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1. Introduction

Nematic liquid crystals are aggregates of molecules which possess same orientational order and are
made of elongated, rod-like molecules. Hence, in the study of nematic liquid crystals, one approach
is to consider the behavior of the director field d in the absence of the velocity fields. Unfortunately,
the flow velocity does disturb the alignment of the molecules. More importantly, the converse is also
true, that is, a change in the alignment will induce velocity. This velocity will in turn affect the time
evolution of the director field. In this process, we cannot assume that the velocity field will remain
small even when we start with zero velocity field.

In the 1960’s, Ericksen [3, 4] and Leslie [10, 11] developed the hydrodynamic theory of liquid
crystals. The Ericksen-Leslie system consists of the following equations [12]:

ρt + ∇ · (ρu) =0,
(ρu)t =ρFi + σ ji, j,

ρ1(ωi)t =ρ1Gi + gi + π ji, j,

(1.1)

where (1.1)1, (1.1)2 and (1.1)3, represent the conservation of mass, linear momentum and angular
momentum respectively. Besides, ρ denotes the fluid density, u = (u1, u2, u3) is the velocity vector and
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d = (d1, d2, d3) the direction vector, 

σ ji = −Pδi j − ρ
∂F
∂dk, j

+ σ̂′ji,

π ji = β jdi + ρ
∂F
∂di, j

,

gi = γdi − β jdi, j − ρ
∂F
∂di

+ ĝ′i ,

(1.2)

where Fi is the external body force, Gi denotes the external director body force and β, γ come from the
restriction of the direction vector |d| = 1. The following relations also hold:

2ρF = k22di, jdi, j + (k11 − k22 − k24)di,id j, j + (k33 − k22)did jdk,idk j + k24di, jd j,i,

σ̂′ji = µ1dkdpAkpdid j + µ2d jNi + µ3diN j + µ4Ai j + µ5d jdkAki + µ6didkAk j,

ĝi = λ1Ni + λ2d jA ji,

(1.3)

and 
ωi =ḋi =

∂di

∂t
+ u · ∇di,

Ni =ωi + ωkidk,

Ni j =ωi, j + ωkidk, j,

(1.4)

where
2Ai j = ui, j + u j,i, 2ωi, j = ui, j − u j,i.

On the basis of the second law of thermodynamics and Onsager reciprocal relation, one obtain

λ1 = µ2 − µ3, λ2 = µ5 − µ6 = −(µ2 + µ3).

The nonlinear constraint |d| = 1 can also be relaxed by using the Ginzburg-Landau approximation, that
is, instead of the restriction |d| = 1, we add the term 1

ε2 (|d|2 − 1)2 in ρF. In addition, to further simplify
the calculation, one take ρ1 = 0, β j = 0, γ = 0, Fi = 0 and ρF = |∇d|2 + 1

ε2 (|d|2−1)2, choose the domain
Ω = R3, obtain the simplified model of nematic liquid crystals:

ρt + ∇ · (ρu) = 0,
(ρu)t + ∇ · (ρu ⊗ u) − µ∆u − (µ + λ)∇∇ · u + ∇p(ρ) = −∆d · ∇d,

dt + u · ∇d = ∆d − f (d),
(1.5)

with the following initial conditions

ρ(x, 0) = ρ0(x), u(x, 0) = u0(x), d(x, 0) = d0(x), |d0(x)| = 1, (1.6)

and
ρ0 − ρ̄ ∈ HN(R3), u0 ∈ HN(R3), d0 − ω0 ∈ HN(R3), (1.7)

for any integer N ≥ 3 with a fixed vector ω0 ∈ S
2, that is, |ω0| = 1. In this paper, we assume that

f (d) = 1
ε2 (|d|2 − 1)d (ε > 0) is the Ginzburg-Landau approximation and the pressure p = p(ρ) is
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a smooth function in a neighborhood of ρ̄ with p′(ρ̄) > 0 for ρ̄ > 0. Moreover, µ and λ are the
shear viscosity and the bulk viscosity coefficients of the fluid, respectively. As usual, the following
inequalities hold:

µ > 0, 3λ + 2µ ≥ 0.

