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Abstract: The goal of this research is to develop many aggregation operators for aggregating various
complex T-Spherical fuzzy sets (CT-SFSs). Existing fuzzy set theory and its extensions, which are a
subset of real numbers, handle the uncertainties in the data, but they may lose some useful information
and so affect the decision results. Complex Spherical fuzzy sets handle two-dimensional information
in a single set by covering uncertainty with degrees whose ranges are extended from the real subset
to the complex subset with unit disk. Thus, motivated by this concept, we developed certain CT-
SFS operation laws and then proposed a series of novel averaging and geometric power aggregation
operators. The properties of some of these operators are investigated. A multi-criteria group decision-
making approach is also developed using these operators. The method’s utility is demonstrated with
an example of how to choose the best choices, which is then tested by comparing the results to those
of other approaches.
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1. Introduction

Zadeh [61] defined fuzzy set (FS) theory. Fuzzy set theory is a incredible achievement with
applications in a variety of fields. In every element of X (universal set) on [0, 1] (closed interval),
an FS is defined by σ, a membership degree (MD). After that, fuzzy set theory was extended to
intuitionistic fuzzy sets by Atanassov [1] (IFS). An IFS is characterized by two functions, MD and
non-membership degree (NMD), on the closed interval 0 to 1. Moreover, their sum must belong to
[0, 1], i.e., (membership degree (σ) + non-membership degree (υ)) ∈ [0, 1]. If we take σ = 0.7 and
υ = 0.4 correspondingly, then their sum is greater than one. As a result of this constraint, Yager
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[57, 58] developed the Pythagorean fuzzy set (PFS) concept of, expanding the domain of the IF set.
A PFS is characterized by two functions, MD and NMD, on the closed interval 0 to 1, and the sum
of the squares of MD and NMD is less than or equal to one, i.e., sum

(
σ2, υ2

)
∈ [0, 1]. As a result,

Pythagorean fuzzy sets are the generalized form of IFSs, as the domain of PFSs is greater than that of
IFSs. Khan et al. [21] defined Pythagorean fuzzy Dombi aggregation operators and their application in
decision support system. Abdullah et al. [7] proposed Pythagorean cubic fuzzy Hamacher aggregation
operators and their application in green supply selection problem.

While IFSs and PFSs can accurately define the ambiguous details, there are still challenges that
IFSs and PFSs are unable to overcome. For example, when the expert selects 0.6 for MD and 0.9 for
NMD, the condition of PFSs is such that 0.62 + 0.92 = 1.17 > 1. So, with regard to this condition,
Yager [59] defined the definition of q-rung orthopair fuzzy sets (q-ROFSs), as being more effective
than intuitionistic fuzzy sets and envisioning fuzzy sets to deal with challenging and ambiguous data.
In addition, Liu & Wang [25] have developed q-ROF aggregation operators (AOs) to calculate the
assessment details. Peng et al. [35] introduced the exponential operational laws and AOs for q-
ROFSs. Qiyas et al. [48] defined similarity measures based on q-rung linear Diophantine fuzzy sets
and discussed their application in multiple attribute decision making (MADM).

Ullah et al. [47] presented the concept of a T-Spherical fuzzy set (T-SPS) and defined some AOs.
Ullah et al. [60] defined the Hamacher AOs for T-SFSs. Munir et al. [31] used Einstein hybrid
AOs based on T-SFSs for solving MCGDM problems. Garg et al. [12] proposed several new T-
SFS operators. The MADM problem was solved by Liu et al. [27] by defining the Muirhead mean
operators for the T-SFS information. However, some algorithms are described in the literature (Ullah
et al. [45, 49]) to address pattern recognition and other problems using information measures such as
similarity and correlation. Quek et al. [37] introduced some novel T-Spherical fuzzy set operational
laws and obtained some of their properties. The Einstein interactive averaging AOs and the Einstein
interactive geometric AOs are two types of Einstein AOs based on these new procedures. Ju et al. [19]
created the T-SF interaction AOs and built the TODIM method in a T-Spherical fuzzy information using
these operators. The MADM approach was used by Chen et al. [9] to investigate certain generalized
T-Spherical and group-generalized fuzzy geometric aggregation operators. Guleria and Bajaj [17]
defined various T-Spherical fuzzy soft set aggregation operations.

Inspired by the performance of the power operator, several forms of power aggregation operators
(PAOs) have been introduced for different fuzzy settings, such as the generalized PAOs [56, 52],
intuitionistic fuzzy power AO [65], the interval-valued intuitionistic fuzzy power AO [23], Pythagorean
fuzzy power AO [24, 51] and hesitant fuzzy PAO [66]. Garg & Rani [13, 41] provided weighted and
powerful AOs to solve the MADM problem. Zhou, Chen & Liu suggested generalizing PAOs [63],
and Zhou & Chen also introduced linguistic generalized power aggregation operators [64]. Xu [53]
has defined the IF power AOs and interval-valued intuitionistic fuzzy power AOs. In addition, Xu &
Cai [54] established an uncertain power ordered weighted averaging operator utilizing the PA (power
averaging) operator and the uncertain ordered weighted averaging operator. Xu & Yager [52] have
implemented an uncertain ordered weighted geometric operator using the power geometric operator
and the UOW averaging operator. Xiong et al. [55] proposed an extended power average operator
for decision-making, a case study in the emergency response plan selection of civil aviation. Chen et
al. [10] defined a power-average operator based hybrid multi-attribute online product recommendation
model for consumer decision-making.
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Zhang et al. [62], mixed complex numbers and fuzzy sets and defined the concept of complex fuzzy
sets (CFSs). Further, Ramot et al. [40] defined a new notion that is somewhat different from other
studies, in which they expanded the range of MD to the unit circle in the complex plane, unlike the
others that were limited, the generalized form of Zadeh fuzzy sets (FSs) [61]. A CFS is represented by a
complex valued function, such as σ=(x) = κ=(x).e2πiΩκ=

(x) satisfying the condition: 0 ≤ κ=(x),Ωκ=(x) ≤
1. The distinction between CFSs and FSs is that the CFSs range is not limited to [0, 1] but spread in
a complex plane to a unit disk. In FS theory, the CFSs information has earned more attention. Bi et
al. [8] recently defined complex fuzzy geometrical AOs. Due to their merits and benefits, CFSs are
extensively tested for problems in DM and other fields [32]. Since FSs and CFSs can only describe the
MD and their complex-valued grade, they are unable to express the complex-valued negative degree of
membership. Alkouri et al. [44] proposed the complex intuitionistic fuzzy set (CIFS) structure, which
essentially consists of two complex membership functions that represent the positive and negative
membership grades of an element. Ma et al. [30] defined the CFS idea for resolving the problems
under multi-periodic factors. Dick et al. [11] discussed several CFSs, and Liu & Zhang [26] developed
the results of Dick et al. [11]. Hu et al. [18] suggested some new distance steps for the CFS and
investigated the consistency of CFS operations.

However, in some theories like fuzzy sets [61], intuitionistic fuzzy sets [1], and complex fuzzy
sets [40], each element in these types of sets is represented as an ordered pair of MD and NMD with
the ultimate aim of limiting their total to one [20, 44]. Garg and Rani [13] suggested some CIFS
aggregation operators and used these operators to solve a multi-attribute decision making (MADM)
problem. The theory of power AOs for CIFSs was defined by Rani and Garg [41], which was
later applied in MADM. Singh et al. [43] defined the interval-valued lattices of CFSs and their
granular decomposition. Selvachandran et al. [42] suggested several similarity tests of CFSs, and
their applications studied in pattern recognition. In [36], Quek and Selvachandran researched group-
associated CIFS algebraic structures. Garg and Rani [14, 15] developed Bonferroni mean operators
and robust average and geometric AOs for CIFSs. Liu et al. [39] defined an approach for the
MAGDM problem under Cq-ROFs linguistic information using the Heronian mean operators. Liu
et al. [38] defined some AOs for complex q-rung orthopair fuzzy sets (Cq-ROFSs) and discussed their
applications in MCGDM. Garg et al. [16] investigated the innovative approach of Cq-ROFSs, which are
a combination of q-ROFSs and CFSs, for dealing with difficult and complicated information. Naeem
et al. [34] defined complex Spherical fuzzy sets and applied them to a decision support system using
entropy measure and a power operator. Karaaslan and Dawood [22] proposed CT-SF Dombi AOs
and studied their applications in MCDM. Ali et al. [2] defined some AOs for CT-SFSs and discussed
their application in the MADM problem. Akram et al. [3] presented a hybrid DM framework under
complex Spherical fuzzy (CSF) prioritized weighted aggregation operators. Akram et al. [4] defined
some extension of the TOPSIS model to the DM under CSF information. Akram et al. [5] proposed
hybrid DM frameworks under complex Spherical fuzzy soft sets. Akram et al. [6] proposed complex
Spherical Dombi fuzzy aggregation operators for decision-making.

In the CT-SFS theory, membership degree (MD), neutral membership degree (NuMD) and non-
membership degree (NMD) are complex valued and are represented in polar coordinates. The
amplitude term connected with the MD, NuMD and NMD gives the extent of an object’s belongings in
a CIFS, whereas the phase term associated with MD, NuMD and NMD gives extra information, which
is generally related to periodicity. The phase terms are novel MD, NuMD and NMD parameters, and
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they are the parameters that distinguish the traditional T-SFS and CT-SFS theories. T-SFS theory deals
with only one dimension at a time, while the CT-SFS deals with two dimensions at a time. CT-SFSs are
very effective in representing the two dimensions of certain objects, as the phase term of a CT-SFS is
used to capture the second dimension. In addition, T-SFSs are quite remarkable as a general model for
fuzzy information, which becomes indispensable when neutral opinions occur. Thus, by introducing
this second dimension, all of the information can be projected in a single set, avoiding information
loss. The features of CFS theory and the T-SFS theory are combined with the CT-SFS theory.

We present the theory of PA operators among the CT-SFSs, maintaining the benefits of this
collection and focusing on the value of aggregation operators. Based on our knowledge, operators
cannot be used in the aforementioned studies to manage CT-SFS information. In order to do this, we
first describe certain operation laws for CT-SFSs and analyze their basic properties. Next, some PA
operators called CT-SFS power average, CT-SFS power geometric, CT-SFS weighted power average
and geometric, as well as their respective ordered weighted operators, are proposed to aggregate the
various complex T-Spherical fuzzy numbers (CT-SFNs). The basic features of these operators will be
discussed in detail. In addition, we suggest a MCGDM method based on current CT-SFSs operators.
Both the viability and the effectiveness of the strategy have been demonstrated by an illustrative
example.

The rest of the manuscript is organized as follows: In Section 2, we summarize briefly the definitions
of CFSs, PFSs, CPFSs, Cq-ROFSs and CT-SFSs. In Section 3, we propose some simple operational
laws for CT-SFNs, and a series of averaging and geometric aggregation operators are developed based
on the defined operational laws in Section 4. In Section 5, we describe a MCGDM approach using the
developed operators with the CT-SFS information, where CT-SFNs are characterized by each element
of the set. An example is described in Section 6, to show the functionality of the proposed method.
Also, we compare our results with other results of current approaches, and finally this analysis is
summarized in Section 7.

