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1. Introduction

It is well-known that general topology fails to have the concepts of uniformity (uniform
convergence and uniform continuity), hereditary of quotients, Cartesian closedness, Cauchy continuity,
total boundedness, and completeness. Therefore, several attempts has been made to overcome
these deficiencies including Kent convergence spaces [27], quasiuniform spaces [19], generalized
topological spaces [17], seminearness spaces [26] and nearness spaces [22]. But none of them have
led to fulfilling all the above properties. In 1995, Preuss [35] developed the concept of semiuniform
convergence spaces (a basic structure in the domain of convenient topology) that solves almost all
the flaws that appeared in Top (category of topological spaces and continuous maps). Moreover,
by exempting symmetric condition from the semi-uniform convergence spaces, Preuss obtained
preuniform convergence spaces and as a special case semiuniform convergence spaces Pre. Later,
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in 2018 and 2019, Leseberg [31, 33] extended the idea of Preuss and defined his concept on bounded
structures in terms of bounded uniform filter spaces. Interestingly, not only PUConv (the category
of preuniform convergence spaces and uniformly continuous maps) are embedded in b-UFIL (the
category of bounded uniform filter spaces and bounded continuous maps) but also BORN (category
of bornological spaces and continuous maps that are embedded in bounded spaces) can easily be
embedded in b-UFIL as its subcategories. Also, the category b-UFIL forms a strong topological
universe [31].

Classical separation axioms of general topology have many applications in almost all areas of
Mathematics. In algebraic topology, an alternative characterization of locally semi-simple coverings
in terms of light morphisms are achieved with the help of classical T0 [24]. Furthermore, in lambda
calculus and denotational semantics of programming language, various topological models have been
built by using the T0 separation axiom [38, 39] where Hausdorff topological spaces failed to do so.
Other treatments with these axioms can be found in digital topology where they are used to characterize
the digital line, in computer graphs and image processing and to construct cellular complex [21,28,29].
After stating such significance of T0 and T1 separation properties, several mathematicians have
extended this idea to arbitrary topological categories [2,15,20,23,34] and the generic point method of
topos theory by Johnstone has been used [25] due to the fact that in topos theory, generally speaking,
the objects may not have points, yet, they always have a generic element. One of their primarily usage
is to define each of T3, T4, regular, completely regular, and normal objects in an abstract topological
category [6].

The main concepts in general topology depend upon notion of closedness. Thus, several
generalizations of the classical separation axioms at some point p (local considering) have been
inspected in [2] where the primary purpose of this generalization was to interpret the notion of closed
sets and strongly closed sets in arbitrary set based topological categories. Moreover, the notions of
compactness, Hausdorffness and perfectness have been generalized by using these closed and strongly
closed sets in any topological category over sets [2, 7]. Further, they are suitable for the formation of
closure operators [16] in several well-known topological categories [10, 12, 18, 37] and used to extend
several fundamental theorems of general topology including Urysohn lemma and Tietze extension
theorem [13, 14].

The salient objectives of this study are stated as under:

(i) To characterize local T0, local T ′0 and local T1 objects in the category of bounded uniform filter
spaces, and examine their mutual relationship;

(ii) To give the characterization of T0, T ′0 andT1 objects in the category of bounded uniform filter
spaces, and examine their mutual relationship;

(iii) To examine that under conditions of T0 and T1, preuniform (respectively semiuniform) spaces are
isomorphic to bornological (respectively symmetric) bounded uniform filter spaces;

(iv) To examine the quotient-reflective properties of several bounded uniform filter spaces.

2. Preliminaries

For arbitrary topological categories G and H , the functor F : G → H is said to be a topological
functor, or the category G is said to be a topological category over H if F is concrete (amnestic

AIMS Mathematics Volume 7, Issue 9, 16632–16648.



16634

and faithful), F consists of small fibers, and there exists an initial lift (or equivalently, a final lift)
corresponding to every F-source [1, 36].

A filter σ on a set A is a non-empty collection such that finite intersection of elements of σ is in σ,
and every superset of a set in σ is in σ. If ∅ ∈ σ then σ is an improper filter otherwise it is a proper
filter. We write F (A) for the set of all filters on A. Let v ∈ A, then [v] = v̇ = [{v}] = {W ⊂ A : v ∈ W} is
a filter on A. Similarly, [U] = {W ⊂ A : W ⊃ U} is a filter on A.

Definition 2.1. (cf. [31]) Let X be a non-empty set,ΘX be a non-empty subset of P(X) and ψ ⊂ F (X×X)
be a non-empty set of uniform filters on the cartesian product of X with itself. A pair (ΘX, ψ) is said to be
a bounded uniform filter structure (or b-UFIL structure) on X and the corresponding triplet (X,ΘX, ψ)
is known as bounded uniform filter space (or b-UFIL space) on X if the following axioms hold:
(b-UFIL1) E′ ⊂ E ∈ ΘX implies E′ ∈ ΘX;
(b-UFIL2) x ∈ X implies {x} ∈ ΘX;
(b-UFIL3) E ∈ ΘX\∅ implies [E] × [E] ∈ ψ;
(b-UFIL4) σ ∈ ψ and σ ⊂ σ′ ∈ F (X × X) implies σ′ ∈ ψ.

A b-UFIL space (X,ΘX, ψ) is a symmetric b-UFIL space provided that the following axiom holds:
(b-UFIL5) σ ∈ ψ implies σ−1 ∈ ψ.

A symmetric b-UFIL space (X,ΘX, ψ) is a symmetric bounded uniform limit space provided that
the following axiom holds:
(b-UFIL6) σ ∈ ψ and σ′ ∈ ψ implying σ ∩ σ′ ∈ ψ.

A b-UFIL space (X,ΘX, ψ) is a crossbounded uniform filter space provided it satisfies the following
condition:
(crb) σ ∈ ψ implies E × E ∈ σ for some E ∈ ΘX.

If we denote by CROSSb-UFIL the corresponding defined full subcategory of b-UFIL, then it is
clear that BOUND and CROSSb-UFIL are isomorphic. Hence we can introduce the following as:

A cross bounded uniform filter space (X,ΘX, ψ) is a bornological b-UFIL space provided that the
following axiom holds:
(b-UFIL7) E, E′ ∈ ΘX implying E ∪ E′ ∈ ΘX.