The study of liquid crystals can be traced back to Ericksen [3, 4] and Leslie [10, 11] in the 1960s.
Since then, there is a huge amount of literature on this topic. For the incompressible case, we refer
the author to [2, 6, 12, 13, 20] and the reference therein. There are also many papers related to the
compressible case, see for instance, [1, 5, 7, 8, 17, 19] and the reference cited therein.

In [19], the authors rewrote system (1.5) in the perturbation form as
%t + ρ̄∇ · u = −%∇ · u − u · ∇%,

ut − µ̄∆u − (µ̄ + λ̄)∇∇ · u + γρ̄∇%

= −u · ∇u − h(%)(µ̄∆u + (µ̄ + λ̄)∇∇ · u) − g(%)∇% − φ(∆d · ∇d),
dt + u · ∇d = ∆d − f (d),

(1.8)

where % = ρ − ρ̄, µ̄ =
µ

ρ̄
, λ̄ = λ

ρ̄
, γ =

p′(ρ̄)
ρ̄2 and the nonlinear functions of % are defined by

h(%) =
%

% + ρ̄
, g(%) =

p′(% + ρ̄)
% + ρ̄

−
p′(ρ̄)
ρ̄

, φ(%) =
1

ρ + ρ̄
.

We remark that the functions h(%), g(%) and φ(%) satisfy (see [19])

|h(%)|, |g(%)| ≤ C|%|, |φ(l)(%)|, |h(k)(%)|, |g(k)(%)| ≤ C for any l ≥ 0, k ≥ 1. (1.9)

Wei, Li and Yao [19] obtained the small initial data global well-posedness provided that ‖%0‖H3 +

‖u0‖H3 + ‖d0 − ω0‖H4 is sufficiently small. Moreover, the authors also showed the optimal decay rates
of higher order spatial derivatives of of strong solutions provided that (%0, u0,∇d0) ∈ Ḣ−s for some
s ∈ [0, 1

2 ].
Next, we introduce the main results in [19]:

Lemma 1.1. (Small initial data global well-posedness [19]) Assume that N ≥ 3 and (%0, u0, d0 −ω0) ∈
HN(R3)×HN(R3)×HN+1(R3). Then for a unit vector ω0, there exists a positive constant δ0 such that if

‖%0‖H3 + ‖u0‖H3 + ‖d0 − ω0‖H4 ≤ δ0, (1.10)

then problem (1.8) has a unique global solution (%(t), u(t), d(t)) satisfying that for all t ≥ 0,

d
dt

(
‖%‖2HN + ‖u‖2HN + ‖∇d‖2HN

)
+ C0(‖∇%‖2HN−1 + ‖∇u‖2HN + ‖∇∇d‖2HN ) ≤ 0. (1.11)

Lemma 1.2. (Decay estimates [19]) Assume that all the assumptions of Lemma 1.1 hold. Then, if
(%0, u0,∇d0) ∈ Ḣ−s for some s ∈ [0, 1

2 ], we have

‖Λ−s%(t)‖2L2 + ‖Λ−su(t)‖2L2 + ‖Λ−s∇d(t)‖2L2 ≤ C1, ∀t ≥ 0, (1.12)

and

‖∇l%‖HN−l + ‖∇lu‖HN−l + ‖∇l+1d‖HN−l ≤ C2(1 + t)−
l+s
2 , ∀t ≥ 0 and l = 0, 1, · · · ,N − 1. (1.13)
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The main purpose of this paper is to improve the decay results in [19]. First, we give a remark on
the symbol stipulations of this paper.

Remark 1.3. In this paper, we use Hk(R3) (k ∈ R), to denote the usual Sobolev spaces with norm
‖ · ‖Hs , and Lp(R3) (1 ≤ p ≤ ∞) to denote the usual Lp spaces with norm ‖ · ‖Lp . We also introduce the
homogeneous negative index Sobolev space Ḣ−s(R3):

Ḣ−s(R3) := { f ∈ L2(R3) : ‖|ξ|−s f̂ (ξ)‖L2 < ∞}

endowed with the norm ‖ f ‖Ḣ−s := ‖|ξ|−s f̂ (ξ)‖L2 . The symbol ∇l with an integer l ≥ 0 stands for the
usual spatial derivatives of order l. For instance, we define

∇lz = {∂αx zi||α| = l, i = 1, 2, 3}, z = (z1, z2, z3).

