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1. Introduction

In [2], Cao and Fu considered the following cubic predator-prey diffusion model with stage structure
for the prey:

In
ot
9x
ot
dx3
ot

=d\Ax; + MXy —riXx; —mx; + blx% - bzX? — b3xix3,
= drAxy + 1m2x1 — 12X, (L.1)
= d3Ax; — cx3 + (ax; — Bx3) X3,

where x; and x, denote the densities of the immature and mature prey species, respectively, and x3 is
the density of the predator species. The predators live only on the immature prey species. The constants
di, dy, d3, 11, ma, 11, 12, by, by, b3, c, a, B are positive. dy, d, and d; denote diffusion coefficients. n;
and r; represent the birth rate and the mortality rate of the immature prey species, respectively. 1, is
the conversion rate of the immature prey species to the mature prey species. byx3 — bzxi is the density
restriction term of the immature prey species. b3 x; is the predation rate of the predator to the immature
prey population. r, and ¢ are the net mortality rate of the mature prey population and the predator
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population, respectively. a@x; is the conversion rate of the predator, and Sx; is the density restriction
term of the predator population. For more details on the backgrounds this system, see [2].
Rescaling the system (1.1) such that

a a
— X1 U, —XoP Uy, — X3V, Rdt dt, Tt
r Up) r
yields
Uy = diAuy + agity — ajuy + azuf - a3u? —euv, xeR“t>0,
Uy = do Aty + 1y — U, xeR"t>0, (12)
Vi = d3Av + (=b + u; — v)v, xeR t>0,

where ay = 7717]2/(7'%), a; = (ry+mn)/rn,a, = bi/a, as = by/r, e = b3/B, b = c/r, are positive
constants.

If ay > ay, a, > e + 2asb, then the system (1.2) has a semi-trivial equilibrium (K, K, 0) and the
unique positive constant equilibrium (u], u3, v*), where

a + \/a§ + das(ay — ay)

K = ,
2613
. ., (@m—-e)+ \/(az—e)2+4a3(eb+ao—a1)
l/l] - Mz - 2613 ’
Vi =uj—b.

Cao and Fu have obtained the following main conclusions: (1) The asymptotical stability of
equilibrium points of the system (1.2) without diffusion; (2) the global existence of solutions and
the stability of equilibrium points of system (1.2); (3) the existence of nonnegative classical global
solutions and the global asymptotic stability of a unique positive equilibrium point of system (1.2)
with cross-diffusion.

A traveling wave solution of the system (1.2) is a special solution (u(x, 1), u»(x, t), v(x, t)) taking the
form

ui(x,) =u;(x-v+cet)i=1,2), v(x, 1) =v(x-v+ct),

where v € R” is a unit vector denoting the direction of wave propagation, x - v is the usual inner product
in R”, ¢ > 0 is the wave speed, and (u; (&), u,(€), v(¢)) with € = x - v + ct satisfies the following ODE
system:
cuy = duf + aour — ayuy + azu% — a3u? —euv, ¢£€R,
cuy, = doul + uy — uy, £ eR, (1.3)
v =dsvV' + (=b+u; —v)v, £ eR,
and
O<ui(¢)<K(@@=1,2), 0<v(&)<Vp, ¥V EER,
(uy, uy, ug, us, v,v')(—0) = Eo := (K, 0, K,0,0,0), (1.4)
(ul’ u,p U, ulz’ v, V’)(OO) = E* = (uT’ Oa I/l;, Oa V*9 O)a
where V|, positive constant. For convenience, we shall use the variable x to replace & and use i to denote
the integers 1, 2 in this paper.
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In the past several decades, the existence and non-existence of traveling wave solutions for predator-
prey systems have been widely studied by many researchers. Dunbar [4—6] established the existence
of traveling wave solutions for a reaction-diffusion system by using Lyapunov function, shooting
techniques, invariant manifold theory, etc. Hsu, Yang and Yang [9] obtained the existence of traveling
wave solutions for a class of diffusive predator-prey type systems by using the Wazewski theorem,
LaSalle’s invariance principle and Hopf bifurcation theory. Huang, Guang and Ruan [10] considered
the existence of traveling front solutions and small amplitude traveling wave train solutions for a
reaction-diffusion system. Ai, Du and Peng [1] studied traveling wave solutions of the generalized
Holling-Tanner predator-prey model by the squeezing method and Lyapunov function method. Wang
and Fu [15] established the existence of traveling wave solutions to a diffusive generalized Holling-
Tanner predator-prey model by constructing the Lyapunov function. For more results, we can see
[3,7,8,11-14] and references.

