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1. Introduction

All graphs considered in this paper are undirected, finite and simple. We refer to the book [3] for
graph theoretical notation and terminology not described here. For a graph G, let V(G), E(G) and δ(G)
denote the set of vertices, the set of edges and the minimum degree of G, respectively. For S ⊆ V(G),
we denote by G−S the subgraph obtained by deleting from G the vertices of S together with the edges
incident with them. To show the properties of these generalizations clearly, we hope to state from the
connectivity in graph theory. We divide our introduction into the following three subsections to state
the motivations and our results of this paper.

*In Summer 2020, this paper was accepted for publication in “Ars Combinatoria”. As of Dec 15, 2021, the editorial board and
managing editors of this journal have resigned. So we contacted the publisher and withdrawn the paper from “Ars Combinatoria” and
re-submitted here.
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1.1. Connectivity and generalized connectivity

Connectivity and edge-connectivity are two of the most basic concepts of graph-theoretic subjects,
both in a combinatorial sense and an algorithmic sense. As we know, the classical connectivity has
two equivalent definitions. The connectivity of a graph G, written κ(G), is the minimum size of a set
S ⊆ V(G) such that G−S is disconnected or has only one vertex. If G−S is disconnected, then we call
such a set S a vertex cut-set for G. We call this definition the ‘cut’ version definition of connectivity.
The well-known Menger’s theorem provides an equivalent definition of connectivity, which can be
called the ‘path’ version definition of connectivity. For any two distinct vertices x and y in G, the local
connectivity κG(x, y) is the maximum number of internally disjoint paths connecting x and y. Then
κ(G) = min{κG(x, y) | x, y ∈ V(G), x , y} is defined to be the connectivity of G.

The generalized connectivity of a graph G, introduced by Hager [17], is a natural and nice
generalization of the ‘path’ version definition of connectivity. For a graph G = (V, E) and a set S ⊆ V
of at least two vertices, an S -Steiner tree or a Steiner tree connecting S (or simply, an S -tree) is a
subgraph T = (V ′, E′) of G that is a tree with S ⊆ V ′. Two Steiner trees T and T ′ connecting S
are said to be internally disjoint if E(T ) ∩ E(T ′) = ∅ and V(T ) ∩ V(T ′) = S . For S ⊆ V(G) and
|S | ≥ 2, the generalized local connectivity κ(S ) is the maximum number of internally disjoint Steiner
trees connecting S in G. Note that when |S | = 2, a minimal Steiner tree connecting S is just a path
connecting the two vertices of S . For an integer k with 2 ≤ k ≤ n, generalized k-connectivity (or
k-tree-connectivity) is defined as κk(G) = min{κ(S ) | S ⊆ V(G), |S | = k}. Clearly, when |S | = 2, κ2(G)
is nothing new but the connectivity κ(G) of G, that is, κ2(G) = κ(G), which is the reason why one
addresses κk(G) as the generalized connectivity of G. By convention, for a connected graph G with less
than k vertices, we set κk(G) = 1. Set κk(G) = 0 when G is disconnected. This concept appears to have
been introduced by Hager in [17].

The following Table 1 shows how the generalization proceeds.

Table 1. Classical connectivity and generalized connectivity.

Classical connectivity Generalized connectivity
Vertex subset S = {x, y} ⊆ V(G) (|S | = 2) S ⊆ V(G) (|S | ≥ 2)

Set of Steiner trees


Px,y = {P1, P2, · · · , P`}

{x, y} ⊆ V(Pi),
E(Pi) ∩ E(P j) = ∅
V(Pi) ∩ V(P j) = {x, y}


TS = {T1,T2, · · · ,T`}

S ⊆ V(Ti),
E(Ti) ∩ E(T j) = ∅,
V(Ti) ∩ V(T j) = S

Local parameter κ(x, y) = max |Px,y| κ(S ) = max |TS |

Global parameter κ(G) = min
x,y∈V(G)

κ(x, y) κk(G) = min
S⊆V(G),|S |=k

κ(S )

