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Abstract: A system of singularly perturbed initial value problems with weak constrained conditions
on the coefficients is considered. First the system of second-order singularly perturbed problems is
transformed into a system of first-order singularly perturbed problems with integral terms, which
facilitates the subsequent stability and a posteriori error analyses. Then a hybrid difference method
with the use of interpolating quadrature rules is utilized to approximate the transformed system.
Next a posteriori error analysis for the discretization scheme on an arbitrary mesh is presented. A
solution-adaptive algorithm based on a posteriori error estimation is devised to generate a posteriori
mesh and obtain approximation solution. Finally numerical experiments show a uniform convergence
behavior of second-order for the scheme, which improves the previous results and achieves the optimal
convergence order under the given discrete scheme.
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1. Introduction

In this article we consider the following system of second-order singularly perturbed initial value
problems 

ε1u′′1 (x) + (a1(x)u1(x))′ + b11(x)u1(x) + b12(x)u2(x) = f1(x), x ∈ Ω,

ε2u′′2 (x) + (a2(x)u2(x))′ + b21(x)u1(x) + b22(x)u2(x) = f2(x), x ∈ Ω,

u1(0) = A1, u′1(0) = B1/ε1,

u2(0) = A2, u′2(0) = B2/ε2,

(1.1)

where u(x) = (u1(x), u2(x))T , Ω = (0, 1], ε1 and ε2 are small positive parameters, A1, A2, B1 and B2

are given constants, ak(x) ≥ αk > 0, fk(x) and bkl(x) for k, l = 1, 2 are given sufficiently smooth
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functions. Under these conditions, system (1.1) has a unique solution u(x) with exponential boundary
layers [1]. Such systems of singularly perturbed initial value problems arise in many areas of science
and engineering, for example, control theory [2], optically bistable devices [3].

There are some literatures on numerical methods for singularly perturbed initial value problems.
The earliest literature on solving singularly perturbed initial value problems can be traced back to
the 1970s. Recently, Cakir [4] proposed a finite difference scheme on a Shishkin-type mesh to solve a
second-order singularly perturbed quasilinear initial value problem. Kumar et al. [5] and Cen et al. [6]
used difference schemes both on the Shishkin mesh and the Bakhvalov mesh to solve a system of
first-order singularly perturbed initial value problems. Liu and Chen [7] developed a backward Euler
difference scheme on an adaptive moving mesh for solving a system of first-order singularly perturbed
initial value problems. In the previous works, some assumptions about (bkl)2×2 are often needed to
ensure the stability of numerical methods. But the coefficient functions bkl(x) with 1 ≤ k, l ≤ 2 in the
system (1.1) only satisfies the smoothness condition, which is weaker than the hypotheses given in the
above literatures and brings out difficulties in numerical analysis.

For grasping the properties of the singularly perturbed problems, one effective method is to generate
layer adapted meshes. If a priori information about the properties of exact solution is available, a
priori layer-adapted meshes can be selected to fit the singularity of the exact solution [8]. In [1] a
hybrid difference scheme on a priori mesh is developed for the system (1.1) and almost second-order
convergence is proved. A posteriori meshes also can be used to fit the singularity of the exact solution,
which don’t need to know a priori information of the exact solution and are also devised to be very fine
where sharp layers appear in the solution. Due to none a priori information needed, a posteriori mesh
method has more extensive application. Some literatures have used a posteriori mesh methods to solve
singularly perturbed problems, see [9–15] for instance. However, there is no literature on the use of
a posteriori mesh method to solve second-order singularly perturbed initial value problems with weak
constrained conditions on the coefficients.

The aim of this work is to construct a novel numerical scheme on a posteriori mesh for the
system (1.1) with weak constrained conditions on the coefficients and improve the results given in [1].
For simplifying the problem to facilitate the subsequent stability analysis and a posteriori error
estimation, the system of second-order singularly perturbed problems is transformed into a system of
first-order singularly perturbed problems with integral terms. Then a hybrid difference method with
the use of interpolating quadrature rules is developed to approximate the transformed system. Next a
posteriori error analysis for the discretization scheme on an arbitrary mesh is presented by introducing
a piecewise quadratic interpolation function. Based on a posteriori error estimation, a
solution-adaptive algorithm is devised to generate a posteriori mesh for adapting the singularity of the
exact solution and obtain an accurate approximation solution. Numerical experiments show a uniform
convergence behavior of second-order for the scheme, which demonstrates that a posteriori mesh
method improves the results given in [1] and achieves the optimal convergence order under the given
discrete scheme.