If l < 0 or l is not a positive integer, ∇l stands for Λl defined by

Λs f (x) =

∫
R3
|ξ|s f̂ (ξ)e2πix·ξdξ,

where f̂ is the Fourier transform of f . Besides, C and Ci (i = 0, 1, 2, · · · ) will represent generic positive
constants that may change from line to line even if in the same inequality. The notation A . B means
that A ≤ CB for a universal constant C > 0 that only depends on the parameters coming from the
problem.

It is worth pointing out that in [19], the authors consider problem (1.5) in 3D case, the negative
Sobolev norms were shown to be preserved along time evolution and enhance the decay rates.
However, because the Ginzburg-Landau approximation term is difficulty to control, only s ∈ [0, 1

2 ] were
considered in [19]. In this paper, we ovcome the difficult caused by Ginzburg-Landau approximation,
assume that s ∈ [0, 3

2 ), obtain the optimal decay rates of higher order spatial derivatives of strong
solutions for problem (1.5). Our main results are stated in the following theorem.

Theorem 1.4. Assume that all the assumptions of Lemma 1.1 hold. Then, if (%0, u0,∇d0) ∈ Ḣ−s for
some s ∈ [0, 3

2 ), we have

‖Λ−s%(t)‖2L2 + ‖Λ−su(t)‖2L2 + ‖Λ−s∇d(t)‖2L2 ≤ C0, ∀t ≥ 0, (1.14)

and

‖∇l%‖HN−l + ‖∇lu‖HN−l + ‖∇l+1d‖HN−l ≤ C(1 + t)−
l+s
2 , for l = 0, 1, · · · ,N − 1, ∀t ≥ 0. (1.15)

Note that the Hardy-Littlewood-Sobolev theorem implies that for p ∈ (1, 2], Lp(R3) ⊂ Ḣ−s(R3) with
s = 3( 1

p −
1
2 ) ∈ [0, 3

2 ). Then, on the basis of Lemma 1.2 and Theorem 1.4, we obtain the optimal decay
estimates for system (1.8).

Corollary 1.5. Under the assumptions of Lemma 1.2 and Theorem 1.4, if we replace the Ḣ−s(R3)
assumption by

(%, u0,∇d0) ∈ Lp(R3), 1 < p ≤ 2,

then for l = 0, 1, · · · ,N − 1,, the following decay estimate holds:

‖∇l%‖HN−l + ‖∇lu‖HN−l + ‖∇l+1d‖HN−l ≤ C(1 + t)−
[

3
2

(
1
p−

1
2

)
+ l

2

]
, ∀t ≥ 0. (1.16)
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Remark 1.6. Lemma 1.1 shows the global well-posedness of strong solutions for system (1.5) provided
that the smallness assumption (1.10) holds. One can use the energy method to obtain the higher
order energy estimates for the solution to prove this lemma (see [19]). We remark that the negative
Sobolev norm estimates did not appear in the proving process of Lemma 1.1, it is only used in the
decay estimates. Hence, the value of s in Lemma 1.2 and Theorem 1.4 do not affect the energy
estimates (1.10) and (1.11). And those two estimates hold for both Lemma 1.2 and Theorem 1.4.

Remark 1.7. The main purpose of this paper is to prove Theorem 1.4 and Corollary 1.5 on the
asymptotic behavior of strong solutions for a compressible Ericksen-Leslie system. We remark that
the global well-posedness and asymptotic behavior of solutions are important for the study of nematic
liquid crystals system. Thanks to the above properties of solutions, one can understand the model more
profoundly. Our results maybe useful for the study of nematic liquid crystals.

The structure of this paper is organized as follows. In Section 2, we introduce some preliminary
results. The proof of Theorem 1.4 is postponed in Section 3.