As mentioned above, κ2(G) = κ(G) is just the connectivity of a graph G when k = |S | = 2. Another
extreme of κk(G) is when k = n. For k = n, one can see that S = V(G) and κn(G) is just the maximum
number of edge-disjoint spanning trees in G (For k = n, each Steiner tree connecting S is a spanning
tree of G). Then κn(G) is called the spanning tree packing number of G. For the spanning tree packing
number, we refer to [35,36]. For a given graph G, the problem of finding out the spanning tree packing
number of G is called the Spanning tree packing problem. Note that Spanning tree packing problem is
a special case of the generalized k-connectivity.
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1.2. Edge-connectivity and generalized edge-connectivity

The classical edge-connectivity also has two equivalent definitions. The edge-connectivity of G,
written λ(G), is the minimum size of an edge set M ⊆ E(G) such that G − M is disconnected or has
only one vertex. We call this definition the ‘cut’ version definition of edge-connectivity. Menger’s
theorem also provides an equivalent definition of edge-connectivity, which can be called the ‘path’
version definition. For any two distinct vertices x and y in G, the local edge-connectivity λG(x, y) is
the maximum number of edge-disjoint paths connecting x and y. Then λ(G) = min{λG(x, y) | x, y ∈
V(G), x , y} is defined to be the edge-connectivity of G. For connectivity and edge-connectivity,
Oellermann gave a survey paper on this subject, see [31].

As a natural counterpart of the generalized connectivity, Li et al. [29] introduced the concept
of generalized edge-connectivity, which is a generalization of the ‘path’ version definition of edge-
connectivity. For S ⊆ V(G) and |S | ≥ 2, the generalized local edge-connectivity λ(S ) is the maximum
number of edge-disjoint Steiner trees connecting S in G. For an integer k with 2 ≤ k ≤ n, the
generalized k-edge-connectivity λk(G) of G is then defined as λk(G) = min{λ(S ) | S ⊆ V(G) and |S | =
k}. It is also clear that when |S | = 2, λ2(G) is nothing new but the standard edge-connectivity λ(G) of G,
that is, λ2(G) = λ(G), which is the reason why we address λk(G) as the generalized edge-connectivity
of G. Also set λk(G) = 0 when G is disconnected.

There are many results on the generalized connectivity, tree-connectivity and strong connectivity,
we refer to the recent book [28] and the papers [7–9, 20, 26, 27, 34, 43].

1.3. Application background of generalized connectivity and product networks

In addition to being a natural combinatorial measure, the generalized connectivity can be motivated
by its interesting interpretation in practice. For example, suppose that G represents a network. If
one considers to connect a pair of vertices of G, then a path is used to connect them. However, if
one wants to connect a set S of vertices of G with |S | ≥ 3, then a tree has to be used to connect
them. This kind of tree for connecting a set of vertices is usually called a Steiner tree, and popularly
used in the physical design of VLSI circuits (see [15, 16, 38]). In this application, a Steiner tree is
needed to share an electric signal by a set of terminal nodes. Steiner tree is also used in computer
communication networks (see [10]) and optical wireless communication networks (see [6]). Usually,
one wants to consider how tough a network can be, for the connection of a set of vertices. Then, the
number of totally independent ways to connect them is a measure for this purpose. The generalized
k-connectivity can serve for measuring the capability of a network G to connect any k vertices in G.

Join, corona and cluster [42] are all graph product operations and can be defined as follows.

(1) The join or complete product of two disjoint graphs G and H, denoted by G∨H, is the graph with
vertex set V(G) ∪ V(H) and edge set E(G) ∪ E(H) ∪ {gh | g ∈ V(G), h ∈ V(H)}.

(2) The corona G ∗ H is obtained by taking one copy of G and |V(G)| copies of H, and by joining
each vertex of the i-th copy of H with the i-th vertex of G, where i = 1, 2, . . . , |V(G)|.

(3) The cluster G�H is obtained by taking one copy of G and |V(G)| copies of a rooted graph H, and
by identifying the root of the i-th copy of H with the i-th vertex of G, where i = 1, 2, . . . , |V(G)|.