Notation. Throughout the paper, C represents a positive constant independent of the mesh, which
can represent different positive constants in different places. For any function g defined on Ω̄, we
denote gi = g(xi) for simplifying the notation and use ‖·‖ to represent the (pointwise) maximum norm
on Ω̄.
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2. The continuous problem

By integrating both sides of equations, the system (1.1) can be transformed into{
L1u(x) ≡ ε1u′1(x) + a1(x)u1(x) +

∫ x

0
b11(s)u1(s)ds +

∫ x

0
b12(s)u2(s)ds = f̄1(x), x ∈ Ω,

L2u(x) ≡ ε2u′2(x) + a2(x)u2(x) +
∫ x

0
b21(s)u1(s)ds +

∫ x

0
b22(s)u2(s)ds = f̄2(x), x ∈ Ω,

(2.1)

where

f̄k(x) = Bk + ak(0)Ak +

∫ x

0
fk(s)ds, k = 1, 2.

The following lemmas give the stability results for the exact solution u(x) of system (2.1), which
will be used in a posteriori error analysis.
Lemma 2.1. If the function v(x) is the solution of the following initial value problem{

εv′(x) + p(x)v(x) = q(x), x ∈ Ω,

v(0) = A,
(2.2)

with ε > 0, p(x) ≥ α > 0, |q(x)| ≤ Q(x) and Q(x) > 0 is a nondecreasing continuous function, then we
have

|v(x)| ≤ |A| + α−1Q(x), x ∈ Ω̄.

Proof. The solution v(x) of problem (2.2) can be explicitly written as

v(x) = A exp
(
−ε−1

∫ x

0
p(t)dt

)
+ ε−1

∫ x

0
q(t) exp

(
−ε−1

∫ x

t
p(s)ds

)
dt.

Then we have

|v(x)| ≤ |A| e−αx/ε + Q(x)
∫ x

0
ε−1e−α(x−t)/εdt

≤ |A| + α−1Q(x),

where we have used Q(x) is a positive and nondecreasing continuous function.

Lemma 2.2. The solution u(x) of system (2.1) has the following bound

|u1(x)| + |u2(x)| ≤ C
(
|A1| + |A2| +

∥∥∥ f̄1

∥∥∥ +
∥∥∥ f̄2

∥∥∥) , x ∈ Ω̄.

Proof. It is easy to get the following estimates∣∣∣∣∣ f̄k(x) −
∫ x

0
bkk(s)uk(s)ds −

∫ x

0
bk,3−k(s)u3−k(s)ds

∣∣∣∣∣
≤

∣∣∣ f̄k

∣∣∣ + ‖bkk‖

∫ x

0
|uk(s)| ds +

∥∥∥bk,3−k

∥∥∥ ∫ x

0
|u3−k(s)| ds
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for k = 1, 2. Then, by applying Lemma 2.1 to (2.1) we have

|uk(x)| ≤ |Ak| + α−1
[∥∥∥ f̄k

∥∥∥ + ‖bkk‖

∫ x

0
|uk(s)| ds +

∥∥∥bk,3−k

∥∥∥ ∫ x

0
|u3−k(s)| ds

]
for k = 1, 2. Thus, from the above inequalities we can obtain the following estimate

|u1(x)| + |u2(x)| ≤ C
[
|A1| + |A1| +

∥∥∥ f̄1

∥∥∥ +
∥∥∥ f̄2

∥∥∥ + α−1
∫ x

0
(|u1(s)| + |u2(s)|) ds

]
.

Hence, by using the Gronwall’s inequality we have the following result

|u1(x)| + |u2(x)| ≤ C
(
|A1| + |A1| +

∥∥∥ f̄1

∥∥∥ +
∥∥∥ f̄2

∥∥∥) .
So far, we conclude that the lemma holds true.