2. Preliminaries

We first show a useful Sobolev embedding theorem in the following Lemma 2.1:

Lemma 2.1. ( [15]) If 0 ≤ s < 3
2 , one have

‖u‖
L

6
3−2s (R3)

. ‖u‖Ḣs(R3) for all u ∈ Ḣ s(R3). (2.1)

In [14], the author proved the following Gagliardo-Nirenberg inequality:

Lemma 2.2. ( [14]) Let 0 ≤ m, α ≤ l, then we have

‖∇α f ‖Lp(R3) . ‖∇
m f ‖1−θLq(R3)‖∇

l f ‖θLr(R3), (2.2)

where θ ∈ [0, 1] and α satisfies

α

3
−

1
p

=

(
m
3
−

1
q

)
(1 − θ) +

(
l
3
−

1
r

)
θ. (2.3)

Here, when p = ∞, we require that 0 < θ < 1.

One also introduce the Kato-Ponce inequality which is of great importance in our paper.

Lemma 2.3. ( [9]) Let 1 < p < ∞, s > 0. There exists a positive constant C such that

‖∇s( f g)‖Lp(R3) . ‖ f ‖Lp1 (R3)‖∇
sg‖Lp2 (R3) + ‖∇s f ‖Lq1 (R3)‖g‖Lq2 (R3), (2.4)

where p2, q2 ∈ (1,∞) satisfying 1
p = 1

p1
+ 1

p2
= 1

q1
+ 1

q2
.

The Hardy-Littlewood-Sobolev theorem implies the following Lp type inequality:

Lemma 2.4. ( [16]) Let 0 ≤ s < 3
2 , 1 < p ≤ 2 and 1

2 + s
3 = 1

p , then

‖ f ‖Ḣ−s(R3) . ‖ f ‖Lp(R3). (2.5)

In the end, we introduce the special Sobolev interpolation lemma, which will be used in the proof
of Theorem 1.4.

Lemma 2.5. ( [18]) Let s ≥ 0 and l ≥ 0, then

‖∇l f ‖L2(R3) ≤ ‖∇
l+1 f ‖1−θL2(R3)‖ f ‖

θ
Ḣ−s(R3), with θ =

1
l + 1 + s

. (2.6)
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3. Proof of Theorem 1.4

Equation (1.8)3 can be rewritten as

(d − ω0)t − ∆(d − ω0) = −u · ∇(d − ω0) − [ f (d) − f (ω0)]. (3.1)

In [19], the authors proved the L2-norm estimate of d−ω0 provided that the assumptions of Lemma 1.1
hold.

Lemma 3.1. ( [19]) Assume that all the assumptions of Lemma 1.1 hold. Then, the solution of (3.1)
satisfies

‖d − ω0‖
2
L2 +

∫ t

0
‖∇(d − ω0)‖2L2 ≤ ‖d0 − ω0‖

2
L2 . (3.2)

In the following, we prove the decay estimates of strong solutions for system (1.8). The case
s ∈ [0, 1

2 ] was shown in Lemma 1.2, one only need to consider the case s ∈ (1
2 ,

3
2 ). We first derive the

evolution of the negative Sobolev norms of the solution.

Lemma 3.2. Under the assumptions of Lemma 1.1, if s ∈ ( 1
2 ,

3
2 ), we have

d
dt

∫
R3

(γ|Λ−s%|2 + |Λ−su|2 + |Λ−s∇d|2)dx + C
∫
R3

(|∇Λ−s∇u|2 + |Λ−s∇2d|2)dx

≤C‖∇d‖2H1(‖Λ−su‖L2 + ‖Λ−s%‖L2 + ‖Λ−s∇d‖L2)

+ (‖%‖L2 + ‖u‖L2 + ‖∇d‖L2)s− 1
2 (‖∇%‖H1 + ‖∇u‖H1 + ‖∇2d‖H1)

5
2−s

× (‖Λ−su‖L2 + ‖Λ−s%‖L2 + ‖Λ−s∇d‖L2).

