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1. Introduction

In recent decades, several definitions for fractional derivatives (FDs) have been introduced [1,9,10,
13,15]. In most of them, the FDs are given in the integral form. The (left) Riemann-Liouville and (left)
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Caputo FDs of order 0 < β ≤ 1, are the most popular FDs and they are defined as follows, respectively:

c
ζ0

Dβ
ζη(ζ) =

1
Γ(1 − β)

∫ ζ

ζ0

η′(z)
(ζ − z)β

dz, ζ > ζ0, (1.1)

RL
ζ0

Dβ
ζη(ζ) =

1
Γ(1 − β)

d
dζ

∫ ζ

ζ0

η(z)
(ζ − z)β

dz, ζ > ζ0, (1.2)

where η(.) is a given function, and Γ(.) is the gamma function. It is trivial that the Riemann-Lioville
and Caputo FDs are linear operators. Also, it is easy to show that if β→ 1−, then they are the classical
derivatives. However, these properties are not sufficient for defining FDs. Note that these FDs do not
satisfy the following known formulas:

ζ0 Dβ
ζ(ηψ)(ζ) = ψ(ζ)Dβ

ζη(ζ) + η(ζ)Dβ
ζψ(t), (1.3)

ζ0 Dβ
ζ(
η

ψ
)(ζ) =

ψ(ζ)Dβ
ζη(ζ) − η(ζ)Dβ

ζψ(ζ)

ψ2(ζ)
, ψ(ζ) , 0, (1.4)

ζ0 Dβ
ζ(ηoψ)(ζ) = Dβ

ζψ(ζ)Dβ
ζη(ψ(ζ)), (1.5)

where ζ0 Dβ
ζ can be Riemann-Liouville or Caputo FD. Note that Riemann-Liouville and Caputo FDs are

non-local operators. Also, if η(.) is a constant function, then the Riemann-Lioville fractional derivative
does not satisfy ζ0 Dβ

t η(ζ) = 0 for all 0 < β ≤ 1.
Recently, Khalil et al. [9] have defined a new local derivative which is called conformable derivative.

So far, several researchers have used it and generalized its properties (see [1, 10]). They have
investigated that the conformable derivative for order β = 1 is the classical differential operator. They
have also proved that conformable derivatives satisfy the well-known properties of usual derivative
such as relations (1.3) and (1.4). But, these types of non-integer derivatives have a basic difficulty. For
any function η(.) with bounded first order derivative on interval (ζ0, ζ1), we have limζ→ζ+0

kh
ζ Dβ

ζη(ζ) = 0
where kh

ζ0
Dβ
ζ shows the Khalil conformable derivative. This relation for Riemann-Liouville and Caputo

FDs is also satisfied. Hence, a simple differential equation based on the Riemann-Liouville, Caputo
or Khalil fractional derivatives, such as 0Dβ

ζη(ζ) = η(ζ) defined on interval [0, 1] with initial condition
η(0) = λ , 0, has no solution on the space of functions with bounded first order derivative.

By motivation from above, specially from [1, 9], we define a new local non-integer order derivative
and name it adaptive derivative. This type of non-integer derivative satisfies the properties (1.3)
and (1.4) and has not difficulties of the other non-integer order derivatives. We prove several
properties for adaptive derivative. Moreover, we extend the concept of adaptive derivative to
optimal control problems and apply one of the most powerful numerical methods, namely Legendre
spectral collocation (LSC) method for solving the adaptive optimal control problems. Spectral and
pseudo-spectral methods have been utilized for different continuous-time problems, recently. For
instance, in [6], an spectral method is given to solve smooth non-fractional optimal control problems.
Works [7, 12, 14] applied spectral methods to solve some fractional optimal control problems. Also,
in [2, 3, 8, 16, 18], these methods are utilized to solve some special fractional partial differential
equations. Note that spectral and pseudo-spectral methods have a good accuracy and high speed
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convergence compared with other methods such as finite difference, finite element methods and wavelet
methods and this can be seen in results given in above-mentioned works.

