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Abstract: This paper is dedicated to studying the following Kirchhoff-Schrödinger-Poisson system: −
(
a + b

∫
R3
|∇u|2dx

)
∆u + V(|x|)u + λφu = K(|x|) f (u), x ∈ R3,

−∆φ = u2, x ∈ R3,

where V,K are radial and bounded away from below by positive numbers. Under some weaker
assumptions on the nonlinearity f , we develop a direct approach to establish the existence of infinitely
many nodal solutions {ub,λ

k }with a prescribed number of nodes k, by using the Gersgorin disc’s theorem,
Miranda theorem and Brouwer degree theory. Moreover, we prove that the energy of {ub,λ

k } is strictly
increasing in k, and give a convergence property of {ub,λ

k } as b→ 0 and λ→ 0.
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1. Introduction and main results

In this paper, we study the existence of infinitely many nodal solutions for the following Kirchhoff-
Schrödinger-Poisson problem : −

(
a + b

∫
R3
|∇u|2dx

)
∆u + V(|x|)u + λφu = K(|x|) f (u), x ∈ R3,

−∆φ = u2, x ∈ R3,

(1.1)

where V,K, F satisfy the following assumptions:

(V) V : [0,+∞)→ R is measurable with V0 := ess inf[0,+∞) V > 0;
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(K) K ∈ L∞([0,+∞)) with ess inf[0,+∞) K > 0;
(F1) f ∈ C(R;R), f (t) = − f (−t), and f (t) = o(t) as t → 0;
(F2) there exists a constant C0 > 0 and p ∈ (4, 6) such that for all x ∈ RN ,

| f (t)| ≤ C0

(
|t| + |t|p−1

)
, ∀t ∈ R;

(F3) lim|t|→∞
| f (t)|
|t|3 = +∞;

(F4) there exists θ ∈ (0, 1) such that for all x ∈ RN , t > 0 and τ ∈ R\{0},

K(|x|)
[

f (τ)
τ3 −

f (tτ)
(tτ)3

]
sign(1 − t) + θV0

∣∣∣1 − t−2
∣∣∣

τ2 ≥ 0.

The nonlocal operator (a + b
∫
R3 |∇u|2dx)∆u comes from the following Kirchhoff problem −(a + b
∫
R3 |∇u|2dx)∆u + V(x)u = f (x, u), x ∈ RN ,

u ∈ H1
(
RN

)
,

(1.2)

where a, b > 0. Problem (1.2) is related to is related to the stationary analogue of the Kirchhoff equation

utt −

(
a + b

∫
Ω

|∇u|2dx
)
∆u = f (x, u),

which was introduced by Kirchhoff [20]. After the pioneer work of Lions [23], lots of interesting
results to problem (1.2) or similar problems were obtained in last decade. For example, by category
theory, He and Zou [13] studied the existence of multiple positive solutions for (1.2). Moreover,
they also studied the concentrated behavior of positive solution. Combining constraint variational
methods and the quantitative deformation lemma, Shuai [28] studied the existence and asymptotic
behavior of the least energy sign-changing solution to problem (1.2). Soon afterwards, under some
more weak assumptions on f (like (F1)–(F4)), Tang and Cheng [33] improved and generalized some
results obtained in [28]. For the investigation of stationary states of the Kirchhoff type equation and
other non-local problems, we refer to [1, 9, 11–17, 27, 33, 38, 39] and reference therein.

When a = 1, b = 0, system (1.1) reduces to the Schrödinger-Poisson system{
−∆u + V(|x|)u + λφu = K(|x|) f (u), x ∈ R3,

−∆φ = u2, x ∈ R3.
(1.3)

For more details about its physical meaning, we refer the reader to [4, 31] and the references therein.
Noting that system (1.3) involves a nonlocal term λφ(x)u, namely, it is not a pointwise identity. In view
of this, more mathematical difficulties are waiting to be solved, which makes the study of system (1.3)
more meaningful. In the last decade, much effort has been made to investigate system like (1.3) on the
existence of positive solutions, ground state solutions, multiple solutions and sign-changing solution;
see for examples [2,6,19,24,26,29,32,35,41] and the reference therein. In particular, when K(|x|) f (u) =

|u|p−1u (3 < p < 5), Wang and Zhou [35] proved that (1.3) had a least energy sign-changing solution via
a constraint variational method combining the Brouwer degree theory. After that, Chen and Tang [6]
consider (1.3) under a general nonlinearity f (x, u) like (F1)–(F4)). Utilizing the Non-Nehari manifold
method, the authors obtained a least energy sign-changing solution.

On the other hand, system (1.1) includes the well-known nonlinear Schrödinger equation
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 −a∆u + V(|x|)u = K(|x|) f (u), x ∈ RN ,

u ∈ H1
(
RN

)
,

(1.4)

Problem of (1.4) has been extensively studied since 1970s. One can refer to the books [31, 36] and
reference for the details and related results. In particular, Bartsch and Willem [3], Cao and Zhu [5]
proved independently that, for every integer k ≥ 0, there is a pair of solutions u±k of (1.5), having
precisely k nodes. They first obtain the solution of (1.1) in each annulus, including every ball and
the complement of it, and then glue them by matching the normal derivative at each junction point.
After that, many authors pay their attention to find nodal solutions of elliptical partial differential
equations with non-local term. When K(x) f (u) = |u|p−1u (3 < p < 5), Kim and Seok [19] construct a
sign-changing solution of Schrödinger-Poisson system (1.3) with any prescribed number nodes. More
precisely, due to the nonlocal term λφu, the method used in [3, 5] could not apply to (1.3) directly.
Hence, by changing (1.3) to another system and take advantage of Nehari method and gluing method
in [3,5], Kim and Seok obtained infinitely many sign-changing solutions. It is worth noting that Deng,
Peng and Shuai [9] considered the Kirchhoff type problem (1.2), where f ∈ C1 and satisfies the Nehari
monotonicity condition

(F5) f (t)
|t|3 is increasing on (−∞, 0) ∪ (0,+∞).

By using the Nehari method and gluing method as in [19], they proved (1.2) had a least energy sign-
changing radial solution with any prescribed number nodes. It should be mentioned that the assumption
(F4) is much weaker than (F5). As stated in [6], there are many functions satisfying (F1)–(F4)), but
not (F5). For example, f (t) =

(
|t|3 + |t|3/2

)
t,∀t ∈ R. Very recently, Guo and Wu [12] considered (1.2)

with assumption (F1)–(F4)), by using Non-Nehari method, matrix theory and Brouwer degree theory,
they get a similar conclusion as in [9]. For the reader interested in nodal solutions for the elliptical
partial differential equations, we would also like to refer [7, 10, 18] and references therein.

For system (1.1) contains bother nonlocal operator and nonlocal nonlinear term, the study of
system (1.1) become technically complicated. In recent year, there were some scholars paying attention
to system (1.1) or similar problems; see [8, 21, 37, 40] and the reference therein. Especially, when
K(x) f (u) = |u|p−1u (3 < p < 5), Deng and Yang [8] studied the nodal solution of (1.1) by using
the gluing method. But they did not study the energy property and asymptotic behavior of the nodal
solution. Motivated by the above results, it is natural to ask, under condition (F1)–(F4)), whether (1.1)
had sign-changing solutions with any prescribed number nodes? If there exist such solution, how about
its energy property and asymptotic behavior? To the best of our knowledge, this question is open for
more general nonlinearities f , especially when f ∈ C0.