(3.3)

Proof. Applying Λ−s to (1.8)1, (1.8)2, Λ−s∇ to (1.8)3, multiplying the resulting identities by γΛ−s%,
Λ−su and Λ−s∇d respectively, summing up and integrating over R3 by parts, we arrive at

1
2

d
dt

∫
R3

(γ|Λ−s%|2 + |Λ−su|2 + |Λ−s∇d|2)dx

+

∫
R3

(µ̄|∇Λ−su|2 + (µ̄|∇Λ−su|2 + (µ̄ + λ̄)|∇ · Λ−su|2 + |Λ−s∇2d|2)dx

=

∫
R3
γΛ−s(−%∇ · u − u · ∇%) · Λ−s%

− Λ−s[u · ∇u + h(%)(µ̄∆u + (µ̄ + λ̄)∇∇ · u) + g(%)∇% + φ(∆d · ∇d)] · Λ−su

− Λ−s∇(u · ∇d + f (d)) · Λ−s∇ddx

=K1 + K2 + K3 + K4 + K5 + K6 + K7 + K8.

(3.4)

Note that s ∈ ( 1
2 ,

3
2 ), it is easy to see that 1

2 + s
3 < 1 and 3

s ∈ (2, 6). For the terms K1, by using Lemmas 2.2
and 2.4, Hölder’s inequality, Young’s inequality together with the estimates established in Lemma 1.1,
we deduce that

K1 = −

∫
R3
γΛ−s(%∇ · u) · Λ−s%dx ≤ C‖Λ−s(%∇ · u)‖L2‖Λ−s%‖L2

≤C‖%∇ · u‖
L

1
1
2 + s

3

‖Λ−s%‖L2 ≤ C‖%‖
L

3
s
‖∇u‖L2‖Λ−s%‖L2

≤C‖%‖s−
1
2

L2 ‖∇%‖
3
2−s
L2 ‖∇u‖L2‖Λ−s%‖L2 ,

(3.5)

AIMS Mathematics Volume 7, Issue 9, 16249–16260.



16255

similarly, for K2–K6, we have

K2 = −

∫
R3
γΛ−s(u · ∇%) · Λ−s%dx ≤ C‖Λ−s(u · ∇%)‖L2‖Λ−s%‖L2

≤C‖u · ∇%‖
L

1
1
2 + s

3

‖Λ−s%‖L2 ≤ C‖u‖
L

3
s
‖∇%‖L2‖Λ−s%‖L2

≤C‖u‖s−
1
2

L2 ‖∇u‖
3
2−s
L2 ‖∇%‖L2‖Λ−s%‖L2 ,

(3.6)

K3 = −

∫
R3
γΛ−s(u · ∇u) · Λ−s%dx ≤ C‖Λ−s(u · ∇u)‖L2‖Λ−s%‖L2

≤C‖u · ∇u‖
L

1
1
2 + s

3

‖Λ−s%‖L2 ≤ C‖u‖
L

3
s
‖∇u‖L2‖Λ−s%‖L2

≤C‖u‖s−
1
2

L2 ‖∇u‖
3
2−s
L2 ‖∇u‖L2‖Λ−s%‖L2 ,

(3.7)

K4 = −

∫
R3

Λ−s[h(%)(µ̄∆u + (µ̄ + λ̄)∇∇ · u)] · Λ−s%dx

≤‖Λ−s[h(%)(µ̄∆u + (µ̄ + λ̄)∇∇ · u)]‖L2‖Λ−s%‖L2

≤C‖h(%)(µ̄∆u + (µ̄ + λ̄)∇∇ · u)‖
L

1
1
2 + s

3

‖Λ−s%‖L2

≤C‖h(%)‖
L

3
s
‖∇2u‖L2‖Λ−s%‖L2 ≤ C‖%‖

L
3
s
‖∇2u‖L2‖Λ−s%‖L2

≤C‖%‖s−
1
2

L2 ‖∇%‖
3
2−s
L2 ‖∇

2u‖L2‖Λ−s%‖L2 ,

(3.8)