We organize the sections of our work as follows. In Section 2, the adaptive fractional derivative
and integral are defined and their important attributes are introduced and proved. In Section 3, we
introduced the optimal control problems under adaptive fractional differential equations. In Section 4,
we present a LSC method to solve these problems. In Sections 5 and 6, three numerical test problem
are approximately solved and the conclusions of work are presented.

2. The adaptive derivative

We will introduce the adaptive derivative and presented some of its results and properties.

Definition 2.1. Let η : [ζ0, ζ1] −→ R be a given function. The adaptive derivative of function f (·) of
order 0 < β ⩽ 1 at point ζ ∈ (ζ0, ζ1) is defined as follow:

ADβη(ζ) = lim
ε→0

η(ζ + εe(1−β)(ζ−ζ0)) − η(ζ)
ε

. (2.1)

Moreover, ADβη(ζ0) and ADβη(ζ1) are defined as

ADβη(ζ0) = lim
ε→0+

η(ζ + ε) − η(ζ)
ε

(2.2)

and
ADβη(ζ1) = lim

ε→0−

η(ζ + εe(1−β)(ζ1−ζ0)) − η(ζ)
ε

. (2.3)

Theorem 2.1. Let η : [ζ0, ζ1] −→ R be a given function, 0 < β ⩽ 1 and ζ ∈ (ζ0, ζ1). The existence of
classical derivative of function η(·) at point ζ , i.e. η′(ζ), is a necessary and sufficient condition for the
existence of adaptive derivative of η(·) at point ζ, i.e. ADβη(ζ) for 0 < β ⩽ 1. Moreover, we have

ADβη(ζ) = e(1−β)(ζ−ζ0)η′(ζ). (2.4)

Proof. By taking h = εe(1−β)(ζ−ζ0), we get

lim
ε→0

η(ζ + εe(1−β)(ζ−ζ0)) − η(ζ)
ε

= e(1−β)(ζ−ζ0) lim
h→0

η(ζ + h) − η(ζ)
h

. (2.5)

The limits in left hand side and right hand side of the above equation are the adaptive derivative
and classical derivative of function η(·), respectively. Hence, existence of the classical derivative is
equivalent with the existence of adaptive derivative.

By relation (2.5), the adaptive derivative of order β = 1 coincides with classical derivative. Also,
by assumptions of Theorem 2.1 and relations (2.2) and (2.3), we have

ADβη(ζ0) = η′(ζ+0 ), ADβη(ζ1) = e(1−β)(ζ1−ζ0)η′(ζ−1 ), (2.6)

where
η′(ζ+0 ) = lim

h→0+

η(ζ0 + h) − η(ζ0)
h

, η′(ζ−1 ) = lim
h→0−

η(ζ1 + h) − η(ζ1)
h

.

Note that, by Definition 2.1 and relation (2.4), the adaptive derivative inherits the properties of
classical derivatives. Some of them are provided below.
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Theorem 2.2. Every adaptive differentiable function is continuous.

Proof. By Theorem 2.1, every adaptive differentiable function is a classical differentiable function, and
by mathematical analysis, every classical differentiable function is continuous.

Theorem 2.3. Suppose η : [ζ0, ζ1] → R and ψ : [ζ0, ζ1] → R are two adaptive differentiable functions
of order 0 < β ⩽ 1 and η ∈ (ζ0, ζ1). Then

(1) ADβ(c) = 0, for all c ∈ R;
(2) ADβ(c1η + c2ψ)(ζ) = c1

ADβη(ζ) + c2
ADβψ(ζ), for all c1, c2 ∈ R;

(3) ADβ(ηψ)(ζ) = ψ(ζ) ADβη(ζ) + η(ζ) ADβψ(ζ);
(4) ADβ( η

ψ
)(ζ) = ψ(ζ) ADβη(ζ)−η(ζ) ADβψ(ζ)

ψ2(ζ) if ψ(ζ) , 0;
(5) ADβ(ηoψ)(ζ) =

( ADβψ(ζ)
)
η′(ψ(ζ)).