Product networks were proposed based upon the idea of using the cross product as a tool for
“combining” two known graphs with established properties to obtain a new one that inherits properties
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from both [11]. Inspired by product networks and the application of generalized connectivity on
networks, H. Li et al. [26] studied the generalized 3-connectivity of cartesian product and lexicographic
product of graphs, and S. Li et al. [27] investigated the generalized 3-connectivity of star graphs and
bubble-sort graphs. In this paper, we focus on the generalized k-connectivity and generalized k-edge-
connectivity of three other graph product operations, i.e., join, corona and cluster. In the following
three sections, we obtain exact values or sharp upper and lower bounds of κk(G) and λk(G) for these
three graph product operations respectively.

2. Cluster

In this section, let G and H be two graphs with V(G) = {g1, g2, . . . , gn} and V(H) = {h1, h2, . . . , hm},
respectively. From the definition of cluster, V(G � H) = {(gi, h j) | 1 ≤ i ≤ n, 1 ≤ j ≤ m}, where �
denotes the cluster product operation. For g ∈ V(G), we use H(g) to denote the subgraph of G � H
induced by the vertex set {(g, h j) | 1 ≤ j ≤ m}. Without loss of generality, we assume (gi, h1) is the root
of H(gi) for each gi ∈ V(G). Let G(h1) be the graph induced by the vertices in {(gi, h1) | 1 ≤ i ≤ n}.
Clearly, G(h1) � G, and V(G � H) = V(H(g1)) ∪ V(H(g2)) ∪ . . . ∪ V(H(gn)).

For generalized edge-connectivity, we have the following result.

Theorem 2.1. Let k, n,m be three integers with 2 ≤ k ≤ nm, and let G,H be two connected graphs
with n,m vertices, respectively. Then

λk(G � H) =



min{λk(G), λk(H)} if 2 ≤ k < min{m, n},

min{λn(G), λm(H)} if max{m, n} < k ≤ mn,

min{λk(G), λm(H)} if m ≤ k ≤ n,

min{λn(G), λk(H)} if n ≤ k ≤ m.

Proof. We only give the proof of cases 2 ≤ k ≤ min{m, n} and k > max{m, n}, and the other two cases
can be proved similarly. For 2 ≤ k ≤ min{m, n}, we first show that λk(G � H) ≤ min{λk(G), λk(H)}.
Choose S ⊆ V(G(h1)) and |S | = k. From the structure of G � H, there are at most λk(G) edge-disjoint
S -Steiner trees in G � H, and hence λk(G � H) ≤ λ(S ) ≤ λk(G). Choose S ′ ⊆ V(H(g1)) and |S ′| = k.
From the structure of G�H, there are at most λk(H) edge-disjoint S ′-Steiner trees in G�H, and hence
λk(G � H) ≤ λ(S ′) ≤ λk(H). Therefore, we have λk(G � H) ≤ min{λk(G), λk(H)}. Next, we show that
λk(G�H) ≥ min{λk(G), λk(H)}. For any S ⊆ V(G�H) and |S | = k, we assume that S ∩V(H(gi)) , ∅ for
1 ≤ i ≤ r; S ∩V(H(gi)) = ∅ for r+1 ≤ i ≤ n. Let λk(G) = x, λk(H) = y, and S G = {g1, g2, . . . , gr}, where
1 ≤ r ≤ k. If r = 1, then S ⊆ V(H(g1)), and there are at least y edge-disjoint S -Steiner trees in H(g1),
and hence λ(S ) ≥ y = λk(H). From now on, we assume r ≥ 2. It follows that 1 ≤ |S ∩V(H(gi))| ≤ k−1
for each i (1 ≤ i ≤ r). For each i (1 ≤ i ≤ r), we let

S i =

S ∩ V(H(gi)) if (gi, h1) ∈ S ,

(S ∩ V(H(gi))) ∪ {(gi, h1)} if (gi, h1) < S .