2. Preliminaries

In this section, we give a brief literature review of existing concepts such as CFSs, CIFSs, CPFSs,
Cq-ROFSs.
Definition 2.1. [40] A CFS C on X (universal set) is of the form:

C = {〈x, σC(x)〉 |x ∈ X} , (2.1)

where σC : U → {z : z ∈ C, |z| ≤ 1} and σC(x) = a + ib = κC(x).e2πiΩκC (x). Here, κC(x) =
√

a2 + b2 ∈ R
and κC(x),ΩC(x) ∈ [0, 1] , where i =

√
−1.

Definition 2.2. [44] A CIFS I on X is of the form:

I = {〈x, σI(x), υI(x)〉 |x ∈ X} , (2.2)

where σI : U → {z1 : z1 ∈ I, |z1| ≤ 1}, υI : U → {z2 : z2 ∈ I, |z2| ≤ 1}, such as σI(x) = z1 = a1 + ib1

and υI(x) = z2 = a2 + ib2 on the condition that 0 ≤ |z1| + |z2| ≤ 1 or σI(x) = κI(x).e2πiΩκI (x) and
υi(x) = ξi(x).e2πiΩξI (x) satisfying the conditions 0 ≤ κI(x) + ξI(x) ≤ 1 and 0 ≤ ΩκI (x) + ΩξI (x) ≤ 1. The
term HI(x) = R.e2πiΩR , such that R = 1 − (|z1| + |z2|), and ΩR(x) = 1 −

(
ΩκI (x) + ΩξI (x)

)
is considered a
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hesitancy degree of (x). Furthermore, I =
(
κ.e2πiΩκ , ξ.e2πiΩξ

)
is called the complex intuitionistic fuzzy

number (CIFN).
Definition 2.3. [46] A CPFS P on X is of the form:

P = {〈x, σP(x), υP(x)〉 |x ∈ X} , (2.3)

where σP : U → {z1 : z1 ∈ P, |z1| ≤ 1}, υP : U → {z2 : z2 ∈ P, |z2| ≤ 1}, such as σP(x) = z1 = a1 + ib1

and υP(x) = z2 = a2 + ib2 on the condition that 0 ≤ |z1|
2 + |z2|

2
≤ 1 or σP(x) = κP(x).e2πiΩκP(x) and

υP(x) = ξP(x).e2πiΩξP(x) satisfy the condition 0 ≤ κ2
P(x) + ξ2

P(x) ≤ 1, and 0 ≤ Ω2
κP(x) + Ω2

ξP(x) ≤ 1. The term

HP(x) = R.e2πiΩR , such that R =

√
1 − (κ2

P(x) + ξ2
P(x)) and ΩR(x) =

√
1 −

(
Ω2
κP(x) + Ω2

ξP(x)

)
is considered

a hesitancy degree of x. Furthermore, P =
(
κ.e2πiΩκ , ξ.e2πiΩξ

)
is called the complex Pythagorean fuzzy

number (CPFN). CPFS positive and negative membership grades are clearly polar or Cartesian numbers
in complex form.
Definition 2.4. [38] A Cq-ROFS S on X is of the form

S = {〈x, σS (x), υS (x)〉 |x ∈ X} , (2.4)

where σS : U → {z1 : z1 ∈ S , |z1| ≤ 1}, and υS : U → {z2 : z2 ∈ S , |z2| ≤ 1}, such that σS (x) = z1 =

a1 + ib1 and υS (x) = z2 = a2 + ib2, on the condition that 0 ≤ |z1|
q + |z2|

q
≤ 1 or σS (x) = κS (x).e2πiΩκS (x) ,

and υS (x) = ξS (x).e2πiΩξS (x) satisfying the condition 0 ≤ κq
S (x) + ξ

q
S (x) ≤ 1 and 0 ≤ Ω

q
κS (x) + Ω

q
ξS (x) ≤ 1.

The term HS (x) = R.e2πiΩR , such that R =
(
1 − κq

S (x) − ξq
S (x)

) 1
q and ΩR(x) =

(
1 −

(
Ω

q
κS (x) + Ω

q
ξS (x)

)) 1
q is

considered a hesitancy degree of x. Furthermore, S =
(
κ.e2πiΩκ , ξ.e2πiΩξ

)
is called the complex q-rung

orthopair fuzzy number (Cq-ROFN).
Definition 2.5. [56] For a family of Φi(i = 1, ..., n), the power average operator is defined as:

PA(Φ1, ...,Φn) =

∑n
i=1 (1 + T (Φi)) Φi∑n

i=1 (1 + T (Φi))
, (2.5)

where T (Φi) =
∑n

i=1Sup(Φi,Φs), and Sup(Φi,Φs) is the support of Φi from Φs and known as the
similarity index, which satisfies the below properties:

(1) Sup(Φi,Φs) ∈ [0, 1];

(2) Sup(Φi,Φs) = Sup(Φs,Φi) ;

(3) Sup(Φi,Φs) ≥ Sup(Φk,Φl) , if |Φi − Φs| ≤ |Φk − Φl| .

3. Complex T-Spherical fuzzy set

CT-SFSs and their basic operation laws for the collection of CT-SFNs, as well as their corresponding
PA operators, are introduced in this section.
Definition 3.1. [2] A CT-SFS S on X is of the form

S = {〈x, σS (x), υS (x), χS (x)〉 |x ∈ X} , (3.1)
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where σS : U → {z1 : z1 ∈ S , |z1| ≤ 1}, υS : U → {z2 : z2 ∈ S , |z2| ≤ 1}, and χS : U → {z3 :
z3 ∈ S , |z3| ≤ 1} such that σS (x) = z1 = a1 + ib1, υS (x) = z2 = a2 + ib2, χS (x) = z3 = a3 + ib3,
on the condition that 0 ≤ |z1|

q + |z2|
q + |z3|

q
≤ 1 or σS (x) = κS (x).e2πiΩκS (x) , υS (x) = ξS (x).e2πiΩξS (x)

and χ(x) = φS (x).e2πiΩφS (x) satisfying the conditions; 0 ≤ κ
q
S (x) + ξ

q
S (x) + φ

q
S (x) ≤ 1 and 0 ≤

Ω
q
κS (x) + Ω

q
ξS (x) + Ω

q
φS (x) ≤ 1. The term HS (x) = R.e2πiΩR , such that R =

(
1 − κq

S (x) − ξq
S (x) − φq

S (x)
) 1

q ,

and ΩR(x) =
(
1 −

(
Ω

q
κS (x) + Ω

q
ξS (x) + Ω

q
φS (x)

)) 1
q is considered a hesitancy degree of x. Furthermore,

S =
(
κ.e2πiΩκ , ξ.e2πiΩξ , φ.e2πiΩφ

)
is called the complex T-Spherical fuzzy number (CT-SFN).

3.1. Operational laws of CT-SFNs

Definition 3.2. For CT-SFN Υ =
{(
κΥ,ΩκΥ

)
, (ξΥ,ΩξΥ

), (φΥ,ΩφΥ
)
}
, the score function S c∗ of Υ is

defined as

S c∗ (Υ) =
1
2

∣∣∣∣(κq
Υ
− ξ

q
Υ
− φ

q
Υ

)
+

(
Ωq
κΥ
−Ω

q
ξΥ
−Ω

q
φΥ

)∣∣∣∣ , (3.2)

and the accuracy function Hc∗ of Υ is defined as:

Hc∗ (Υ) =
1
2

∣∣∣∣(κq
Υ

+ ξ
q
Υ

+ φ
q
Υ

)
+

(
Ωq
κΥ

+ Ω
q
ξΥ

+ Ω
q
φΥ

)∣∣∣∣ , (3.3)

where S c∗ (Υ) ∈ [0, 1] and Hc∗ (Υ) ∈ [0, 1].
Definition 3.3. The following comparison rules between two CT-SFNs Υ1 and Υ2 are satisfied:

(1) If S c∗ (Υ1) > S c∗ (Υ2) , then Υ1 > Υ2;

(2) If S c∗ (Υ1) = S c∗ (Υ2) ,

(3) If Hc∗ (Υ1) > Hc∗ (Υ2) , then Υ1 > Υ2;

(4) If Hc∗ (Υ1) = Hc∗ (Υ2) , then Υ1 = Υ2.

Definition 3.4. For any two CT-SFNs Υ1 =
{(
κΥ1 ,ΩκΥ1

)
,
(
ξΥ1 ,ΩξΥ1

)
,
(
φΥ1 ,ΩφΥ1

)}
and

Υ2 =
{(
κΥ2 ,ΩκΥ2

)
,
(
ξΥ2 ,ΩξΥ2

)
,
(
φΥ2 ,ΩφΥ2

)}
, the distance measure is defined as:

d(Υ1,Υ2) =
1
4


∣∣∣κq

Υ1
− κ

q
Υ2

∣∣∣ +
∣∣∣ξq

Υ1
− ξ

q
Υ2

∣∣∣ +
∣∣∣φq

Υ1
− φ

q
Υ2

∣∣∣
+ 1

2π

(∣∣∣Ωq
κΥ1
−Ω

q
κΥ2

∣∣∣ +
∣∣∣∣Ωq

ξΥ1
−Ω

q
ξΥ2

∣∣∣∣ +
∣∣∣∣Ωq

φΥ1
−Ω

q
φΥ2

∣∣∣∣)
 . (3.4)

Definition 3.5. For any two CT-SFNs Υ1 =
{(
κΥ1 ,ΩκΥ1

)
,
(
ξΥ1 ,ΩξΥ1

)
,
(
φΥ1 ,ΩφΥ1

)}
and

Υ2 =
{(
κΥ2 ,ΩκΥ2

)
,
(
ξΥ2 ,ΩξΥ2

)
,
(
φΥ2 ,ΩφΥ2

)}
and λ > 0, the basic operation laws are defined as:

(1) Υ1 ⊕ Υ2 =


 q

√
1 −

2∏
i=1

(
1 − κq

Υi

)
, 2π

(
1 −

2∏
i=1

(
1 −

Ω
q
κΥi

2π

)) ,(
2∏

i=1
ξΥi , 2π

(
2∏

i=1

ΩξΥi
2π

))
,

(
2∏

i=1
φΥi , 2π

(
2∏

i=1

ΩφΥi
2π

))
 ;
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(2) Υ1 ⊗ Υ2 =



(
2∏

i=1
κΥi , 2π

(
2∏

i=1

ΩκΥi
2π

))
, q

√
1 −

2∏
i=1

(
1 − ξq

Υi

)
, 2π

(
1 −

2∏
i=1

(
1 −

Ω
q
ξΥi

2π

)) , q

√
1 −

2∏
i=1

(
1 − φq

Υi

)
, 2π

(
1 −

2∏
i=1

(
1 −

Ω
q
φΥi
2π

))


;

(3) λΥ1 =



 q

√
1 −

(
1 − κq

Υ1

)λ
, 2π

1 − (
1 −

Ω
q
κΥ1
2π

)λ
 ,(

ξλ
Υ1
, 2π

(
ΩξΥ1

2π

)λ)
,

(
φλ

Υ1
, 2π

(
ΩφΥ1

2π

)λ)


;

(4) Υλ
1 =



(
κλ

Υ1
, 2π

(
ΩκΥ1

2π

)λ)
,

 q

√
1 −

(
1 − ξq

Υ1

)λ
, 2π

1 − (
1 −

Ω
q
ξΥ1
2π

)λ
 , q

√
1 −

(
1 − φq

Υ1

)λ
, 2π

1 − (
1 −

Ω
q
φΥ1
2π

)λ



.