Inspired by the work mentioned above, in this paper, we seek the nodal solutions to problem (1.1)
under the assumption (V), (K) and (F1)–(F4). Before stating our main results, we give several
definitions and some notations. Throughout this paper, we define

H :=
{

u ∈ H1
r

(
R3

)
|

∫
R3

(
a|∇u|2 + V(|x|)u2

)
dx < +∞

}
,

with the norm

‖u‖2 =

∫
R3

(
a|∇u|2 + V(|x|)u2

)
dx.
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The embedding H ↪→ H1
r

(
R3

)
is continuous due to the condition (V). Then the embedding H ↪→

Lq
(
R3

)
is compact for 2 < q < 6, due to the well known result of Strauss [30]. Besides, as is well

known from the Lax-Milgram theorem, for any u ∈ H1
(
R3

)
, there exists a unique

φu =

∫
R3

u2(y)
4π|x − y|

dy ∈ D1,2
(
R3

)
solving the equation −∆φ = u2. Then the energy functional associated with system (1.1) is well-defined

Ib,λ(u) =
1
2
‖u‖2 + b

(∫
R3
|∇u|2dx

)2

+
λ

4

"
R3×R3

u2(x)u2(y)
4π|x − y|

dxdy −
∫
R3

K(|x|)F(u)dx, (1.5)

where F(u) =
∫ u

0
f (τ)dτ. Moreover, Ib,λ ∈ C

1 (H,R), due to the growth condition (F1), (F2) and the
Hardy-Littlewood-Sobolev inequality, see [22, Theorem 4.3]. Hence, for any u, ϕ ∈ H, we have

〈
I′b,λ(u), ϕ

〉
=

∫
R3

(a∇u∇ϕ + V(|x|)uϕ)dx + b
∫
R3
|∇u|2dx

∫
R3
∇u∇φdx

+ λ

∫
R3
φuuϕdx −

∫
R3

K(|x|) f (u)ϕdx.
(1.6)

Clearly, critical points of Ib,λ are the weak solutions for nonlocal problem (1.1). A necessary condition
for u ∈ H to be a critical point of Ib,λ is that

〈
I′b,λ(u), u

〉
= 0. This necessary condition defines the

Nehari manifold
N =

{
u ∈ H\{0} :

〈
I′b,λ(u), u

〉
= 0

}
,

and the corresponding ground state energy is

c0 = inf
N

Ib,λ.

Meanwhile, for each k ∈ N+, for each positive integer k, we denote by rk = (r1, . . . , rk) ∈ Rk with
0 = r0 < r1 < · · · < rk < rk+1 = ∞, and define a Nehari type set

Nk = { u ∈ H : ∃ rk such that (−1)i+1ui > 0 in Bi, ui = 0 on ∂Bi

and I′b,λ(u)ui = 0, ∀1 ≤ i ≤ k + 1
}
,

(1.7)

where B1 =
{
x ∈ RN : 0 ≤ |x| < r1

}
, Bi :=

{
x ∈ RN : ri−1 < |x| < ri

}
, ui = uBi and χBi is the characteristic

function on Bi. Clearly, u =
∑k+1

i=1 ui and Nk consists of nodal functions with precisely k nodes. We
consider the level

ck = inf
Nk

Ib,λ (1.8)

Our first main result of the paper can be stated as follows.

Theorem 1.1. Under the assumptions (V), (K), (F1)–(F4), for every integer k ≥ 0, there exists a radial
solution uk of (1.1), which changes sign exactly k-times.
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The proof of Theorem 1.1 is based on the argument presented in [19] regarding the Nehari method
and gluing method (see [3, 5]). However, comparing to [19], the contribution of this work is greatly
relax the assumptions on f and subsequently deal with the difficulties it brings. The main difficult is
when the nonlinearity term f does not satisfy Nehari monotonicity condition (F5), one can not use
the method in [19] to prove the set Nk is nonempty. Meanwhile, due to f < C1, it is impossible to
prove the differentiability of the Nehari set Nk and the Lagrangian multiplier principle dose not work.
To overcome this difficulty, we use the Non-Nehari method in [6] and the Gersgorin disc’s Theorem
(see [12]) to prove Nk is nonempty. Besides, taking advantage of Brouwer degree theory and Miranda
theorem, we obtain the least energy sign-changing solution of (1.1) with exactly k nodes for any k ≥ 0.

Similar to [9], our another aim in the present paper is to show that the energy of uk obtained in
Theorem 1.1 is strictly increasing in k.

Theorem 1.2. If the assumptions of Theorem 1.1 hold, then the energy of uk is strictly increasing in k,
i.e.,

Ib,λ (uk+1) > Ib,λ (uk) , for any k ≥ 0.

Moreover, Ib,λ (uk) > (k + 1)Ib,λ (u0), where u0 is the solution uk with k = 0 in Theorem 1.1.

Note that uk obtained in Theorem 1.1 depends on b, λ. Thus, we denote it by ub,λ
k and analyze the

convergence properties of ub,λ
k as b→ 0+ and λ→ 0+.

Theorem 1.3. Under the assumptions of Theorem 1.1, for any sequence {bn} and {λn} with bn → 0+

and λn → 0+as n→ ∞, there exists a subsequence, still denoted by {bn} and {λn}, such that the solution
ubn,λn

k obtained in Theorem 1.1, converge to wk strongly in H as n → ∞, where wk is a least energy
radial solution of (1.4) which changes sign exactly k-times.

The paper is organized as follows. In Section 2, we first present variational framework and and
modify the energy functional (1.1) to the functional corresponding to a system of (k + 1)-equations.
Besides, we give some useful Lemmas in Matrix theory. In Section 3, we devote to find a nontrivial
critical point of the modified functional. In Section 4, we obtain a solution of (1.1) with k-nodes
by using critical point obtained in Section 2 as a building block, henceforth complete the proof of
Theorem 1.1. Finally, in Section 4, we prove Theorems 1.2 and 1.3.

2. Preliminaries

In this section, we outline the variational framework for problem (1.1) and modify the energy
functional to another functional, which corresponds to a system of (k + 1)-equations. In addition,
we will also give some results from matrix theory, which is important in our proofs.

For each integer k, we define

Γk =
{
rk = (r1, . . . , rk) ∈ Rk | 0 := r0 < r1 < · · · < rk+1 := ∞

}
,

and for each rk ∈ Γk, set

Brk
1 =

{
x ∈ R3 : 0 ≤ |x| < r1

}
,

Brk
i =

{
x ∈ R3 : ri−1 < |x| < ri

}
, for i = 2, 3, · · · , k

Brk
k+1 =

{
x ∈ R3 : |x| ≥ rk

}
.
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Obviously, Brk
1 is a ball, Brk

2 , · · · , B
rk
k are annuli and Brk

k+1 is the complement of a ball. Fix an element

rk = (r1, · · · , rk) ∈ Γk and thereby a family of annuli
{
Brk

i

}k+1

i=1
, we write

H rk = H rk
1 × · · · × H rk

k+1,

where
H rk

i :=
{
u ∈ H1

0

(
Brk

i

)
| u(x) = u(|x|), u(x) = 0 if x < Brk

i

}
,

for i = 1, · · · , k + 1. Apparently, H rk
i is Hilbert space with the norm

‖u‖2i =

∫
B

rk
i

(
a|∇u|2 + V(|x|)u2

)
dx.

Hereafter, we always regard ui ∈ H rk
i as an element in H1

(
R3

)
by setting u ≡ 0 in R3\Brk

i , and denote
by

A(ui, u j) =

∫
R3
|∇ui|

2|∇u j|
2dx (2.1)

and

B(ui, u j) =

∫
R3

∫
R3

u2
i (x)u2

j(y)

4π|x − y|
dxdy. (2.2)

After that, we introduce an auxiliary functional Jb,λ : H rk → R related to Ib,λ : H → R, defined by

Jb,λ (u1, . . . , uk+1) := Ib,λ

 k+1∑
i=1

ui


=

k+1∑
i=1

1
2
‖ui‖

2
i +

b
4

k+1∑
i=1

∫
B

rk
i

|∇ui|
2dx

2

+
λ

4

k+1∑
i=1

∫
B

rk
i

∫
B

rk
i

u2
i (x)u2

i (y)
4π|x − y|

dxdy

+

k+1∑
i=1

∑
j,i

b
4

∫
B

rk
i

|∇ui|
2dx

∫
B

rk
j

|∇u j|
2dx +

k+1∑
i=1

∑
j,i

λ

4

∫
B

rk
j

∫
B

rk
i

u2
i (x)u2

i (y)
4π|x − y|

dxdy

−

k+1∑
i=1

∫
B

rk
i

K(|x|)F(u)dx

=

k+1∑
i=1

1
2
‖ui‖

2
i +

λ

4
A(ui, ui) −

1
p

∫
B

rk
i

K(|x|)F(u)dx


+
b
4

k+1∑
i=1

∑
j,i

A(ui, u j) +
λ

4

k+1∑
i=1

∑
j,i

B(ui, u j).

Therefore, for each i = 1, . . . , k + 1,

∂ui Jb,λ (u1, . . . , uk+1) ui = ‖ui‖
2
i + bA(ui, ui) + λB(ui, ui) −

∫
B

rk
i

K(|x|)F(u)dx

+ b
k+1∑
i=1

∑
j,i

A(ui, u j) + λ

k+1∑
i=1

∑
j,i

B(ui, u j).
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Moreover, if (u1, . . . , uk+1) ∈ H rk is a critical point of Jb,λ, then each component ui satisfies
−(a + b

k+1∑
j=1

‖∇u j‖
2
L2)∆u + V(|x|)u + λ

∫
R3

|
∑k+1

j=1 u j(y)|2

4π|x − y|
dy

 u = K(|x|) f (u), x ∈ Brk
i ,

u = 0, x < Brk
i .