Proof. Parts (1)–(4) follow directly from Definition 2.1 and relation (2.4). We choose to prove only the
items (3) and (5). We have

ADβ(ηψ)(ζ) = e(1−β)(ζ−ζ0)(ηψ)′(ζ)
= e(1−β)(ζ−ζ0)(ψ(ζ)η′(ζ) + η(ζ)ψ′(ζ)

)
= ψ(ζ)

(
e(1−β)(ζ−ζ0)η′(ζ)

)
+ η(ζ)

(
e(1−β)(ζ−ζ0)ψ′(ζ)

)
= ψ(ζ) ADβη(ζ) + η(ζ) ADβψ(ζ).

Also, we have
ADβ(ηoψ)(ζ) = e(1−β)(ζ−ζ0)(ηoψ)′(ζ) = e(1−β)(ζ−ζ0)ψ′(ζ)η′(ψ(ζ)) =

( ADβψ(ζ)
)
η′(ψ(ζ)).

Theorem 2.4. (Rolle’s theorem) Let η : [ζ0, ζ1] ⊆ R → R be an adaptive differentiable function of
order 0 < β ⩽ 1 such that η(ζ0) = η(ζ1). There is an c ∈ (ζ0, ζ1) such that ADβη(c) = 0.

Proof. By Theorem 2.1, η(·) is a classical differentiable function. So by classical Rolle’s theorem, there
is c ∈ (ζ0, ζ1) such that η′(c) = 0. Hence, by relation (2.4), we get

ADβη(c) = e(1−β)(c−ζ0)η′(c) = 0.

The mean-value theorem for adaptive derivative of order β = 1 is equivalent with the classical
mean-value theorem, since for every differentiable function η : I ⊆ R → R, by relation (2.4) we have
AD1η(ζ) = η′(ζ), for all ζ ∈ I. Hence, in the following lines we give the mean-value theorem for
adaptive derivatives of order 0 < β < 1.

Theorem 2.5. (Mean-value theorem) Let η : [ζ0, ζ1] → R be an adaptive differentiable function of
order 0 < β < 1. There is an c ∈ (ζ0, ζ1) such that

ADβη(c) = (β − 1)
η(ζ1) − η(ζ0)

e(β−1)(ζ1−ζ0) − 1
. (2.7)

Proof. Define function

ψ(t) = η(ζ) − η(ζ0) −
η(ζ1) − η(ζ0)

e(β−1)(ζ1−ζ0) − 1
(
e(β−1)(ζ−ζ0) − 1

)
, ζ ∈ I. (2.8)

It is trivial that ψ(·) is an adaptive differentiable function and ψ(ζ0) = ψ(ζ1) = 0. Hence, by
Rolle’s theorem, there is c ∈ (ζ0, ζ1) such that ADβψ(c) = 0. Now, via Theorem 2.4 and the relation
ADβ(e(β−1)(ζ−ζ0)) = β − 1, for all ζ, we can reach relation (2.7).
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Remark 2.1. Note that by using relation (2.7) and applying the Hopital’s rule, we can get the classical
mean-value theorem as follow:

η′(c) = AD1η(c) = lim
β→1−

ADβη(c)

= lim
β→1−

(
(β − 1)

η(ζ1) − η(ζ0)
e(β−1)(ζ1−ζ0) − 1

)
=

(
η(ζ1) − η(ζ0)

)
lim
β→1−

(
β − 1

e(β−1)(ζ1−ζ0) − 1

)
=

(
η(ζ1) − η(ζ0)

)
lim
β→1−

(
1

(ζ1 − ζ0)e(β−1)(ζ1−ζ0)

)
=

η(ζ1) − η(ζ0)
ζ1 − ζ0

.

