888. 

𝛼 (𝜉(−1), 𝜉 (−
1

2
)) = 𝛼 (−

1

2
, 1) = 0 ≱ 1. 

Given 𝛩: (0,∞) → (1,∞) as 𝛩(𝑡) = ℯ𝑡. 

 ote that 𝜉ℜ does not fulfill to be an 𝛼-𝛩-contraction, but it verifies all the conditions of the 

𝛼ℜ-𝛩ℜ-contraction. Take 𝛽 = −
3

2
 and 𝛿 = −1. Then 𝛼 (−

3

2
, −1) = ℯ

3

2. Also, 

𝛼 (−
3

2
,−1) ℯ

(𝔒(−
3
4
,−
1
2
))
= (ℯ

3
2)ℯ−

1
2 = ℯ ≰ ℯ𝑘 𝔒(−

3
2
,−1) = ℯ−𝑘. 

So 𝜉ℜ is not an 𝛼 − 𝛩-contraction, but 𝜉ℜ is an 𝛼ℜ-𝛩ℜ-contraction for each 𝑘 ∈ [
1

2
, 1). Clearly, if 

there exists 𝛽0 ∈ 𝔅 such that 𝛽0ℜ𝜉ℜ𝛽0, then 𝛼ℜ(𝛽0, 𝜉ℜ𝛽0) ≥ 1. Hence, all conditions of Theorem 3.6 

are fulfilled and 𝜉ℜ has a fixed point ℯ = 1. 

4. Application 

Within this part, we apply Theorem 3.6 to investigate the existence and uniqueness of a solution 

of a nonlinear fractional differential equation (see [17]) given by 

𝑑𝜋
𝛾
𝛽(𝑡) = 𝑓(𝑡, 𝛽(𝑡))(𝑡 ∈ (0,1), 𝛾 ∈ (1,2]), 

with boundary conditions 

𝛽(0) = 0, 𝛽′(0) = 𝐼           𝐼 ∈ (0,1), 

where 𝑑𝜋
𝛾
 means the Caputo fractional derivative of order 𝛾, which is given as 

𝑑𝜋
𝛾
𝑓(𝑡) =

1

𝛤(𝑛 − 𝛾)
∫(𝑡 − 𝑠)𝑛−𝛾−1𝑓𝑛(𝑠)𝑑𝑠           (𝑛 − 1 < 𝛾 < 𝑛, 𝑛 = [𝛾] + 1)

𝑡

0

, 

and 𝑓: [0,1] × ℝ → ℝ+ is a continuous function. We consider 𝔅 = 𝐶([0,1], ℝ), from [0,1] into ℝ 
with supremum |𝛽| = Sup

𝑡∈[0,1]
|𝛽(𝑡)|. 

The Riemann-Liouville fractional integral of order 𝛾 (see [18]) is given by 

𝐼𝛾𝑓(𝑡) =
1

𝛤(𝛾)
∫ (𝑡 − 𝑠)𝛾−1𝑓(𝑠)𝑑𝑠            (𝛾 > 0)
𝑡

0
. 

Firstly, we give the reasonable form of a nonlinear fractional differential equation and then inquest 

the existence of a solution by the fixed-point theorem.  ow, we assume the below fractional differential 

equations 

𝑑𝜋
𝛾
𝛽(𝑡) = 𝑓(𝑡, 𝛽(𝑡))(𝑡 ∈ (0,1), 𝛾 ∈ (1,2]),     (4.1) 

with the integral boundary conditions 
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𝛽(0) = 0, 𝛽′(0) = 𝐼       (𝐼 ∈ (0,1)), 

where 

i. 𝑓: [0,1] × ℝ → ℝ+ is a continuous function. 

ii. 𝛽(𝑡): [0,1] → ℝ is continuous, 

so that 

|𝑓(𝑡, 𝛽) − 𝑓(𝑡, 𝛿)| ≤ 𝐿|𝛽 − 𝛿|, 

for all 𝑡 ∈ [0,1]  and for all 𝛽, 𝛿 ∈ 𝔅  such that 𝛽(𝑡) − 𝛿(𝑡) ≥ 0, 𝐿  is a constant with 𝐿Л < 1 

where 

Л =
1

𝛤(𝛾 + 1)
+

2𝑘𝛾+1𝛤(𝛾)

(2 − 𝑘2)𝛤(𝛾 + 1)
. 

Here, 𝜉ℜ is 𝛼ℜ -admissible. Also, there exists 𝛽0(𝑡) ∈ 𝔅  such that 𝛽0(𝑡)ℜ𝜉ℜ𝛽0(𝑡) 
and 𝛼ℜ(𝛽0(𝑡), 𝜉ℜ𝛽0(𝑡)) ≥ 1. Then the differential equation (4.1) has a unique solution. 