Theorem 3.1. Let Υ1,Υ2,Υ3 be any three CT-SFNs. Then, the following properties are satisfied.

(1) Υ1 ⊕ Υ2 = Υ2 ⊕ Υ1;

(2) Υ1 ⊗ Υ2 = Υ2 ⊗ Υ1;

(3) (Υ1 ⊕ Υ2) ⊕ Υ3 = Υ1 ⊕ (Υ2 ⊕ Υ3) ;

(4) (Υ1 ⊗ Υ2) ⊗ Υ3 = Υ1 ⊗ (Υ2 ⊗ Υ3) .

Proof. Here, we prove parts (1) and (3), and the proofs of the others are similar.
(1) As Υ1 =

{(
κΥ1 ,ΩκΥ1

)
,
(
ξΥ1 ,ΩξΥ1

)
,
(
φΥ1 ,ΩφΥ1

)}
and

Υ2 =
{(
κΥ2 ,ΩκΥ2

)
,
(
ξΥ2 ,ΩξΥ2

)
,
(
φΥ2 ,ΩφΥ2

)}
are the two CT-SFNs, then we have

Υ1 ⊕ Υ2 =


 q

√
1 −

2∏
i=1

(
1 − κq

Υi

)
, 2π

(
1 −

2∏
i=1

(
1 −

Ω
q
κΥi

2π

)) ,(
2∏

i=1
ξΥi , 2π

(
2∏

i=1

ΩξΥi
2π

))
,

(
2∏

i=1
φΥi , 2π

(
2∏

i=1

ΩφΥi
2π

))


=


 q

√
κ

q
Υ1

+ κ
q
Υ2
− κ

q
Υ1
κ

q
Υ2
, 2π

(
Ω

q
κΥ1
2π +

Ω
q
κΥ2
2π −

Ω
q
κΥ1
2π

Ω
q
κΥ2
2π

) ,(
ξΥ1ξΥ2 , 2π

(
ΩξΥ1

2π

ΩξΥ2
2π

))
,
(
φΥ1φΥ2 , 2π

(
ΩφΥ1

2π

ΩφΥ2
2π

))


=


 q

√
κ

q
Υ2

+ κ
q
Υ1
− κ

q
Υ2
κ

q
Υ1
, 2π

(
Ω

q
κΥ2
2π +

Ω
q
κΥ1
2π −

Ω
q
κΥ2
2π

Ω
q
κΥ1
2π

) ,(
ξΥ1ξΥ2 , 2π

(
ΩξΥ2

2π

ΩξΥ1
2π

))
,
(
φΥ1φΥ2 , 2π

(
ΩφΥ2

2π

ΩφΥ1
2π

))


= Υ2 ⊕ Υ1
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(3) As Υ1 =
{(
κΥ1 ,ΩκΥ1

)
,
(
ξΥ1 ,ΩξΥ1

)
,
(
φΥ1 ,ΩφΥ1

)}
,

Υ2 =
{(
κΥ2 ,ΩκΥ2

)
,
(
ξΥ2 ,ΩξΥ2

)
,
(
φΥ2 ,ΩφΥ2

)}
and

Υ3 =
{(
κΥ3 ,ΩκΥ3

)
,
(
ξΥ3 ,ΩξΥ3

)
,
(
φΥ3 ,ΩφΥ3

)}
are the three CT-SFNs, we have

(Υ1 ⊕ Υ2) ⊕ Υ3 =


 q

√
1 −

2∏
i=1

(
1 − κq

Υi

)
, 2π

(
1 −

2∏
i=1

(
1 −

Ω
q
κΥi

2π

)) ,(
2∏

i=1
ξΥi , 2π

(
2∏

i=1

ΩξΥi
2π

))
,

(
2∏

i=1
φΥi , 2π

(
2∏

i=1

ΩφΥi
2π

))


⊕
((
κΥ3 ,ΩκΥ3

)
,
(
ξΥ3 ,ΩξΥ3

)
,
(
φΥ3 ,ΩφΥ3

))

=


 q

√
1 −

3∏
i=1

(
1 − κq

Υi

)
, 2π

(
1 −

3∏
i=1

(
1 −

Ω
q
κΥi

2π

)) ,(
3∏

i=1
ξΥi , 2π

(
3∏

i=1

ΩξΥi
2π

))
,

(
3∏

i=1
φΥi , 2π

(
3∏

i=1

ΩφΥi
2π

))


=
{(
κΥ1 ,ΩκΥ1

)
,
(
ξΥ1 ,ΩξΥ1

)
,
(
φΥ1 ,ΩφΥ1

)}

⊕


 q

√
1 −

3∏
i=2

(
1 − κq

Υi

)
, 2π

(
1 −

3∏
i=2

(
1 −

Ω
q
κΥi

2π

)) ,(
3∏

i=2
ξΥi , 2π

(
3∏

i=2

ΩξΥi
2π

))
,

(
3∏

i=2
φΥi , 2π

(
3∏

i=2

ΩφΥi
2π

))


= Υ1 ⊕ (Υ2 ⊕ Υ3) .

Theorem 3.2. For any two CT-SFNs Υ1 and Υ2 and λ, λ1, λ2 (positive real numbers), we have

(1) λ (Υ1 ⊕ Υ2) = λΥ1 ⊕ λΥ2;

(2) (Υ1 ⊗ Υ2)λ = Υλ
1 ⊕ Υλ

2;

(3) (λ1 + λ2) Υ1 = λ1Υ1 ⊕ λ2Υ1;

(4) Υ
λ1+λ2
1 = Υ

λ1
1 ⊗ Υ

λ2
1 .

Proof. Here, we have proven only parts (1) and (3), and the proofs of other parts are similar.
As given that Υ1 and Υ2 are CT-SFNs, we have

λ (Υ1 ⊕ Υ2) = λ


 q

√
1 −

2∏
i=1

(
1 − κq

Υi

)
, 2π

(
1 −

2∏
i=1

(
1 −

Ω
q
κΥi

2π

)) ,(
2∏

i=1
ξΥi , 2π

(
2∏

i=1

ΩξΥi
2π

))
,

(
2∏

i=1
φΥi , 2π

(
2∏

i=1

ΩφΥi
2π

))


=



 q

√
1 −

2∏
i=1

(
1 − κq

Υi

)λ
, 2π

1 − 2∏
i=1

(
1 −

Ω
q
κΥi

2π

)λ
 , 2∏

i=1
ξλ

Υi
, 2π

(
2∏

i=1

ΩξΥi
2π

)λ ,  2∏
i=1
φλ

Υi
, 2π

(
2∏

i=1

ΩφΥi
2π

)λ
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=



 q

√
1 −

(
1 − κq

Υ1

)λ
, 2π

1 − (
1 −

Ω
q
κΥ1
2π

)λ
 ,(

ξλ
Υ1
, 2π

(
ΩξΥ1

2π

)λ)
,

(
φλ

Υ1
, 2π

(
ΩφΥ1

2π

)λ)
⊕

 q

√
1 −

(
1 − κq

Υ2

)λ
, 2π

1 − (
1 −

Ω
q
κΥ2
2π

)λ
 ,(

ξλ
Υ2
, 2π

(
ΩξΥ2

2π

)λ)
,

(
φλ

Υ2
, 2π

(
ΩφΥ2

2π

)λ)


= λΥ1 ⊕ λΥ2.

Hence, λ (Υ1 ⊕ Υ2) = λΥ1 ⊕ λΥ2.

(3) From the operational laws we can write given,

(λ1 + λ2) Υ1 =



 q

√
1 −

(
1 − κq

Υ1

)λ1+λ2
, 2π

1 − (
1 −

Ω
q
κΥ1
2π

)λ1+λ2

 ,(

ξλ1+λ2
Υ1

, 2π
(

ΩξΥ1
2π

)λ1+λ2
)
,

(
φλ1+λ2

Υ1
, 2π

(
ΩφΥ1

2π

)λ1+λ2
)



=



 q

√
1 −

(
1 − κq

Υ1

)λ1
, 2π

1 − (
1 −

Ω
q
κΥ1
2π

)λ1

 ,(

ξλ1
Υ1
, 2π

(
ΩξΥ1

2π

)λ1
)
,

(
φλ1

Υ1
, 2π

(
ΩφΥ1

2π

)λ1
)

⊕



 q

√
1 −

(
1 − κq

Υ1

)λ2
, 2π

1 − (
1 −

Ω
q
κΥ1
2π

)λ2

 ,(

ξλ2
Υ1
, 2π

(
ΩξΥ1

2π

)λ2
)
,

(
φλ2

Υ1
, 2π

(
ΩφΥ1

2π

)λ2
)




= λ1Υ1 ⊕ λ2Υ1.

4. Power aggregation operators

Several power averaging (PA) operators are introduced with the CT-SF information in this section,
using the defined operation laws of the CT-SFNs, in order to aggregate the CT-SFNs.

4.1. Complex T-Spherical fuzzy power averaging operator

Definition 4.1. For a family of CT-SFNs Υi =
{(
κΥi ,ΩκΥi

)
,
(
ξΥi ,ΩξΥi

)
,
(
φΥi ,ΩφΥi

)}
(i = 1, ..., n), the

complex T-Spherical fuzzy power averaging (CT-SFPA) aggregation operator is a function CT -S FPA :
Ωn → Ω defined by

CT − S FPA (Υ1, ...,Υn) = ρ1Υ1 ⊕ ... ⊕ ρnΥn, (4.1)

where ρi =
1+T (Υi)∑n

i=1(1+T (Υi))
and T (Υi) =

n∑
s=i
s,i

(
Sup (Υi,Υs)

)
(i = 1, ..., n). Here, Sup(Υi,Υs) is the support

of Υi from Υs satisfying the aforementioned properties, and Sup(Υi,Υs) = 1 − d (Υi,Υs), where d is
the distance measure defined in Definition (3.1).
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Theorem 4.1. Let a family of CT-SFNs be Υi =
{(
κΥi ,ΩκΥi

)
,
(
ξΥi ,ΩξΥi

)
,
(
φΥi ,ΩφΥi

)}
(i = 1, ..., n). Then,

the aggregated value obtained by using the CT-SFPA operator is also a CT-SFN and is given as follows.