Let (X,ΘX, ψX) and (Y,ΘY , ψY) be two b-UFIL spaces and h : X → Y be a map. Then h is called
bounded uniformly continuous (or buc) map if E ∈ ΘX implies h(E) ∈ ΘY ; and σ ∈ ψX implies
(h × h)(σ) ∈ ψY ; where (h × h)(σ) := {V ⊂ Y × Y : ∃U ∈ σ | (h × h)[U] ⊂ V} with (h × h)[U] :=
{(h × h)(x, y) : (x, y) ∈ U} = {(h(x), h(y)) : (x, y) ∈ U}.

We denote b-UFIL as category of b-UFIL spaces and buc maps. Similarly, sb-UFIL (respectively
LIMsb-UFIL) as category of symmetric b-UFIL spaces (respectively category of symmetric b-UFIL
limit spaces) and buc maps. Furthermore, BONb-UFIL is the category of bornological b-UFIL spaces
and buc maps.

Definition 2.2. (cf. [31, 33])

(i) For given a family of b-UFIL spaces (X j,Θ
X j , ψ j) j∈I and maps (h j : X → X j) j∈I . The initial b-

UFIL structure on X is represented by (ΘX, ψ), where ΘX := {E ⊂ X : h j[E] ∈ ΘX j , ∀ j ∈ I} and
ψ := {σ ∈ F (X2) : (h j × h j)(σ) ∈ ψ j, ∀ j ∈ I} with X2 := X × X.

(ii) A b-UFIL structure on X is indiscrete if (ΘX, ψ) := (P(X),F (X2)).
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(iii) For given a family of b-UFIL spaces (X j,Θ
X j , ψ j) j∈I and maps (h j : X j → X) j∈I . The final b-UFIL

structure on X is represented by (ΘX, ψ), where ΘX := {E ⊂ X : ∃i ∈ I,∃E j ∈ Θ
X j : E ⊂

h j[E j]} ∪ DX := {∅} ∪ {{a} : a ∈ X} and ψ := {σ ∈ F (X2) : ∃ j ∈ I,∃σ j ∈ ψ j : (h j × h j)(σ j) ⊂
σ} ∪ {[x] × [x] : x ∈ X} ∪ {P(X2)}.

(iv) A b-UFIL structure on X is discrete if (ΘX, ψ) := (DX, ψdis), where ψdis := {[x] × [x] : x ∈
X} ∪ {P(X2)}.

Remark 2.1. (i) A bornological b-UFIL structure on X is discrete if (ΘX, ψ) := (DX
born, ψdis), where

DX
born := {E ⊂ X : E is finite} [33].

(ii) The category PUConv is isomorphic to DISb-UFIL (category of discrete b-UFIL spaces and buc
maps) [31].

(iii) The category SUConv is isomorphic to DISsb-UFIL (category of discrete symmetric b-UFIL
spaces and buc maps) [31].

3. Local T0 and local T1 bounded uniform filter spaces

In general topology, all the basic concepts including compactness, connectedness, perfectness,
soberness, Hausdorffness and closure operators can be defined in terms of closedness. In order to
define these notions of closedness in categorical language, Baran [2] introduced local T0 and local T1

of topology in topological category using initial, final lifts and discrete objects. Moreover, these notion
of closedness (strongly closedness) are used to extend several famous theorems of general topology
such as Urysohn lemma and Tietze extension theorem.

In this section, we recall definitions of local T0 and local T1 b-UFIL spaces (at some fixed point p).
Let X be any set and p ∈ X. We define the wedge product of X at p as the two disjoint copies of X at p
and denote it as X

∨
p X. For a point x ∈ X

∨
p X, we write it as x1 if x belongs to the first component of

the wedge product; otherwise, we write x2 that is in the second component, where X2 is the cartesian
product of X.

Definition 3.1. (cf. [2])

(i) A map Ap : X
∨

p X −→ X2 is said to be principal p-axis map provided that

Ap(x j) :=
{

(x, p), j = 1,
(p, x), j = 2.

(ii) A map S p : X
∨

p X −→ X2 is said to be skewed p-axis map provided that

S p(x j) :=
{

(x, x), j = 1,
(p, x), j = 2.

(iii) A map ∇p : X
∨

p X −→ X is said to be fold map at p provided that

∇p(x j) := x, j = 1, 2.

Assume that F : G −→ Set is a topological functor, X ∈ Ob j(G) with FX = E and p ∈ E.
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Definition 3.2. (cf. [2])

(i) X is T0 at p provided that initial lift of F-source {E
∨

p E
Ap
−−→ F(X2) = E2 and E

∨
p E

∇p
−−→ FDE =

E} is discrete.

(ii) X is T
′

0 at p provided that initial lift of F-source {E
∨

p E
id
−→ F(X

∨
p X) = E

∨
p E and E

∨
p E

∇p
−−→

FDE = E} is discrete, where X
∨

p X represents the wedge product in G, i.e., final lift of F-sink

{FX = E
i1, i2
−−−→ E

∨
p E}, where i1 and i2 denote the canonical injections.

(iii) X is T1 at p provided that initial lift of F-source {E
∨

p E
S p
−−→ F(X2) = E2 and E

∨
p E

∇p
−−→ FDE =

E} is discrete.

Remark 3.1. (i) In Top, T0 and T ′0 at p (respectively T1 at p) are equivalent to the classical T0 at p
(respectively the classical T1 at p), i.e., for each x ∈ X with x , p, there exists a neighborhood
Nx of x not containing p or (respectively and) there exists a neighborhood Np of p not containing
x [5].

(ii) A topological space X is T0 (respectively T1) if and only if X is T0 (respectively T1) at p for all
p ∈ X [5].

(iii) LetU : G → Set be a topological functor, X ∈ Ob j(G) and p ∈ U(X) be a retract of X. If X is T0

(respectively T1) at p, then X is T
′

0 at p but not conversely in general [3].