3. Discretization scheme

In this section a hybrid difference scheme with the use of interpolating quadrature rules on a
posteriori mesh will be developed for system (2.1). First, an arbitrary mesh
ΩN = {0 = x0 < x1 < · · · < xN = 1} with mesh sizes hi = xi − xi−1 for 1 ≤ i ≤ N is introduced. Then,
the discretization scheme on ΩN can be constructed as follows{

LN
1 Ui = f̃1,i, LN

2 Ui = f̃2,i, i = 1, 2, · · · ,N,
U1,0 = A1, U2,0 = A2,

(3.1)

where U = (U1,U2)T is the discrete approximation of the exact solution u = (u1, u2)T ,

LN
k Ui =

{
εkD−Uk,i + 1

2

(
gk,i−1 + gk,i

)
, εk

hi
≥

ak,i−1

2 ,

εkD−Uk,i + gk,i, otherwise,
(3.2)

f̃k,i =

{ 1
2

(
Fk,i−1 + Fk,i

)
, εk

hi
≥

ak,i−1

2 ,

Fk,i, otherwise,
(3.3)

gk,i = ak,iUk,i +

∫ xi

0

[
bI

kk(s)U I
k(s) + bI

k,3−k(s)U I
3−k(s)

]
ds, (3.4)

Fk,i = Bk + ak(0)Ak +

∫ xi

0
f I
k (s)ds, (3.5)

and

D−Uk,i =
Uk,i − Uk,i−1

hi
, U I

k(x) = Uk,i + (x − xi) D−Uk,i, ,

bI
kl(x) = bkl,i + (x − xi) D−bkl,i, f I

k (x) = fk,i + (x − xi) D− fk,i

for x ∈ [xi−1, xi] and k, l = 1, 2.
The stability results of the discretization scheme (3.1) are given in the following lemmas.
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Lemma 3.1. If the mesh function V on ΩN is the solution of the following initial value problem
εD−Vi + 1

2 (pi−1Vi−1 + piVi) = 1
2 (qi−1 + qi) , ε

hi
≥

pi−1
2 ,

εD−Vi + piVi = qi, otherwise,
V0 = A

with ε > 0, pi ≥ α > 0, |qi| ≤ Qi, and Q > 0 is a nondecreasing mesh function, then we have

|Vi| ≤ |A| + α−1Qi, 0 ≤ i ≤ N.

Proof. This result can be proved by using the discrete maximum principle. See the literature [16,
Lemma 3] for details.

Lemma 3.2. The solution U of the discretization scheme (3.1) has the following bound∣∣∣U1,i

∣∣∣ +
∣∣∣U2,i

∣∣∣ ≤ C
(
|A1| + |A2| +

∥∥∥ f̃1

∥∥∥ +
∥∥∥ f̃2

∥∥∥) , 0 ≤ i ≤ N.

Proof. By applying Lemma 3.1 and the discrete Gronwall’s inequality to the discretization
scheme (3.1) we can obtain the desired result.

Now we demonstrate a posteriori error estimation for the scheme (3.1) on an arbitrary mesh ΩN .
Let Ū(x) =

(
Ū1(x), Ū2(x)

)T
be a piecewise quadratic interpolation function vector of the computed

solution U as that in [12, 17], which is defined by

Ūk(x) = Uk,i + (x − xi) D−Uk,i +
1
2

(x − xi−1) (x − xi) D−D−Uk,i, x ∈ [xi−1, xi] (3.6)

for 1 ≤ i ≤ N and k = 1, 2, where

D−D−Uk,i =
D−Uk,i − D−Uk,i−1

hi
, D−Uk,0 = 0.

Then we can easily get the following results

Ūk(xi) = Uk,i,
[
Ūk(x)

]′
= D−Uk,i +

(
x − xi−1/2

)
D−D−Uk,i, x ∈ [xi−1, xi] (3.7)

for 1 ≤ i ≤ N and k = 1, 2, where xi−1/2 = (xi−1 + xi) /2.
Theorem 3.3. Let u(x) be the exact solution vector of system (2.1), U be the numerical solution
vector of the discretization scheme (3.1) on an arbitrary mesh ΩN and Ū(x) be its piecewise quadratic
interpolation function vector defined in (3.6). Then, under the assumptions