(2.3)

Least energy radial solution of (1.1) which change signs exactly k times will constructed by gluing
the solutions of the system (2.3). To this end, analogous to Nehari manifold, we define the set N rk

k by

N
rk
k : =

{
(u1, · · · , uk+1) ∈ H rk | ui , 0, ∂ui Jb,λ (u1, · · · , uk+1) ui = 0 for i = 1, · · · , k + 1

}
=

{
(u1, · · · , uk+1) ∈ H rk | ui , 0 and for each i = 1, · · · , k + 1,

‖ui‖
2
i + b

k+1∑
j=1

A(u j, ui) + λ

k+1∑
j=1

B(u j, ui) −
∫

B
rk
i

K(|x|)F(ui)dx = 0
}
,

(2.4)

and consider the least energy level

d(rk) = inf
(u1,··· ,uk+1)∈N rk

k

Jb,λ (u1, · · · , uk+1) . (2.5)

We will use constraint minimizer onN rk
k to seek a critical point of Jb,λ with nonzero component. Until

then, we would like to present some properties of F(u) and results from matrix theory to ensure that
N

rk
k is nonempty.

Lemma 2.1. Assume that (F1)–(F4) holds, then for any t > 0 and τ ∈ R\{0}, we have

K(|x|)F(τ) − K(|x|)F
(
t1/4τ

)
+

t − 1
4

K(|x|) f (τ)τ −
θV0

(
t1/2 − 1

)2

4
τ2 ≤ 0, (2.6)

where θ has been given in (F4).

Proof. In fact, a straightforward computation shows that

K(|x|)F(τ) − K(|x|)F
(
t1/4τ

)
+

t − 1
4

K(|x|) f (τ)τ −
θV0

(
t1/2 − 1

)2

4
τ2

=

∫ 1

t

(
1
4

K(|x|) f
(
s1/4τ

)
s−3/4τ −

1
4

K(|x|) f (τ)τ −
θV0

4

(
s−1/2 − 1

)
τ2

)
ds

=
τ4

4

∫ 1

t

K(|x|) f
(
s1/4τ

)
(
s1/4τ

)3 −
K(|x|) f (τ)

τ3 + θV0
1 − s−1/2

τ2

 ds

=
τ4

4

∫ 1

t

K(|x|)

 f (τ)
τ3 −

f
(
s1/4τ

)
(
s1/4τ

)3

 sign(1 − s) + θV0

∣∣∣1 − s−1/2
∣∣∣

τ2

 sign(s − 1)ds,

(2.7)

which combines with (F4) ensure (2.6). �

As a byproduct of the last lemma is the following corollary.

Corollary 2.1. Assume that (F1)–(F4) hold, then for any τ ∈ R, we have

K(|x|)F(τ) −
1
4

K(|x|) f (τ)τ −
θV0

4
τ2 ≤ 0.
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Proof. In fact, the corollary follows by letting t → 0 in (2.6). �

Lemma 2.2. (Gersgorin disc Theorem [34, Therome 1.1]) For any matrix A =
(
ai, j

)
∈ Cn×n and any

eigenvalue λ ∈ σ(A) := {µ ∈ C : det(µE − A) = 0}, there is a positive integer l ∈ {1, . . . , n} such that∣∣∣λ − al,l

∣∣∣ ≤∑
j,l

∣∣∣al, j

∣∣∣ .
By virtue of this lemma, we have the following results.

Lemma 2.3. [12] For any bi j = b ji > 0 with i , j ∈ {1, . . . , n} and si > 0 with i = 1, . . . , n, define the
matrix C :=

(
ci j

)
n×n

by

ci j =

{
−

∑
l,i slbil/si for i = j,

bi j > 0 for i , j.

Then the real symmetric matrix
(
ci j

)
n×n

is non-positive definite.

Lemma 2.4. Defining map G1 : (R≥0)k+1 → R and G2 : (R≥0)k+1 → R by

G1(t1, · · · , tk+1) =

k+1∑
i, j=1

(
t1/2
i t1/2

j − ti

)
A(ui, u j), (2.8)

and

G2(t1, · · · , tk+1) =

k+1∑
i, j=1

(
t1/2
i t1/2

j − ti

)
B(ui, u j), (2.9)

where A(ui, u j) and B(ui, u j) are defined in (2.1) and (2.2). Then the map G1 and G2 are strictly
concave in (R>0)k+1. Moreover, for (t1, · · · , tk+1) ∈ (R≥0)k+1, Gm(t1, · · · , tk+1) ≤ Gm(1, · · · , 1) = 0 ,
where m ∈ {1, 2}.

Proof. We just need to check this result for G1, and then the proof of G2 is similar, we omit it. Indeed,
direct computations give that

∂G1

∂ti
=

k+1∑
l=1
l,i

(
1
2

t−
1
2

i t
1
2
l − 1

)
A(ui, ul),

∂2G1

∂t2
i

=

k+1∑
l=1
l,i

(
−

1
4

t−
3
2

i t
1
2
l − 1

)
A(ui, ul) and

∂2G1

∂tit j
=

1
4

t−
1
2

i t−
1
2

j A(ui, u j) for i , j.

Defining the matrix
(
ai, j

)
(k+1)×(k+1)

by ai, j = 1
4 t−

1
2

i t−
1
2

j A(ui, u j), then

(
∂2G1

∂tit j

)
(k+1)×(k+1)

=

 −
∑
l,i

tlail/ti for i = j,

ai j > 0 for i , j,

which is a negative definite matrix in (R>0)k+1 by Lemma 2.3. Therefore, G1 is a strictly concave
function in (R>0)k+1. Moreover, notice that ∇G1(1, · · · , 1) = 0, we deduce that (1, · · · , 1) is a unique
global maximum point of G1 on (R>0)k+1 and

max
(R>0)k+1

G1(t1, · · · , tk+1) = G1(1, · · · , 1) = 0.
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Consequently, by the continuity of G1,

max
(R≥0)k+1

G1(t1, · · · , tk+1) = max
(R>0)k+1

G1(t1, · · · , tk+1) = g(1, · · · , 1) = 0.

As a result, we complete the proof of this lemma. �

3. Critical points of the auxiliary functional

In this section, we seek a critical point of the auxiliary functional Jb,λ. Firstly, we prove the
following lemma.

Lemma 3.1. Assume that (V), (K), (F1) − (F4) hold and rk ∈ Γk is fixed. Then for any (u1, · · · , uk+1) ∈
H rk\{0} and (t1, · · · , tk+1) ∈ (R≥0)k+1 := [0,∞)k+1, there holds

Jb,λ

(
t

1
4
1 u1, · · · , t

1
4
k+1uk+1

)
− Jb,λ(u1, · · · , uk+1)

≤

k+1∑
i=1

 ti − 1
4

∂ui Jb,λ(u1, · · · , uk+1)ui − (1 − θ)

(
t1/2
i − 1

)2

4
‖ui‖

2
i

 , (3.1)

where θ ∈ (0, 1) is defined in (F4).