Since |S i| ≤ k, it follows that there exist at least y edge-disjoint S i-Steiner trees in H(gi), say
Ti,1,Ti,2, . . . ,Ti,y, where 1 ≤ i ≤ r. Since λk(G) = x and S G = {g1, g2, . . . , gr}, there are x
edge-disjoint S G-Steiner trees in G(h1), say T ′1,T

′
2, . . . ,T

′
x. If x ≥ y, then the tree induced by
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the edges in E(T ′j) ∪ E(T1, j) ∪ E(T2, j) ∪ . . . ∪ E(Tr, j) (1 ≤ j ≤ y) are edge-disjoint S -Steiner
trees in G � H, and hence λ(S ) ≥ y = λk(H). If x < y, then the tree induced by the edges in
E(T ′j) ∪ E(T1, j) ∪ E(T2, j) ∪ . . . ∪ E(Tr, j) (1 ≤ j ≤ x) are edge-disjoint S -Steiner trees in G � H, and
hence λ(S ) ≥ x = λk(G). From the above argument, we have λk(G � H) = min{λk(G), λk(H)}.

For k > max{m, n}, we first show that λk(G � H) ≤ min{λn(G), λm(H)}. Since k > n, we choose
S ⊆ V(G(h1)) and |S | = k such that V(G(h1)) ⊆ S . From the structure of G � H, there exist at most
λn(G) edge-disjoint S -Steiner trees in G � H, and hence λk(G � H) ≤ λ(S ) ≤ λn(G). Since k > m, we
choose S ⊆ V(H(g1)) and |S | = k such that V(H(g1)) ⊆ S . From the structure of G � H, there exist at
most λm(H) edge-disjoint S -Steiner trees in G � H, and hence λk(G � H) ≤ λ(S ) ≤ λm(H). Therefore,
we have λk(G � H) ≤ min{λn(G), λm(H)}. Next, we show that λk(G � H) ≥ min{λn(G), λm(H)}. Let
λn(G) = x and λm(H) = y. Clearly, there exist at least x edge-disjoint S -Steiner trees in G(h1), say
T ′1,T

′
2, . . . ,T

′
x, and there exist at least y edge-disjoint S -Steiner trees in H(gi), say Ti,1,Ti,2, . . . ,Ti,y,

where 1 ≤ i ≤ n. For any S ⊆ V(G � H) and |S | = k, if x ≥ y, then the tree induced by the edges in
E(T ′j)∪E(T1, j)∪E(T2, j)∪. . .∪E(Tn, j) (1 ≤ j ≤ y) are edge-disjoint spanning trees of G�H, and they are
edge-disjoint S -Steiner trees in G �H, and so λ(S ) ≥ y = λm(H). If x < y, then the tree induced by the
edges in E(T ′j)∪E(T1, j)∪E(T2, j)∪. . .∪E(Tn, j) (1 ≤ j ≤ x) are edge-disjoint S -Steiner trees in G�H, and
so λ(S ) ≥ x = λn(G). From the arbitrariness of S , we have λk(G�H) ≥ min{x, y} = min{λn(G), λm(H)},
as desired. �

For generalized connectivity, we have the following result.

Proposition 2.1. Let k, n,m be three integers with 2 ≤ k ≤ nm, and let G,H be two connected graphs
with n,m vertices, respectively. Then

κk(G � H) =

 1 if 2 ≤ k ≤ mn − 1,

min{κn(G), κm(H)} if k = mn.

Proof. For 2 ≤ k ≤ mn − 1, since (g1, h1) is a cut vertex of G � H, it follows that κk(G � H) ≤ 1. Since
G�H is connected, it follows that G�H contains a spanning tree T , For any S ⊆ V(G�H) and |S | = k,
T is an S -Steiner tree, and hence κ(S ) ≥ 1. From the arbitrariness of S , we have κk(G � H) ≥ 1, and
hence κk(G � H) = 1.