K5 = −

∫
R3

Λ−s[g(%)∇%] · Λ−s%dx ≤ ‖Λ−s[g(%)∇%]‖L2‖Λ−s%‖L2

≤C‖g(%)∇%‖
L

1
1
2 + s

3

‖Λ−s%‖L2

≤C‖g(%)‖
L

3
s
‖∇%‖L2‖Λ−s%‖L2 ≤ C‖%‖

L
3
s
‖∇%‖L2‖Λ−s%‖L2

≤C‖%‖s−
1
2

L2 ‖∇%‖
3
2−s
L2 ‖∇%‖L2‖Λ−s%‖L2 ,

(3.9)

and

K6 = −

∫
R3

Λ−s(φ(%)∇d · ∆d) · Λ−sudx

≤C‖Λ−s(φ(%)∇d · ∆d)‖L2‖Λ−su‖L2

≤C‖φ(%)∇d · ∆d‖
L

1
1
2 + s

3

‖Λ−su‖L2

≤C‖φ(%)‖L∞‖∇d · ∆d‖
L

1
1
2 + s

3

‖Λ−su‖L2

≤C‖∇d · ∆d‖
L

1
1
2 + s

3

‖Λ−su‖L2 ≤ C‖∇d‖
L

3
s
‖∆d‖L2‖Λ−su‖L2

≤C‖∇d‖s−
1
2

L2 ‖∆d‖
3
2−s
L2 ‖∆d‖L2‖Λ−su‖L2 ,

(3.10)

where we have used the fact (1.9) in (3.8)–(3.10). Next, by using Lemmas 2.2–2.4, Hölder’s inequality,
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Young’s inequality together with Lemma 1.1 on the energy estimates of the solutions, it yields that

K7 = −

∫
R3

Λ−s∇(u · ∇d) · Λ−s∇ddx

≤C‖Λ−s(∇u · ∇d + u · ∇2d)‖L2‖Λ−s∇d‖L2

≤C(‖∇u · ∇d‖
L

1
1
2 + s

3

+ ‖u · ∇2d‖
L

1
1
2 + s

3

)‖Λ−s∇d‖L2

≤C(‖∇d‖
L

3
s
‖∇u‖L2 + ‖u‖

L
3
s
‖∇2d‖L2)‖Λ−s∇d‖L2

≤C(‖∇d‖s−
1
2

L2 ‖∇
2d‖

3
2−s
L2 ‖∇u‖L2 + ‖u‖s−

1
2

L2 ‖∇u‖
3
2−s
L2 ‖∇

2d‖L2)‖Λ−s∇d‖L2 .

(3.11)

For K8, we first consider s ∈ ( 1
2 , 1). Thanks to Lemma 2.2, one easily obtain

‖Λ2−sd‖L2 + ‖Λ2−s(d − ω0)‖L2 + ‖Λ2−s(d + ω0)‖L2 ≤ C‖∇d‖sL2‖∇
2d‖1−s

L2 ≤ C(‖∇d‖L2 + ‖∇2d‖L2).

Then, by Hölder’s inequality, Young’s inequality, the facts |d| < 1, |ω0| = 1 together with
Lemmas 1.1, 2.2 and 2.3, we derive that

K8 = −

∫
R3

Λ−s∇ · [(d + ω0)(d − ω0)d] · Λ−s∇ddx

≤C‖Λ−s∇ · [(d + ω0)(d − ω0)d]‖L2‖Λ−s∇d‖L2

≤C[‖d + ω0‖L6‖d − ω0‖L6‖Λ1−sd‖L6 + ‖d + ω0‖L6‖d‖L6‖Λ1−s(d − ω0)‖L6

+ ‖d − ω0‖L6‖d‖L6‖Λ1−s(d + ω0)‖L6]‖Λ−s∇d‖L2

≤C‖∇d‖2L2(‖Λ2−sd‖L2 + ‖Λ2−s(d − ω0)‖L2 + ‖Λ2−s(d + ω0)‖L2)‖Λ−s∇d‖L2

≤C‖∇d‖L2(‖∇d‖L2 + ‖∇2d‖L2)‖Λ−s∇d‖L2

≤C(‖∇d‖2L2 + ‖∇2d‖2L2)‖Λ−s∇d‖L2 .