Based on the idea of Ai, Du and Peng [1], in this paper, we are concerned with the existence
and non-existence of traveling wave solutions of the system (1.2). We obtain the existence and non-
existence of weak traveling wave solutions by using the upper and lower solutions method and the
Schauder fixed point theorem. Moreover, we prove that the weak traveling wave solutions are actually
traveling wave solutions under additional conditions by the using the Lyapunov function method and
LaSalle’s invariance principle. Although the idea was used before for other predator-prey systems, the
adaptation to our problem harder, and we need more detailed and complicated estimates.

This paper is organized as follows. In Section 2, employing the method of upper and lower
solutions together with the Schauder fixed point theorem, we prove the existence and non-existence
of weak traveling wave solutions for (1.3) with the main Theorem 2.1. In Section 3, we prove that the
weak traveling wave solution obtained in Theorem 2.1 is also a traveling wave solution under certain
conditions by using the Lyapunov function and LaSalle’s invariance principle (Theorem 3.1).

2. Weak traveling wave solutions for the system (1.3)

In this section, we will apply the method of upper and lower solutions together with the Schauder
fixed point theorem to study the existence of weak traveling wave solutions for (1.3).

Let
2 3
Fi(ui,up,v) = apuy — ayu; + aruy — asu] — euyv,

Fo(uy, uz,v) = uy — uy,
G(uy,up,v) = (=b +uy —v)v.
We give the following theorem.

Theorem 2.1. Assume that ag > a,, a, > max{e + 2asb,2 \faza,} and r = K — b > 0. In addition, there
exists a constant Vo > 0 such that 1/Vy < 1/r < min{ds/d>, 1}, and let

a% + 4apasz — 4a1a; . (ds 1
< —,1;.
46137' i dl

If there exists a small constant § > 0,

—b+u—v2r-2[(K—-u)+ (K —up)+v] 2.1
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for any (uy,u,v) € [K — 6, K]* x [0, 8] holds.

Then, for arbitrary ¢ > c¢* := V4dsr, the system (1.3) has a solution (uy, u,,v) satisfying

O<u(x) <K, 0<vix)<V, Vx<0,
O0<u(x) <K, 0<vx)<V,, Vx>0,
(uy, uy, up, ), v,v')(—o0) = Ej.

Moreover, for any 0 < ¢ < +4dsr, the system (1.3) does not have a solution (u,(x), ur(x), v(x))
connecting (K, K, 0) as x — —oo and satisfying v(x) > 0 for sufficiently negative x.

Now we give the definition of upper and lower solutions.
Definition 2.1. The continuous functions (,, u,,v) and (i, ii>, v) on R are called a pair of lower and
upper solutions of the system (1.3) if they satisfy
(1)

0 < u,(x) < w(x) < Up, O0<vx)<v(x)<Vy,, YxeR

for some positive constants U,y and V.
(i1) There exists a set D consisting of at most finitely many real numbers such that

(a) @;, u, v, varein C*(R\D),

(b) The right and left limits of u!, &;, V', V" all exist at each x € D and satisfy

i (x=) > iy (x+), w(x-) <wu(x+), V(x—)2V(x+), V(x-)<Y(x+).

(iii) At +oo, the first and second derivatives of i;, v, u., v have at most exponential growth.
(iv) For every pair of continuous functions (u;, us,v) with u, < u; < it andy <v <,

d\it) (x) — cit (x) + apur — ayity + axit; — asit; — eityv < 0,
drit}) (x) — city(x) + uy — il < 0,

a3V’ (x) —cV'(x) + (=b+u; —v)vp <0,

d\uw}/ (x) = e (x) + agur — aru, + ayut — azu’
dyu) (x) — cub(x) +up —uy >0,

d3v'(x) —cv'(x) + (=b+u; —v)v > 0.

Ceuv >0 Y xeR\D.
=1 -

Lemma 2.2. Assume that (u,,u,,v) and (i, i, V) are a pair of lower and upper solutions of (1.3).
Then, there is a solution (uy, u,,v) of the system (1.3) satisfying

w(x) < ui(x) < i;(x), v(x) < v(x) <W(x), VxeR,

and u;, u;’, v' and v'"" are bounded on R.