(iv) LetU : G → Set be normalized and X ∈ Ob j(G) with p ∈ U(X). If X PreT2 object at p, then X
is T0 at p iff X is T1 at p [3, 8].

Theorem 3.1. Let (X,ΘX, ψ) be a b-UFIL space and p ∈ X. Then (X,ΘX, ψ) is T0 at p iff for all x ∈ X
with x , p, the following hold.

(i) {x, p} < ΘX;

(ii) [x] × [p] < ψ or [p] × [x] < ψ;

(iii) ([x] × [x]) ∩ ([p] × [p]) < ψ.

Proof. Let (X,ΘX, ψ) be T0 at p. We shall prove that the above conditions (i)–(iii) hold. Let {x, p} ∈ ΘX

for x , p and W = {x1, x2} ∈ Θ
X∨pX. Since ∇pW = {x} ∈ DX, and πkApW = {x, p} ∈ ΘX for

k = 1, 2, where πk : X2 → X for k = 1, 2 are the projection maps. Since (X,ΘX, ψ) is T0 at p, by the
Definitions 2.2 and 3.2, we get a contradiction. Hence, {x, p} < ΘX.

Next, suppose that [x] × [p] ∈ ψ for some x , p. Let σ = [x1] × [x2]. Clearly, (∇p × ∇p)σ =
[x] × [x] ∈ ψdis, (π1Ap × π1Ap)σ = [x] × [p] ∈ ψ and (π2Ap × π2Ap)σ = [p] × [x] ∈ ψ, a contradiction.
It follows that [x] × [p] < ψ or [p] × [x] < ψ.

Further, if ([x] × [x]) ∩ ([p] × [p]) ∈ ψ for some x , p. Let σ = ([x1] × [x1]) ∩ ([x2] × [x2]). Since
(∇p × ∇p)σ = [x] × [x] ∈ ψdis, (π1Ap × π1Ap)σ = ([x] × [x]) ∩ ([p] × [p]) ∈ ψ and (π2Ap × π2Ap)σ =
([p]× [p])∩ ([x]× [x]) ∈ ψ, a contradiction since (X,ΘX, ψ) is T0 at p. Thus, ([x]× [x])∩ ([p]× [p]) < ψ.

Conversely, let us assume that the conditions (i)–(iii) hold. Let (ΘX∨pX, ψ) be the initial structure
induced by Ap : X ∨p X → (X2,ΘX2

, ψ2) and ∇p : X ∨p X → (X,DX, ψdis), where (ΘX2
, ψ2) represents
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the product b-UFIL structure on X2 and (DX, ψdis) the discrete b-UFIL structure on X, respectively. We
show that (ΘX∨pX, ψ) is the discrete b-UFIL structure on X ∨p X. Let W ∈ ΘX∨pX and ∇pW ∈ DX.

If ∇pW = ∅, then W = ∅. Suppose ∇pW , ∅, it follows that ∇pW = {x} for some x ∈ X. If x = p,
then W = {p}. Suppose x , p. It follows that W = {x1}, {x2} or {x1, x2}. The case, W = {x1, x2}

cannot happen since πkApW = {x, p} < ΘX (k = 1, 2) by the assumption. Hence, W = {x1}, {x2} and
consequently, ΘX∨pX = DX∨pX, the discrete b-UFIL structure on X ∨p X.

Next, let σ ∈ ψ. By Definition 2.2(i), (∇p × ∇p)σ ∈ DX and (πkAp × πkAp)σ ∈ ψ for k = 1, 2. We
need to show that σ = [xi] × [xi] (i = 1, 2), σ = [p] × [p] or σ = [∅] = P((X ∨p X) × (X ∨p X)).

If (∇p × ∇p)σ = [∅], then σ = [∅] = P((X ∨p X) × (X ∨p X)). Suppose (∇p × ∇p)σ = [x] × [x] for
some x ∈ X. If x = p, then σ = [p] × [p].

If x , p, then (∇p × ∇p)σ = [x] × [x], then {x1, x2} × {x1, x2} ∈ σ. Thus there is a finite subset
N0 of σ such that σ = [N0]. Clearly, N0 ⊆ {x1, x2} × {x1, x2} and if i , j, then {{xi} × {x j}} , N0 and
{{x1} × {x1}, {x2} × {x2}} , N0 since in particular for k = 1, i = 1, and j = 2, (π1Ap ×π1Ap)([x1]× [x2]) =
[x] × [p] < ψ and (π1Ap × π1Ap)(([x1] × [x1]) ∩ ([x2] × [x2])) = ([x] × [x]) ∩ ([p] × [p]) < ψ by using
the second and the third conditions respectively.

Therefore, we must have σ = [xi]× [xi] (i = 1, 2) and consequently, by Definitions 3.2, 2.1 and 2.2,
(X,ΘX, ψ) is T0 at p. □

Theorem 3.2. Let (X,ΘX, ψ) be a b-UFIL space and p ∈ X. Then (X,ΘX, ψ) is T1 at p iff for all x ∈ X
with x , p, the followings hold.

(i) {x, p} < ΘX;

(ii) [x] × [p] < ψ and [p] × [x] < ψ;

(iii) ([x] × [x]) ∩ ([p] × [p]) < ψ.

Proof. The proof is analogous to the proof of Theorem 3.1 by using the skewed p-axis map S p instead
of the principal p-axis map Ap. □

Example 3.1. Let X = {k, l,m} and (ΘX, ψ) be a b-UFIL structure on X with ΘX = {∅, {k}, {l}, {m}} and
ψ = {[∅], [k] × [k], [l] × [l], [m] × [m], [k] × [l], [k] × [m]}. Then, (X,ΘX, ψ) is T0 at k but not T1 at k.

Theorem 3.3. All b-UFIL spaces are T ′0 at p.

Proof. Suppose (X,ΘX, ψ) is a b-UFIL space and p ∈ X. By Definition 3.2(ii), we show that for
any W ∈ ΘX∨pX, W ⊂ i j(V) ( j = 1 or 2) for some V ∈ ΘX, and ∇pW ∈ DX, and for any σ ∈

F ((X∨p X)× (X∨p X)), σ ⊃ (i j× i j)α ( j = 1 or 2) for some α ∈ ψ and (∇p×∇p)σ ∈ ψdis. Then W = ∅,
{p} or {xk} for k = 1, 2.