Definition 2.2. Assume that η : [ζ0, ζ1] −→ R is a continuous function. The adaptive integral of order
0 < β ⩽ 1, for η(·), is defined by

Iβη(ζ) =
∫ ζ

ζ0

η(x)
e(1−β)(x−ζ0) dx. (2.9)

Theorem 2.6. Assume that η : [ζ0, ζ1] −→ R is a continuous function. Then ADβ
(

AIβη(ζ)
)
= η(ζ), for

all ζ ∈ (ζ0, ζ1). Moreover, if function η : [ζ0, ζ1] −→ R has a continuous derivative, then

Iβ
(

ADβη(ζ)
)
= η(ζ) − η(ζ0), ζ ∈ (ζ0, ζ1).

Proof. Since η(·) is continuous, then Iβη(·) that is defined by (2.9) is differentiable. Hence, ADβ
(
Iβη(·)

)
exists and by relation (2.4), we have

ADβ
(
Iβη(ζ)

)
= e(1−β)(ζ−ζ0) d

dζ

(
Iβη(ζ)

)
= e(1−β)(ζ−ζ0) d

dζ

∫ ζ

ζ0

η(x)
e(1−β)(x−ζ0) dx

= e(1−β)(ζ−ζ0)
(

η(ζ)
e(1−β)(ζ−ζ0)

)
= η(ζ).

Also, if function η : [ζ0, ζ1] −→ R has a continuous classical derivative, ADβη(·) is adaptive
integrable and we have

Iβ
(

ADβη(ζ)
)
=

∫ ζ

ζ0

ADβη(x)
e(1−β)(x−ζ0) dx =

∫ ζ

ζ0

e(1−β)(x−ζ0)η′(x)
e(1−β)(x−ζ0) dx

=

∫ ζ

ζ0

η′(x)dx = η(ζ) − η(ζ0).

Now, we generalize the definition of adaptive derivative for any β ∈ (n−1, n] where n ∈ N. Assume
that η(0)(·) = η(·).

Definition 2.3. Let η : [ζ0, ζ1] −→ R be a classical differentiable function of order n ∈ N. The adaptive
fractional derivative of η(·) of order n − 1 < β ⩽ n at point ζ0 < ζ < ζ1 is defined as follow:

ADβη(ζ) = lim
ε→0

η(n−1)(ζ + εe(n−β)(ζ−ζ0)) − η(n−1)(ζ)
ε

.

AIMS Mathematics Volume 7, Issue 9, 16692–16705.



16697

Moreover, ADβη(ζ0) and ADβη(ζ1) are defined as

ADβη(ζ0) = lim
ε→0+

η(n−1)(ζ0 + ε) − η(n−1)(ζ0)
ε

and
ADβη(ζ1) = lim

ε→0−

η(n−1)(ζ1 + εe(n−β)(ζ1−ζ0)) − η(n−1)(ζ1)
ε

.

Theorem 2.7. Let η : [ζ1, ζ0] −→ R be a classical differentiable function of order n ∈ N, n− 1 < β ⩽ n
and ζ ∈ (ζ0, ζ1). Then ADβη(ζ) = e(n−β)(ζ−ζ0)η(n)(ζ).

Proof. This is a consequence of Definition 2.3 and it can be given similar to the proof of Theorem 2.1.
In the next section, we extend the concept of adaptive derivative to optimal control problems.