Proof. Since F; and G satisfy the Lipschitz condition on [0, U;o] X [0, U] X [0, Vo], there is A =
max{(l +a; + V()(e + 1) +2a,Uq o + 3a3 U%O)’ b+ 2Vo + U10(€ + 1), ap+ 1}, so that for any (l/tll', Us;, V,') S
[0, U1o] X [0, Up] X [0, Vo], we have

|F1 (1, uai, vi) — Fi(uo, ux, vo)l + [Fo(ui, uar, vi) — Fa(uio, ux, v2)|

+ |G (U1, uz1, vi) — G(uia, uzz, v2)|
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<ty — upl[l + @ + ax(uiy + un) + as(uy; + ugiugs + uiy)] + luay — uxnl(ag + 1)
+ vi = wal(vi +v2 + D) + (e + Dluri(vi — v2) + valuyy — upn)|
<urr — upl[l +a; + vale + 1) + ar(ury + ui) + as(uy; + uurs + up,)] + luag — uxl(ao + 1)
+ v =wm|(vi +va +u(e+ 1)+ b)
<luyy — upl(1+ ay + Vole + 1) + 2a,Uyg + 3a3U3y) + luay — unl(ap + 1)
+ [vi = w|[b +2Vy + Ujp(e + 1)]
SA(|M11 —upp| + |ugy — up| + vy — V2|)- (2.2)

Define
Fi(ur, uz,v) := Fi(uy, u2,v) + Aus,
G(Ml, uy,v) = G(uy, up, v) + Av.
According to (2.2), we derive that F 1(uy1, up, v) is nondecreasing in u; € [0, U;o] for each fixed (u,v) €
[0, Uzl X [0, Vo, Fauy, us, v) is nondecreasing in u, € [0, Uy] for each fixed (uy, v) € [0, U10] X [0, Vo],
G(uy, uy, v) nondecreasing in v € [0, V,] for each fixed (u;, u,) € [0, Uo] X [0, Uyp], and the system (1.3)

can be written as
diu} — cuy — Auy + Fi(uy,up,v) =0, x€R",

douy — cuy — Auy + Fo(uy,up,v) =0, xe€R”,
dv' —cv' = Av+ G(uy,up,v) =0, x€R"™

Now, let
X = {(ul, uy,v) € [CR)] : u,(x) < ui(x) < i;(x), v(x) < v(x) < v(x),¥x € R} ,

and define the map T = (T}, T», T3) : X — [C(R)]® by
1 X o ] e .
Ti(uy, uz, v)(x) = m (f el 4 f el y)) Fi(uy, uz,v)(y) dy,

X

1 - < A
Ts(uty. i, — A(-y) 4 f LN Guy, uy, dy,
s 10,V = s ( f K e (uy, 13, v)(y) dy

A l(ci¢&+4mAy Agz—i(ciV&+4@Ay

"2, 2d,
By rather standard arguments similarly to those in the reference [1] that (U,, U,, V) = T (uy, u,,v) for
each (uy, up,v) € X is the unique bounded solution of the linear equation

where

AUy = U — AU, + Fy (1, u5,v) = 0,
U} = cU} — AU, + Fauy, ua, v) = 0,
V" = cV' = AV + G(uy, up,v) = 0,

and any fixed point of 7 in X gives a solution of the system (1.3). Therefore, it suffices to show by the
Schauder fixed point theorem that 7" has a fixed point in X. To do so, we define the Banach space

Cp(R,R?) = {(u1, u2,v) € [CR) : [[(u1, 112, V)|, < 00}
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with the exponentially weighted norm

aer, w2, V)l = sup [ (), o (0), veDle ™ = supllua (0] + a0l + e,
xe X€E
where 0 < p < min{|A]],|4;],|45]}, and it follows that X is a bounded, closed and convex subset of
C,(R,RY).
It is easy to check that T is completely continuous on X. By applying the Schauder fixed point
theorem, we conclude that 7" has a fixed point (u;, u,, v) in X, which gives a solution of the system (1.3).
Note that for x € R,

1 X ~ 00 . R
u(x) = m (/li_ IOO e A fx el (x_y)) Fi(uy, up, v)(y) dy.
1

d3(4 — A7)
It follows that [u}(x)| < Mo/[di(A} — A7))], and [V'(x)| < Mo/[ds(X; — A7)] for x € R, where M =
max{lagus — ajuy + axu; — asu; — ewyv + Aul, luy — up + Awo|, |(=b + ug —v)v+ Av| : 0 < uy < Uy, 0 <
uy < Uy, 0 < v < V). This shows that u; and v’ are bounded on R, and then using the equations in the
system (1.3) yields the boundedness of «;" and v as well. This completes the proof of Lemma 2.2. O

(/lg f e/lE(X—y) + /l; f e/l;(x_y)) GA(”I s U, V)(y) dy

(o)

In the following two subsections, we will construct the upper and lower solutions of the system (1.3)
under ¢ > ¢* := V4dsr, c = c¢*, respectively.