If ∇pW = ∅, then W = ∅. Let ∇pW , ∅. It follows that ∇pW = {x} for some x ∈ X.
If x = p, then ∇pW = {p}, it follows that W = {p}.
Suppose x , p, it follows that W = {x1}, {x2} or {x1, x2}. If W = {x1, x2}, then {x1, x2} ⊂ i1(V)

for some V ∈ ΘX which shows that x2 should be in first component of the wedge product X ∨p X, a
contradiction. In similar manner, {x1, x2} 1 i2(V) for some V ∈ ΘX. Hence, W , {x1, x2}. Thus, we
must have W = {xk} for k = 1, 2 only and consequently, ΘX∨pX = DX∨pX, the discrete b-UFIL structure
on X ∨p X.

Next, for any σ ∈ F ((X∨p X)×(X∨p X)), if (∇p×∇p)σ = [∅], then σ = [∅] = P((X∨p X)×(X∨p X)).
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Now, assume that (∇p × ∇p)σ = [x] × [x] for some x ∈ X. If x = p, then (∇p × ∇p)σ = [p] × [p],
and consequently σ = [p] × [p].

Suppose that x , p, then (∇p×∇p)σ = [x]×[x], hence {x1, x2}×{x1, x2} ∈ σ. Thus there exists a finite
subset M of σ such that σ = [M]. Clearly, M ⊆ {x1, x2} × {x1, x2} and if k , l, then {{xk} × {xl}} , M
and {{x1} × {x1}, {x2} × {x2}} , M. Suppose that M = {{xk} × {xl}}, then for k = 1, l = 2, and j = 1
(respectively j = 2), [x1] × [x2] ⊃ (i1 × i1)α for some α ∈ ψ. It follows that (x1, x2) ∈ (i1 × i1)(U)
for all U ∈ α, which implies that x2 (respectively x1) is in the first (respectively second) component of
the wedge product X ∨p X, a contradiction. In similar manner, if M = {{x1} × {x1}, {x2} × {x2}}, then
for j = 1 (respectively j = 2), (([x1] × [x1]) ∩ ([x2] × [x2])) ⊃ (i1 × i1)α for some α ∈ ψ. It follows
that {(x1, x1), (x2, x2)} ∈ (i1 × i1)(U) for all U ∈ α, which implies that x2 (respectively x1) is in the first
(respectively second) component of the product X ∨p X, a contradiction.

Thus, we must have σ = [xk] × [xk] (k = 1, 2) and consequently, by Definitions 3.2, 2.2 and
Theorems 3.1, 3.2, (X,ΘX, ψ) is T ′0 at p. □

Corollary 3.1. Let (X,ΘX, ψ) be a symmetric b-UFIL space and p ∈ X, then the following statements
are equivalent:

(i) X is T0 at p.

(ii) X is T1 at p.

(iii) {x, p} < ΘX; [x] × [p] < ψ; and ([x] × [x]) ∩ ([p] × [p]) < ψ.

Proof. The proof of the corollary can be easily deduced from Theorems 3.1, 3.2 and Definition 2.1. □

Corollary 3.2. Let (X,ΘX, ψ) be a symmetric b-UFIL limit space and p ∈ X be any point, then the
following statements are equivalent:

(i) X is T0 at p.

(ii) X is T1 at p.

(iii) {x, p} < ΘX; and [x] × [p] < ψ.

Proof. The proof of the corollary can be easily deduced from Theorems 3.1, 3.2 and Definition 2.1. □

4. T0 and T1 bounded uniform filter spaces

In this section, we recall the definitions of T0 and T1 b-UFIL spaces.
To generalize the classical T0 objects, various approaches have been discussed by Topologists

since 1971 such as Brümmer, Marny, Hoffman, Harvey and Baran in [2, 4, 15, 20, 23, 34, 40]. In
addition, the relationships between several forms of generalized T0 objects in topological category
have been examined in [4,40]. One of the main reasons for this generalization was to define Hausdorff
objects in arbitrary topological categories [2]. But also T0 is used to define non-T2 spaces such as sober
spaces [11] that are used in theoretical computer science. Further, a generalization of the classical T1

objects of topology in topological categories has been investigated by Baran [2] in 1991. One of its
important uses is to define each of T3, T4, regular, completely regular, and normal objects in an abstract
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topological category [6]. Baran’s approach was to characterize these separation axioms in terms of their
initial and final lifts, and discreteness.

Since points do not make sense in topos theory, Baran [2] used the generic element method defined
by Johnstone [25] to characterize separation axioms that make sense in topos theory as well, where the
wedge product X

∨
p X at p can be replaced by X2∨

∆ X2 at diagonal ∆.

Definition 4.1. (cf. [2])

(i) A map A : X2∨
∆ X2 −→ X3 is called principal axis map provided that

A((x, y) j) :=
{

(x, y, x), j = 1,
(x, x, y), j = 2.

(ii) A map S : X2∨
∆ X2 −→ X3 is called skewed axis map provided that

S ((x, y) j) :=
{

(x, y, y), j = 1,
(x, x, y), j = 2.

(iii) A map ∇ : X2∨
∆ X2 −→ X2 is called fold map provided that

∇((x, y) j) := (x, y), j = 1, 2,

where X2∨
∆ X2 is the wedge product of X2 diagonally intersected with X2, and any element (x, y) ∈

X2∨
∆ X2 is written as (x, y)1 (respectively (x, y)1) if it lies in the first (respectively second) component

of X2∨
∆ X2. Clearly, (x, y)1 = (x, y)2 if and only if x = y.

Definition 4.2. Let F : G −→ Set be a topological functor, X ∈ Ob j(G) with FX = E.

(i) X is T0 provided that the initial lift of the F-source {E2∨
∆ E2 A

−→ F(X3) = E3 and E2∨
∆ E2 ∇

−→

FD(E2) = E2} is discrete [2].