3. Adaptive optimal control problem

Here, we introduce the adaptive optimal control (AOC) problem as follow:

Minimize J(y, v) =
∫ ζ1

ζ0

z
(
ζ, y(ζ), v(ζ)

)
dζ, (3.1)

subject to

ADβy(ζ) = e
(
ζ, y(ζ), v(ζ)

)
, ζ ∈ [ζ0, ζ1],

y(ζ0) = ȳ0,
(3.2)

where 0 < β ≤ 1, ADβ is the adaptive derivative, ȳ0 ∈ R
n, z : R×Rn×Rm → R and e : R×Rn×Rm → Rn

are known differentiable functions. Also, y(·) and v(·) are the state and control variables, respectively.
In next section, we propose the LSC approach to solve (3.1) and (3.2). However, before that we
transform the time interval of the AOC problem (3.1) and (3.2) into [−1, 1] using transformation

ζ = λ(s) =
ζ1 − ζ0

2
s +

ζ1 + ζ0

2
, ζ ∈ [ζ0, ζ1] , s ∈ [−1, 1]. (3.3)

Theorem 3.1. Assume that 0 < β ≤ 1, function y(.) is defined on [ζ0, ζ1] and Y(s) = y(λ(s)), s ∈ [−1, 1],
where λ(.) is defined by (3.3). Then for any s ∈ [−1, 1],

ADβy(λ(s)) =
2e(1−β)(λ(s)−s−1−ζ0)

ζ1 − ζ0

ADβY(s). (3.4)

Proof. Assume that s ∈ [−1, 1] is given and put ζ = λ(s). We have

ADβy(ζ) = e(1−β)(ζ−ζ0)y′(ζ)

=
2e(1−β)(ζ−ζ0)

ζ1 − ζ0
Y ′(s)

=
2e(1−β)(ζ−ζ0)

ζ1 − ζ0

(
e−(1−β)(s+1) ADβY(s)

)
=

2e(1−β)(λ(s)−s−1−ζ0)

ζ1 − ζ0

ADβY(s).
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By (3.3) and (3.4), we can rewrite the AOC problem (3.1) and (3.2) as follow:

Minimize J(Y,V) =
ζ1 − ζ0

2

∫ 1

−1
Z
(
s,Y(τ),V(s)

)
ds, (3.5)

subject to

 e(1−β)ψ(s) ADβY(s) =
ζ1 − ζ0

2
E
(
s,Y(s),V(s)

)
, s ∈ [−1, 1],

Y(−1) = ȳ0,
(3.6)

where λ(.) satisfies (3.3) and
ψ(s) = λ(s) − s − 1 − ζ0,

Y(s) = y(λ(s)), V(s) = v(λ(s)),

Z
(
s,Y(s),V(s)

)
= z

(
λ(s), y(λ(s)), v(λ(s))

)
,

E
(
s,Y(s),V(s)

)
= e

(
λ(s), y(λ(s)), v(λ(s))

)
.

4. LSC method for AOC problem

We here illustrate and implement the LSC method to solve the AFOC problem (3.5) and (3.6).
We show that, by utilizing this method, we can get an approximate optimal solution by solving the
associated nonlinear programming (NLP) problem. We need the Legendre polynomials which are
defined on [−1, 1] by the following recurrence relation:(a + 1)Ra+1(s) = (2a + 1)Ra(s) − aRa−1(s), a = 1, 2, · · · ,

R0(s) = 1, R1(s) = s.

To discrete the AFOC problem, the Legendre-Gauss-Lobatto (LGL) nodes are used which are the
zeros of (1 − s2)R′N(s). We show them by {sk}

N
k=0 where s0 = −1 < s1 < · · · < sN−1 < sN = 1. We also

need the Lagrange interpolating polynomials:

Q j(s) =
N∏

i=0
i, j

s − si

s j − si
, j = 0, 1, 2, . . . ,N, (4.1)

where

Q j(sk) =

1, j = k,

0, j , k.