2.1. Upper and lower solutions with super-critical wave speed

In this subsection, we always assume that ¢ > ¢*, 1 = (¢ — \/c? —4dsr)/(2d3), and A is the
constant in (2.2). We will construct the upper and lower solutions with super-critical wave speed
for the system (1.3).

Now, we introduce the non-negative, continuous and bounded functions i;(x), u,(x), ¥(x) and y(x)
on R by

) 3 K-pe’™, ¥ x<a,
it (x) = up(x) = K, El(x)=ﬂz(x):{0 g Vx>a11

_ e, Vx<a, e™(1 — Ae™), Vx<a,
v(x) = v(x) =

Vo, Yx>a, 0, Y x> ap,
where . |
a():——ll'lA, a :——lné, a) = —1IIV().
n vy K A

Next, in Lemmas 2.3 and 2.4, we give that (i, 2, V) and (u,, u,,v) constructed above are a pair of
upper and lower solutions of the system (1.3) with super-critical wave speed.

Lemma 2.3. Suppose all the assumptions of Theorem 2.1 are satisfied. For all x € R, choose
max {y7,%;} <y <min{4,57.7;}.

AIMS Mathematics Volume 7, Issue 9, 16261-16277.
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g (AK/l/y—l )7’//l (AK/I/)/—I )7/’1 K( 1 )7//1
max , , o s
Bi B2 Vo

where

1
Y = . (C + V2 — 4di(M;y + Miz)) . Bi=cy—dy’ — (My + Mp), i=1,2,
where
2
M, =4—2—Cll >0,My =ag, My =1,M5 =0, (2.3)
as

and then we can obtain that the following inequalities

dyit} (x) — cit} (x) + apuz(x) — ayity (x) + agb‘t%(x) - aﬂ?(x) — e (x)v(x) <0,
duy (x) = cu (%) + agua(x) = ariay (x) + axe (x) = asu; (x) — ew, ()v(x) = 0,
drity (x) — city(x) + uy(x) — ix(x) <0,
dauty (x) — cuy(x) + up(x) — uy(x) 2 0
hold.
Proof. According to (2.3) and the assumptions of Theorem 2.1, we have M;; + M, < min{d;/d;, 1}r, so

2 3
QoUy — ajuy + aru; — asu; ZMll(l/tl - K) + M]z(uz - K)

2.4)
> =M (K —uy) — MK —up).

In addition, we also obtain

zid(c — N = 4d(Myy + Mp)) < A = L (c - V@ —4dsr).

2d;

and then vy is well defined. If d5/d; < 1, then we have M;; + M;;, < (d3/d;)r, so this inequality is clearly
true. If d3/d; > 1, then M;; + M, < r < (d3/d;)r, which implies that an equivalent inequality

Mil + M,‘g < r
c+ \/c2 —4d;(M;; + Mp) ¢+ +Jc2 —4dsr

holds. Since the choice of y, we have 8; = ¢y — diy*> — (M + M) > 0, so 8 is well defined.
According to the definitions of ay, u; are continuous at a;, and by the assumptions on y, we have

u(x) < i(x), ua—-)=-yK <0=u(a+), Vx €RR.
Since i1; = K, it follows that

dy it} (x) — ¢ (x) + aguz(x) — ayity (x) + ayits (x) — azits (x) — ety (x)v(x)
= agur(x) — a1 K + axK* — a3K> — eKv
<aoK — a;K + aK? - Cl3K3 —eKv
=0, VxeR.
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Choose 8> K (1/ Vo)"'* such that a; < a,, and then we have for any x < a; that
u,(x) = K —pe’™, v(x)= e,
According to (2.2) and (2.4), we have
dy it (x) = 1 (x) + doua(x) = a1, (X) + azit; (x) = @z (x) = ew (X)(x)
> dyu (x) — cu (x) + agua(x) — ayu, (x) + azue; (x) — asu; (x) — Av(x)
> dyuy (x) = cuy (x) = [M11(K = u, (%)) + Mip(K = ux(x))] = Av(x)

> dyuy (x) = cuj(x) = [M (K = u, (x)) + Mi»(K = u,(x))] = AV(x)
= —d\By’e”™ + cBye” — (M) + Myp)Be”™ — Ae™

= Be™ [?’(C —dyy)— (M + M) - é/\e(ﬂ_m]

1
> Be™* [y(c —dyy)— (M + Myy) - BAeu_wal]
= B [y(c = dvy) = (M1 + M) = AKY ]
>0, Yx <a,

where the last inequality is guaranteed by the assumptions on y and g.
For x > a,, since u,(x) = 0, we also have

diut]] (x) — cu (x) + aoux(x) — aru, (x) + ari(x) — azu; (x) — eu, (X)v(x)

= Clouz(X) > 0.