(ii) X is T ′0 provided that the initial lift of the F-source {E2∨
∆ E2 id

−→ F(E2∨
∆ E2)′ = E2∨

∆ E2

and E2∨
∆ E2 ∇

−→ FD(E2) = E2} is discrete, where (E2∨
∆ E2)′ is the final lift of the F-sink

{F(X2) = E2 i1, i2
−−−→ E2∨

∆ E2} [2, 4].

(iii) X is called T0 property provided that X doesn’t contain an indiscrete subspace with at least two
points [34, 40].

(iv) X is T1 provided that the initial lift of the F-source {E2∨
∆ E2 S

−→ F(X3) = E3 and E2∨
∆ E2 ∇

−→

FD(E2) = E2} is discrete [2].

Remark 4.1. (i) In Top, all T0, T0 and T ′0 (respectively T1) are equivalent to the classical T0

(respectively the classical T1), i.e., for each x, y ∈ X with x , y, there exists a neighborhood
Nx of x not containing y or (respectively and) there exists a neighborhood Ny of y not containing
x [5].
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(ii) In any topological category, T0 =⇒ T ′0 but not conversely in general. Also, each of T0 and
T ′0 objects has no relation with T0 object [4]. For Example, T0 could be all objects such as in
Born [4], and T0 =⇒ T0 =⇒ T ′0 such as in SUConv [9] and T0 = T0 =⇒ T ′0 such as in
Lim [4].

(iii) LetU : G → Set be a topological functor and X ∈ Ob j(G). If X ∈ PreT2(G), then X is T0 iff X is
T1, where PreT2(G) is the category of PreT2 objects [8].

Theorem 4.1. Let (X,ΘX, ψ) be a b-UFIL space. (X,ΘX, ψ) is T0 iff for all x, y ∈ X with x , y, the
following hold:

(i) {x, y} < ΘX;

(ii) [x] × [y] < ψ or [y] × [x] < ψ;

(iii) ([x] × [x]) ∩ ([y] × [y]) < ψ.

Proof. Let (X,ΘX, ψ) be T0. We shall prove that the above conditions (i)–(iii) hold. Let {x, y} ∈ ΘX

for x , y and W = {(x, y)1, (x, y)2} ∈ Θ
X2∨∆X2

. Since ∇W = {(x, y)} ∈ DX2
, π1AW = {x} ∈ ΘX, and

πkAW = {x, y} ∈ ΘX for k = 2, 3, where πk : X3 → X2 for k = 1, 2, 3 are the projection maps. Since
(X,ΘX, ψ) is T0, by the Definitions 2.2 and 4.2, we get a contradiction. Hence, {x, y} < ΘX.

Next, suppose that [x] × [y] ∈ ψ for some x , y. Let σ = [(x, y)1] × [(x, y)2]. Clearly, (∇ ×
∇)σ = [(x, y)] × [(x, y)] ∈ ψ2

dis, (π1A × π1A)σ = [x] × [x] ∈ ψ, (π2A × π2A)σ = [y] × [x] ∈ ψ, and
(π3A × π3A)σ = [x] × [y] ∈ ψ, a contradiction. It follows that [x] × [y] < ψ or [y] × [x] < ψ.

Further, if ([x]×[x])∩([y]×[y]) ∈ ψ for some x , y. Letσ = ([(x, y)1]×[(x, y)1])∩([(x, y)2]×[(x, y)2]).
Since (∇ × ∇)σ = [(x, y)] × [(x, y)] ∈ ψ2

dis, (π1A × π1A)σ = [x] × [x] ∈ ψ, (π2A × π2A)σ = ([y] × [y]) ∩
([x] × [x]) ∈ ψ, and (π3A × π3A)σ = ([x] × [x]) ∩ ([y] × [y]) ∈ ψ, a contradiction since (X,ΘX, ψ) is T0.
Thus, ([x] × [x]) ∩ ([y] × [y]) < ψ.

Conversely, suppose that the conditions (i)–(iii) hold. Let (ΘX2∨∆X2
, ψ) be the initial structure

induced by A : X2 ∨∆ X2 → (X3,ΘX3
, ψ3) and ∇ : X2 ∨∆ X2 → (X2,DX2

, ψ2
dis), where (ΘX3

, ψ3)
represents the product b-UFIL structure on X3 and (DX2

, ψ2
dis) the discrete b-UFIL structure on X2,

respectively. We show that (ΘX2∨∆X2
, ψ) is a discrete b-UFIL structure on X2 ∨∆ X2. Let W ∈ ΘX2∨∆X2

and ∇W ∈ DX2
.

If ∇W = ∅, then W = ∅. Suppose ∇W , ∅, it follows that ∇W = {(x, y)} for some (x, y) ∈
X2. Suppose x , y. It follows that W = {(x, y)1} or {(x, y)2} or {(x, y)1, (x, y)2}. The case, W =

{(x, y)1, (x, y)2} cannot happen since π1AW = {x} ∈ ΘX but πkAW = {x, y} < ΘX (k = 2, 3) by the
assumption. Hence, W = {(x, y)1} or {(x, y)2} and consequently, ΘX2∨∆X2

= DX2∨∆X2
, the discrete b-

UFIL structure on X2 ∨∆ X2.
Next, let σ ∈ ψ. By Definition 2.2(i), (∇ × ∇)σ ∈ DX2

and (πkA × πkA)σ ∈ ψ for k = 1, 2, 3. We
need to prove that σ = [(x, y)i] × [(x, y)i] (i = 1, 2, 3), or σ = [∅] = P((X2 ∨∆ X2) × (X2 ∨∆ X2)).

If (∇×∇)σ = [∅], then σ = [∅] = P((X2∨∆X2)×(X2∨∆X2)). Suppose (∇×∇)σ = [(x, y)]×[(x, y)] for
some (x, y) ∈ X2. If x , y, then (∇×∇)σ = [(x, y)]×[(x, y)], hence {(x, y)1, (x, y)2}×{(x, y)1, (x, y)2} ∈ σ.
Thus, there is a finite subset N0 of σ such that σ = [N0]. Clearly, N0 ⊆ {(x, y)1, (x, y)2}× {(x, y)1, (x, y)2}

and if i , j, then it can be easily seen that N0 , {{(x, y)i} × {(x, y) j}} by the second condition and that
by the third condition N0 , {{(x, y)1} × {(x, y)1}, {(x, y)2} × {(x, y)2}}.