Proof. For each (u1, · · · , uk+1) ∈ H rk with ui , 0 for i = 1, · · · , k + 1, we have

Jb,λ

(
t

1
4
1 u1, · · · , t

1
4
k+1uk+1

)
− Jb,λ(u1, · · · , uk+1)

=

k+1∑
i=1

1
2

t
1
2
i ‖ui‖

2
i +

b
4

t
1
2
i

k+1∑
j=1

t
1
2
j A(u j, ui) +

λ

4
t

1
2
i

k+1∑
j=1

t
1
2
j B(u j, ui) −

∫
Brk

i

K(|x|)F(t
1
4
i ui)


−

k+1∑
i=1

1
2
‖ui‖

2
i +

b
4

k+1∑
j=1

A(u j, ui) +
λ

4

k+1∑
j=1

B(u j, ui) −
∫

Brk
i

K(|x|)F(ui)


=

k+1∑
i=1

[
1
2

(t
1
2
i − 1)‖ui‖

2
i +

b
4

k+1∑
j=1

(
t

1
2
j t

1
2
i − 1

)
A(u j, ui) +

λ

4

k+1∑
j=1

(
t

1
2
j t

1
2
i − 1

)
B(u j, ui)

+

∫
Brk

i

k(|x|)
[
F(t

1
4
i ui) − F(ui)

]
dx

]

=

k+1∑
i=1

ti − 1
4

∂ui Jb,λ(u1, · · · , uk+1)ui −

k+1∑
i=1

(t
1
2
i − 1)2

4
‖ui‖

2
i

+
b
4

k+1∑
i, j=1

(t
1
2
j t

1
2
i − ti)A(u j, ui) +

λ

4

k+1∑
i, j=1

(t
1
2
j t

1
2
i − ti)B(u j, ui)

+

k+1∑
i=1

∫
Brk

i

(
K(|x|)F (ui) − K(|x|)F

(
t1/4
i ui

)
+

ti − 1
4

K(|x|) f (ui) ui

)
dx

≤

k+1∑
i=1

 ti − 1
4

∂ui Jb,λ(u1, · · · , uk+1)ui − (1 − θ)
(t

1
2
i − 1)2

4
‖ui‖

2
i


+

b
4

G1(t1, · · · , tk+1) +
λ

4
G2(t1, · · · , tk+1)

+

k+1∑
i=1

∫
Brk

i

K(|x|)
(
F (ui) − F

(
t1/4
i ui

))
+

ti − 1
4

K(|x|) f (ui) ui − θV0
(t

1
2
i − 1)2

4
|ui|

2

 dx.

(3.2)
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Now, using Lemmas 2.1 and 2.4, we can easily get the conclusion of Lemma 3.1. �

From now on, we always assume that (V), (K), (F1)–(F4) hold. We are devoted to finding the
critical points of Jb,λ. Firstly, for (u1, · · · , uk+1) ∈ H rk , we define a map Ψu : (R≥0)k+1 → R by

Ψu(t1, · · · , tk+1) := Jb,λ

(
t

1
4
1 u1, · · · , t

1
4
k+1uk+1

)
. (3.3)

With the help of Lemma 3.1, we are devoted to prove that the setN rk
k , defined in (2.4), is nonempty

in the following Lemma.

Lemma 3.2. Assume rk ∈ Γk is fixed. Then for any (u1, · · · , uk+1) ∈ H rk\{0}, there exists a unique
(k + 1) − tuple (t̄1, · · · , t̄k+1) of positive numbers such that

Ψu(t̄1, · · · , t̄k+1) = max
(R≥0)k+1

Ψu(t1, · · · , tk+1), (3.4)

and (
(t̄1)

1
4 u1, · · · , (t̄k+1)

1
4 uk+1

)
∈ N

rk
k . (3.5)

Proof. By the definition of Ψu and the assumption (V), (K), (F1)–(F4), we deduce that
Ψu (t1, . . . , tk+1) → 0 as | (t1, . . . , tk+1) | → 0 and Ψu (t1, . . . , tk+1) → −∞ as | (t1, . . . , tk+1) | → ∞, which
yields Ψu possess at least one global maximal point (t̄1, . . . , t̄k+1).

Firstly, we prove that t̄i > 0 for all i = 1, . . . , k + 1. Otherwise, there exists i0 ∈ {1, . . . , k + 1} such
that t̄i = 0. Without loss of generality, we assume t̄1 = 0. Notice that

Ψu (τ, t̄2, . . . , t̄k+1) =
1
2
τ

1
2 ‖u1‖

2
1 +

b
4
τA(u1, u1) +

λ

4
τB(u1, u1) −

∫
B

rk
1

K(|x|)F(τ
1
4 u1)dx

+
b
2

k+1∑
j=2

τ
1
2 (t̄ j)

1
2 A(u1, u j) +

λ

2

k+1∑
j=2

τ
1
2 (t̄ j)

1
2 B(u1, u j)

+

k+1∑
i=2

 (t̄i)
1
2

2
‖ui‖

2
i +

b
4

t̄iA(ui, ui) +
λ

4
t̄iB(ui, ui) −

∫
B

rk
i

K(|x|)F((t̄i)
1
4 ui)dx


+

b
4

k+1∑
i=2

∑
j,i

(t̄i)
1
2 (t̄ j)

1
2 A(ui, u j) +

λ

4

k+1∑
i=2

∑
j,i

(t̄i)
1
2 (t̄ j)

1
2 B(ui, u j) (3.6)

is increasing with respect to τ > 0 for τ small enough, which leads to a contradiction. Therefore, t̄i > 0
for all i = 1, . . . , k + 1.

Since (t̄1, . . . , t̄k+1) is a global maximum point of Ψu, namely,

∂Ψu

∂ti
(t̄1, t̄2, . . . , t̄k+1) =

1
4
∂ui Jb,λ

(
(t̄1)

1
4 u1, · · · , (t̄k+1)

1
4 uk+1

)
(t̄i)−

3
4 ui = 0,

which implies (3.5).
Thus, our results will be proved if we show the global maximum point of Ψ is unique. Indeed, by

Lemma 3.1, if (u1, · · · , uk+1) ∈ N rk
k , one has

Jb,λ(u1, · · · , uk+1) ≥ Jb,λ(t
1
4
1 u1, · · · , t

1
4
k+1uk+1) + (1 − θ)

k+1∑
i=1

(
t1/2
i − 1

)2

4
‖ui‖

2
i . (3.7)
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Suppose on the contrary that there exists another maximum point (s1, · · · , sk+1) of Ψu and
(s1, · · · , sk+1) , (1, · · · , 1), Choosing ti = 1

si
for all 1 ≤ i ≤ k + 1 and by virtue of (3.7), we have

Jb,λ(u1, · · · , uk+1) > Jb,λ(s
1
4
1 u1, · · · , s

1
4
k+1uk+1)

> Jb,λ(t
1
4
1 s

1
4
1 u1, · · · , t

1
4
k+1s

1
4
k+1uk+1) = Jb,λ(u1, · · · , uk+1),

which is impossible. This completes the proof of Lemma 3.2. �

Recall the definition of d(rk) in (2.5), and then we have the following result.

Lemma 3.3. For each rk ∈ Γk, there is a minimizer
(
urk

1 , · · · , u
rk
k+1

)
∈ N

rk
k with (−1)i+1urk

i > 0 in Brk
i for

i = 1, · · · , k + 1 satisfying
Jb,λ

(
urk

1 , · · · , u
rk
k+1

)
= d (rk) .

Proof. For (u1, · · · , uk+1) ∈ N rk
k , denoted by u =

k+1∑
i=1

ui. From Corollary 2.1 , we deduce that

Jb,λ (u1, · · · , uk+1) = Ib,λ

 k+1∑
i=1

ui

 = Ib,λ(u) −
1
4

I′λ(u)u

=
1
4
‖u‖2 +

∫
R3

(
1
4

K(|x| f (u)u − K(|x|)F(u)
)

dx

≥
1
4
‖u‖2 −

θV0

4

∫
R3

u2dx ≥
1 − θ

4
‖u‖2. (3.8)

Suppose that
{(

un
1, · · · , u

n
k+1

)}∞
n=1
⊂ N

rk
k is a minimizing sequence of Jb,λ

∣∣∣
Nk

, whose existence and
boundedness are guaranteed by (3.8). Then, up to a subsequence, which we still denote by(
un

1, · · · , u
n
k+1

)
, it converges to an element

(
u0

1, · · · , u
0
k+1

)
weakly inH rk .

From now on the proof will be divided into several steps.
Step 1. We proof that u0

i , 0 for all i. In fact, we have two cases: Either un
i convergence to u0

i strongly in
H

rk
i or it converges to u0

i weakly but not strongly inH rk
i . In the former case, since

(
un

1, · · · , u
n
k+1

)
∈ N

rk
k ,

then by (K), (F1), (F2) and the Sobolev embedding theorem, it follows that

∥∥∥un
i

∥∥∥2

i
+ b

k+1∑
j=1

A(un
j , u

n
i ) + λ

k+1∑
j=1

B(un
j , u

n
i ) =

∫
R3

K(|x|) f
(
un

i
)

un
i dx

≤

(
ε

∫
R3

∣∣∣un
i

∣∣∣2 dx + C(ε)
∫
RN3

∣∣∣un
i

∣∣∣p dx
)

≤
1
2

∥∥∥un
i

∥∥∥2

i
+ C

∥∥∥un
i

∥∥∥p

i
,

(3.9)

which implies ‖un
i ‖i ≥ C0. Consequently, u0

i is not zero. In the latter case, we have ‖u0
i ‖i <

lim infn→∞ ‖un
i ‖i. Besides, due to the compactly embedding H rk

i ↪→ Lq for 2 < q < 6, it follows
by Strauss’s compactness Lemma [30] that for all i = 1, · · · , k + 1,∫

R3
K(|x|)F

(
un

i
)

dx→
∫
R3

K(|x|)F
(
u0

i

)
dx (3.10)
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and ∫
R3

K(|x|) f
(
un

i
)

un
i dx→

∫
R3

K(|x|) f
(
u0

i

)
u0

i dx. (3.11)

Therefore, we deduce that∥∥∥u0
i

∥∥∥2

i
<

∫
R3

K(|x|) f (u0
i )u0

i dx ≤
1
2

∥∥∥u0
i

∥∥∥2

i
+ C

∥∥∥u0
i

∥∥∥p

i
, (3.12)

and we also have u0
i is not zero.