∣∣∣a′′k (x)
∣∣∣ ≤ C and

∣∣∣b′′kl(x)
∣∣∣ ≤ C

for k, l = 1, 2, the following estimate∥∥∥Ū(x) − u(x)
∥∥∥

Ω̄
≤ C max

1≤i≤N
h2

i

{
1 +

∣∣∣D−U1,i

∣∣∣ +
∣∣∣D−U2,i

∣∣∣ +
∣∣∣D− f1,i

∣∣∣ +
∣∣∣D− f2,i

∣∣∣
+

∣∣∣D−D−U1,i

∣∣∣ +
∣∣∣D−D−U2,i

∣∣∣}
holds true.
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Proof. We derive a posteriori error estimation for the discretization scheme (3.1) based on the stability
results given in Lemma 2.2. According to the characteristics of the discretization scheme, we estimate
the error

∣∣∣∣Lk

(
Ū(x) − u(x)

)∣∣∣∣ in the case εk
hi
>

ak,i−1

2 and the case εk
hi
≤

ak,i−1

2 respectively.
For x ∈ [xi−1, xi] we set

wk(x) = ak(x)Ūk(x) +

∫ x

0

[
bkk(s)Ūk(s) + bk,3−k(s)Ū3−k(s)

]
ds, (3.8)

w̄k(x) = ak(x)Ūk(x) +

∫ x

0

[
bI

kk(s)Ūk(s) + bI
k,3−k(s)Ū3−k(s)

]
ds, (3.9)

Fk(x) = Bk + ak(0)Ak +

∫ x

0
f I
k (s)ds, (3.10)

w̄I
k(x) = w̄k,i + (x − xi) D−w̄k,i, (3.11)

F I
k(x) = Fk,i + (x − xi) D−Fk,i, (3.12)

with 1 ≤ i ≤ N and k = 1, 2. Combining (3.4), (3.6) with (3.9) we have

w̄k,i = gk,i +
1
2

i∑
j=1

∫ x j

x j−1

(
s − x j−1

) (
s − x j

) [
bI

kk(s)D−D−Uk, j + bI
k,3−k(s)D−D−U3−k, j

]
ds. (3.13)

Then, for x ∈ (xi−1, xi) we can derive the following equality

LkŪ(x) − Lku(x) = εk

[
Ūk(x)

]′
+ wk(x) − f̄k(x)

= εkD−Uk,i +
(
x − xi−1/2

)
εkD−D−Uk,i + w̄I

k(x) +
(
w̄k(x) − w̄I

k(x)
)

+ (wk(x) − w̄k(x)) − F I
k(x) +

(
F I

k(x) − Fk(x)
)

+
(
Fk(x) − f̄k(x)

)
, (3.14)

where we have used the equalities (2.1) and (3.7). For simplifying the notation we set

Rk,i = w̄k(x) − w̄I
k(x) + wk(x) − w̄k(x) + F I

k(x) − Fk(x) + Fk(x) − f̄k(x), k = 1, 2. (3.15)

Thus, for the case εk
hi
>

ak,i−1

2 we derive the following estimate∣∣∣LkŪ(x) − Lku(x)
∣∣∣

=

∣∣∣∣∣Fk,i−1 + Fk,i

2
−

gk,i−1 + gk,i

2
+

(
x − xi−1/2

)
εkD−D−Uk,i + w̄I

k,i − F I
k,i + Rk,i

∣∣∣∣∣
=

∣∣∣∣∣Fk,i−1 + Fk,i

2
−

w̄k,i−1 + w̄k,i

2
+

(
x − xi−1/2

)
εkD−D−Uk,i

+w̄k,i + (x − xi) D−w̄k,i − Fk,i − (x − xi) D−Fk,i + Rk,i

∣∣∣
+

1
2

i∑
j=1

∫ x j

x j−1

(
s − x j−1

) (
s − x j

) [
bI

kk(s)D−D−Uk, j + bI
k,3−k(s)D−D−U3−k, j

]
ds

∣∣∣∣∣∣∣
≤

∣∣∣(x − xi−1/2
)

D−
(
εkD−Uk,i + w̄k,i − Fk,i

)∣∣∣ +
∣∣∣Rk,i

∣∣∣ + C max
1≤ j≤i

h2
j

∣∣∣D−D−Uk, j

∣∣∣
=

∣∣∣∣∣∣(x − xi−1/2
)