Therefore, we must have σ = [(x, y)i] × [(x, y)i] (i = 1, 2) and consequently, by Definitions 4.2, 2.1
and 2.2, (X,ΘX, ψ) is T0. □
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Theorem 4.2. Let (X,ΘX, ψ) be a b-UFIL space. (X,ΘX, ψ) is T0 iff for all x, y ∈ X with x , y, the
following hold:

(i) {x, y} < ΘX;

(ii) ([x] × [x]) ∩ ([y] × [y]) < ψ.

Proof. Let (X,ΘX, ψ) be T0, and {x, y} ∈ ΘX, and [{x, y}] × [{x, y}] ∈ ψ for some x, y ∈ X with x , y.
Suppose that W = {x, y}. Note that (W,ΘW , ψW) is the subspace of (X,ΘX, ψ), where (ΘW , ψW) is the
initial b-UFIL structure on W induced by the inclusion map i : W → X. By Definition 2.2(i), for any
B ⊂ W, B ∈ ΘW precisely when i(B) = B ∈ ΘX, and for α ∈ F (W × W), α ∈ ψW precisely when
(i × i)α = α ∈ ψ. Specifically, for B = W = {x, y}, i(W) = W ∈ ΘX and for α = [W] × [W] =
[{x, y}] × [{x, y}] = ([x] × [x]) ∩ ([y] × [y]), (i × i)α = [W] × [W] ∈ ψ, by the assumption. It follows
that (ΘW , ψW) = (P(W),F (W ×W)), the indiscrete b-UFIL structure on W, a contradiction. Therefore,
{x, y} < ΘX and ([x] × [x]) ∩ ([y] × [y]) < ψ.

Conversely, suppose that {x, y} < ΘX and ([x] × [x]) ∩ ([y] × [y]) < ψ for all x, y ∈ X with x , y.
We show that the initial structure (ΘW , ψW) is not an indiscrete b-UFIL structure on W. Assume that
W = {x, y} ⊂ X. By the assumption and using the Definition 2.2(i), {x, y} < ΘW and ([x] × [x]) ∩
([y] × [y]) < ψW . Thus, (W,ΘW , ψW) is not an indiscrete bounded uniform subspace of (X,ΘX, ψ) and
therefore by the Definition 4.2(iii), (X,ΘX, ψ) is T0. □

Theorem 4.3. Let (X,ΘX, ψ) be a b-UFIL space. (X,ΘX, ψ) is T1 iff for all x, y ∈ X with x , y, the
following hold:

(i) {x, y} < ΘX;

(ii) [x] × [y] < ψ and [y] × [x] < ψ;

(iii) ([x] × [x]) ∩ ([y] × [y]) < ψ.

Proof. The proof is analogous to the proof of Theorem 4.1 by using the skewed axis map S instead of
the principal axis map A. □

Example 4.1. Let X = {a, b, c} and (ΘX, ψ) be a b-UFIL structure on X with ΘX = {∅, {a}, {b}, {c}} and
ψ = {[∅], [a] × [a], [b] × [b], [c] × [c], [a] × [b], [a] × [c], [b] × [c]}. Then, (X,ΘX, ψ) is T0 but not T1

b-UFIL space.

Theorem 4.4. All b-UFIL spaces are T ′0.

Proof. Suppose (X,ΘX, ψ) is a b-UFIL space. By Definition 4.2(ii), we show that for any W ∈ ΘX2∨∆X2
,

W ⊂ i j(V) ( j = 1 or 2) for some V ∈ ΘX2
, and ∇W ∈ DX2

, and for any σ ∈ F ((X2∨∆ X2)× (X2∨∆ X2)),
σ ⊃ (i j × i j)α ( j = 1 or 2) for some α ∈ ψ2 and (∇ × ∇)σ ∈ ψ2

dis. Then W = ∅, {p} or {xk} for k = 1, 2.
If ∇pW = ∅, then W = ∅. Let ∇pW , ∅. It follows that ∇pW = {(x, y)} for some x ∈ X.
Suppose x , y, it follows that W = {(x, y)1} or {(x, y)2} or {(x, y)1, (x, y)2}. If W = {(x, y)1, (x, y)2},

then {(x, y)1, (x, y)2} ⊂ i1(V) for some V ∈ ΘX2
which shows that (x, y)2 must be in the first component

of X2 ∨∆ X2, a contradiction. Similarly, {(x, y)1, (x, y)2} 1 i2(V) for some V ∈ ΘX2
. Hence, W ,

{(x, y)1, (x, y)2}. Thus, we must have W = {(x, y)k} for k = 1, 2 only and consequently, ΘX2∨∆X2
=

DX2∨∆X2
, the discrete b-UFIL structure on X2 ∨∆ X2.
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Next, forσ ∈ F ((X2∨∆X2)×(X2∨∆X2)), if (∇×∇)σ = [∅], thenσ = [∅] = P((X2∨∆X2)×(X2∨∆X2)).
Now, assume that (∇ × ∇)σ = [(x, y)] × [(x, y)] for some (x, y) ∈ X2. Suppose that x , y, then
{(x, y)1, (x, y)2} × {(x, y)1, (x, y)2} ∈ σ. Thus, there exists a finite subset M of σ such that σ = [M].
Clearly, M ⊆ {(x, y)1, (x, y)2}× {(x, y)1, (x, y)2} and if k , l, then {{(x, y)k}×{(x, y)l}} , M and {{(x, y)1}×

{(x, y)1}, {(x, y)2}×{(x, y)2}} , M. Suppose that M = {{(x, y)k}×{(x, y)l}}, then for k = 1, l = 2, and j = 1
(resp. j = 2), [(x, y)1]× [(x, y)2] ⊃ (i1× i1)α for some α ∈ ψ. It follows that ((x, y)1, (x, y)2) ∈ (i1× i1)(U)
for all U ∈ α, which implies that (x, y)2 (resp. (x, y)1) is in the first (resp. second) component of
X2 ∨∆ X2, a contradiction. Similarly, if M = {{(x, y)1} × {(x, y)1}, {(x, y)2} × {(x, y)2}}, then for j = 1
(resp. j = 2), (([(x, y)1] × [(x, y)1]) ∩ ([(x, y)2] × [(x, y)2])) ⊃ (i1 × i1)α for some α ∈ ψ. It follows that
{((x, y)1, (x, y)1), ((x, y)2, (x, y)2)} ∈ (i1 × i1)(U) for all U ∈ α, which implies that (x, y)2 (resp. (x, y)1) is
in the first (resp. second) component of X2 ∨∆ X2, a contradiction.