Similarly, we have
drity (x) — city(x) + u1(x) — ip(x) <0, Vx € R,

dyu) (x) — cub(x) + up(x) — u,(x) > 0, Yx € R.
The proof is completed.

Lemma 2.4. Let the assumptions of Theorem 2.1 hold and vy satisfy Lemma 2.3, and choose

1 v/
,8>max{K(VO) , K},

0<n<y, —d3(/l+77)2+c(/l+77)—r>0,

BV (1 n/a B\ 2(1 +2B)
A>max{(§) ) (5) > (5) T —ds(A+ )2+ c(A+n)—r|

Then, for all x € R, the inequalities

37" (x) = €7 () + (=b + w1 (%) = 7(0))7(x) < 0,

d3v"(x) = cv'(x) + (=b + u1(x) — p(0))p(x) > 0
hold.
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Proof. We first point out that by the assumptions on v, B, 17, A and the definitions of u, v, v, ap < a; <
min{0, a,}, and
v(x) <v(x), VxeR,

Vi(ag=) = —ne'™ < 0 = v'(ap+),
V(ay=) = AVy > 0 = V' (a+).
For x < a,, we have 7#(x) = ¢**, and then
d3v" (x) = V' (%) + (=b + uy(x) — v(x))v(x)
<dzvV"(x) = V' (x) + (b + K — ¥(x))v(x)
<diV" — ¢V’ + (=b + K)v(x)
=d3V"(x) — V' (x) + rv(x)
= (3> — cA + r)e™ = 0.

For x > a5, since ¥(x) = V,, we can obtain
d3v" (x) — V' (x) + (=b + u;(x) — ¥(x))¥(x)
= (=b+ui(x) = Vo)Vo

<(-b+K-r)r
=0.

For x < ay, since ay < 0 < a; < min{0, a,}, 0 < n < y and by the choice of A, we have
v(x) = e — AeMT j(x) = eV, K — u,(x) = pe’”,
v(x) < P(x) < e <6, K—ui(x) < K — u,(x) < pe’ <.
By (2.1), one can obtain that
d3y" (x) = cv'(x) + (=b + u1(x) = v(x))v(x)
> dsy" (x) = ev' () + rv(x) = 2 [(K = 1 (x)) + (K = ua(x)) + ()| v(x)
> d3y"(x) = v (%) + rv(x) = 2 [(K = uy(x)) + (K — up(x)) + $(x)] ¥(x)
> d;v"(x) — cv'(x) + rv(x) — 2 (,Be”" + Be’* + e“) v(x)
=d3v"(x) — cv'(x) + rv(x) — 2 (2,8 + eu_y)x) v e
> dsv”(x) — v (x) + rv(x) — 228 + 1)e" eV
= M A=dy(A+ ) + c(A+ 1) = 7| = 228 + De” )
> 0.
For x > ay, we have v(x) = 0, and thus
dzv" (x) — cv'(x) + (=b + uy(x) — v(x))v(x) = 0.

Combining the above, we have proved the assertions of Lemma 2.4. O
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2.2. Upper and lower solutions with critical wave speed

In this subsection, we always assume that ¢ := V4dsr, 1 = ¢/(2d3), M = AeV, and A is the
constant in (2.2). We will construct the upper and lower solutions with super-critical wave speed for
the system (1.3).

There exists a large Ry > 0 so that for all R > R, we define

_ _ K — Be””, x < ay,

u =i =K, u, (x) = uy(x) = { 0 p x> (111
_ M|xle®™, x < ay, (Mlxl -R \/le) eY,  x<ay,
v(x) = v(x) =

V(), x> aZ’ 0, X > ao,
where
1 1 1 1 R?
a = ——, a;=—1In-—, ag = ——.
2 1 1 "B 0 e

Next, in Lemmas 2.5 and 2.6, we will prove (i, it2, V) and (u,, u,, v) constructed above are a pair of
upper and lower solutions of the system (1.3) with critical wave speed.

Lemma 2.5. Let the assumptions of Theorem 2.1 hold, and M;; and M, are fixed points and satisfy
Lemma 2.3. For all x € R, choose auxiliary constants y and 8 such that

max{yy,y,} <y < min {ﬂ, 202 }
MA MA }
" BiA=y)e’ Pad—yle”

B > max {eﬁ
Then, for all x € R, the inequalities
dyit}] (x) — ¢t (x) + apua(x) — ayity (X) + axit(x) — asit; (x) — eity (x)v(x) < 0,

diu) (x) — cu) (x) + aoup(x) — ayu, (x) + aru; (x) — asu; (x) — ew, (X)v(x) > 0,
dyity (x) — city(x) + uy(x) — ix(x) <0,
dhuty (x) = cuy(x) + w1 (x) = u,(x) 2 0
hold.