(3.12)

Moreover, if s ∈ (1, 3
2 ), the following inequality holds:

K8 ≤C‖Λ−s+1[(d + ω0)(d − ω0)d]‖L2‖Λ−s∇d‖L2

≤C‖(d + ω0)(d − ω0)d‖
L

1
1
2 + s−1

3

‖Λ−s∇d‖L2

≤C‖d + ω0‖L∞‖d − ω0‖L2‖d‖
L

3
s−1
‖Λ−s∇d‖L2

≤C‖∇d‖
1
2
L2‖∇

2d‖
1
2
L2‖d − ω0‖L2‖∇d‖(s−1)+ 1

2
L2 ‖∇2d‖

1
2−(s−1)
L2 ‖Λ−s∇d‖L2

≤C‖∇d‖sL2‖∇
2d‖2−s

L2 ‖Λ
−s∇d‖L2

≤C(‖∇d‖2L2 + ‖∇2d‖2L2)‖Λ−s∇d‖L2 .

(3.13)

Combining (3.4)–(3.12) together, we obtain (3.3) and complete the proof. �

Now, we give the proof of our main results.

Proof of Theorem 1.4. First of all, the sketch of proof for the decay estimate with s ∈ [0, 1
2 ] will be

derived in the following. Note that this part follows more or less the lines of [19], so that we do
note claim originality here. Then, by using this proved estimate, one can obtain the decay results for
s ∈ ( 1

2 ,
3
2 ).
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Now, consider the decay for s ∈ [0, 1
2 ]. We first establish the negative Sobolev norm estimates for

the strong solutions, obtain one important inequality:

d
dt

(γ‖Λ−s%‖2L2 + ‖Λ−su‖2L2 + ‖Λ−s∇d‖2L2) + C(‖Λ−s∇u‖2L2 + ‖Λ−s∇2d‖2L2)

.(‖∇(%, u)‖2H1 + ‖∇d‖2H2)(‖Λ−s%‖2L2 + ‖Λ−su‖2L2 + ‖Λ−s∇d‖2L2).

Then, define
E−s(t) = ‖Λ−s%(t)‖2L2 + ‖Λ−su(t)‖2L2 + ‖Λ−s∇d(t)‖2L2 ,

we deduce from (3.2) and (3.3) that for s ∈ [0, 1
2 ],

E−s(t) ≤ E−s(0) + C
∫ t

0
(‖∇(%, u)‖2H1 + ‖∇d‖2H2)

√
E−s(t)dτ ≤ C(1 + sup

0≤τ≤t

√
E−s(t)),

which implies (1.12) for s ∈ [0, 1
2 ], i.e.,

‖Λ−s%(t)‖2L2 + ‖Λ−su(t)‖2L2 + ‖Λ−s∇d(t)‖2L2 ≤ C0. (3.14)

Moreover, if l = 1, 2, · · · ,N − 1, we may use Lemma 2.4 to have

‖∇l+1 f ‖L2 ≥ C‖Λ−s f ‖−
1

l+s

L2 ‖∇
l f ‖1+ 1

l+s

L2 . (3.15)

Then, by (3.14) and (3.15), it yields that

‖∇l(∇%,∇u,∇2d)‖2L2 ≥ C(‖∇l(%, u,∇d)‖2L2)1+ 1
l+s .

Hence, for l = 1, 2, · · · ,N − 1,

‖∇l(∇%,∇u,∇2d)‖2HN−l−1 ≥ C(‖∇l(%, u,∇d)‖2HN−l)1+ 1
l+s . (3.16)

Thus, we deduce from (1.11) the following inequality

d
dt

(‖∇l%‖2HN−l + ‖∇lu‖2HN−l + ‖∇l+1d‖2HN−l)

+ C0(‖∇l%‖2HN−l + ‖∇lu‖2HN−l + ‖∇l+1d‖2HN−l)1+ 1
l+s ≤ 0, for l = 1, · · · ,N − 1.