Thus, we must have σ = [(x, y)k] × [(x, y)k] (k = 1, 2) and consequently, by the Definitions 4.2, 2.2,
and Theorems 4.1, 4.3, (X,ΘX, ψ) is T ′0. □

Remark 4.2. Let X be a b-UFIL space.

(i) By Theorems 3.1 and 4.1, X is T0 iff X is T0 at p, for all p ∈ X.

(ii) By Theorems 3.2 and 4.3, X is T1 iff X is T1 at p, for all p ∈ X.

(iii) By Theorem 3.3 and 4.4, X is T ′0 iff X is T ′0 at p, for all p ∈ X.

(iv) By Theorems 4.1–4.4, T1 =⇒ T0 =⇒ T0 =⇒ T ′0, but the converse does not hold in general.

Corollary 4.1. Let (X,ΘX, ψ) be a bornological b-UFIL space. Then, (X,ΘX, ψ) is T0 iff for all x, y ∈ X
with x , y, the following hold:

(i) [x] × [y] < ψ or [y] × [x] < ψ;

(ii) ([x] × [x]) ∩ ([y] × [y]) < ψ.

Proof. By using the similar argument in Theorem 4.1, and by applying Remark 2.1(i), we obtain the
claim. □

Corollary 4.2. Let (X,ΘX, ψ) be a bornological b-UFIL space. Then, (X,ΘX, ψ) is T1 iff for all x, y ∈ X
with x , y, the following hold:

(i) [x] × [y] < ψ and [y] × [x] < ψ;

(ii) ([x] × [x]) ∩ ([y] × [y]) < ψ.

Proof. By using the similar argument in Theorem 4.1, applying Remark 2.1(i), and replacing the
mapping S by mapping A, we get the results. □

Corollary 4.3. Let (X,ΘX, ψ) be a symmetric b-UFIL space, then the following statements are
equivalent:

(i) X is T0.

(ii) X is T1.

(iii) For all x, y ∈ X with x , y, {x, y} < ΘX; [x] × [y] < ψ; and ([x] × [x]) ∩ ([y] × [y]) < ψ.
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Proof. The proof of the corollary can be easily deduced from Theorems 4.1, 4.3 and Definition 2.1. □

Corollary 4.4. Let (X,ΘX, ψ) be a symmetric b-UFIL limit space, then the following statements are
equivalent:

(i) X is T0.

(ii) X is T1.

(iii) For all x, y ∈ X with x , y, {x, y} < ΘX; and [x] × [y] < ψ.

Proof. The proof of the corollary can be easily deduced from Theorems 4.1, 4.3 and Definition 2.1. □

Definition 4.3. (Set convergence) (cf. [32]) For an arbitrary set X, let ΘX ⊂ P(X) be a non-empty
boundedness of X and q ⊂ ΘX × F (X). A pair (ΘX, q) is called a set-convergence on X and the triplet
(X,ΘX, q) is known as a set-convergence space (or S-Conv space) if the following axioms hold:
(S-Conv1) E ∈ ΘX implies (E, [E]) ∈ q;
(S-Conv2) (∅, ξ) ∈ q implies ξ = P(X);
(S-Conv3) (E, ξ) ∈ q and ξ ⊂ ξ′ ∈ F (X) implies (E, ξ′) ∈ q.

A set-convergence space (X,ΘX, q) is called a reordered set-convergence space (or ROS-Conv
space) provided that the following axiom holds:
(S-Conv4) If E ∈ ΘX and (E, ξ) ∈ q then for E′ ⊂ E ∈ ΘX with E′ , ∅ implies (E′, ξ) ∈ q.

Let (X,ΘX, q) and (Y,ΘY , p) be a pair of S-Conv spaces and h : X → Y be a map. Then h is called
bounded continuous (or b-continuous) map if h is bounded and h transfers convergent filters.

We denote S-Conv (respectively ROS-Conv) as the category of S-Conv spaces (respectively
reordered S-Conv spaces) and b-continuous maps. Also, we write ξ q E for (E, ξ) ∈ q.

Note that if we restrict ΘX to be the discrete bounded structure on X, then many point-convergence
spaces in the classical sense, such as, limit spaces, Kent-convergence spaces, topological spaces etc.,
can be embedded into ROS-Conv spaces. Also note that the category ROS-Conv can be regarded as a
full subcategory of b-UFIL as mentioned in [32].

For a b-UFIL space (X,ΘX, µ), the corresponding ROS-Conv structure (ΘX, qµ) can be achieved
provided that the following axioms hold:

(i) ξ qµ ∅ iff ξ = P(X);

(ii) ξ qµ E iff [E] × ξ ∈ µ, ∀E ∈ ΘX\{∅}.

Definition 4.4. (cf. [32]) Let (X,ΘX, q) be a ROS-Conv space. A reordered set-convergence pair (ΘX, q)
is said to be:

(1) T0 set- convergence iff the following condition holds, i.e.

(T0) ∀a, b ∈ X, [a] q {b} and [b] q {a} implies that a = b;

(2) T1 set- convergence iff the following condition holds, i.e.

(T1) ∀a, b ∈ X and [a] q {b} implies that a = b.
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Remark 4.3. (cf. [32]) Let (X,ΘX, µ) be a b-UFIL space. The pair (ΘX, µ) of b-UFIL structure on
X is said to be T0 (respectively T1) iff the corresponding pair (ΘX, qµ) is T0 (respectively T1) set-
convergence. Note that we refer it as usual.

Corollary 4.5. Let (X,ΘX, ψ) be a discrete symmetric b-UFIL limit space, then the following statements
are equivalent.