For k = mn, we let κn(G) = x and κm(H) = y. Clearly, there exist at least x edge-disjoint S -Steiner
trees in G(h1), say T ′1,T

′
2, . . . ,T

′
x, and there exist at least y S -Steiner trees in H(gi), say Ti,1,Ti,2, . . . ,Ti,y,

for each i (1 ≤ i ≤ n). For any S ⊆ V(G�H) and |S | = k, if x ≥ y, then the tree induced by the edges in
E(T ′j)∪ E(T1, j)∪ E(T2, j)∪ . . .∪ E(Tn, j) (1 ≤ j ≤ y) are edge-disjoint spanning trees of G�H, and they
are edge-disjoint S -Steiner trees in G � H, and so κ(S ) ≥ y = κm(H). If x < y, then the tree induced
by the edges in E(T ′j) ∪ E(T1, j) ∪ E(T2, j) ∪ . . . ∪ E(Tn, j) (1 ≤ j ≤ x) are edge-disjoint S -Steiner trees
in G � H, and so κ(S ) ≥ x = κn(G). Therefore, we have κk(G � H) ≥ min{κn(G), κm(H)}. On the other
hand, there are at most min{κn(G), κm(H)} edge-disjoint spanning trees in G � H, which implies that
κk(G � H) ≤ min{κn(G), κm(H)} for k = mn = |V(G � H)|. �

3. Corona

In this section, let G and H be two graphs with V(G) = {g1, g2, . . . , gn} and V(H) = {h1, h2, . . . , hm},
respectively. From the definition of corona graphs, V(G ∗H) = V(G)∪ {(gi, h j) | 1 ≤ i ≤ n, 1 ≤ j ≤ m},

AIMS Mathematics Volume 7, Issue 9, 16775–16786.



16780

where ∗ denotes the corona product operation. For g ∈ V(G), we use H(g) to denote the subgraph of
G∗H induced by the vertex set {(g, h j) | 1 ≤ j ≤ m}. For fixed i (1 ≤ i ≤ n), we have gi(gi, h j) ∈ E(G∗H)
for each j (1 ≤ j ≤ m). Then V(G ∗ H) = V(G) ∪ V(H(g1)) ∪ V(H(g2)) ∪ . . . ∪ V(H(gn)).

For κk(G ∗ H), we have the following result.

Proposition 3.1. Let k, n,m be three integers with 2 ≤ k ≤ (m + 1)n, and let G,H be two connected
graphs with n,m vertices, respectively.

(1) If 2 ≤ k ≤ (m + 1)n − 1, then κk(G ∗ H) = 1.
(2) If k = (m + 1)n, then min{κm(H), κn(G)} ≤ κk(G ∗ H) ≤ min{κn(G), δ(H) + 1}.

Proof. For 2 ≤ k ≤ (m + 1)n − 1, since g1 is a cut vertex of G ∗ H, it follows that κk(G ∗ H) ≤ 1. Since
G ∗H is connected, it follows that G ∗H contains a spanning tree T . For any S ⊆ V(G ∗H) and |S | = k,
T is an S -Steiner tree, and hence κ(S ) ≥ 1. From the arbitrariness of S , we have κk(G ∗ H) ≥ 1, and
hence κk(G ∗ H) = 1.

For k = (m+1)n, we have G∗H = G�(H∨K1). From Proposition 2.1, κk(G∗H) = κk(G�(H∨K1)) =
min{κn(G), κm+1(H ∨ K1)}. Since κm+1(H ∨ K1) ≤ δ(H ∨ K1) = δ(H) + 1 and κm+1(H ∨ K1) ≥ κm(H), it
follows that min{κm(H), κn(G)} ≤ κk(G ∗ H) ≤ min{κn(G), δ(H) + 1}. �

Proposition 3.2. Let k, n,m be three integers with 2 ≤ k ≤ (m + 1)n, and let G,H be two connected
graphs with n,m vertices, respectively. Then

λk(G ∗ H) ≤

 min{λk(G), δ(H) + 1} if 2 ≤ k < n,

min{λn(G), δ(H) + 1} if n ≤ k ≤ (m + 1)n

and

λk(G ∗ H) ≥



min{λk(G), λk(H)} if 2 ≤ k < min{m + 1, n},

min{λn(G), λm(H)} if k ≥ max{m + 1, n},

min{λk(G), λm(H)} if m + 1 ≤ k < n,

min{λn(G), λk(H)} if n ≤ k < m + 1.