D−
(

Fk,i−1 + Fk,i

2
−

gk,i−1 + gk,i

2
− Fk,i

)∣∣∣∣∣∣ +
∣∣∣Rk,i

∣∣∣ + C max
1≤ j≤i

h2
j

∣∣∣D−D−Uk, j

∣∣∣
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≤

∣∣∣∣∣12 (
x − xi−1/2

)
D−

(
w̄k,i − w̄k,i−1 + Fk,i − Fk,i−1

)∣∣∣∣∣ +
∣∣∣Rk,i

∣∣∣ + C max
1≤ j≤i

h2
j

∣∣∣D−D−Uk, j

∣∣∣
≤ Ch2

i

(∣∣∣D−D−w̄k,i

∣∣∣ +
∣∣∣D−D−Fk,i

∣∣∣) +
∣∣∣Rk,i

∣∣∣ + C max
1≤ j≤i

h2
j

∣∣∣D−D−Uk, j

∣∣∣
≤ C max

1≤ j≤i
h2

j

(∣∣∣D−D−Uk, j

∣∣∣ +
∣∣∣D− fk, j

∣∣∣) +
∣∣∣Rk,i

∣∣∣ , (3.16)

where we have used the equalities (2.1), (3.1)–(3.14). For the case εk
hi
≤

ak,i−1

2 , we derive the following
estimate ∣∣∣LkŪ(x) − Lku(x)

∣∣∣
=

∣∣∣Fk,i − gk,i +
(
x − xi−1/2

)
εkD−D−Uk,i + w̄I

k,i − F I
k,i + Rk,i

∣∣∣
=

∣∣∣Fk,i − w̄k,i +
(
x − xi−1/2

)
εkD−D−Uk,i + w̄k,i + (x − xi) D−w̄k,i − Fk,i − (x − xi) D−Fk,i

+Rk,i +
1
2

i∑
j=1

∫ x j

x j−1

(
s − x j−1

) (
s − x j

) [
bI

kk(s)D−D−Uk, j + bI
k,3−k(s)D−D−U3−k, j

]
ds

∣∣∣∣∣∣∣
≤

∣∣∣(xi − xi−1/2
)
εkD−D−Uk,i

∣∣∣ +
∣∣∣Rk,i

∣∣∣ + C max
1≤ j≤i

h2
j

∣∣∣D−D−Uk, j

∣∣∣
≤ C max

1≤ j≤i
h2

j

∣∣∣D−D−Uk, j

∣∣∣ +
∣∣∣Rk,i

∣∣∣ , (3.17)

where we also have used the equalities (2.1), (3.1)–(3.14). Furthermore, from the equality (3.15) we
derive the following estimate∣∣∣Rk,i

∣∣∣ ≤ ∣∣∣w̄k(x) − w̄I
k(x)

∣∣∣ + |wk(x) − w̄k(x)| +
∣∣∣F I

k(x) − Fk(x)
∣∣∣ +

∣∣∣Fk(x) − f̄k(x)
∣∣∣

≤ C max
1≤i≤N

h2
i

{
1 +

∣∣∣D−U1,i

∣∣∣ +
∣∣∣D−U2,i

∣∣∣ +
∣∣∣D− f1,i

∣∣∣ +
∣∣∣D− f2,i

∣∣∣
+

∣∣∣D−D−U1,i

∣∣∣ +
∣∣∣D−D−U2,i

∣∣∣} , (3.18)

where we have used the following linear interpolation remainder estimate

∥∥∥g(x) − gI(x)
∥∥∥

Ω̄
≤ max

1≤i≤N

{
h2

i

2
sup

(xi−1,xi)
|g′′(x)|

}
and the assumptions

∣∣∣a′′k (x)
∣∣∣ ≤ C and

∣∣∣b′′kl(x)
∣∣∣ ≤ C for k, l = 1, 2. Then we can derive the following

estimate from the inequalities (3.16)–(3.18),

‖LkU(x) − Lku(x)‖Ω̄ ≤ C max
1≤i≤N

h2
i

{
1 +

∣∣∣D−U1,i

∣∣∣ +
∣∣∣D−U2,i

∣∣∣ +
∣∣∣D− f1,i

∣∣∣ +
∣∣∣D− f2,i

∣∣∣
+

∣∣∣D−D−U1,i

∣∣∣ +
∣∣∣D−D−U2,i

∣∣∣} . (3.19)

Thus we can conclude that the lemma holds true by applying Lemma 2.2 with (3.19).