Now, we approximate Y(·) and V(·) by the LSC method. We have

Y(s) ≈ YN(s) =
N∑

j=0

y jQ j(s), V(s) ≈ VN(s) =
N∑

j=0

v jQ j(s), (4.2)

where
YN(sk) = yk, VN(sk) = vk, k = 0, 1, . . . ,N. (4.3)
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Also,

Y ′(s) ≈ Y ′N(s) =
N∑

j=0

y jQ′j(s). (4.4)

Moreover,

ADαY(s) ≈ ADαYN(s) = e(1−β)sY ′N(s) = e(1−β)s
N∑

j=0

y jQ′j(s). (4.5)

To obtain the derivatives Y ′N(·) and ADβYN(·) at the LGL nodes {sk}
N
k=0 and get

Y ′N(sk) =
N∑

j=0

y jDk j,
ADβYN(sk) =

N∑
j=0

y j
ADβ

k j, (4.6)

where
ADβ

k j = e(1−β)sk Dk j,

and

Dk j = Q′j(sk) =



RN(sk)
RN(s j)

1
sk − s j

, j , k, 0 ≤ j, k ≤ N,

0, 1 ≤ j = k ≤ N − 1,

−
N(N + 1)

4
, j = k = 0,

N(N + 1)
4

, j = k = N.

(4.7)

By applying the Theorem 3.29 in [17], the performance index can be approximated as follow:

J ≈ JN =
ζ1 − ζ0

2

N∑
j=0

p jZ
(
s j, y j, v j

)
, (4.8)

where s j, j = 0, 1, ...,N, are the LGL nodes and p j, j = 0, 1, ...,N, are the corresponding weights.
We apply (4.3), (4.6) and (4.8) to approximate the AOC problem (3.1) and (3.2) and get

Minimize JN =
ζ1 − ζ2

2

N∑
j=0

p jZ
(
s j, y j, v j

)
, (4.9)

subject to

e(1−β)ψk
∑N

j=0 y j
ADβ

k j =
ζ1−ζ0

2 E
(
sk, yk, vk

)
, k = 0, 1, · · · ,N,

y0 = ȳ0,
(4.10)

where ψk = λ(sk) − τk − 1 − ζ0 and λ(.) satisfies (3.3). Having solved this NLP problem with variables
(yk, vk), k = 0, 1, 2, ...,N, we reach the estimated solutions (4.2) for the AOC problem (3.1) and (3.2).

Remark 4.1. The convergence analysis of obtained approximate solutions to the exact optimal
solutions (in the suggested spectral method), can be discussed by a similar process given in the
works [6, 7, 12, 14] with a slight differences and hence we do not repeat it.
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5. Numerical examples

Here, we provide three numerical test problem. The simulations are performed by applying
MATLAB R2017b software and FMINCON command. We also compute the absolute errors of the
obtained numerical results using

EN
y (ζ) =

∣∣∣y⋆(ζ) − yN(ζ)
∣∣∣, EN

v (ζ) =
∣∣∣v⋆(ζ) − vN(ζ)

∣∣∣, ζ ∈ [ζ0, ζ1],

where y⋆(.) and v⋆(.) are the exact state and control solutions and y(.) and v(.) are the approximate state
and control solutions of the AOC problem, respectively.
Example 5.1. Consider the following AFOC problem:

Minimize J
(
y, v

)
=

∫ 1

0

(
y(ζ) − sin(παζ)

)2dζ, (5.1)

subject to

ADβy(ζ) = v(ζ), 0 ≤ ζ ≤ 1,
y(0) = 0,

(5.2)

where 0 < β ⩽ 1. The exact solutions are y∗(ζ) = sin(πβζ) and v∗(ζ) = πe(1−β)ζcos(πβζ) with J∗ = 0.
We solve the related NLP problem (4.9) and (4.10) for the values of β = 0.85, 0.90, 0.95, 1

and N = 8. Figure 1 shows the obtained approximate optimal solutions. Also, the logarithm of
absolute errors are illustrated in Figure 2. Moreover, in Table 1, we demonstrate the obtained values of
performance index for some values of α. It can be observed that the gained approximate optimal
solutions have acceptable accuracy and the presented method is efficient and applicable to solve
this problem.
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Figure 1. The estimated solution for Example 5.1 with N = 8.

Table 1. The performance index for Example 5.1 with N = 8.