Step 2. We claim that
(
un

1, . . . , u
n
k+1

)
→

(
u0

1, . . . , u
0
k+1

)
strongly inH rk . By contradiction, if this is not the

case then, there exists i ∈ {1, · · · , k + 1} such that ‖u0
i ‖i < lim inf

n→∞
‖un

i ‖i. Namely,
(
u0

1, . . . , u
0
k+1

)
< N rk

k .

Since ui , 0 for all i = 1, · · · , k + 1, by virtue of Lemma 3.2, we deduce that there exists
(
t0
1, . . . , t

0
k+1

)
,

(1, . . . , 1) satisfying
(
(t0

1)
1
4 u0

1, . . . , (t
0
k+1)

1
4 u0

k+1

)
∈ N

rk
k and

d(rk) = inf
(u1,··· ,uk+1)∈N rk

k

Jb,λ (u1, · · · , uk+1)

≤ Jb,λ

(
(t0

1)
1
4 u0

1, . . . , (t
0
k+1)

1
4 u0

k+1

)
=

1
2

k+1∑
i=1

(
t0
i

) 1
2
∥∥∥u0

i

∥∥∥2

i
+

b
4

k+1∑
i=1

k+1∑
j=1

(t0
i )

1
2 (t0

j )
1
2 A(ui, u j) +

λ

4

k+1∑
i=1

k+1∑
j=1

(t0
i )

1
2 (t0

j )
1
2 B(ui, u j)

−

k+1∑
i=1

∫
B

rk
i

K(|x|)F((t0
i )

1
4 u0

i )dx

<
1
2

k+1∑
i=1

((
t0
i

) 1
2 lim inf

n→∞

∥∥∥un
i

∥∥∥2

i

)
+

b
4

k+1∑
i=1

k+1∑
j=1

(t0
i )

1
2 (t0

j )
1
2 A(un

i , u
n
j)

+
λ

4

k+1∑
i=1

k+1∑
j=1

(t0
i )

1
2 (t0

j )
1
2 B(un

i , u
n
j) −

k+1∑
i=1

∫
B

rk
i

K(|x|)F((t0
i )

1
4 un

i )dx

≤ lim inf
n→∞

Jb,λ
(
un

1, · · · , u
n
k+1

)
= d(rk),

which is impossible. Thus,
(
u0

1, · · · , u
0
k+1

)
is contained in N rk

k and a minimizer of Jb,λ

∣∣∣
N

rk
k

.
Step 3. Letting (

urk
1 , · · · , u

rk
k+1

)
:=

(∣∣∣u0
1

∣∣∣ ,− ∣∣∣u0
2

∣∣∣ , · · · , (−1)k+2
∣∣∣u0

k+1

∣∣∣) ,
we can easily check that

(
urk

1 , · · · , u
rk
k+1

)
is also a minimizer of Jb,λ

∣∣∣
N

rk
k

. Using the strong maximum

principle, we get (−1)i+1urk
i > 0 in Brk

i for all i = 1, . . . , k + 1. The proof is completed. �

In the following, we will prove the minimizer of Jb,λ

∣∣∣
N

rk
k

, which obtained by the previous Lemma, is
actually a critical point of Functional Jb,λ. However, we cannot use the Nehari method in [19] directly.
More precisely, since the assumption (F1), it seems difficult to prove N rk

k is a manifold as in [19].
Thus, we use the deformation lemma and Brouwer degree theory to achieve this. This idea comes
from [12, 33].
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In what follows, for convenience, we denote by

u = (u1, · · · , uk+1) ∈ H rk , t = (t1, · · · , tk+1) ∈ Rk+1, t1/4 • u =
(
t1/4
1 u1, · · · , t

1/4
k+1uk+1

)
.

Lemma 3.4. If rk ∈ Γ and
(
urk

1 , · · · , u
rk
k+1

)
∈ N

rk
k is a minimizer of Jb,λ|Nk such that

Jb,λ

(
urk

1 , · · · , u
rk
k+1

)
= d (rk) ,

then
(
urk

1 , · · · , u
rk
k+1

)
is a critical point of Jb,λ inH rk

k .

Proof. Suppose on contrary, if urk =
(
urk

1 , · · · , u
rk
k+1

)
is not a critical point of Jb,λ, then there exist δ > 0

and % > 0 such that

u ∈ H rk , ‖u − urk‖ ≤ 3δ⇒
∥∥∥(∂u1 Jb,λ(u), · · · , ∂uk+1 Jb,λ(u))

∥∥∥ ≥ %.
Let D =

{
t ∈ Rk+1

≥0 :
∣∣∣t1/4

i − 1
∣∣∣ < ( 1

2 )1/4, ∀i = 1, · · · , k + 1
}
. Then D is an open neighborhood of 1 :=

(1, · · · , 1) ∈ Rk+1. It follows from Lemma 3.2 that

κ := max
∂D

Jb,λ

(
t1/4 • urk

)
< d (rk) . (3.13)

For ε := min {(mb − κ) /3, 1, %δ/8} , S := B (urk , δ), [36, Lemma 2.3] yields a deformation η =

(η1, · · · , ηk+1) ∈ C ([0, 1] ×H rk ,H rk) such that

(i) η(1,u) = u if u < J−1
b,λ ([d(rk) − 2ε, d(rk) + 2ε]) ∩ S 2δ;

(ii) η
(
1, Jd(rk)+ε

b,λ ∩ S
)
⊂ Jd(rk)−ε

b,λ ;
(iii) Jb,λ(η(1,u)) ≤ Jb,λ(u),∀u ∈ H rk .

By Lemma 3.2,
Jb,λ

(
t1/4 • urk

)
≤ Jb,λ (urk) = d(rk).

Then it follows from (ii) that

Jb,λ

(
η
(
1, t1/4 • urk

))
< d(rk) − ε, ∀t ∈ (R≥0)k+1,

k+1∑
i=1

|t
1
4
i − 1| < δ/‖urk‖. (3.14)

On the other hand, by (iii) and (3.7), one has

Jb,λ

(
η
(
1, t1/4 • urk

))
≤ Jb,λ

(
t1/4 • urk

)
< d(rk), ∀t ∈ (R≥0)k+1,

k+1∑
i=1

|t
1
4
i − 1| ≥ δ/‖urk‖. (3.15)

Combining (3.14) with (3.15), we deduce that

max
t∈D

Jb,λ

(
η
(
1, t1/4 • urk

))
< d(rk). (3.16)

Now we claim that {
η
(
1, t1/4 • urk

)
: t ∈ D

}
∩ N

rk
k , ∅. (3.17)
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In fact, we denote Φ = (Φ1, · · · ,Φk+1) : D→ Rk+1 by

Φi(t) := ∂ui E
(
η
(
1, t1/4 • urk

))
ηi

(
1, t1/4 • urk

)
, for i = 1, · · · , k + 1.

Then for all t ∈ ∂D, the properties of deformation lemma implies η
(
1, t1/4 • urk

)
= t1/4 • urk and

Φi(t) := ∂ui E
(
t1/4 • urk

)
t1/4
i urk

i for all i = 1, · · · , k + 1. On the other hand, by virtue of Lemma 3.2 and
Brouwer degree theory, it follows that

deg
((
∂Ψurk

∂t1
, · · · ,

∂Ψurk

∂tk+1

)
,D, 0

)
= 1,

where Ψurk has been defined in (3.3). Therefore, for all t ∈ ∂D we have

1 = deg
((
∂Ψurk

∂t1
, · · · ,

∂Ψurk

∂tk+1

)
,D, 0

)
= deg

((
∂u1 Jb,λ (urk)

1
4

t−3/4
1 u1, · · · , ∂uk+1 Jb,λ (urk)

1
4

t−3/4
k+1 uk+1

)
,D, 0

)
= deg

((
1

4t1
Φi(t), · · · ,

1
4tk+1

Φk+1(t)
)
,D, 0

)
,

which shows the correctness of the (3.17). Consequently, we deduce that

sup
t∈D

Jb,λ

(
η
(
1, t1/4 • urk

))
≥ d(rk), (3.18)

which leads to a contradiction with (3.16). Hence, urk =
(
urk

1 , · · · , u
rk
k+1

)
is a critical point of Jb,λ and

the proof is finished. �

4. Existence of the radial sign-changing solutions

Recall the infimum level d (rk) defined in (2.5), then we have the following results.