Proof. Similar to Lemma (2.3), it is easy to get
dyit}] (x) — cit (x) + apua(x) — ayity (X) + a3 (x) — asit; (x) — eity (x)v(x) < 0,

drity (x) — city(x) + uy(x) — ix(x) < 0.

For x < a;, we can obtain a; < a, from 8 > €"/*7, and then
u,(x) = K = Be”™, %(x) = Mlxle™,
uf (x) = =By*e”, u/(x) = —Bye’™.
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By (2.2) and (2.4), we have

dyi!/(x) = e (x) + apiua(x) — ayiey(x) + () — asicd (¥) — e, (V)
> dyu (x) — cu (%) + agua(x) — aru, (x) + apu} (x) — asu) (x) — Av(x)
> dyuy (x) — cuy(x) — [M (K — u (x)) + Mi»(K — u,(x))] = Ab(x)
= —d\By’e” + By’ — (My; + Mpp)Be’™ — AM|xle™

1
= pe’™ [Y(C —dyy) — (M + My,) - BAM|X|€@_7)] .

Since |x|e“*™* is monotone increasing over (—oo, —1/(1 — 7)), and a; < —1/(1 — ), it follows that
|x|e“™% < 1/((A - y)e) for x < ay, and then by the choice of 5, we have

dyu (x) = cuy(x) + +aour(x) — ayu, (x) + apu; (x) — azu; (x) — eu, (x)v(x)
MA ]

> e’ [y(c —dvy) = (M + M) - BA—y)e

>0, Yx < a.
Moreover,
uy(a—) = -Bye” <0 =uj(a;+).

Similarly, we have
dou’y (x) — cu)(x) + uy (x) — u,(x) > 0,

and
uy(a—) = —Bye” <0 = u)(a+).

This ends the proof. O

Lemma 2.6. Let the hypothesis of Theorem 2.1 and Lemma 2.5 be satisfied. For all x € R, the
inequalities
A3V (x) — V' (x) + (=b + uy(x) — ¥(x))v(x) <0,

sy () = eV () + (=b + 11 () = Y(X)W(x) = 0
hold.
Proof. For x < ay, we have

1
2v—x

1 1
- + - \/—xxlz) v,
dxy-x V-x

R
2vV—x

(v + Mxe™) = ( — AR \/—_x) e = R( —~ x/Sm) ev,

v+ Mxe'™)’ = R(
and so

dv' —cv +rv

—d3 d3 2 C )
=R + A—dy V—xA" — +cV=x1|e¥ — rRV—xe™®
4xV-x N—x ’ 24—x
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-d;R |,
= e,
4x V—x

Since ay < 0, and R is large enough to ensure that ay < a; < a, and ay < -1, for x < ay, we have

v() = (Mlxl = RyIxDe™, #(x) = Mlxle™, K - u,(x) = Be™,
and
v(x) < V(x) <0, K —ui(x) < K —u(x) < pe’™ <.
Hence, for such R and x,
(=D + u1 (x) — v(x)v(x)

= rv(x) = 2[(K — u1(x)) + (K — ua(x)) + v(x)]v(x)

Z rv(x) = 2[(K — u; (%) + (K — u,(x)) + v(x)]v(x)

= rv(x) = 2(Be" + B’ + Mlxle™) H(x)

=rv(x) - 2M (2,8 + M |x|e(’l_7)x) e |xle™

> rv(x) — 2M (28 + M|x])|xle” ™.

So,
dzy" —cv' + (=b + u;(x) — v(x))v(x)
—d3R
> —2M(2B + M|x]|)|x|e”* | e™
va__x (28 + Mixl)lx ]
1
= dsR — 2M(28 + M|x|)4x> x|’ | et
1
> dsR — 2M(2B + M)x* e’ |e™*
4x] Vx| [ ]
> 0.
Using
R
Vi(x) = [—M + W + A(—Mx - R\/—x)] v,
we have

R M
Vi(ap-) = [—M + —] et = ——eM < 0 =V (ap+).
2 Vlao| 2
For x < a, = —1/A4, we have
7(x) = —Mxe™, ¥ (x) = —M(1 + Ax)e™,

so that
v(ay) = M/(de) = vy, V'(a,—) = 0 = V' (ax+),

and then we have

d3V" — V' + (=b + uy(x) — v(x))v(x)
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<d;V" — V' + (=b + K — v(x))v(x)
<d;V" = V' + (b + K)v(x)

=d;V" — ¢V’ + rv(x)

=0.