β 0.85 0.90 0.95 1
JN 1.6 × 10−14 5.4 × 10−17 4.8 × 10−15 8.3 × 10−14
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Figure 2. The logarithm of absolute error for Example 5.1 with N = 8.

Example 5.2. Consider the following AOC problem:

Minimize J(y, v) =
∫ 1

0

(
βy(ζ) − eζ

)2dζ,

subject to

ADβy(ζ) = v(ζ) + y(ζ) + (1 − β)sin
(
v(ζ) + y(ζ)

)
− ln(1 + ζ), 0 ≤ ζ ≤ 1,

y(0) = β,

where 0 < β ⩽ 1. The exact solutions for β = 1 are y∗(ζ) = eζ and v∗(ζ) = ln(1 + ζ). For other values
of β, the analytic form of exact optimal solutions are not known.

By solving the related NLP problem (4.9) and (4.10) for N = 6, we achieve the approximate
solutions which are illustrated in Figure 3. The error of approximate solution for β = 1 is shown
in Figure 4. Also, the values of JN for different values of β are summarized in Table 2. We see, as β
increases, the approximate solutions approach the exact solution corresponding to β = 1.
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Figure 3. The estimated solution for Example 5.2 with N = 6.
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Figure 4. The absolute error for Example 5.2 with β = 1 and N = 6.

Table 2. The performance index for the Example 5.2 with N = 6.

β 0.85 0.90 0.95 1
JN 1.8 × 10−3 8.5 × 10−4 2.2 × 10−4 1.7 × 10−16

Example 5.3. Consider the following AFOC problem:

Minimize J
(
y(ζ), v(ζ)

)
=

∫ 1

0

(
v(ζ)2 + ey(ζ))dζ,

subject to

ADβy(ζ) = y(ζ) + v(ζ) + βy3(ζ), 0 ≤ ζ ≤ 1,
y(0) = 0,

where 0 < β ≤ 1. The analytical form of optimal solutions is not available.
We solve this problem by presented approach for values β = 0.4, 0.6, 0.8, 1 with N = 8. The

obtained approximate solutions are illustrated in Figure 5. It can be seen that when β tends to 1,
the trajectories go to the approximate optimal trajectory corresponding to β = 1. In Table 3, the
approximate optimal values of J are shown. We see this values by increasing N tends to a fixed value
and results are stable.

Table 3. The performance index JN for the Example 5.3.

β = 0.4 β = 0.6 β = 0.8 β = 1
N = 4 0.9036576494 0.8923520235 0.8784997945 0.8608627584
N = 5 0.9036504057 0.8923478798 0.8784964174 0.8608422125
N = 6 0.9036501272 0.8923477088 0.8784963144 0.8608408841
N = 7 0.9036501165 0.8923477027 0.8784963115 0.8608408098
N = 8 0.9036501161 0.8923477025 0.8784963114 0.8608408055
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Figure 5. The estimated solutions for Example 5.3 with N = 8.

6. Conclusions

In this study, we defined the adaptive derivative. We showed that this type of local non-integer
derivatives, for positive integer orders, adapts with the classical derivative and we extended the classical
main theorems and relations of mathematical analysis according to this new derivative. Also, we
applied the LSC method to solve the adaptive optimal control problem. The achieved results approved
that the presented scheme in the sense of adaptive derivatives is highly accurate. For some theoretical
discussions, we can investigate the associated integral methods, that may be useful for analytical
methods for this type of derivative, in our future work similar to [5]. Also, physical interpretations
can be analyzed similar to [19]. Similar to the investigations that are associated to the derivative
of Khalil [9], we can discuss about some applications of this new type of non-integere derivative in
space-time fractional nonlinear (1+1)-dimensional Schrodinger-type models [4] and fractional delay
differential equations [11] in our future research projects. Also, we can extend this new non-integer
derivative and presented work to optimal control problems governed by non-integer delay ordinary and
partial differential equations.
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