Lemma 4.1. For any p ∈ (4, 6) and rk = (r1, . . . , rk) ∈ Γk

(i) if ri − ri−1 → 0 for some i ∈ {1, . . . , k}, then d (rk)→ +∞;
(ii) if rk → ∞, then d (rk)→ +∞;

(iii) d is continuous in Γk. As a consequence, there exists a rk ∈ Γk such that

d
(
rk
)

= inf
rk∈Γk

d (rk) .

Proof. (i) In view of Lemma 3.3, combining the Hölder inequality and Sobolev inequality, we have∥∥∥urk
i

∥∥∥2

i
=

∫
R3

K(|x|) f
(
urk

i

)
urk

i dx − λ
k+1∑
i, j=1

∫
R3

∫
B

rk
i

|urk
i (y)|2|urk

j (x)|2

4π|x − y|
dxdy

− b
∫
R3

k+1∑
j=1

∣∣∣∣∇urk
j (x)

∣∣∣∣2 dx
∫

B
rk
i

∣∣∣∇urk
i

∣∣∣2 dx

≤ ε

∫
R3

∣∣∣urk
i

∣∣∣2 dx + C(ε)
∫
R3

∣∣∣urk
i

∣∣∣p dx

≤ Cε
∥∥∥urk

i

∥∥∥2

i
+ CC(ε)

∥∥∥urk
i

∥∥∥p

i

∣∣∣Brk
i

∣∣∣ 6−p
6 .
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If ri − ri−1 → 0, then
∥∥∥∥∑k+1

j=1 urk
j (x)

∥∥∥∥→ +∞ due to p ∈ (4, 6). Thus,

d (rk) = Jb,λ

(
urk

1 , . . . , u
rk
k+1

)
= Ib,λ

 k+1∑
j=1

urk
j

 ≥ 1 − θ
4

∥∥∥∥∥∥∥
k+1∑
i=1

urk
i

∥∥∥∥∥∥∥
2

→ +∞, (4.1)

then, (i) holds.
(ii) Recalling the Strauss inequality [26], we can find a0 > 0 such that, for all radial function u ∈ HV ,

u(x) ≤
a0‖u‖
|x|

,

for a.e. |x| > 1. so we have∥∥∥urk
k+1

∥∥∥2

k+1
6

∫
R3

K(|x|) f
(
urk

i

)
urk

i dx

≤ ε

∫
R3

∣∣∣urk
i

∣∣∣2 dx + C(ε)
∫
R3

∣∣∣urk
i

∣∣∣p dx

≤ Cε
∥∥∥urk

k+1

∥∥∥2

k+1
+ CC(ε)‖urk

k+1‖
p−2
k+1

∫
B

rk
k+1

|x|2−p|urk
k+1|

2dx

≤ Cε
∥∥∥urk

k+1

∥∥∥2

k+1
+ CC(ε)|rk|

2−p‖urk
k+1‖

p−2
k+1

∫
B

rk
k+1

|urk
k+1|

2dx

≤ Cε
∥∥∥urk

k+1

∥∥∥2

k+1
+ CC(ε)|rk|

2−p‖urk
k+1‖

p
k+1

(4.2)

which yields that
∥∥∥∥∑k+1

j=1 urk
j (x)

∥∥∥∥→ +∞ as rk → ∞ due to p ∈ (4, 6). Therefore,

d (rk) ≥
1 − θ

4

∥∥∥∥∥∥∥
k+1∑
i=1

urk
i

∥∥∥∥∥∥∥
2

→ +∞ as rk → ∞,

which implies (ii).
(iii) Take a sequence

{
rn

k

}∞
n=1

satisfying rn
k → rk ∈ Γk. We will prove the conclusion by showing

d
(
rk
)
≥ lim supn→∞ d

(
rn

k

)
, d

(
rk
)
≤ lim infn→∞ d

(
rn

k

)
.

First, we prove that d
(
rk
)
≥ lim supn→∞ d

(
rn

k

)
. In order to emphasize that v

rn
k

i is radial in B
rn

k
i , we

will rewrite v
rn

k
i (|x|) = v

rn
k

i (r). Define v
rn

k
i :

[
rn

i−1, r
n
i

]
→ R by

v
rn

k
i (r) =


tn
i ur̄k

i

(
r̄i−1 +

r̄i−r̄n
i−1

rn
i −rn

i−1

(
r − rn

i−1

))
, i = 1, . . . , k,

tn
k+1ur̄k

k+1

(
r̄k
rn

k
r
)
, i = k + 1,

where
(
u

rn
k

1 , . . . , u
rn

k
k+1

)
and

(
ur̄k

1 , . . . , u
r̄k
k+1

)
are minimizers of Jb,λ

∣∣∣
N

rn
k

k

and Jb,λ

∣∣∣
N r̄k

k
respectively.

(
tn
1, . . . , t

n
k+1

)
is the unique (k + 1) tuple of positive numbers such that

(
v

rn
k

1 , . . . , v
rn

k
k+1

)
∈ N

rn
k

k . By the definition of(
u

rn
k

1 , . . . , u
rn

k
k+1

)
, we know that

Jb,λ(v
rn

k
1 , . . . , v

rn
k

k+1) ≥ Jb,λ(u
rn

k
1 , . . . , u

rn
k

k+1) = d(rn
k). (4.3)
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Since rn
k → rk ∈ Γk, by a straightforward computation, one can easily get the following equations,∫

B
rn
k

i

∣∣∣∣vrn
k

i

∣∣∣∣2 dx =
(
tn
i
)2

∫
B

r̄k
i

∣∣∣ur̄k
i

∣∣∣2 dx + on(1);∥∥∥∥v
rn

k
i

∥∥∥∥2

i
=

(
tn
i
)2

∥∥∥ur̄k
i

∥∥∥2

i
+ on(1);∫

B
rn
k

i

f (v
rn

k
i )v

rn
k

i dx =

∫
B

r̄k
i

f (tn
i ur̄k

i )tn
i ur̄k

i dx + on(1);

∫
B

rn
k

i

∫
B

rn
k

i

v
rn

k
i (x)v

rn
k

i (y)
4π|x − y|

dxdy =
(
tn
i
)4

∫
B

r̄k
i

∫
B

r̄k
i

ur̄k
i (x)ur̄k

i (y)
4π|x − y|

dxdy + on(1)

and ∫
B

rn
k

i

∣∣∣∣∇v
rn

k
i (x)

∣∣∣∣2 dx
∫

B
rn
k

j

∣∣∣∣∇v
rn

k
j (x)

∣∣∣∣2 dx

=
(
tn
i
)2

(
tn

j

)2
∫

B
r̄k
i

∣∣∣∇ur̄k
i (x)

∣∣∣2 dx
∫

B
r̄k
i

∣∣∣∣∇ur̄k
j (x)

∣∣∣∣2 dx + on(1).

According to
(
v

rn
k

1 , . . . , v
rn

k
k+1

)
∈ N

rn
k

k and
(
ur̄k

1 , . . . , u
r̄k
k+1

)
∈ N

r̄n
k

k , there holds that

∥∥∥ur̄k
i

∥∥∥2

i
+ b

k+1∑
j=1

∫
B

r̄k
i

∣∣∣∇ur̄k
i (x)

∣∣∣2 dx
∫

B
r̄k
j

∣∣∣∣∇ur̄k
j (x)

∣∣∣∣2 dx

+λ

k+1∑
j=1

∫
B

r̄k
i

∫
B

r̄k
i

ur̄k
i (x)ur̄k

i (y)
4π|x − y|

dxdy −
∫

B
r̄k
i

K(|x|) f
(
ur̄k

i

)
ur̄k

i dx = 0,

and (
tn
i )2‖ur̄k

i

∥∥∥2

i
+ b(tn

i )2(tn
j )

2
k+1∑
j=1

∫
B

r̄k
i

∣∣∣∇ur̄k
i (x)

∣∣∣2 dx
∫

B
r̄k
j

∣∣∣∣∇ur̄k
j (x)

∣∣∣∣2 dx

+ λ(tn
i )4

k+1∑
j=1

∫
B

r̄k
i

∫
B

r̄k
i

ur̄k
i (x)ur̄k

i (y)
4π|x − y|

dxdy −
∫

B
r̄k
i

K(|x|) f
(
tn
i ur̄k

i

)
tn
i ur̄k

i dx = on(1).