Proof. It is clear that G ∗ H = G � (H ∨ K1). From Theorem 2.1, we have

λk(G ∗ H) = λk(G � (H ∨ K1)) =



min{λk(G), λk(H ∨ K1)} if 2 ≤ k < min{m + 1, n},

min{λn(G), λm+1(H ∨ K1)} if k ≥ max{m + 1, n},

min{λk(G), λm+1(H ∨ K1)} if m + 1 ≤ k < n,

min{λn(G), λk(H ∨ K1)} if n ≤ k < m + 1.

Since λk(H ∨ K1) ≤ δ(H ∨ K1) = δ(H) + 1 and λk(H ∨ K1) ≥ λk(H), the result follows. �

4. Join

Chartrand et al. [5] got the exact value of the generalized k-connectivity for the complete graph Kn.

Lemma 4.1. [5] For every two integers n and k with 2 ≤ k ≤ n, κk(Kn) = n − dk/2e.

In [29] we obtained some results on the generalized k-edge-connectivity.
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Lemma 4.2. [29] For every two integers n and k with 2 ≤ k ≤ n, λk(Kn) = n − dk/2e.

Theorem 4.1. Let G and H be two graphs, respectively. Then

κ(G ∨ H) = min{κ(G) + |V(H)|, κ(H) + |V(G)|}.

For general k, we can obtain the following upper bounds.

Proposition 4.1. Let G,H be two graphs of order n,m, respectively. Then

κk(G ∨ H) ≤



min{κk(G) + m, κk(H) + n} if 2 ≤ k ≤ min{n,m},

m + n − dk/2e if max{n,m} < k ≤ nm,

κk(G) + m if m ≤ k ≤ n,

κk(H) + n if n ≤ k ≤ m.

Moreover, the bounds are sharp.

Proof. For k ≤ min{n,m}, we choose S ⊆ V(G) and |S | = k. Then there are at most κk(G) S -
Steiner trees in G. For any other S -Steiner tree, it contains at least one vertex of H, and so there
are at most |V(H)| such S -Steiner trees in G ∨ H. So, we have κk(G ∨ H) ≤ κ(S ) ≤ κk(G) + m. By
symmetry, κk(G ∨ H) ≤ min{κk(G) + m, κk(H) + n}. For max{n,m} < k ≤ nm, from Lemma 4.1, we
have κk(G ∨ H) ≤ m + n − dk/2e. Similarly, we can prove that κk(G ∨ H) ≤ κk(G) + m if m ≤ k ≤ n;
κk(G ∨ H) ≤ κk(H) + n if n ≤ k ≤ m. �

To show the sharpness of the upper bounds, we consider the following example.
Example 1. Let G = Kn and H = Km. If 2 ≤ k ≤ min{n,m}, then κk(G∨H) = κk(Km+n) = n+m−dk/2e =
min{n − dk/2e +m,m − dk/2e + n} = min{κk(G) +m, κk(H) + n}. If max{n,m} < k ≤ nm, then it follows
from Lemma 4.1 that κk(G ∨ H) = κk(Km+n) = n + m − dk/2e. For m ≤ k ≤ n, we let G = Kn, m = 1,
and H = K1. Then G ∨ H = Kn+1. From Lemma 4.1, we have κk(G ∨ H) = κk(Kn+1) = n + 1 − dk/2e =
κk(Kn) + 1.

Proposition 4.2. Let G,H be two graphs of order n,m, respectively. Let k be an integer with 2 ≤ k ≤
n + m. Then

λk(G ∨ H) ≤ min{δ(G) + m, δ(H) + n}.

Moreover, the bound is sharp for k = 2.