Next, we devise a solution-adapted algorithm to generate a posteriori adapted mesh and obtain the
approximation solution. Based on the idea of the adaptive algorithm given by Kopteva and Stynes [18],
we solve the following equidistribution problem to generate a posteriori adapted mesh
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Mihi =
1
N

N∑
j=1

M jh j, i = 1, . . . ,N,

where Mi is selected based on a posteriori error estimation as follows

Mi = 1 +
∣∣∣D−U1,i

∣∣∣1/2 +
∣∣∣D−U2,i

∣∣∣1/2 +
∣∣∣D− f1,i

∣∣∣1/2 +
∣∣∣D− f2,i

∣∣∣1/2 +
∣∣∣D−D−U1,i

∣∣∣1/2 +
∣∣∣D−D−U2,i

∣∣∣1/2 .
Algorithm:

Step 1. Define ΩN,(0) =
{
x(0)

i | x
(0)
i = i/N, 0 ≤ i ≤ N

}
as the initial iteration mesh with k = 0.

Step 2. Solve the discretization system (3.1) on ΩN,(k) =
{
x(k)

i | 0 ≤ i ≤ N
}

with the mesh size h(k)
i =

x(k)
i − x(k)

i−1 to get the approximation solution
{
U (k)

i

}N

i=0
.

Step 3. Let l(k)
i = h(k)

i M(k)
i and I(k)

i =
∑i

j=1 l(k)
j . Go to Step 5 if

max
1≤i≤N

{
l(k)
i

}
≤ C0I(k)

N /N

for a constant C0 > 1 selected by the user; else continue with the next step.
Step 4. Let Y (k)

i = iI(k)
N /N. Generate a new mesh ΩN,(k+1) =

{
x(k+1)

i |0 ≤ i ≤ N
}

by interpolating(
Y (k)

i , x(k+1)
i

)
to

(
I(k)
i , x(k)

i

)
linearly. Return to Step 2 with setting k = k + 1.

Step 5. Take ΩN,∗ = ΩN,(k) as the final adapted mesh and
{
U∗i

}N

i=0
=

{
U (k)

i

}N

i=0
as the approximation

solution.
Remark. In order to facilitate the analysis of the method, this paper only considers the system with
two equations. This method can be easily extended to the systems with M > 2 equations.

4. Numerical experiments

In this section we give some numerical experiments on two test examples which have been
considered in [1].
Example 4.1. Consider the following system of singularly perturbed initial value problems

ε1u′′1 (x) + u′1(x) − (4 + x)u1(x) + (1 + 2x) u2(x) = f1(x), x ∈ (0, 1],
ε2u′′2 (x) + u′2(x) + (1 + x)u1(x) +

(
2 + x2

)
u2(x) = f2(x), x ∈ (0, 1],

u1(0) = 1, u′1(0) = 1/ε1,

u2(0) = 1, u′2(0) = 2/ε2,

where f(x) = ( f1(x), f2(x))T is chosen such that u(x) = (u1(x), u2(x))T with
u1(x) = 1 − e−x/ε1 + ε2e−x/ε2 + x2 + ex − ε2 and u2(x) = 3 − 2e−x/ε2 + x (1 + x) − sin x is the exact
solution vector. The singular perturbation parameters are chosen from the set
S ε =

{
(ε1, ε2)

∣∣∣ε1 = 2−0, 2−8, 2−16, 2−24, 2−32, 2−40, ε2 = 24, 2−4, 2−12, 2−20, 2−28, 2−36
}
.

Following the idea of Kopteva and Stynes [18] describing the mesh movement, we use Figure 1,
which needs to read from the bottom to the top, to indicate the generation process of a posteriori
adapted mesh for Example 4.1 with ε1 = 2−16, ε2 = 2−12 and N = 128. From Figure 1 we know that the
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mesh refinement is carried out in the boundary layer region by the solution-adaptive algorithm based
on the singular behavior of the exact solution. The maximum error is defined by

eN = max
1≤i≤N

{∣∣∣u1,i − U1,i

∣∣∣ , ∣∣∣u2,i − U2,i

∣∣∣}
and the convergence rate is calculated by

rN = log2

(
eN/e2N

)
.

Error estimates and convergence rates of the hybrid difference scheme (3.1) on a posteriori adapted
mesh for Example 4.1 with different combinations of ε1 and ε2 are presented in Table 1.

Table 1. Error estimates and convergence rates of the hybrid difference scheme on a
posteriori adapted mesh and on a Shishkin mesh for Example 4.2.