This combined with Lemma 3.2 we have limn→∞ tn
i = 1 for all i. Hence, from (4.3) we can see that

d
(
rk
)

= Jb,λ

(
ur̄k

1 , . . . , u
rk
k+1

)
= lim sup

n→∞
Jb,λ

(
v

rn
k

1 , . . . , v
rn

k
k+1

)
≥ lim sup

n→∞
d
(
rn

k
)
. (4.4)

Next, we prove that d
(
rk
)
≤ lim infn→∞ d

(
rn

k

)
. By the same argument as former case, let w

rn
k

i =

[r̄i−1, r̄i]→ R be defined by

w
rn

k
i (r) =


sn

i u
rn

k
i

(
rn

i−1 +
rn

i −rn
i−1

r̄i−r̄i−1
(r − r̄i−1)

)
, if i = 1, . . . , k,

sn
k+1u

rn
k

k+1

( rn
k

r̄k
r
)
, if i = k + 1,

(4.5)
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where
(
sn

1, . . . , s
n
k+1

)
∈ (R+)k+1 such that

(
w

rn
k

1 , . . . ,w
rn

k
k+1

)
∈ N

r̄k
k . By the same arguments, we can deduce

sn
i → 1 as n→ ∞ for all i = 1, . . . , k + 1. Hence,

d
(
rk
)

= Jb,λ

(
ur̄k

1 , . . . , u
r̄k
k+1

)
≤ lim inf

n→∞
Jb,λ

(
w

rn
k

1 , . . . ,w
rn

k
k+1

)
= lim inf

n→∞
Jb,λ

(
u

rn
k

1 , . . . , u
rn

k
k+1

)
= lim inf

n→∞
d
(
rn

k
)
.

This combined with (4.4) yields that d is continuous in Γk. Furthermore, taking account into (i), (ii),
we know that there is a rk ∈ Γk such that d

(
rk
)

= inf rk∈Γk d (rk). Hence, (iii) holds. �

Proof of Theorem 1.1. By Lemmas 3.3 and 4.1, we deduce that there exists (r̄k) ∈ Γk and ur̄k =(
ur̄k

1 , · · · , u
r̄k
k+1

)
∈ N

r̄k
k with (−1)i+1ur̄k

i > 0 in Br̄k
i such that

Jb,λ

(
urk

1 , . . . , u
rk
k+1

)
= d

(
rk
)

= inf
rk∈Γk

d (rk) ,

which implies

ck = d
(
rk
)

= Ib,λ

 k+1∑
i=1

urk
i

 ,
where ck has been defined in (1.8). Now, we claim that uk =

∑k+1
i=1 urk

i is solution of (1.1). Suppose
to the contrary that the claim does not hold, then by density argument, there exists a radial function
ψ ∈ C∞0 (R3) such that

I′b,λ(uk)ψ = −2.

We denote a function g ∈ C
(
Rk+1 × R; H

)
by

g(t, ε) :=
k+1∑
i=1

tiu
rk
i + εψ.

Since
∑k+1

i=1 urk
i is continuous and has exactly k nodes, take into account that g is also continuous, we

deduce that there exists τ > 0 small enough, such that g(t, ε) also changes sign k times and

I′b,λ(g(t, ε))ψ < −1, ∀(t, ε)) ∈ Dτ × [0, τ], (4.6)

where Dτ :=
{
t = (t1, · · · , tk+1) ∈ Rk+1 : |ti − 1| < τ for all 1 ≤ i ≤ k + 1

}
.

Now we choose η ∈ C∞(R3), 0 ≤ η ≤ 1 with η(t) = 1 if t ∈ D τ
4

and η(t) = 0 if t < D τ
2
. Furthermore,

we define another continuous function g̃ : Rk+1 → H by

g̃(t) :=
k+1∑
i=1

tiu
rk
i + τη(t)ψ.

Similarly, for all t ∈ Dτ, g̃(t) also changes sign k times and has k nodes 0 < r1(t) < · · · < rk(t) < +∞.
We assert that

∃ t̄ ∈ Dτ such that g̃(t̄) ∈ Nk. (4.7)
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If the assertion holds, then

Ib,λ(g̃(t̄)) ≥ ck. (4.8)

However, if t̄ ∈ D τ
2
, then η(t̄) > 0. This combines with (4.6) implies that

Ib,λ(g̃(t)) = Ib,λ

 k+1∑
i=1

t̄iu
rk
i

 +

∫ 1

0

〈
I′b,λ

 k+1∑
i=1

t̄iu
rk
i + µτη(t)ψ

 , τη(t)ψ
〉

dµ

≤ Ib,λ

 k+1∑
i=1

t̄iu
rk
i

 − τη(t)

< ck.

(4.9)

On the other hand, if t̄ < D τ
2
, then η(t̄) = 0, it follows from Lemma 3.2 that

Ib,λ(g̃(t)) = Ib,λ

 k+1∑
i=1

(t̄i)u
rk
i

 < Ib,λ

 k+1∑
i=1

urk
i

 = ck. (4.10)

Consequently, (4.9) and (4.10) lead to a contradiction with (4.8). Therefore, it is enough to prove (4.7).
Indeed, we denote by Ω (σi(t), σi+1(t)) =

{
x ∈ RN : |x| ∈ (σi(t), σi+1(t))

}
and define a map H : Dτ →

Rk+1 by

H(t) = (H1(t), · · · ,Hk+1(t)) with components Hi(s) :=
〈
J′b,λ(ḡ(t)), ḡ(t)|Ω(σi(t),σi+1(t))

〉
.

Clearly H ∈ C
(
Dτ,R

k+1
)

and for t ∈ ∂Dτ, we have

Hi(t) = J′b,λ

 k+1∑
j=1

t ju
rk
i

 tiu
rk
i = t2

i

∥∥∥urk
i

∥∥∥2

j
+ bt2

i

k+1∑
j=1

t2
j A(urk

i , u
rk
j ) + λt2

i

k+1∑
j=1

t2
j B(urk

i , u
rk
j )

−

∫
RN

K(|x|) f
(
tiu

rk
i

)
tiu

rk
i .

(4.11)

Since for small τ > 0,

Hi(1 − τ, · · · , 1 − τ) > 0 and Hi(1 + τ, · · · , 1 + τ) < 0.

Then by a straightforward computations, we deduce that

Hi (t1, · · · , ti−1, 1 − τ, ti+1, · · · , tk+1) > 0 for all t j ∈ (1 − τ, 1 + τ), j , i,
Hi (t1, · · · , ti−1, 1 + τ, ti+1, · · · , tk+1) < 0 for all t j ∈ (1 − τ, 1 + τ), j , i.

Therefore, by the Miranda theorem [25], there exists t ∈ Dτ such that H(t) = 0, which implies that
g̃(t) ∈ Nk. Thus, the assertion (4.7) is confirmed and the proof of Theorem 1.1 is completed. �
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5. Energy comparison and the asymptotic behaviors of the nodal solutions

For any integer k ≥ 0, by Theorem 1.1, we know that the problem (1.1) has a radial solution uk

which changes sign exactly k-times. Now, we are ready to prove the energy comparison property.

Proof of Theorem 1.2. By Theorem 1.1, there exists rk+1 ∈ Γk+1 and uk+1 =

k+1∑
i=1

urk+1
i such that uk+1 is

the solution of (1.1) with k + 1 nodes. Moreover, (urk+1
1 , · · · , urk+1

k+1 , u
rk+1
k+2 ) ∈ N rk+1

k+1 and Iλ(uk+1) = d(rk+1) =

inf rk+1∈Γk+1 d(rk+1). Meanwhile, Lemma 3.2 implies that there exists (a1, · · · , ak+1) such that

(a1urk+1
1 , · · · , ak+1urk+1

k+1 ) ∈ N rk
k . (5.1)

Thus, using (5.1) and Lemma 3.2 we see that

Ib,λ(uk) ≤ Ib,λ

 k+1∑
i=1

aiu
rk+1
i

 = Jb,λ

(
a1urk+1

1 , · · · , ak+1urk+1
k+1

)
= Jb,λ

(
a1urk+1

1 , · · · , ak+1urk+1
k+1 , 0

)
< Jb,λ

(
urk+1

1 , · · · , urk+1
k+1 , u

rk+2
k+2

)
= Ib,λ(uk+1).