Proof. We take the below ℜ relation on 𝔅: 

𝛽(𝑡)ℜ𝛿(𝑡) iff 𝛽(𝑡) + 𝛿(𝑡) ≥ 0 for all 𝑡 ∈ [0,1]. 

The given function 𝔒(𝛽, 𝛿) = Sup
𝑡∈[0,1]

|𝛽(𝑡) − 𝛿(𝑡)| ∀𝛽, 𝛿 ∈ 𝔅  is an ℜ -CM. We define a 

mapping 𝜉ℜ: 𝔅 → 𝔅 by 

𝜉ℜ𝛽(𝑡) =
1

𝛤(𝛾)
∫ (𝑡 − 𝑠)𝛾−1𝑓(𝑠, 𝛽(𝑠))𝑑𝑠
𝑡

0
+

2𝑡

(2−𝑘2)𝛤(𝛾)
∫ (∫ (𝑠 − 𝑚)𝛾−1𝑓(𝑚, 𝛽(𝑚))𝑑𝑚

𝑠

0
)𝑑𝑠

𝑘

0
, (4.2) 

for all 𝑡 ∈ [0,1]. Equation (4.1) has a solution a function 𝛽 ∈ 𝔅 iff 𝛽(𝑡) = 𝜉ℜ𝛽(𝑡) for all 𝑡 ∈ [0,1]. 

For the purpose to check the existence of a fixed point of 𝜉ℜ, we are going to examine that 𝜉ℜ is ℜ-

preserving, an ℜ-contraction and ℜ-continuous. 

Let for all 𝑡 ∈ [0,1] so that 𝛽(𝑡)ℜ𝛿(𝑡), which means that 𝛽(𝑡) + 𝛿(𝑡) ≥ 0, and clearly from 

Eq (4.2), 

𝜉ℜ 𝛽(𝑡) + 𝜉ℜ𝛿(𝑡) ≥ 0. 

This implies that 

𝜉ℜ𝛽(𝑡)ℜ𝜉ℜ𝛿(𝑡). 

Hence, 𝜉ℜ is ℜ-preserving. For all 𝑡 ∈ [0,1] and 𝛽(𝑡)ℜ𝛿(𝑡), we get 

𝜉ℜ𝛽(𝑡) − 𝜉ℜ𝛿(𝑡) 

=
1

𝛤(𝛾)
∫(𝑡 − 𝑠)𝛾−1𝑓(𝑠, 𝛽(𝑠))𝑑𝑠

𝑡

0

+
2𝑡

(2 − 𝑘2)𝛤(𝛾)
∫(∫(𝑠 − 𝑚)𝛾−1𝑓(𝑚, 𝛽(𝑚))𝑑𝑚

𝑠

0

)𝑑𝑠

𝑘

0

 

−[
1

𝛤(𝛾)
∫ (𝑡 − 𝑠)𝛾−1𝑓(𝑠, 𝛿(𝑠))𝑑𝑠
𝑡

0
+

2𝑡

(2−𝑘2)𝛤(𝛾)
∫ (∫ (𝑠 − 𝑚)𝛾−1𝑓(𝑚, 𝛿(𝑚))𝑑𝑚

𝑠

0
)𝑑𝑠

𝑘

0
]. 

 ext, we show that 𝜉ℜ is an ℜ-contraction. For 𝑡 ∈ [0,1] so that 𝛽(𝑡)ℜ𝛿(𝑡), we obtain 

  



16886 

AIMS Mathematics  Volume 7, Issue 9, 16869–16888. 

|𝜉ℜ𝛽(𝑡) − 𝜉ℜ𝛿(𝑡)| 

=

|

|
1

𝛤(𝛾)
∫(𝑡 − 𝑠)𝛾−1𝑓(𝑠, 𝛽(𝑠))𝑑𝑠

𝑡

0

+
2𝑡

(2 − 𝑘2)𝛤(𝛾)
∫(∫(𝑠 −𝑚)𝛾−1𝑓(𝑚, 𝛽(𝑚))𝑑𝑚

𝑠

0

)𝑑𝑠

𝑘

0

−

1

𝛤(𝛾)
∫(𝑡 − 𝑠)𝛾−1𝑓(𝑠, 𝛿(𝑠))𝑑𝑠

𝑡

0

+
2𝑡

(2 − 𝑘2)𝛤(𝛾)
∫(∫(𝑠 −𝑚)𝛾−1𝑓(𝑚, 𝛿(𝑚))𝑑𝑚

𝑠

0

)𝑑𝑠

𝑘

0

|

|

 