CT − S FPA (Υ1, ...,Υn) (4.2)

=


 q

√
1 −

n∏
i=1

(
1 − κq

Υi

)ρi
, 2π

(
1 −

n∏
i=1

(
1 −

Ω
q
κΥi

2π

)ρi
) ,(

n∏
i=1
ξ
ρi
Υi
, 2π

(
n∏

i=1

(
ΩξΥi
2π

)ρi
))
,

(
n∏

i=1
φ
ρi
Υi
, 2π

(
n∏

i=1

(
ΩφΥi

2π

)ρi
))


Proof. To prove Eq (4.2), we use mathematical induction. For each i,Υi is a CT-SFN and Υi > 0.
Therefore, we have ρiΥi is again a CT-SFN. Then, applying the mathematical induction steps on n, we
obtain the following.

(1) For n = 2, we get Υ1 =
{(
κΥ1 ,ΩκΥ1

)
,
(
ξΥ1 ,ΩξΥ1

)
,
(
φΥ1 ,ΩφΥ1

)}
and Υ2 ={(

κΥ2 ,ΩκΥ2

)
,
(
ξΥ2 ,ΩξΥ2

)
,
(
φΥ2 ,ΩφΥ2

)}
. As a result of the CT-SFNs operating law, we have the following.

ρ1Υ1 =


 q

√
1 −

(
1 − κq

Υ1

)ρ1
, 2π

(
1 −

(
1 −

Ω
q
κΥ1
2π

)ρ1
) ,(

ξ
ρ1
Υ1
, 2π

(
ΩξΥ1

2π

)ρ1
)
,
(
φ
ρ1
Υ1
, 2π

(
ΩφΥ1

2π

)ρ1
)

 ,
and

ρ2Υ2 =


 q

√
1 −

(
1 − κq

Υ2

)ρ2
, 2π

(
1 −

(
1 −

Ω
q
κΥ2
2π

)ρ2
) ,(

ξ
ρ2
Υ2
, 2π

(
ΩξΥ2

2π

)ρ2
)
,
(
φ
ρ2
Υ2
, 2π

(
ΩφΥ2

2π

)ρ2
)


As a result, using the CT-SFNs addition law, we have the following.

CT − S FPA(Υ1,Υ2)

=


 q

√
1 −

(
1 − κq

Υ1

)ρ1
, 2π

(
1 −

(
1 −

Ω
q
κΥ1
2π

)ρ1
) ,(

ξ
ρ1
Υ1
, 2π

(
ΩξΥ1

2π

)ρ1
)
,
(
φ
ρ1
Υ1
, 2π

(
ΩφΥ1

2π

)ρ1
)


⊕


 q

√
1 −

(
1 − κq

Υ2

)ρ2
, 2π

(
1 −

(
1 −

Ω
q
κΥ2
2π

)ρ2
) ,(

ξ
ρ2
Υ2
, 2π

(
ΩξΥ2

2π

)ρ2
)
,
(
φ
ρ2
Υ2
, 2π

(
ΩφΥ2

2π

)ρ2
)


=


 q

√
1 −

2∏
i=1

(
1 − κq

Υi

)ρi
, 2π

(
1 −

2∏
i=1

(
1 −

Ω
q
κΥi

2π

)ρi
) ,(

2∏
i=1
ξ
ρi
Υi
, 2π

(
2∏

i=1

(
ΩξΥi
2π

)ρi
))
,

(
2∏

i=1
φ
ρi
Υi
, 2π

(
2∏

i=1

(
ΩφΥi

2π

)ρi
))


Thus, the result holds for n = 2.
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(2) Let Eq (4.2) be true for n = k, i.e., the following.

CT − S FPA(Υ1,Υ2)

=


 q

√
1 −

k∏
i=1

(
1 − κq

Υi

)ρi
, 2π

(
1 −

k∏
i=1

(
1 −

Ω
q
κΥi

2π

)ρi
) ,(

k∏
i=1
ξ
ρi
Υi
, 2π

(
k∏

i=1

(
ΩξΥi
2π

))ρi
)
,

(
k∏

i=1
φ
ρi
Υi
, 2π

(
k∏

i=1

(
ΩφΥi

2π

))ρi
)


Then, n = k + 1, and we get the following.

CT − S FPA(Υ1, ...,Υk+1) = CT − S FPA(Υ1, ...,Υk) ⊕CT − S FPA(Υk+1)

=


 q

√
1 −

k∏
i=1

(
1 − κq

Υi

)ρi
, 2π

(
1 −

k∏
i=1

(
1 −

Ω
q
κΥi

2π

)ρi
) ,(

k∏
i=1
ξ
ρi
Υi
, 2π

(
k∏

i=1

(
ΩξΥi
2π

)ρi
))
,

(
k∏

i=1
φ
ρi
Υi
, 2π

(
k∏

i=1

(
ΩφΥi

2π

)ρi
))


⊕


 q

√
1 −

(
1 − κq

Υk+1

)ρk+1
, 2π

(
1 −

(
1 −

Ω
q
κΥk+1
2π

)ρk+1
) ,(

ξ
ρk+1
Υk+1

, 2π
(

ΩξΥk+1
2π

)ρk+1
)
,
(
φ
ρk+1
Υk+1

, 2π
(

ΩφΥk+1
2π

)ρk+1
)


=


 q

√
1 −

k+1∏
i=1

(
1 − κq

Υi

)ρi
, 2π

(
1 −

k+1∏
i=1

(
1 −

Ω
q
κΥi

2π

)ρi
) ,(

k+1∏
i=1
ξ
ρi
Υi
, 2π

(
k+1∏
i=1

(
ΩξΥi
2π

)ρi
))
,

(
k+1∏
i=1
φ
ρi
Υi
, 2π

(
k+1∏
i=1

(
ΩφΥi

2π

)ρi
))


Thus, Eq (4.2) is true for all positive natural numbers n.
The CT-SFPA operator satisfies some of the properties listed below, according to Theorem (4.1).

Property 1 (Idempotency). Let Υ0 be a CT-SFN, and if Υi = Υ0 for all i = 1, ..., n, then

CT − S FPA(Υ1, ...,Υn) = Υ0 (4.3)

Proof. Let Υ0 =
{(
κΥ0 ,ΩκΥ0

)
,
(
ξΥ0 ,ΩξΥ0

)
,
(
φΥ0 ,ΩφΥ0

)}
and

Υi =
{(
κΥi ,ΩκΥi

)
,
(
ξΥi ,ΩξΥi

)
,
(
φΥi ,ΩφΥi

)}
be the CT-SFNs, such that Υi = Υ0 for all i, where κΥi =

κΥ0 , ξΥi = ξΥ0 , φΥi = φΥ0 ,ΩκΥi
= ΩκΥ0

,ΩξΥi
= ΩξΥ0

and ΩφΥi
= ΩφΥ0

for all i. Then, based on the ρi, we
have

∑n
i=1 ρi = 1. So, by Theorem (4.1), we get

CT − S FPA(Υ1, ...,Υn)

=


 q

√
1 −

n∏
i=1

(
1 − κq

Υ0

)ρi
, 2π

(
1 −

n∏
i=1

(
1 −

Ω
q
κΥ0
2π

)ρi
) ,(

n∏
i=1
ξ
ρi
Υ0
, 2π

(
n∏

i=1

(
ΩξΥ0

2π

)ρi
))
,

(
n∏

i=1
φ
ρi
Υ0
, 2π

(
n∏

i=1

(
ΩφΥ0

2π

)ρi
))


=


 q

√
1 −

(
1 − κq

Υ0

)∑n
i=1 ρi

, 2π

1 − (
1 −

Ω
q
κΥ0
2π

)∑n
i=1 ρi


 ,(

ξ
ρi
Υ0
, 2π

(
ΩξΥ0

2π

)∑n
i=1 ρi

)
,

(
φ
ρi
Υ0
, 2π

(
ΩφΥ0

2π

)∑n
i=1 ρi

)
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=
{(
κΥ0 ,ΩκΥ0

)
,
(
ξΥ0 ,ΩξΥ0

)
,
(
φΥ0 ,ΩφΥ0

)}
= Υ0

Property 2 (Boundedness). Let Υi =
{(
κΥi ,ΩκΥi

)
,
(
ξΥi ,ΩξΥi

)
,
(
φΥi ,ΩφΥi

)}
(i = 1, ..., n) be the family of

CT-SFNs, and Υ− =

{
min

i

(
κΥi

)
,min

i

(
ΩκΥi

)
,min

i

(
ξΥi

)
,min

i

(
ΩξΥi

)
,max

i

(
φΥi

)
,max

i

(
ΩφΥi

)}
and

Υ+ =

{
max

i

(
κΥi

)
,max

i

(
ΩκΥi

)
,min

i

(
ξΥi

)
,min

i

(
ΩξΥi

)
,min

i

(
φΥi

)
,min

i

(
ΩφΥi

)}
. Then,

Υ− ≤ CT − S FPA(Υ1, ...,Υn) ≤ Υ+. (4.4)

Proof. Take Υ ≤ CT − S FPA(Υ1, ...,Υn), and hence by Theorem (4.1), we get Υ ={(
κΥ,ΩκΥ

)
, (ξΥ,ΩξΥ

), (φΥ,ΩφΥ
)
}
. For a CT-SFN Υi, we have

min
i

(
κΥi

)
≤ κΥi ≤ max

i

(
κΥi

)
⇒ 1 −max

i

(
κΥi

)
≤ 1 −

(
κΥi

)
≤ 1 −min

i

(
κΥi

)
⇒

(
1 −max

i

(
κΥi

))ρi

≤ (1 − Υi)ρi ≤

(
1 −min

i

(
κΥi

))ρi

⇒

n∏
i=1

(
1 −max

i

(
κΥi

))ρi

≤

n∏
i=1

(
1 − κΥi

)ρi ≤

n∏
i=1

(
1 −min

i

(
κΥi

))ρi

⇒

(
1 −max

i

(
κΥi

))∑n
i=1 ρi

≤

n∏
i=1

(
1 − κΥi

)ρi ≤

(
1 −min

i

(
κΥi

))∑n
i=1 ρi

⇒ 1 −max
i

(
κΥi

)
≤

n∏
i=1

(
1 − κΥi

)ρi ≤ 1 −min
i

(
κΥi

)
⇒ min

i

(
κΥi

)
≤ 1 −

n∏
i=1

(
1 − κΥi

)ρi ≤ max
i

(
κΥi

)
⇒ min

i

(
κΥi

)
≤ κΥ ≤ max

i

(
κΥi

)
,

and

min
i

(
ξΥi

)
≤ ξΥi ≤ max

i

(
ξΥi

)
⇒

(
min

i

(
ξΥi

))ρi

≤
(
ξΥi

)ρi ≤

(
max

i

(
ξΥi

))ρi

⇒

n∏
i=1

(
min

i

(
ξΥi

))ρi

≤

n∏
i=1

(
ξΥi

)ρi ≤

n∏
i=1

(
max

i

(
ξΥi

))ρi

⇒

(
min

i

(
ξΥi

))∑n
i=1 ρi

≤

n∏
i=1

(
ξΥi

)ρi ≤

(
max

i

(
ξΥi

))∑n
i=1 ρi

min
i

(
φΥi

)
≤ φΥi ≤ max

i

(
φΥi

)
⇒

(
min

i

(
φΥi

))ρi

≤
(
φΥi

)ρi ≤

(
max

i

(
φΥi

))ρi
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⇒

n∏
i=1

(
min

i

(
φΥi

))ρi

≤

n∏
i=1

(
φΥi

)ρi ≤

n∏
i=1

(
max

i

(
φΥi

))ρi

⇒

(
min

i

(
φΥi

))∑n
i=1 ρi

≤

n∏
i=1

(
φΥi

)ρi ≤

(
max

i

(
φΥi

))∑n
i=1 ρi

⇒ min
i

(
κΥi

)
≤

n∏
i=1

(
κΥi

)ρi ≤ max
i

(
κΥi

)
,

⇒ min
i

(
ξΥi

)
≤ ξΥ ≤ max

i

(
ξΥi

)
,

⇒ min
i

(
φΥi

)
≤ φΥ ≤ max

i

(
φΥi

)
.