Proof. For 2 ≤ k ≤ n +m, we have λk(G ∨ H) ≤ δ(G ∨ H) = min{δ(G) +m, δ(H) + n}. Let G = Kn and
H = Km. Then G ∨ H = Km+n and min{δ(G) + m, δ(H) + n} = m + n − 1. From Lemma 4.2, if k = 2,
then λk(G ∨ H) = λk(Km+n) = m + n − dk/2e = min{δ(G) + m, δ(H) + n}. This implies that the upper
bound is sharp. �

Palmer [36] gave the spanning tree packing number of some special graph classes.

Lemma 4.3. [36] For a complete bipartite graph Ka,b, κa+b(Ka,b) = b ab
a+b−1c.

We now give an lower bound of κk(G ∨ H).
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Proposition 4.3. Let G and H be two graphs. Then

κk(G ∨ H) ≥ min
r+s=k

{⌊ rs
r + s − 1

⌋
+min{|V(G)| − r, |V(H)| − s}

}
.

Proof. For any S ⊆ V(G ∨ H) and |S | = k, we assume that |S ∩ V(G)| = r and |S ∩ V(H)| = s. From
Lemma 4.3, there are b rs

r+s−1c spanning trees of G[S ], and they are all internally disjoint S -Steiner trees
in G ∨ H. Without loss of generality, let S ∩ V(G) = {g1, g2, . . . , gr} and S ∩ V(H) = {h1, h2, . . . , hs}.
Then V(G) \ S = {gr+1, gr+2, . . . , gn} and V(H) \ S = {hs+1, hs+2, . . . , hm}. Without loss of generality, let
n − r ≤ m − s. Clearly, the trees induced by the edges in {gih1, gih2, . . . , gihs} ∪ {h jg1, h jg2, . . . , h jgr} ∪

{gih j} (r + 1 ≤ i ≤ n, s+ 1 ≤ j ≤ s+ (n− r) ≤ m) are n− r internally disjoint S -Steiner trees in G ∨H,
say T1,T2, . . . ,Tn−r. These trees together with the b rs

r+s−1c S -Steiner trees in G ∨ H[S ] are internally
disjoint S -Steiner trees in G ∨ H, and hence κ(S ) ≥

⌊
rs

r+s−1

⌋
+ min{|V(G)| − r, |V(H)| − s}. From the

arbitrariness of S , we have

κk(G ∨ H) ≥ min
r+s=k

{⌊ rs
r + s − 1

⌋
+min{|V(G)| − r, |V(H)| − s}

}
.

To show the sharpness of the lower bound, we consider the following example.
Example 2. Let G,H be two trees of order n,m, respectively, such that nm

n+m−1 is an integer. If k = n+m,
then r = n, s = m. From Proposition 4.3, we have

κm+n(G ∨ H) ≥ min
r=n, s=m

{⌊ rs
r + s − 1

⌋
+min{n − r,m − s}

}
=

nm
n + m − 1

.

Since e(G∨H) = mn+n+m−2, it follows that there are at most bmn+n+m−2
n+m−1 c =

nm
n+m−1 + b

n+m−2
n+m−1c =

nm
n+m−1

spanning trees of G ∨ H, that is, κm+n(G ∨ H) ≤ nm
n+m−1 . So κm+n(G ∨ H) = nm

n+m−1 which implies that the
lower bound is sharp for k = |V(G)| + |V(H)|.

For λk(G ∨ H), we have the following lower bound.

Proposition 4.4. Let G and H be two connected graphs of order n,m, respectively. Then

λk(G ∨ H) ≥ min
r+s=k

{
x +

(⌊ rs
r + s − 1

⌋
−

⌈ x
r + s − 1

⌉)
+min{n − r,m − s}

}
,

where x = min{λr(G), λs(H), rs}.