Number of mesh points N
(ε1, ε2) 128 256 512 1024 2048 4096(
20, 24

)
a posteriori 2.0667e-5 5.1643e-6 1.2891e-6 3.2192e-7 8.0418e-8 2.0096e-8

2.001 2.002 2.002 2.001 2.001 -
Shishkin 2.9745e-5 5.1425e-6 1.2856e-6 3.2140e-7 8.0349e-8 2.0087e-8

2.000 2.000 2.000 2.000 1.999 -(
2−8, 2−4

)
a posteriori 6.0787e-3 3.9669e-4 1.0200e-4 2.5678e-5 6.4437e-6 1.6140e-6

3.938 1.959 1.990 1.995 1.997 -
Shishkin 1.5063e-0 5.7009e-1 1.9378e-1 6.2442e-2 1.9370e-2 5.8467e-3

1.402 1.557 1.634 1.689 1.728 -(
2−16, 2−12

)
a posteriori 1.2770e-3 3.2798e-4 8.3452e-5 2.2417e-5 7.4204e-6 1.3353e-6

1.961 1.975 1.896 1.595 2.474 -
Shishkin 1.8161e-0 6.5715e-1 2.2198e-1 7.1324e-2 2.2085e-2 6.6632e-3

1.467 1.566 1.638 1.691 1.729 -(
2−24, 2−20

)
a posteriori 1.4432e-3 3.6782e-4 9.3220e-5 2.3617e-5 5.9523e-6 1.4972e-6

1.972 1.980 1.981 1.988 1.991 -
Shishkin 1.8178e-0 6.5774e-1 2.2213e-1 7.1372e-2 2.2101e-2 6.6631e-3

1.467 1.566 1.638 1.691 1.730 -(
2−32, 2−28

)
a posteriori 1.4585e-3 3.7898e-4 9.4827e-5 2.3833e-5 6.0004e-6 1.5091e-6

1.944 1.999 1.992 1.990 1.991 -
Shishkin 1.8178e-0 6.5774e-1 2.2213e-1 7.1372e-2 2.2101e-2 6.6631e-3

1.467 1.566 1.638 1.691 1.730 -(
2−40, 2−36

)
a posteriori 1.5068e-3 3.8255e-4 9.5562e-5 2.4170e-5 6.0252e-6 1.5118e-6

1.978 2.001 1.983 2.004 1.995 -
Shishkin 1.8178e-0 5.1425e-6 1.2856e-6 3.2140e-7 8.0349e-8 2.0087e-8

1.467 1.566 1.638 1.691 1.730 -
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Figure 1. Generation process of the mesh for Example 4.1 with ε1 = 2−16, ε2 = 2−12 and
N = 128.

Example 4.2 Consider the following system of singularly perturbed initial value problems
ε1u′′1 (x) + ((2 + x)u1(x))′ + (1 + x)u1(x) + (2 + cos x) u2(x) = 1 + x + e−x, x ∈ (0, 1],
ε2u′′2 (x) +

(
(1 + x2)u2(x)

)′
− u1(x) + (2 + x) u2(x) = 1 + x2, x ∈ (0, 1],

u1(0) = 1, u′1(0) = 1/ε1,

u2(0) = 1, u′2(0) = 1/ε2.

The singular perturbation parameters are also chosen from the set S ε =
{
(ε1, ε2)

∣∣∣ε1 = 2−0, 2−8, 2−16,

2−24, 2−32, 2−40, ε2 = 24, 2−4, 2−12, 2−20, 2−28, 2−36
}
.

Figure 2, which also needs to read from the bottom to the top, indicates the generation process of
a posteriori adapted mesh for Example 4.2 with ε1 = 2−16, ε2 = 2−12 and N = 128. From Figure 2 we
know that the mesh refinement is also carried out in the boundary layer region by the solution-adaptive
algorithm based on the singular behavior of the exact solution. Since the exact solution of Example 4.2
is not available, the double mesh principle is utilized to measure the errors and the convergence rates
as follows

eN = max
1≤i≤N

{∣∣∣UN
1,i − Ū2N

1 (xi)
∣∣∣ , ∣∣∣UN

2,i − Ū2N
2 (xi)

∣∣∣} , rN = log2

(
eN/e2N

)
,

where Ū2N(x) is its piecewise quadratic interpolation function vector defined in (3.6) for the computed
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solution U2N . Error estimates and convergence rates of the hybrid difference scheme (3.1) on a
posteriori adapted mesh for Example 4.2 are presented in Table 2.