Solving this inequality directly gives

‖∇l%‖HN−l + ‖∇lu‖HN−l + ‖∇l+1d‖HN−l ≤ C(1 + t)−
l+s
2 , for l = 1, · · · ,N − 1. (3.17)

Then, by (3.14), (3.17) and the interpolation, we obtain the following inequality holds for s ∈ [0, 1
2 ]:

‖∇l%‖HN−l + ‖∇lu‖HN−l + ‖∇l+1d‖HN−l ≤ C(1 + t)−
l+s
2 , for l = 0, 1, · · · ,N − 1. (3.18)

Second, we consider the decay estimate for s ∈ ( 1
2 ,

3
2 ). Notice that the arguments for s ∈ [0, 1

2 ] can
not be applied to this case. However, observing that we have %0, u0,∇d0 ∈ Ḣ−

1
2 hold since Ḣ−s ⋂ L2 ⊂

AIMS Mathematics Volume 7, Issue 9, 16249–16260.
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Ḣ−s′ for any s′ ∈ [0, s], we can deduce from (3.18) for (1.10) and (1.11) with s = 1
2 that the following

estimate holds:

‖∇l%‖2HN−l + ‖∇lu‖2HN−l + ‖∇l∇d‖2HN−l ≤ C0(1 + t)−
1
2−l, for l = 0, 1, · · · ,N − 1. (3.19)

Therefore, we deduce from (3.3) and (3.2) that for s ∈ (1
2 ,

3
2 ),

E−s(t)

≤E−s(0) + C
∫ t

0
‖∇d‖2H1

√
E−s(τ)dτ

+ C
∫ t

0
(‖%‖L2 + ‖u‖L2 + ‖∇d‖L2)s− 1

2 (‖∇%‖H1 + ‖∇u‖H1 + ‖∇2d‖H1)
5
2−s

√
E−s(τ)dτ

≤C0 + C sup
τ∈[0,t]

√
E−s(τ) + C

∫ t

0
(1 + τ)−

7
4 + s

2 dτ sup
τ∈[0,t]

√
E−s(τ)

≤C0 + C sup
τ∈[0,t]

√
E−s(τ),

(3.20)

which implies that (1.12) holds for s ∈ ( 1
2 ,

3
2 ), i.e.,

‖Λ−s%(t)‖2L2 + ‖Λ−su(t)‖2L2 + ‖Λ−s∇d(t)‖2L2 ≤ C0. (3.21)

Moreover, thanks to (1.11) and (3.16), we can also obtain the following inequality for s ∈ ( 1
2 ,

3
2 ):

d
dt

(‖∇l%‖2HN−l + ‖∇lu‖2HN−l + ‖∇l+1d‖2HN−l)

+ C0(‖∇l%‖2HN−l + ‖∇lu‖2HN−l + ‖∇l+1d‖2HN−l)1+ 1
l+s ≤ 0, for l = 1, · · · ,N − 1,

which implies

‖∇l%‖HN−l + ‖∇lu‖HN−l + ‖∇l+1d‖HN−l ≤ C(1 + t)−
l+s
2 , for l = 1, · · · ,N − 1. (3.22)

Next, using (3.21), (3.22), and Lemma 2.5, we easily obtain

‖(%, u,∇d)‖L2 ≤C(‖∇(%, u,∇d)‖L2)
s

1+s (‖Λ−s(%, u,∇d)‖
1

1+s

L2

≤C(‖∇(%, u,∇d)‖L2)
s

1+s

≤C
[
(1 + t)−

1+s
2
] s

1+s
= C(1 + t)−

s
2 .

(3.23)

It then follows from (3.22) and (3.23) that

‖%‖HN−l + ‖u‖HN−l + ‖∇d‖HN−l ≤ C(1 + t)−
s
2 .

Hence, we obtain (1.15) for s ∈ ( 1
2 ,

3
2 ) and complete the proof. �
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4. Conclusions

In this paper, we consider the optimal decay estimates for the higher order derivatives of strong
solutions for three-dimensional nematic liquid crystal system. We use the pure energy method, negative
Sobolev norm estimates together with the classical Kato-Ponce inequality, Gagliardo-Nirenberg
inequality, overcome the difficulties caused by the Ginzburg-Landau approximation and the coupling
between the compressible Navier-Stokes equations and the direction equations, obtain the decay
estimates. Since the result (1.16) is same to the decay of the heat equation, it is optimal. We remark
that our results may attract the attentions of the researchers in the nematic liquid crystals filed.
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