(i) X is T0;

(ii) X is T1;

(iii) X is T0 (in the usual sense);

(iv) X is T1 (in the usual sense);

(v) For all x, y ∈ X with x , y, [x] × [y] < ψ.

Proof. It follows from Corollary 4.4, Remark 4.3 and Definition 2.2(iii). □

Corollary 4.6. The following categories are isomorphic.

(i) T0DISb-UFIL;

(ii) T0PUConv;

(iii) T0BONb-UFIL.

Proof. It follows from Theorem 4.1, Corollary 4.1, Definition 2.1 and Theorem 3.1.10 of [30]. □

Corollary 4.7. The following categories are isomorphic.

(i) T0DISsb-UFIL;

(ii) T0SUConv;

(iii) T1SUConv;

(iv) T0BONsb-UFIL;

(v) T1BONsb-UFIL.

Proof. It follows from Corollaries 4.1–4.3, Theorems 4.4 and 4.6 of [9]. □

5. Quotient-reflective subcategories of the category of b-UFIL spaces

Definition 5.1. (cf. [32]) Given a topological functor F : G → Set, and a full and isomorphism-closed
subcategoryH of G, we say thatH is:

(1) Epireflective in G if and only if H is closed under the formation of products and extremal
subobjects (i.e., subspaces).

(2) Quotient-reflective in G if and only if H is epireflective in G and closed under finer structures
(i.e., if X ∈ H , Y ∈ G, F(X) = F(Y), and id : X → Y is a G-morphism, then Y ∈ H).

AIMS Mathematics Volume 7, Issue 9, 16632–16648.



16645

Theorem 5.1. (i) Every T0b-UFIL (resp. T0b-UFIL, T1b-UFIL) is a quotient-reflective subcategory
of b-UFIL.

(ii) T ′0b-UFIL is a cartesian closed and hereditary topological construct.

Proof. (i) Let G = T0b-UFIL and (A,ΘA, µA) ∈ G. It can be easily verified that A is full subcategory,
isomorphism-closed and closed under finer structures. We are left to show that it is also closed under
extremal sub-objects and closed under the formation of products.

Let X ⊂ A and (ΘX, µX) be the sub-b-UFIL structure on X induced by i : X → A. We show
that (X,ΘX, µX) is a T0b-UFIL space. Suppose that {x, y} ∈ ΘX for any x, y ∈ X with x , y. Then
i({x, y}) = {i(x), i(y)} = {x, y} ∈ ΘA, a contradiction by Theorem 4.1. Thus, {x, y} < ΘX. Similarly,
let [x] × [y] ∈ µX and ([x] × [x]) ∩ ([y] × [y]) ∈ µX, then (i × i)([x] × [y]) = [x] × [y] ∈ µA and
(i× i)(([x]× [x])∩ ([y]× [y])) = ([x]× [x])∩ ([y]× [y]) ∈ µA, again a contradiction. Thus [x]× [y] < µX

and ([x] × [x]) ∩ ([y] × [y]) < µX. Hence, A is closed under extremal subobjects.
Next, suppose that A =

∏
j∈I A j, where (ΘA j , µA j) are the T0b-UFIL structures on A j induced by

π j : A → A j for all j ∈ I, i.e., (A j,Θ
A j , µA j) ∈ G. We show that (A,ΘA, µA) is a T0b-UFIL space. Let

{x, y} ∈ ΘA for any x, y ∈ A with x , y. Then π j({x, y}) = {π j(x), π j(y)} = {x j, y j} ∈ Θ
A j , a contradiction

to Theorem 4.1. Thus {x, y} < ΘA. Similarly, suppose that [x]×[y] ∈ µA and ([x]×[x])∩([y]×[y]) ∈ µA,
then there exists j ∈ I for which x j , y j ∈ A j, such that (π j × π j)([x] × [y]) = [x j] × [y j] ∈ µA j and
(π j ×π j)(([x]× [x])∩ ([y]× [y])) = ([x j]× [x j])∩ ([y j]× [y j]) ∈ µA j , a contradiction. Thus [x]× [y] < µA

and ([x] × [x]) ∩ ([y] × [y]) < µA. Hence, A is closed under the formation of products.
Therefore, the category T0b-UFIL is a quotient-reflective subcategory of b-UFIL.
Analogous to the above argument, setting G = T0b-UFIL or T1b-UFIL, the proof can be easily

deduced by using Theorem 4.2 or Theorem 4.3, respectively.
(ii) By Theorem 4.4, both b-UFIL and T ′0b-UFIL are isomorphic categories, and consequently, by

Theorems 2.9.4 and 2.9.5 of [33], T ′0b-UFIL is a cartesian closed and hereditary topological construct.
□

6. Conclusions

First of all, we characterized local T0, local T ′0 and local T1 b-UFIL spaces, and showed that every
local T1 b-UFIL is local T0 b-UFIL but converse is not true in general. Moreover, we characterized T0,
T ′0, T0 and T1 in the category b-UFIL, and showed that T1 =⇒ T0 =⇒ T0 =⇒ T ′0, but the converse
does not hold in general and provided some related results. Furthermore, we showed that under T0

condition, T0DISb-UFIL � T0PUConv � T0BONb-UFIL which is not isomorphic in general. Also,
we showed the isomorphic relation among T0DISsb-UFIL, T0SUConv, T1SUConv, T0BONsb-UFIL
and T1BONsb-UFIL, and examined their relationships with the usual ones. Finally, we examined that
T0b-UFIL, T0b-UFIL and T1b-UFIL are quotient-reflective subcategories of b-UFIL, and T ′0b-UFIL
is a hereditary and cartesian closed topological category. In light of this study, the following can be
examined in b-UFIL as a future research work:

(i) Can one characterize closed and strongly closed objects in b-UFIL, and what would be their
corresponding closure operators using the notion of closedness in b-UFIL?

(ii) How can one characterize irreducibility, soberness, connectedness and hyperconnectedness in
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the category b-UFIL? Can Urysohn Lemma and Tietze Extension Theorem be extended in the
category of b-UFIL?

(iii) How one can define pre-Hausdorff, Hausdorff, regular and normal objects in b-UFIL, and what
would be their relation to the classical ones?
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