Similarly, we obtain min
i

(
ΩκΥi

)
≤ ΩκΥ

≤ max
i

(
ΩκΥi

)
, min

i

(
ΩξΥi

)
≤ ΩξΥ

≤ max
i

(
ΩξΥi

)
and

min
i

(
ΩφΥi

)
≤ ΩφΥ

≤ max
i

(
ΩφΥi

)
. Now, by using Definition (3.1), we get the following.

S c∗ (Υ) =
1
2

∣∣∣∣(κq
Υ
− ξ

q
Υ
− φ

q
Υ

)
+

(
Ωq
κΥ
−Ω

q
ξΥ
−Ω

q
φΥ

)∣∣∣∣
≤

(
max

i

(
κΥi

)
−min

i

(
ξΥi

)
−min

i

(
φΥi

))
+

1
2

(
max

i

(
ΩκΥi

)
−min

i

(
ΩξΥi

)
−min

i

(
ΩφΥi

))
= S c∗

(
Υ−

)
S c∗ (Υ) =

1
2

∣∣∣∣(κq
Υ
− ξ

q
Υ
− φ

q
Υ

)
+

(
Ωq
κΥ
−Ω

q
ξΥ
−Ω

q
φΥ

)∣∣∣∣
≥

(
min

i

(
κΥi

)
−max

i

(
ξΥi

)
−max

i

(
φΥi

))
+

1
2

(
min

i

(
ΩκΥi

)
−max

i

(
ΩξΥi

)
−max

i

(
ΩφΥi

))
= S c∗

(
Υ+)

Thus, S c∗ (Υ−) ≤ S c∗ (Υ) ≤ S c∗ (Υ+) .
Hence, by the ranking order, we have

Υ ≤ CT − S FPA(Υ1, ...,Υn) ≤ Υ+.

Property 3 (Commutivity). Let Υi =
{(
κΥi ,ΩκΥi

)
,
(
ξΥi ,ΩξΥi

)
,
(
φΥi ,ΩφΥi

)}
(i = 1, ..., n) be the family of

CT-SFNs, if
(
Υ∗1, ...,Υ

∗
n

)
are the permutations of (Υ1, ...,Υn) . Then,

CT − S FPA (Υ1, ...,Υn) = CT − S FPA
(
Υ∗1, ...,Υ

∗
n
)
. (4.5)

Proof.
(
Υ∗1, ...,Υ

∗
n

)
is an arbitrary arrangement of (Υ1, ...,Υn) . Therefore,

CT − S FPA (Υ1, ...,Υn) =

∑n
i=1 (1 + T (Υi)) Υi∑n

i=1 (1 + T (Υi))
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=

∑n
i=1

(
1 + T (Υ∗i )

)
Υ∗i∑n

i=1

(
1 + T (Υ∗i )

)
= CT − S FPA

(
Υ∗1, ...,Υ

∗
n
)

Thus, CT − S FPA (Υ1, ...,Υn) = CT − S FPA
(
Υ∗1, ...,Υ

∗
n

)
.

Property 4 (Monotonicity). Let Υi =
{(
κΥi ,ΩκΥi

)
,
(
ξΥi ,ΩξΥi

)
,
(
φΥi ,ΩφΥi

)}
and

Υ∗i =

{(
κ∗

Υi
,Ω∗κΥi

)
,
(
ξ∗

Υi
,Ω∗ξΥi

)
,
(
φ∗

Υi
,Ω∗φΥi

)}
(i = 1, ..., n) be the families of CT-SFNs, such that Υi ≤

Υ∗i . Then,
CT − S FPA (Υ1, ...,Υn) ≤ CT − S FPA

(
Υ∗1, ...,Υ

∗
n
)

(4.6)

Proof. It’s given that κΥi ≤ κ
∗
Υi
,ΩκΥi

≤ Ω∗κΥi
, ξΥi ≤ ξ

∗
Υi
,ΩξΥi

≤ Ω∗ξΥi
, φΥi ≤ φ

∗
Υi

and ΩφΥi
≤ Ω∗φΥi

for all i.
Then,

1 − κ∗Υi
≤ 1 − κΥi

n∏
i=1

(
1 − κq

Υi

)ρi
≤ 1 −

n∏
i=1

(
1 − κ∗q

Υi

)ρi

=⇒
q

√√1 − n∏
i=1

(
1 − κq

Υi

)ρi

 ≤ q

√√1 − n∏
i=1

(
1 − κ∗q

Υi

)ρi


and

1 −Ω∗κΥi
≤ 1 −ΩκΥi

n∏
i=1

(
1 −Ωq

κΥi

)ρi
≤ 1 −

n∏
i=1

(
1 −Ω∗qκΥi

)ρi

=⇒
q

√√1 − n∏
i=1

(
1 −Ω

q
κΥi

)ρi

 ≤ q

√√1 − n∏
i=1

(
1 −Ω

∗q
κΥi

)ρi


Similarly, we can show that ξΥi ≤ ξ

∗
Υi
,ΩξΥi

≤ Ω∗ξΥi
, φΥi ≤ φ

∗
Υi

and ΩφΥi
≤ Ω∗φΥi

. Thus, we obtain


 q

√
1 −

n∏
i=1

(
1 − κq

Υi

)ρi
, 2π

(
1 −

n∏
i=1

(
1 −

Ω
q
κΥi

2π

)ρi
) ,(

n∏
i=1
ξ
ρi
Υi
, 2π

(
n∏

i=1

(
ΩξΥi
2π

)ρi
))
,

(
n∏

i=1
φ
ρi
Υi
, 2π

(
n∏

i=1

(
ΩφΥi

2π

)ρi
))


≤


 q

√
1 −

n∏
i=1

(
1 − κ∗q

Υi

)ρi
, 2π

(
1 −

n∏
i=1

(
1 −

Ω
∗q
κΥi

2π

)ρi
) ,(

n∏
i=1
ξ
∗ρi
Υi
, 2π

(
n∏

i=1

(
Ω∗ξΥi
2π

)ρi
))
,

(
n∏

i=1
φ
∗ρi
Υi
, 2π

(
n∏

i=1

(
Ω∗φΥi

2π

)ρi
))

 .

Hence, from the above Equation we prove that, CT −S FPA (Υ1, ...,Υn) ≤ CT −S FPA
(
Υ∗1, ...,Υ

∗
n

)
.
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4.2. Complex T-Spherical fuzzy weighted power averaging operator

In this part, we consider the distinct weighting vector of the CT-SFNs Υi(i = 1, ..., n) during the
aggregation process, as opposed to the above-mentioned CT-SFPA operator, and developed a modified
CT-SF weighted power averaging (CT-SFWPA) aggregation operator as follows.
Definition 4.2. For a family of CT-SFNs Υi(i = 1, ..., n), the CT-SFWPA operator is a function CT −
S FWPA : Ωn → Ω defined by:

CT − S FWPA (Υ1, ...,Υn) = φ1Υ1 ⊕ ... ⊕ φnΥn (4.7)

where φi =
ψi(1+T /(Υi))∑n

i=1 ψi(1+T /(Υi)) ,T
/ (Υi) =

n∑
s=1
s,i

ψs
(
Sup (Υi,Υs)

)
and ψ = (ψ1, ..., ψn)T be the weight vector

of CT-SFNs Υi, such that ψi > 0 and
∑n

i=1 ψi = 1.
Theorem 4.2. Let a family of CT-SFNs Υi =

{(
κΥi ,ΩκΥi

)
,
(
ξΥi ,ΩξΥi

)
,
(
φΥi ,ΩφΥi

)}
(i = 1, ..., n),with their

corresponding weight vector ψ = (ψ1, ..., ψn)T , such that ψi > 0 and
∑n

i=1 ψi = 1. Then, the aggregated
value obtained by using the CT-SFWPA operator is again a CT-SFN, and it is given as follows.

CT − S FWPA (Υ1, ...,Υn) (4.8)

=



 q

√
1 −

n∏
i=1

(
1 − κq

Υi

)φi
, 2π

1 − n∏
i=1

(
1 −

Ω
q
κΥi

2π

)φi

 ,(

n∏
i=1
ξ
φi
Υi
, 2π

(
n∏

i=1

(
ΩξΥi
2π

)φi
))
,

(
n∏

i=1
φ
φi
Υi
, 2π

(
n∏

i=1

(
ΩφΥi

2π

)φi
))


Proof. The proof is the same as that of Theorem (4.1).

For a family of CT-SFNs Υi(i = 1, ..., n) with weight vector ψ = (ψ1, ..., ψn)T , such that ψi > 0 and∑n
i=1 ψi = 1, the CT-SFWPA operator satisfies the same properties as the CT-SFPA operator, such as

the following.
Property 1 (Idempotency). Let Υ0 be a CT-SFN, and if Υi = Υ0 for all i = 1, ..., n, then,

CT − S FWPA(Υ1, ...,Υn) = Υ0. (4.9)

Property 2 (Boundedness). Let Υ− and Υ+ be the lower bound and upper bound of the CT-SFNs
Υi(i = 1, ..., n), respectively. Then, we have,

Υ− ≤ CT − S FWPA(Υ1, ...,Υn) ≤ Υ+. (4.10)

Property 3 (Commutivity). For a permutation (Υ∗1, ...,Υ
∗
n) of CT-SFNs (Υ1, ...,Υn) and their

corresponding permutation weights ψ∗ =
(
ψ∗1, ..., ψ

∗
n

)T
, ψ = (ψ1, ..., ψn)T , we have

CT − S FWPA (Υ1, ...,Υn) = CT − S FWPA
(
Υ∗1, ...,Υ

∗
n
)
. (4.11)

Property 4 (Monotonicity). Let Υi =
{(
κΥi ,ΩκΥi

)
,
(
ξΥi ,ΩξΥi

)
,
(
φΥi ,ΩφΥi

)}
and

Υ∗i =

{(
κ∗

Υi
,Ω∗κΥi

)
,
(
ξ∗

Υi
,Ω∗ξΥi

)
,
(
φ∗

Υi
,Ω∗φΥi

)}
(i = 1, ..., n) be the families of CT-SFNs, such that Υi ≤

Υ∗i . Then,
CT − S FWPA (Υ1, ...,Υn) ≤ CT − S FWPA

(
Υ∗1, ...,Υ

∗
n
)