On the other hand, by using the Non-Nehari manifold method in [6], we deduce that there exist

a ground state solution u0 of (1.1), such that u0 ∈ N and Ib,λ(u0) = c0. Besides, for uk =

k+1∑
i=1

urk
i

being a solution of (1.1) with k nodes, by Lemma 3.3 we have known (−1)i+1urk
i is positive for each

i = 1, · · · , k + 1. Thus, it follows from Lemma 3.2 and Corollary 4.3 in [6] that

ck = Ib,λ(uk) = max
t∈Rk+1

≥0

Jb,λ(t • uk)

= max
t∈Rk+1

≥0

 k+1∑
i=1

Ib,λ(tiu
rk
i ) +

k+1∑
i=1

∑
j,i

b
4

t2
i t2

j A(urk
i , u

rk
j ) +

k+1∑
i=1

∑
j,i

λ

4
t2
i t2

j B(urk
i , u

rk
j )


> max

t∈Rk+1
≥0

 k+1∑
i=1

Ib,λ(tiu
rk
i )

 ≥ (k + 1)c0.

This completes the proof. �

Proof of Theorem 1.3. For b, λ > 0, we denote by ub,λ
k instead of uk to emphasize the dependence of b

and λ, where uk has been given by Theorem 1.1. For b = λ = 0, by using the similar argument as the
proof of Theorem 1.1, we can obtain a solution v0

k of equation (1.4) with precisely k nodes. Moreover,
I′0(v0

k) = 0 and I0(v0
k) = c0

k .
From now on, we divide the proof into several steps.

Step 1. We claim that, for any sequence {λn} and {bn} with bn ↘ 0 and λn ↘ 0 as n → ∞,
{
ubn,λn

k

}
is

bounded in H. In fact, choosing nonzero functions ζi ∈ C
∞
0 (Brk

i ) for i = 1, · · · , k + 1 and define a map
hi : H rk → R by

hi(t) = ∂ui Jb,λ(t
1
4
1 ζ1, · · · , t

1
4
k+1ζk+1)t

1
4
i ζi

= t
1
2
i ‖ζi‖

2
i + bt

1
2
i

k+1∑
j=1

t
1
2
j A(ζi, ζ j) + λt

1
2
i

k+1∑
j=1

t
1
2
j B(ζi, ζ j) −

∫
B

rk
i

K(|x|) f (t
1
4
i ζi)t

1
4
i ζidx.
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Then, (F4) implies that, for any b, λ ∈ [0, 1], there exists a (k + 1)-tuple µ := (µ1, · · · , µk+1) of positive
numbers, which does not depend on b and λ, such that

hi(µ) < 0, for i = 1, · · · , k + 1.

Thus, in view of Lemma 3.2, there exists a unique (k + 1) tuple (t1(b, λ), · · · , tk+1(b, λ)) ∈ (0,+∞) with
ti(b, λ) < µi such that (

ζ̄1, · · · , ζ̄k+1

)
:=

(
t

1
4
1 (b, λ)ζ1, · · · , t

1
4
k+1(b, λ)ζk+1

)
∈ N

rk
k .

Besides, by a straightforward computation, there holds

Ib,λ

 k+1∑
i=1

ζ̄i

 = Ib,λ

 k+1∑
i=1

ζ̄i

 − 1
4

I′b,λ

 k+1∑
i=1

ζ̄i

  k+1∑
i=1

ζ̄i


=

1
4

k+1∑
i=1

‖ζ̄i‖
2
i +

1
4

∫
R3

K(|x|) ( f (ζi)ζi − F(ζi)) dx

≤
1
4

k+1∑
i=1

‖ζ̄i‖
2
i +

1
4
‖K‖L∞

∫
R3

(
C1ζ̄

2
i + C2ζ̄

p
i

)
dx

≤
1
4

k+1∑
i=1

‖µ
1
4
i ζi‖

2
i +

1
4
‖K‖L∞

∫
R3

(
C1µ

1
2
i ζ

2
i + C2µ

p
4
i ζ

p
i

)
dx := C0,

where we used (K), (F1)–(F4). Moreover, by Corollary 2.1, we deduce that

C0 = Ib,λ(
k+1∑
i=1

ζ̄i) ≥ Ib,λ

(
ub,λ

k

)
= Ib,λ

(
ub,λ

k

)
−

1
4

I′b,λ
(
ub,λ

k

)
ub,λ

k

=
1
4

∥∥∥ub,λ
k

∥∥∥2
+

1
4

∫
RN

K(|x|)
(

f (ub,λ
k )ub,λ

k − F(ub,λ
k )

)
dx

≥
1
4

(1 − θ)
k+1∑
i=1

∥∥∥ub,λ
k

∥∥∥2
,

(5.2)

which guarantees the boundedness of ‖ubn,λn
k ‖.

Step 2. There exists a subsequence of {bn} and {λn} , still denoted by {bn} and {λn} , such that ubn,λn
k → wk

weakly in H. Then, wk is a weak solution of (1.4). Since ubn,λn
k is a sign-changing solution of (1.1)

with b = bn and λ = λn, then by the Hardy-Littlewood-Sobolev inequality and the compactness of the
embedding H ↪→ Lq

(
R3

)
for 2 < q < 6, we deduce that ubn,λn

k → wk strongly in H. Indeed,

‖ubn,λn
k − wk‖

2

=
〈
I′bn,λn

(
ubn,λn

k

)
− I′0 (wk) , u

bn,λn
k − wk

〉
− bn

∫
R3
|∇ubn,λn

k |2dx
∫
R3
∇ubn,λn

k

(
∇ubn,λn

k − ∇wk

)
dx

− λn

∫
R3

∫
R3

|ubn,λn
k (x)|2ubn,λn

k (y)
(
ubn,λn

k (y) − wk(y)
)

|x − y|
dxdy +

∫
R3

K(|x|) f
(
ubn,λn

k

) (
ubn,λn

k − wk

)
dx

−

∫
R3

K(|x|) f (wk)
(
ubn,λn

k − wk

)
dx→ 0, as n→ ∞,

which implies wk , 0.
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Step 3. Since v0
k is a least energy radial solution of (1.4), and we write v0

k = vk,1 + · · ·+ vk,k+1, each vk,i

is supported on only one annulus Bi and vanishes at the complement of it. Thanks to Lemma 3.2, for
each λn > 0, there is a unique (k + 1)-tuple (a1 (bn, λn) , · · · , ak+1 (bn, λn)) of positive numbers such that(

a1 (bn, λn) vk,1, · · · , ak+1 (bn, λn) vk,k+1
)
∈ Nk.

Then, for i = 1, · · · , k + 1, we have

(ai (bn, λn))2
∥∥∥vk,i

∥∥∥2

i
+ bn (ai (bn, λn))2

k+1∑
j=1

(
a j (bn, λn)

)2
A(vk,i, vk, j)

+ λn (ai (bn, λn))2
k+1∑
j=1

(
a j (bn, λn)

)2
B(vk,i, vk, j) =

∫
Bi

K(|x|) f
(
ai (λn) vk,i

)
ai (λn) vk,idx.

Notice that vk,i satisfies ∥∥∥vk,i

∥∥∥2

i
=

∫
Bi

K(|x|) f
(
vk,i

)
vk,idx.

Then by (F1)–(F4) and Lemma 3.2, one can easily check that

(a1 (bn, λn) , · · · , ak+1 (bn, λn))→ (1, · · · , 1), as n→ ∞.

Thus,

I0(v0
k) ≤ I0(wk) = lim

n→∞
Ibn,λn(u

bn,λn
k ) ≤ lim

n→∞
Ibn,λn

 k+1∑
i=1

ai(bn, λn)vk,i


= I0

 k+1∑
i=1

vk,i

 = I0(v0
k).

Therefore, wk is a least energy radial solution of (1.1) which changes sign k times.
Consequently, we complete the proof of Theorem 1.3. �

6. Conclusions

This manuscript has employed the variational method to study the Kirchhoff-Schrödinger-Poisson
system. By using the Gersgorin disc’s theorem , Miranda theorem and Brouwer degree theory, we
show the existence of infinitely many nodal solutions {ub,λ

k } with a prescribed number of nodes k for
the system. Moreover, we prove that the energy behavior and convergence property of {ub,λ

k }.
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