Table 2. Error estimates and convergence rates of the hybrid difference scheme on a
posteriori adapted mesh and on a Shishkin mesh for Example 4.2.

Number of mesh points N
(ε1, ε2) 128 256 512 1024 2048 4096(
20, 24

)
a posteriori 8.4785e-6 2.0766e-6 5.2200e-7 1.2864e-7 3.2183e-8 8.0762e-9

2.030 1.992 2.021 1.999 1.995 -
Shishkin 1.8591e-5 4.6187e-6 1.1510e-6 2.8729e-7 7.1762e-8 1.7956e-8

2.009 2.005 2.002 2.001 1.999 -(
2−8, 2−4

)
a posteriori 3.1241e-4 7.4682e-5 1.7305e-5 4.2817e-6 1.1237e-6 2.9106e-7

2.065 2.110 2.015 1.930 1.949 -
Shishkin 1.8967e-2 7.5138e-3 2.7208e-3 9.1998e-4 2.9473e-4 9.0771e-5

1.336 1.466 1.564 1.642 1.699 -(
2−16, 2−12

)
a posteriori 4.7987e-4 1.4184e-4 3.5888e-5 9.2055e-6 2.3151e-6 5.8591e-7

1.758 1.983 1.963 1.991 1.982 -
Shishkin 1.8916e-2 7.5083e-3 2.7206e-3 9.2094e-4 2.9516e-4 9.0943e-5

1.333 1.465 1.563 1.642 1.698 -(
2−24, 2−20

)
a posteriori 5.4219e-4 1.5305e-4 3.8907e-5 9.6076e-6 2.4150e-6 5.8763e-7

1.825 1.976 2.018 1.992 2.039 -
Shishkin 1.8916e-2 7.5083e-3 2.7206e-3 9.2095e-4 2.9516e-4 9.0943e-5

1.333 1.465 1.563 1.642 1.698 -(
2−32, 2−28

)
a posteriori 6.4189e-4 1.5624e-4 3.7680e-5 9.8985e-6 2.3267e-6 6.2017e-7

2.039 2.052 1.928 2.089 1.908 -
Shishkin 1.8916e-2 7.5083e-3 2.7206e-3 9.2095e-4 2.9516e-4 9.0943e-5

1.333 1.465 1.563 1.642 1.698 -(
2−40, 2−36

)
a posteriori 6.0685e-4 1.4982e-4 3.8654e-5 9.8938e-6 2.4869e-6 6.1415e-7

2.018 1.955 1.966 1.992 2.018 -
Shishkin 1.8916e-2 7.5083e-3 2.7206e-3 9.2095e-4 2.9516e-4 9.0943e-5

1.333 1.465 1.563 1.642 1.698 -
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Figure 2. Generation process of the mesh for Example 4.2 with ε1 = 2−16, ε2 = 2−12 and
N = 128.

The results in Tables 1 and 2 show a uniform convergence behavior of second-order for the
scheme (3.1) on the adaptive algorithm described in Section 3. Moreover, the numerical results of the
hybrid difference scheme on a Shishkin mesh given in [1] are also presented in Tables 1 and 2. The
comparison of numerical results shows that the scheme presented in this paper is more accurate than
the method given in [1].

5. Conclusions and discussion

In this paper, we first transformed the system of second-order singularly perturbed initial value
problems with weak constrained conditions on the coefficients into a system of first-order singularly
perturbed problems with integral terms. This transformation is beneficial to the subsequent stability
analysis and a posteriori error estimation. And then we construct a hybrid difference scheme with the
use of interpolating quadrature rules to approximate the transformed first-order singularly perturbed
system. Next we derive a posteriori error analysis for the discretization scheme on an arbitrary mesh.
Based on a posteriori error estimation we devise a solution-adaptive algorithm to generate a posteriori
mesh and obtain approximation solution. Finally we present some numerical experiments to show a
uniform convergence behavior of second-order for the scheme, which verifies that this scheme is more
accurate than the method given in [1] and achieves the optimal convergence order under the given
discretization scheme. In future we will extend this method to the case that Bkl are not sufficiently
smooth functions.
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