(4.12)
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4.3. Complex T-Spherical fuzzy ordered weighted power averaging operator

The defined aggregation operator has been extended to its ordered weighted form in this subsection.
Definition 4.3. For a family of CT-SFNs Υi(i = 1, ..., n), a complex T-Spherical fuzzy ordered weighted
power averaging (CT-SFOWPA) operator is a function CT − S FOWPA : Ωn → Ω defined as:

CT − S FOWPA (Υ1, ...,Υn) = ζ1Υσ(1) ⊕ ... ⊕ ζnΥσ(n), (4.13)

where Ω denotes the set of CT-SFNs, and σ(1), ..., σ(n) are the permutations of (1, ..., n) satisfies
that Υσ(i−1) ≥ Υσ(i) for i = 2, ..., n. Also, ζi is defined as

ζi = g
( Bi

TV

)
− g

(Bi−1

TV

)
, (4.14)

where Bi =
∑i

s=1 Vσ(s),Vσ(i) = 1 +
n∑

s=1
s,i

(Sup(Υi,Υs)),TV =
∑n

i=1 Vσ(i) and the mapping g : [0, 1] →

[0, 1] is a basic unit-interval monotonic function that satisfies the three properties g(0) = 0, g(1) = 1,
and if x ≤ y then g(x) ≤ g(y).
Theorem 4.3. Let a family of CT-SFNs be Υi =

{(
κΥi ,ΩκΥi

)
,
(
ξΥi ,ΩξΥi

)
,
(
φΥi ,ΩφΥi

)}
(i = 1, ..., n). Then,

the aggregated value calculated by using the CT-SFOWPA operator is again a CT-SFN and given as

CT − S FOWPA (Υ1, ...,Υn) (4.15)

=



 q

√
1 −

n∏
i=1

(
1 − κq

Υσ(i)

)ζi
, 2π

1 − n∏
i=1

(
1 −

Ω
q
κΥσ(i)

2π

)ζi

 ,(

n∏
i=1
ξ
ζi
Υσ(i)

, 2π
(

n∏
i=1

(
ΩξΥσ(i)

2π

)ζi
))
,

(
n∏

i=1
φ
ζi
Υσ(i)

, 2π
(

n∏
i=1

(
ΩφΥσ(i)

2π

)ζi
))


,

where ζi is defined as in Eq (4.14).
In addition, the CT-SFOWPA operator satisfies the properties of idempotency, boundedness,

commutativity and monotonicity.

4.4. Complex T-Spherical fuzzy power geometric aggregation operator

The AOs mentioned above are expanded in this subsection to geometric AOs with complex T-
Spherical fuzzy information, such as CSF power geometric (CT-SFPG), CT-SF weighted power
geometric (CT-SFWPG) and CT-SF ordered weighted power geometric (CT-SFOWPG).
Definition 4.4. For a family of CT-SFNs Υi(i = 1, ..., n), the complex T-Spherical fuzzy power
geometric (CT-SFPG) operator is a function CT − S FPG : Ωn → Ω defined as:

CT − S FPG = (Υ1, ...,Υn) = Υ
ρ1
1 ⊗ ... ⊗ Υρn

n , (4.16)

where ρi =
1+T (Υi)∑n

i=1(1+T (Υi))
and T (Υi) =

n∑
s=1
s,i

(
Sup (Υi,Υs)

)
(i = 1, ..., n). Here, Sup(Υi,Υs) is the support

of Υi from Υs satisfying the aforementioned properties, and Sup(Υi,Υs) = 1−d (Υi,Υs) , while d is the
distance measure.
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Theorem 4.4. Let a family of CT-SFNs Υi =
{(
κΥi ,ΩκΥi

)
,
(
ξΥi ,ΩξΥi

)
,
(
φΥi ,ΩφΥi

)}
(i = 1, ..., n). Then,

the aggregated value obtained by using the CT-SFPG operator is again a CT-SFN and given as

CT − S FPG (Υ1, ...,Υn) (4.17)

=



(
n∏

i=1
κ
ρi
Υi
, 2π

(
n∏

i=1

(
ΩκΥi
2π

)ρi
))
, q

√
1 −

n∏
i=1

(
1 − ξq

Υi

)ρi
, 2π

(
1 −

n∏
i=1

(
1 −

Ω
q
ξΥi

2π

)ρi
) , q

√
1 −

n∏
i=1

(
1 − φq

Υi

)ρi
, 2π

(
1 −

n∏
i=1

(
1 −

Ω
q
φΥi
2π

)ρi
)


.

Proof. We’ll show that Eq (4.17) holds by using mathematical induction. For each i,Υi is a CT-
SFN, and Υi > 0; therefore, we have that Υ

ρi
i is still CT-SFN. Then, using the steps of mathematical

induction, we have the following.
(1) For n = 2, we get Υ1 =

{(
κΥ1 ,ΩκΥ1

)
,
(
ξΥ1 ,ΩξΥ1

)
,
(
φΥ1 ,ΩφΥ1

)}
and Υ2 ={(

κΥ2 ,ΩκΥ2

)
,
(
ξΥ2 ,ΩξΥ2

)
,
(
φΥ2 ,ΩφΥ2

)}
. Thus, by the operational law of CT-SFNs, we have

Υ
ρ1
1 =



(
κ
ρ1
Υ1
, 2π

(
ΩκΥ1

2π

)ρ1
)
, q

√
1 −

(
1 − ξq

Υ1

)ρ1
, 2π

(
1 −

(
1 −

Ω
q
ξΥ1
2π

)ρ1
) , q

√
1 −

(
1 − φq

Υ1

)ρ1
, 2π

(
1 −

(
1 −

Ω
q
φΥ1
2π

)ρ1
)


and

Υ
ρ2
2 =



(
κ
ρ2
Υ2
, 2π

(
ΩκΥ2

2π

)ρ2
)
, q

√
1 −

(
1 − ξq

Υ2

)ρ2
, 2π

(
1 −

(
1 −

Ω
q
ξΥ2
2π

)ρ2
) , q

√
1 −

(
1 − φq

Υ2

)ρ2
, 2π

(
1 −

(
1 −

Ω
q
φΥ2
2π

)ρ2
)


.

Hence, using the addition law of CT-SFNs, we obtain

CT − S FPG(Υ1,Υ2)

=



(
κ
ρ1
Υ1
, 2π

(
ΩκΥ1

2π

)ρ1
)
, q

√
1 −

(
1 − ξq

Υ1

)ρ1
, 2π

(
1 −

(
1 −

Ω
q
ξΥ1
2π

)ρ1
) , q

√
1 −

(
1 − φq

Υ1

)ρ1
, 2π

(
1 −

(
1 −

Ω
q
φΥ1
2π

)ρ1
)
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⊗



(
κ
ρ2
Υ2
, 2π

(
ΩκΥ2

2π

)ρ2
)
, q

√
1 −

(
1 − ξq

Υ2

)ρ2
, 2π

(
1 −

(
1 −

Ω
q
ξΥ2
2π

)ρ2
) , q

√
1 −

(
1 − φq

Υ2

)ρ2
, 2π

(
1 −

(
1 −

Ω
q
φΥ2
2π

)ρ2
)



=



(
2∏

i=1
κ
ρi
Υi
, 2π

(
2∏

i=1

(
ΩκΥi
2π

)ρi
))
, q

√
1 −

2∏
i=1

(
1 − ξq

Υi

)ρi
, 2π

(
1 −

2∏
i=1

(
1 −

Ω
q
ξΥi

2π

)ρi
) , q

√
1 −

2∏
i=1

(
1 − φq

Υi

)ρi
, 2π

(
1 −

2∏
i=1

(
1 −

Ω
q
φΥi
2π

)ρi
) .


Thus, the resuls holds for n = 2.
(2) Let Eq (4.17) be true for n = k, (k is a positive natural number), i.e.,

CT − S FPG(Υ1, ...,Υk)

=



(
k∏

i=1
κ
ρi
Υi
, 2π

(
k∏

i=1

(
ΩκΥi
2π

)ρi
))
, q

√
1 −

k∏
i=1

(
1 − ξq

Υi

)ρi
, 2π

(
1 −

k∏
i=1

(
1 −

Ω
q
ξΥi

2π

)ρi
) , q

√
1 −

k∏
i=1

(
1 − φq

Υi

)ρi
, 2π

(
1 −

k∏
i=1

(
1 −

Ω
q
φΥi
2π

)ρi
)


.

Then, n = k + 1, and we get

CT − S FPG(Υ1, ...,Υk+1) = CT − S FPG(Υ1, ...,Υk) ⊗CT − S FPG(Υk+1)

=



(
k∏

i=1
κ
ρi
Υi
, 2π

(
k∏

i=1

(
ΩκΥi
2π

)ρi
))
, q

√
1 −

k∏
i=1

(
1 − ξq

Υi

)ρi
, 2π

(
1 −

k∏
i=1

(
1 −

Ω
q
ξΥi

2π

)ρi
) , q

√
1 −

k∏
i=1

(
1 − φq

Υi

)ρi
, 2π

(
1 −

k∏
i=1

(
1 −

Ω
q
φΥi
2π

)ρi
)



⊗



(
κ
ρk+1
Υk+1

, 2π
(

ΩκΥk+1
2π

)ρk+1
)
, q

√
1 −

(
1 − ξq

Υk+1

)ρk+1
, 2π

(
1 −

(
1 −

Ω
q
ξΥk+1
2π

)ρk+1
) , q

√
1 −

(
1 − φq

Υk+1

)ρk+1
, 2π

(
1 −

(
1 −

Ω
q
φΥk+1
2π

)ρk+1
)
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=



(
k+1∏
i=1
κ
ρi
Υi
, 2π

(
k+1∏
i=1

(
ΩκΥi
2π

)ρi
))
, q

√
1 −

k+1∏
i=1

(
1 − ξq

Υi

)ρi
, 2π

(
1 −

k+1∏
i=1

(
1 −

Ω
q
ξΥi

2π

)ρi
) , q

√
1 −

k+1∏
i=1

(
1 − φq

Υi

)ρi
, 2π

(
1 −

k+1∏
i=1

(
1 −

Ω
q
φΥi
2π

)ρi
)


.