Proof. For any S ⊆ V(G∨H) and |S | = k, we assume that |S ∩V(G)| = r and |S ∩V(H)| = s. Let λr(G) =
a and λs(H) = b. Clearly, there are a edge-disjoint S ∩ V(G)-Steiner trees in G, say T1,T2, . . . ,Ta, and
there are b edge-disjoint S ∩ V(H)-Steiner trees in H, say T ′1,T

′
2, . . . ,T

′
b. From Lemma 4.3, there are

b rs
r+s−1c spanning trees of (G ∨ H)[S ], say T ∗1 ,T

∗
2 , . . . ,T

∗
c , and they are all edge-disjoint S -Steiner trees

in G ∨ H, where c = b rs
r+s−1c. We choose T ∗1 ,T

∗
2 , . . . ,T

∗
d , and these trees have d(r + s − 1) ≥ x edges

between V(G) and V(H), where d =
⌈

x
r+s−1

⌉
. Choose x such edges, say e1, e2, . . . , ex. Note that the

union of one tree in {T1,T2, . . . ,Ta}, one tree in {T ′1,T
′
2, . . . ,T

′
b}, and one edge in {e1, e2, . . . , ex} is an

S -Steiner tree in G ∨ H. Since x = min{λr(G), λs(H), rs}, we can get x edge-disjoint S -Steiner trees in
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G∨H, say T ∗∗1 ,T
∗∗
2 , . . . ,T

∗∗
x . Without loss of generality, let n−r ≤ m− s. Let S ∩V(G) = {g1, g2, . . . , gr}

and S ∩V(H) = {h1, h2, . . . , hs}. Then V(G)\S = {gr+1, gr+2, . . . , gn} and V(H)\S = {hs+1, hs+2, . . . , hm}.
Clearly, the trees induced by the edges in {gih1, gih2, . . . , gihs}∪{h jg1, h jg2, . . . , h jgr}∪{gih j} (r+1 ≤ i ≤
n, s+ 1 ≤ j ≤ s+ (n− r) ≤ m) are n− r edge-disjoint S -Steiner trees in G∨H, say T ∗∗∗1 ,T ∗∗∗2 , . . . ,T ∗∗∗n−r.
Since T ∗∗1 ,T

∗∗
2 , . . . ,T

∗∗
x , and T ∗∗∗1 ,T ∗∗∗2 , . . . ,T ∗∗∗n−r, and T ∗d+1,T

∗
d+2, . . . ,T

∗
c are{

x +
(⌊ rs

r + s − 1

⌋
−

⌈ x
r + s − 1

⌉)
+min{n − r,m − s}

}
edge-disjoint S -Steiner trees in G ∨ H, and hence

λ(S ) ≥
{
x +

(⌊ rs
r + s − 1

⌋
−

⌈ x
r + s − 1

⌉)
+min{n − r,m − s}

}
.

From the arbitrariness of S , we have

λk(G ∨ H) ≥ min
r+s=k

{
x +

(⌊ rs
r + s − 1

⌋
−

⌈ x
r + s − 1

⌉)
+min{n − r,m − s}

}
,

as desired. �
To show the sharpness of the lower bound, we consider the following example.

Example 3. Let G,H be two trees of order n,m, respectively, such that nm
n+m−1 is an integer. If k = n+m,

then r = n, s = m, λr(G) = λn(G) = 1, λs(H) = λm(H) = 1, and x = 1. From Proposition 4.4, we have

λm+n(G ∨ H) ≥ min
r=n, s=m

{
x +

(⌊ rs
r + s − 1

⌋
−

⌈ x
r + s − 1

⌉)
+min{n − r,m − s}

}
≥

nm
n + m − 1

.

Since e(G∨H) = mn+n+m−2, it follows that there are at most bmn+n+m−2
n+m−1 c =

nm
n+m−1 + b

n+m−2
n+m−1c =

nm
n+m−1

spanning trees of G ∨ H, that is, λm+n(G ∨ H) ≤ nm
n+m−1 . So λm+n(G ∨ H) = nm

n+m−1 and the lower bound
is sharp for k = n + m.

5. Conclusions

In this paper, we focus on the generalized k-connectivity and the generalized k-edge-connectivity
of join, corona and cluster graphs. We determine exact values of κk(G�H), λk(G�H) and sharp upper
and lower bounds of κk(G∗H), λk(G∗H), κk(G∨H) and λk(G∨H). In addition, we give some examples
to show the sharpness of these bounds. And as a future work, it’s interesting to think about whether it
is possible to characterize all the extremal graphs arriving at these sharp upper and lower bounds.
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