We thus conclude the proof of Lemma 2.6. O

Proof of Theorem 2.1. We first show that for any ¢ > ¢* := +/4dsr, the system (1.3) has a solution
(uy,uy, u3) satisfying Theorem 2.1. Applying all the Lemmas above with U,y = U,y = K yields the
existence of a solution (uy, u,v) to the system (1.3), satisfying u, < u; < #; andy < v < v. The
definitions of u,, it;, v and v imply that (u, us, v)(x) — (K, K, 0) as x — —oo, that, after a translation in
x,0<u(x) < Kand 0 < v(x) <V, for x <0, that 0 < u;(x) < K and 0 < v(x) < V, for x > 0. Using
the expressions

x 0 ey
u(x) = e 1(0) + f T Fi(un(v), 159), v(y) dy,

X

c(x—y

ox 1 cx=y)
V) = eBul0)+ f 5 Gy (), 1a(3), v(y)) d,

and L’Hospital’s rule, we get (u](x), u5(x),v'(x)) — 0 as x — —oo. Therefore, (u;,u,,v) is a weak
traveling wave solution to the system (1.3).

Next, we prove that for any 0 < ¢ < +V4dsr, there is no weak traveling wave solution of the
system (1.3). Under the assumptions, we can write in a neighborhood of (K, K, 0) the v equation
in (1.3) as

dyv' —cv +rv+ (glu, uy,v) —r)v=0,
where g(K,K,0) = —=b + K = r, and g(u,up,v) — r — 0 as (uy, up,v) — (K, K,0). The characteristic
equation d3A> — cA + r = 0 has a pair of complex roots A = (c +i+\4dsr — c2) /(2d5). Assume by
contradiction there is a solution (uy, u,, v) of (1.3) satisfying (u;(x), u>(x), v(x)) — (K, K,0) as x = —o0
and v(x) > O for sufficiently negative x. Then, using the variation of constants formula, one can show
that, for sufficiently negative x, and x,

v(x) = e {V(Xo) cos B(x — xo) + %(V’(Xo) — av(xg)) sin B(x — Xo)} (1 + R(x, x0)),

where limy,,_o sup,_, IR(x, xo)| = 0. (See [1] for details.) This asymptotic expression shows that v(x)
changes signs infinitely many times as x — —oo, a contradiction.
The proof is completed. m|

3. Traveling wave solutions for the system (1.3)

In this section, we prove that under certain conditions, the weak traveling wave solution obtained in
Theorem 2.1 is also a traveling wave solution by using the Lyapunov function and LaSalle’s invariance
principle.

Theorem 3.1. Assume that all conditions in Theorem 2.1 are satisfied, and az(eb+ag—a,) > aye holds.
Then, the system (1.3) has a traveling wave solution (uy, u,,v) satisfying (1.4) for every ¢ > \4dsr.
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Proof. Let (uy,u,,v) be a weak traveling wave solution of the system (1.3). By Theorem 2.1, there
are 0 > 0 and xy > O such that u;(x) > ¢ for x € R and v(x) > ¢ for x > xy. This implies that the
orbit (uy, u}, uz, uy, v,v')(x) lies in the set Q5 =: ([4, K] X R)? X [6, Vo] X R for x > xo. To show that
(up, u), up, uy, v, v')(x) = (u],0,u7,0,v",0) as x — oo, it is necessary to define a Lyapunov function L
on ((0, K] x R)*> x (0, Vo] X R by

OH OH OH
Llup, v, ur, ub, v,v') = cH(uy, ur,v) — d uy —dy—uy —dz—v'
(U1, uy, us, s ) (uy, uz,v) — 151 o2 T B,
where
u u v
H(ul,uz,v):al(ul—u’f—u’i‘ln—l)+a2(u2—u§—u§1n—i)+a3(v—v*—v*ln—),
u U, v*

and a4, @,, a3 are non-negative constants. Then, along the orbits of the system (1.3) with x > x,, we
have

d OH oOH oOH
EL (0—1F (ur, up,v) + a—Fz(ul,uz,V) + 6—G(u1,uz,v))
62

O*H O’H
i 2<u1> —ds <u2> i~

(V’)Z, (3.1
where

2 3
Fi(ui,ur,v) = apus — ayuy + aruy — asu; — euyv, Fao(uy, up,v) = uy —uz, G(uy,u,v) = (=b +uy —vjv.