≤
1

𝛤(𝛾)
∫(𝑡 − 𝑠)𝛾−1|𝑓(𝑠, 𝛽(𝑠)) − 𝑓(𝑠, 𝛿(𝑠))|𝑑𝑠

𝑡

0

 

+
2𝑡

(2 − 𝑘2)𝛤(𝛾)
∫(∫(𝑠 −𝑚)𝛾−1|𝑓(𝑚, 𝛽(𝑚)) − 𝑓(𝑚, 𝛿(𝑚))|𝑑𝑚

𝑠

0

)𝑑𝑠

𝑘

0

 

≤
𝐿|𝛽 − 𝛿|

𝛤(𝛾)
∫(𝑡 − 𝑠)𝛾−1𝑑𝑠 +

2𝐿|𝛽 − 𝛿|

𝛤(𝛾)
∫(∫(𝑠 −𝑚)𝛾−1𝑑𝑚

𝑠

0

)𝑑𝑠

𝑘

0

𝑡

0

 

≤
𝐿|𝛽 − 𝛿|

𝛤(𝛾 + 1)
+
2𝑘𝛾+1𝐿|𝛽 + 𝛿|𝛤(𝛾)

(2 − 𝑘2)𝛤(𝛾 + 2)
 

≤ 𝐿|𝛽 − 𝛿| (
1

𝛤(𝛾 + 1)
+

2𝑘𝛾+1𝛤(𝛾)

(2 − 𝑘2)𝛤(𝛾 + 2)
) = 𝐿Л|𝛽 − 𝛿|. 

From the fact 𝐿Л < 1. Let us take 𝛩(𝑡) = 𝑒𝑡𝑒
𝑡
, ∀𝑡 > 0. Then 

𝛼ℜ(𝛽(𝑡), 𝛿(𝑡))𝛩(𝑑(𝜉ℜ𝛽, 𝜉ℜ𝛿) 

= 𝛼ℜ(𝛽(𝑡), 𝛿(𝑡))𝑒
(𝑑(𝜉ℜ𝛽,𝜉ℜ𝛿))𝑒

𝑑(𝜉ℜ𝛽,𝜉ℜ𝛿)
 

≤ 𝛼ℜ(𝛽(𝑡), 𝛿(𝑡))𝑒
(𝐿Л𝑑(𝛽,𝛿))𝑒𝐿Л𝑑(𝛽,𝛿) 

≤ 𝛼ℜ(𝛽(𝑡), 𝛿(𝑡))𝑒
(𝑘𝑑(𝛽,𝛿))𝑒𝑘𝑑(𝛽,𝛿) 

≤ [𝑒(𝑑(𝛽,𝛿))𝑒
𝑑(𝛽,𝛿)

]
𝑘

= [𝛩(𝑑(𝛽, 𝛿)]𝑘, 

where 𝑘 = 𝐿Л and 𝑘 ∈ (0,1). This implies that 𝜉ℜ is an ℜ-contraction. 

Suppose {𝛽𝑛} is an ℜ-sequence in 𝔅 such that {𝛽𝑛} converge to 𝛽 ∈ 𝔅. Because 𝜉ℜ is ℜ-

preserving, {𝛽𝑛} is an ℜ-sequence for each 𝑛 ∈ ℕ. Because 𝜉ℜ is an ℜ-contraction, we have 

𝛼ℜ(𝛽(𝑡), 𝛿(𝑡))𝛩 (𝑑(𝜉ℜ𝛽𝑛(𝑡), 𝜉ℜ𝛽(𝑡))) ≤ [𝛩(𝑑(𝛽𝑛(𝑡), 𝛽(𝑡))]
𝑘. 

As lim
𝑛→∞

𝑑(𝛽𝑛(𝑡), 𝛽(𝑡)) = 0 for all 𝜏 > 0, then it is clear that 

lim
𝑛→∞

𝑑(𝜉ℜ𝛽𝑛(𝑡), 𝜉ℜ𝛽(𝑡)) = 0. 

Hence, 𝜉ℜ is ℜ-continuous. Thus, all circumstances of Theorem 3.6 are fulfilled. This implies 

that 𝛽(𝑡) is the fixed point of 𝜉ℜ. 
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5. Conclusions 

In this manuscript, the notion of the concept of 𝛼ℜ-𝛩ℜ-contractions is introduced and some fixed-

point results are proved in the sense of ℜ-CMSs by using an 𝛼ℜ-𝛩ℜ-contraction. Some constructive 

examples and applications to the fractional differential equation are also imparted. This work can also 

be extended in the sense of ℜ-extended metric spaces, ℜ-controlled metric spaces, ℜ-double 

controlled metric spaces, ℜ-triple controlled metric spaces, and many other structures. 
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