Thus, Eq (4.17) is true for all positive natural numbers n.
For a family of CT-SFNs Υi(i = 1, ..., n) with weight vector ψ = (ψ1, ..., ψn)T , such that ψi > 0 and∑n

i=1 ψi = 1, the CT-SFPG operator satisfies certain properties, such as the following.
Property 1 (Idempotency). Let Υ0 be a CT-SFN, and if Υi = Υ0 for all i = 1, ..., n, then

CT − S FPG(Υ1, ...,Υn) = Υ0. (4.18)

Property 2 (Boundedness). Let Υi =
{(
κΥi ,ΩκΥi

)
,
(
ξΥi ,ΩξΥi

)
,
(
φΥi ,ΩφΥi

)}
(i = 1, ..., n) be the family of

CT-SFNs, and Υ− =

{
min

i

(
κΥi

)
,min

i

(
ΩκΥi

)
,min

i

(
ξΥi

)
,min

i

(
ΩξΥi

)
,max

i

(
φΥi

)
,max

i

(
ΩφΥi

)}
and

Υ+ =

{
max

i

(
κΥi

)
,max

i

(
ΩκΥi

)
,min

i

(
ξΥi

)
,min

i

(
ΩξΥi

)
,min

i

(
φΥi

)
,min

i

(
ΩφΥi

)}
. Then,

Υ− ≤ CT − S FPG(Υ1, ...,Υn) ≤ Υ+. (4.19)

Property 3 (Commutivity). Let Υi =
{(
κΥi ,ΩκΥi

)
,
(
ξΥi ,ΩξΥi

)
,
(
φΥi ,ΩφΥi

)}
(i = 1, ..., n) be family of

CT-SFNs. If
(
Υ∗1, ...,Υ

∗
n

)
are the permutation of (Υ1, ...,Υn) , then

CT − S FPG (Υ1, ...,Υn) = CT − S FPG
(
Υ∗1, ...,Υ

∗
n
)
. (4.20)

Property 4 (Monotonicity). Let Υi =
{(
κΥi ,ΩκΥi

)
,
(
ξΥi ,ΩξΥi

)
,
(
φΥi ,ΩφΥi

)}
and

Υ∗i =

{(
κ∗

Υi
,Ω∗κΥi

)
,
(
ξ∗

Υi
,Ω∗ξΥi

)
,
(
φ∗

Υi
,Ω∗φΥi

)}
(i = 1, ..., n) be the families of CT-SFNs, such that Υi ≤

Υ∗i . Then,
CT − S FPG (Υ1, ...,Υn) ≤ CT − S FPG

(
Υ∗1, ...,Υ

∗
n
)

(4.21)

4.5. Complex T-Spherical fuzzy weighted power geometric operator

In this section, we consider the distinct weighting factor of the CT-SFNs Υi(i = 1, ..., n) during the
aggregation process, as opposed to the above CT-SFPG operator, and suggest a new CT-SF weighted
power geometric (CT-SFWPG) aggregation operator.
Definition 4.5. For a family of CT-SFNs Υi(i = 1, ..., n), the CT-SFWPG operator is a function CT −
S FWPG : Ωn → Ω defined by;

CT − S FWPG (Υ1, ...,Υn) = Υ
φ1
1 ⊗ ... ⊗ Υφn

n , (4.22)

where φi =
ψi(1+T /(Υi))∑n
i=1(1+T /(Υi)) ,T

/ (Υi) =
n∑

s=1
s,i

ψs
(
Sup (Υi,Υs)

)
and ψ = (ψ1, ..., ψn)T are the weights of

CT-SFNs Υi, such that ψi > 0 and
∑n

i=1 ψi = 1.
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Theorem 4.5. Let a family of CT-SFNs Υi =
{(
κΥi ,ΩκΥi

)
,
(
ξΥi ,ΩξΥi

)
,
(
φΥi ,ΩφΥi

)}
(i = 1, ..., n), with the

respective weight vector ψ = (ψ1, ..., ψn)T , such that ψi > 0 and
∑n

i=1 ψi = 1. Then, the aggregated value
obtained by using the CT-SFWPG operator is again a CT-SFN, as follows.

CT − S FWPG (Υ1, ...,Υn) (4.23)

=



(
n∏

i=1
κ
φi
Υi
, 2π

(
n∏

i=1

(
ΩκΥi
2π

)φi
))
, q

√
1 −

n∏
i=1

(
1 − ξq

Υi

)φi
, 2π

1 − n∏
i=1

(
1 −

Ω
q
ξΥi

2π

)φi

 , q

√
1 −

n∏
i=1

(
1 − φq

Υi

)φi
, 2π

1 − n∏
i=1

(
1 −

Ω
q
φΥi
2π

)φi




.

Proof. The proof of the theorem is same as that of Theorem (4.4).
For a family of CT-SFNs Υi(i = 1, ..., n) with weight vector ψ = (ψ1, ..., ψn)T , such that ψi > 0 and∑n

i=1 ψi = 1, the CT-SFWPG operator also satisfies the same properties as the CT-SFPG operator such
as the following.
Property 1 (Idempotency). Let Υ0 be a CT-SFN, and if Υi = Υ0 for all i = 1, ..., n, then

CT − S FWPG(Υ1, ...,Υn) = Υ0. (4.24)

Property 2 (Boundedness). Let Υ− and Υ+ be the lower bound and upper bound of the CT-SFNs
Υi(i = 1, ..., n), respectively. Then, we have,

Υ− ≤ CT − S FWPG(Υ1, ...,Υn) ≤ Υ+. (4.25)

Property 3 (Commutivity). For a permutation (Υ∗1, ...,Υ
∗
n) of CT-SFNs (Υ1, ...,Υn) and their

corresponding permutation weights ψ∗ =
(
ψ∗1, ..., ψ

∗
n

)T
of ψ = (ψ1, ..., ψn)T , we have

CT − S FWPG (Υ1, ...,Υn) = CT − S FWPG
(
Υ∗1, ...,Υ

∗
n
)
. (4.26)

Property 4 (Monotonicity). Let Υi =
{(
κΥi ,ΩκΥi

)
,
(
ξΥi ,ΩξΥi

)
,
(
φΥi ,ΩφΥi

)}
and

Υ∗i =

{(
κ∗

Υi
,Ω∗κΥi

)
,
(
ξ∗

Υi
,Ω∗ξΥi

)
,
(
φ∗

Υi
,Ω∗φΥi

)}
(i = 1, ..., n) be the families of CT-SFNs, such that Υi ≤

Υ∗i . Then,
CT − S FWPG (Υ1, ...,Υn) ≤ CT − S FWPG

(
Υ∗1, ...,Υ

∗
n
)
. (4.27)

4.6. Complex T-Spherical fuzzy ordered weighted power geometric operator

The existing AO is expanded to an ordered weighted AO in this segment.
Definition 4.6. For a family of CT-SFNs Υi(i = 1, ..., n), a complex T-Spherical fuzzy ordered weighted
power geometric (CT-SFOWPG) operator is a mapping CT − S FOWPG : Ωn → Ω defined by

CT − S FOWPG (Υ1, ...,Υn) = Υ
ζ1
σ(1) ⊗ ... ⊗ Υ

ζn
σ(n), (4.28)
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where Ω represent the CT-SFNs, and σ(1), ..., σ(n) are the permutations of (1, ..., n) satisfying that
Υσ(i−1) ≥ Υσ(i) for i = 2, ..., n. Also, ζi is defined as

ζi = g
( Bi

TV

)
− g

(Bi−1

TV

)
, (4.29)

where Bi =
∑i

s=1 Vσ(s),Vσ(i) = 1 +
∑n

s=1
s,i

(Sup(Υi,Υs)),TV =
∑n

i=1 Vσ(i), and the mapping g : [0, 1]→

[0, 1] is a basic unit-interval monotonic function satisfying these three properties: g(0) = 0, g(1) = 1,
if x ≤ y then g(x) ≤ g(y).

Theorem 4.6. Let a family of CT-SFNs Υi =
{(
κΥi ,ΩκΥi

)
,
(
ξΥi ,ΩξΥi

)
,
(
φΥi ,ΩφΥi

)}
(i = 1, ..., n). Then,

the aggregated value calculated by using the CT-SFOWPG operator is also a CT-SFN and given as

CT − S FOWPG (Υ1, ...,Υn) (4.30)

=



(
n∏

i=1
κ
ζi
Υσ(i)

, 2π
(

n∏
i=1

(
ΩκΥσ(i)

2π

)ζi
))
, q

√
1 −

n∏
i=1

(
1 − ξq

Υσ(i)

)ζi
, 2π

1 − n∏
i=1

(
1 −

Ω
q
ξΥσ(i)

2π

)ζi

 , q

√
1 −

n∏
i=1

(
1 − φq

Υσ(i)

)ζi
, 2π

1 − n∏
i=1

(
1 −

Ω
q
φΥσ(i)

2π

)ζi




,

where ζi is defined as in Eq (4.29).

Also, the CT-SFOWPA operator meets the properties of idempotency, commutativity and
boundedness when applied to the set of CT-SFNs.

5. MCGDM approach using complex T-Spherical fuzzy power aggregation operators

Using the given operators and the CT-SFS information, an MCGDM algorithm is created in this
section. Suppose that a DM problem with the m alternatives ℘1, ..., ℘m, is evaluated with the n criteria
C1, ...,Cn. Let us have p experts E =

(
E1, ..., Ep

)
who evaluate the different alternatives with the

different criteria. Every expert evaluates every alternative with the CT-SF information and assigns its

rating values to CT-SFNs Υ
(k)
i j =

{(
κ(k)

Υi j
,Ω(k)

κΥi j

)
,
(
ξ(k)

Υi j
,Ω(k)

ξΥi j

)
,
(
φ(k)

Υi j
,Ω(k)

φΥi j

)}
,where k = 1, ..., p; i = 1, ...,m;

and j = 1, ..., n, 0 ≤ κ(k)
Υi j

+ ξ(k)
Υi j

+ φ(k)
Υi j
≤ 1 and 0 ≤ Ω

(k)
κΥi j

+ Ω
(k)
ξΥi j

+ Ω
(k)
φΥi j
≤ 1. Further, assume that the

weights of the criteria are ψ = (ψ1, ..., ψn)T , such that ψi > 0 and
∑n

i=1 ψi = 1. Then, to find the most
desirable alternatives, the defined operators are used to define an MCGDM approach under the CT-SF
information, and we have the below steps.

Step 1. Define a CT-SFNs matrix R(k) =
(
Υ

(k)
i j

)
m×n

with the values of every alternative assigned by
expert E(k)(k = 1, ..., p) as follows.
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R(k) =



C1 C2 . . . Cn

℘1 Υ
(k)
11 Υ

(k)
12 . . . Υ

(k)
1n

℘2 Υ
(k)
21 Υ

(k)
22 Υ

(k)
2n

. . . .

. . . .

. . . .

℘m Υ
(k)
m1 Υ

(k)
m2 . . . Υ

(k)
mn


Step 2a. Aggregate the expert’s rating values R(k)(k = 1, ..., p) into the total collective CT-SF

decision matrix R =
(
Ξi j

)
where Ξi j =

{(
κΥi j ,ΩκΥi j

)
,
(
ξΥi j ,ΩξΥi j

)
,
(
φΥi j ,ΩφΥi j

)}
by using the CT-SFOWPA

operator as follows.