Then, we have

OH oH OH
—F (1, up,v) + —Fo(uy, up,v) + —G(uy, uz, v)
ou, ou, ov

uy — Ltl

3
ao

X {; [ur (g — u3) — up (g — u})] — g (uy — uy) (—az + azuy + azuy) — euy (v — v*)}
1

u, —uy 1 y =
- 2 = [up (uy — u}) — uy (up — 15)] + azv [(uy —uj) — (v —v")]
2 2

+ a»

=—a (—ay + azuy + azu))(u; — u’f)2 —az(v—v*)?
+ (a3 — kay) (g —uy) (v — V") + apa; (uy — uj) X

(ul — uT) Uy — (uz - uﬁ) U

*
I/t2Lt2

Uy 1
=) o (=)

149 1

+ a» (l/tz — u;)

Let @y = aga;, @z = ea;. Thus,

O0H OH O0H
—Fi(up,uz,v) + ——Fo(uy, up,v) + —G(uy, up, v)
ou, Ou, ov
=—a) (—ay + azuy + azuy) (ug — ”1) —a3(v—v")>?
2

1 u . u .
— apa— ‘/—Z(ul—ul)— ,/—l(uz—uz)] )

l/l1 u 175}
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We observe that az(eb + ayg — a;) > ase is a sufficient condition of —a, + azu; + azuj > 0. So, when
az(eb + ap — a;) > aye holds, we have
oH

OH OH
—Fi(uy,up,v) + —Fo(uy, up,v) + —G(uy, up,v) < 0.
ou, ou, ov

Since
H u; A% 0*H vt v\
di— W) =di—W)* =du; (-] , &—0) =d;=0) =dv*|—| , 3.2
)" = s (u) 1 (V) = dis () = d [ (3.2)
we can obtain that dL(u,, u', us, uy,v,v')/dx < 0 for (uy, u}, ur, uy, v,v') € Q;.

Letp; = u;/u;, p3 = v /v. Next, we prove that |p;| < o}, |ps| < p3.

Since 0 < u; < K and 0 < v < V), there exists a positive constant M > 0 such that max{a; — a,u; +
asu} + ev,b —uy +v,1} < M for all x € R. We have

” ’ "

,_ulul—(ul) o,
1 u% u 1
c aouy 1 5 )
= —p; — — + —(a; — au; + azu; + ev) —
dlpl i d1( | — Qo + azu )~ P
Let p} be a positive constant solution of p = —p*+(c/dy) + M/d,. According to the comparison

theorem, we have p;(x) < p} for all x € R. Similarly, if p; < —p] occurs at some Xy, then, letting
p(x) be the solution of p’ = —p? + (¢/d))p + M/d, with p(xo) = p;1(xo), it follows from the comparison
theorem that p;(x) < p(x) for x > x.

Note that L

2 ¢ +\2 c + IM
- +— -—<—(- + —(—p])+— <0,
0~ (xo) dlp(xO) a (=p7) dl( 07) a <

implies p(x) — —oco as x — x; for some finite value x; > x,. It follows that p;(x) — —oo as x — x; for
some x; € (xp, x;], contradicting the fact that p;(x) is defined for all x € R.

Similarly,
/ ”2, Uy — (M’z)2
Pr="""5
Uy
c u 1 5
= — -t — -
d2p2 donr | P
and
s VY= ()?
P3 = v—2
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c 1

= —p3— —(=b+u —v) - p>
d3p3 d3( up—v)—p;3
S_p3+d_3p3+d_3’

and there exist constants p; > 0, p3 > 0 such that |o;| < p3, 3| < p3 for V(uy, u,v) € (0, K> %(0, Vo1 \
{(uy, u3, v}

Since equality holds only at E*, we derive that (u;, u}, us, u5, v,v')(x) — E* as x — oo by LaSalle’s
invariance principle. This proves Theorem 3.1. m|

4. Conclusions

The main results of this work can be summarized as follows: This paper is concerned with traveling
wave solutions to a cubic predator-prey diffusion model with stage structure for the prey given by
system (1.2). First, employing the method of upper and lower solutions together with the Schauder
fixed point theorem, we give a sharp existence result on weak traveling wave solutions for system (1.2),
with minimal speed explicitly determined. Such a weak traveling wave (u;(€), u>(€), v(£)) connects
the semi-trivial equilibrium (K, K, 0) at £ = —oco but needs not connect the coexistence equilibrium
(uy,u5,v*) at & = oo (see Theorem 2.1). Then, we use the Lyapunov function method and LaSalle’s
invariance principle to prove that, under additional conditions, the weak traveling wave solutions
of (1.2) established in Theorem 2.1 are actually traveling wave solutions; namely, they converge to
the coexistence equilibrium (uj,u;,v*) as ¢ — oo (see Theorem 3.1). To the best of the authors’
knowledge, the results in Theorems 2.1 and 3.1 are new.
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