Ξi j = CT − S FOWPA
(
Υ

(1)
i j , ...,Υ

(p)
i j

)

=




q

√√√√√√√√
1 −

p∏
k=1

(
1 −

(
κ

q
Υi j

)(σ(k))
)ζ(k)

i j
, 2π

1 −
p∏

k=1

1 −
(
Ω

q
κΥi j

)(σ(k))

2π


ζ(k)

i j

 , n∏

k=1

(
ξ(σ(k))

Υi j

)ζ(k)
i j , 2π

 p∏
k=1

Ω
(σ(k))
ξΥi j

2π

ζ
(k)
i j


 , n∏

k=1

(
φ(σ(k))

Υi j

)ζ(k)
i j , 2π

 p∏
k=1

Ω
(σ(k))
φΥi j

2π

ζ
(k)
i j





Step 2b. Aggregate the expert’s rating values R(k)(k = 1, ..., p) into the total collective CT-

SF decision matrix R =
(
Ξi j

)
where Ξi j =

{(
κΥi j ,ΩκΥi j

)
,
(
ξΥi j ,ΩξΥi j

)
,
(
φΥi j ,ΩφΥi j

)}
by using the CT-

SFOWPG operator as follows:

Ξi j = Cq − ROFOWPG
(
Υ

(1)
i j , ...,Υ

(p)
i j

)

=



 p∏
k=1

(
κ(σ(k))

Υi j

)ζ(k)
i j , 2π

 p∏
k=1

(
Ω

(σ(k))
κΥi j

2π

)ζ(k)
i j


 ,

q

√√√√√√√√
1 −

p∏
k=1

(
1 −

(
ξ

q
Υi j

)(σ(k))
)ζ(k)

i j
, 2π

1 −
p∏

k=1

1 −
(
Ω

q
ξΥi j

)(σ(k))

2π


ζ(k)

i j

 ,

q

√√√√√√√√
1 −

p∏
k=1

(
1 −

(
φ

q
Υi j

)(σ(k))
)ζ(k)

i j
, 2π

1 −
p∏

k=1

1 −
(
Ω

q
φΥi j

)(σ(k))

2π


ζ(k)

i j




where ζ(1)

i j , ..., ζ
(p)
i j are the weights obtained by using Eq (4.14), and σ is the permutation mapping

from (1, ..., p) to (1, ..., p) .
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Step 3a. Aggregate the collected values R =
(
Ξi j

)
of alternatives ℘i(i = 1, ...,m) into the total

assessment value Ξi =
{(
κΥi ,ΩκΥi

)
,
(
ξΥi ,ΩξΥi

)
,
(
φΥi ,ΩφΥi

)}
using the power averaging operator as

defined in Eq (4.2) .

For example, if we aggregate every value of the alternative using the CT-SFWPA, we will obtain
the evaluation value of the alternative Ξi(i = 1, ...,m) as:

Ξi = CT − S FWPA (Ξi1, ...,Ξin)

=


 q

√
1 −

n∏
j=1

(
1 − κq

Υi j

)ρ j
, 2π

(
1 −

n∏
j=1

(
1 −

Ω
q
κΥi j

2π

)ρ j
) ,(

n∏
i=1
ξ
ρi
Υi j
, 2π

(
n∏

i=1

(
ΩξΥi j

2π

)ρi
))
,

(
n∏

i=1
φ
ρi
Υi j
, 2π

(
n∏

i=1

(
ΩφΥi j

2π

)ρi
))


Step 3b. Aggregate the collected values R =

(
Ξi j

)
of alternatives ℘i(i = 1, ...,m) into the total

assessment value Ξi =
{(
κΥi ,ΩκΥi

)
,
(
ξΥi ,ΩξΥi

)
,
(
φΥi ,ΩφΥi

)}
using the power geometric operator as

defined in Eq (4.8) .

For example, if we aggregate every value of the alternative using the CT-SFWPA, we will obtain
the evaluation value of the alternative Ξi(i = 1, ...,m) as;

Ξi = CT − S FWPG (Ξi1, ...,Ξin)

=



(
n∏

i=1
κ
ρi
Υi
, 2π

(
n∏

i=1

(
ΩκΥi
2π

)ρi
))
, q

√
1 −

n∏
i=1

(
1 − ξq

Υi

)ρi
, 2π

(
1 −

n∏
i=1

(
1 −

Ω
q
ξΥi

2π

)ρi
) , q

√
1 −

n∏
i=1

(
1 − φq

Υi

)ρi
, 2π

(
1 −

n∏
i=1

(
1 −

Ω
q
φΥi
2π

)ρi
)


Step 4. Find the score value from the total aggregated values of

Ξi =
{(
κΥi ,ΩκΥi

)
,
(
ξΥi ,ΩξΥi

)
,
(
φΥi ,ΩφΥi

)}
(i = 1, ...,m) by using the following equation:

S c∗ (Υ) =
1
2

∣∣∣∣(κq
Υ
− ξ

q
Υ
− φ

q
Υ

)
+

(
Ωq
κΥ
−Ω

q
ξΥ
−Ω

q
φΥ

)∣∣∣∣ .
Step 5. Allow ranking of the alternatives ℘i(i = 1, ...,m) and select the appropriate one (s).

In Figure 1, we show the proposed algorithm steps.
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Figure 1. Flow chart of the proposed algorithm.

6. Illustrative example

Emergency management is a term that refers to dealing with the possibility of major incidents
and disasters, as well as involving government and other public bodies in the emergency response,
prevention, disposal and recovery process, as well as developing an effective response plan to take
a variety of necessary steps. The use of research, technology, planning, and management implies
assuring the security of public safety, health, and property-related emergency operations, as well as
facilitating society’s harmonious and long-term growth. Natural disasters have been causing enormous
injury and damage to human life and the global economy in recent years. The Emergency Management
Center (EMC) will construct a range of emergency choices based on the types of incidents and ask
specialists from other disciplines to assess alternative emergency plans in order to effectively limit the
damages sustained by significant incidents and catastrophes. Alternative emergency assessment is a
critical component of emergency management. The traditional DM problem is in the core, and it has
attracted a lot of attention from a lot of people. As a result, we will apply the defined technique to
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the stated problem, to determine the best emergency solution for the EMC. Four better alternatives
would be investigated further after a series of screenings. There are five alternatives set as follows;℘ =

{℘1, ..., ℘5}. Expert discussions take into account the following four requirements for proper modeling
of the characteristics of alternatives: (C1) preparation ability, (C2) rescuing ability, C3 Restoration
ability, (C4) Reaction capacity. ψ = (0.20, 0.25, 0.25, 0.30)T are the weights of the criteria, such that∑4

i=1 Θi = 1. The information given by experts E1, E2 and E3 is shown in Tables 1–3 with the weight
vector $ = (0.3, 0.4, 0.3).

Step 1. The CT-SFN information is used by the three experts to evaluate options, and their
individual rating values are provided in Tables 1–3 in the decision matrix.

Table 1. CT-SF information given by expert E1.

C1

℘1 (〈0.4, 2π(0.3)〉 , 〈0.2, 2π(0.3)〉 , 〈0.5, 2π(0.6)〉)
℘2 (〈0.3, 2π(0.2)〉 , 〈0.5, 2π(0.4)〉 , 〈0.4, 2π(0.3)〉)
℘3 (〈0.6, 2π(0.4)〉 , 〈0.3, 2π(0.2)〉 , 〈0.2, 2π(0.5)〉)
℘4 (〈0.2, 2π(0.2)〉 , 〈0.4, 2π(0.3)〉 , 〈0.8, 2π(0.7)〉)
℘5 (〈0.1, 2π(0.4)〉 , 〈0.5, 2π(0.5)〉 , 〈0.7, 2π(0.3)〉)

C2

(〈0.3, 2π(0.1)〉 , 〈0.4, 2π(0.4)〉 , 〈0.2, 2π(0.3)〉)
(〈0.2, 2π(0.5)〉 , 〈0.1, 2π(0.2)〉 , 〈0.7, 2π(0.4)〉)
(〈0.4, 2π(0.3)〉 , 〈0.3, 2π(0.6)〉 , 〈0.8, 2π(0.5)〉)
(〈0.1, 2π(0.2)〉 , 〈0.2, 2π(0.8)〉 , 〈0.9, 2π(0.1)〉)
(〈0.5, 2π(0.3)〉 , 〈0.5, 2π(0.3)〉 , 〈0.3, 2π(0.6)〉)

C3

(〈0.2, 2π(0.2)〉 , 〈0.5, 2π(0.4)〉 , 〈0.3, 2π(0.6)〉)
(〈0.4, 2π(0.5)〉 , 〈0.3, 2π(0.7)〉 , 〈0.7, 2π(0.3)〉)
(〈0.3, 2π(0.2)〉 , 〈0.8, 2π(0.3)〉 , 〈0.5, 2π(0.9)〉)
(〈0.5, 2π(0.4)〉 , 〈0.6, 2π(0.5)〉 , 〈0.2, 2π(0.4)〉)
(〈0.1, 2π(0.3)〉 , 〈0.2, 2π(0.2)〉 , 〈0.9, 2π(0.7)〉)

C4

(〈0.2, 2π(0.3)〉 , 〈0.4, 2π(0.6)〉 , 〈0.5, 2π(0.4)〉)
(〈0.4, 2π(0.2)〉 , 〈0.8, 2π(0.3)〉 , 〈0.2, 2π(0.8)〉)
(〈0.5, 2π(0.1)〉 , 〈0.3, 2π(0.4)〉 , 〈0.7, 2π(0.6)〉)
(〈0.1, 2π(0.4)〉 , 〈0.4, 2π(0.1)〉 , 〈0.5, 2π(0.9)〉)
(〈0.2, 2π(0.3)〉 , 〈0.6, 2π(0.5)〉 , 〈0.4, 2π(0.3)〉)
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Table 2. CT-SF information given by expert E2.

C1

℘1 (〈0.2, 2π(0.3)〉 , 〈0.3, 2π(0.2)〉 , 〈0.5, 2π(0.4)〉)
℘2 (〈0.6, 2π(0.4)〉 , 〈0.4, 2π(0.3)〉 , 〈0.4, 2π(0.7)〉)
℘3 (〈0.1, 2π(0.2)〉 , 〈0.2, 2π(0.4)〉 , 〈0.9, 2π(0.8)〉)
℘4 (〈0.5, 2π(0.3)〉 , 〈0.4, 2π(0.5)〉 , 〈0.3, 2π(0.6)〉)
℘5 (〈0.3, 2π(0.1)〉 , 〈0.7, 2π(0.3)〉 , 〈0.4, 2π(0.2)〉)

C2

(〈0.7, 2π(0.2)〉 , 〈0.5, 2π(0.6)〉 , 〈0.4, 2π(0.5)〉)
(〈0.3, 2π(0.4)〉 , 〈0.4, 2π(0.8)〉 , 〈0.6, 2π(0.2)〉)
(〈0.5, 2π(0.3)〉 , 〈0.3, 2π(0.4)〉 , 〈0.5, 2π(0.7)〉)
(〈0.2, 2π(0.4)〉 , 〈0.7, 2π(0.2)〉 , 〈0.3, 2π(0.9)〉)
(〈0.4, 2π(0.8)〉 , 〈0.6, 2π(0.5)〉 , 〈0.4, 2π(0.2)〉)

C3

(〈0.2, 2π(0.2)〉 , 〈0.5, 2π(0.4)〉 , 〈0.4, 2π(0.6)〉)
(〈0.4, 2π(0.5)〉 , (0.3, 2π(0.8)) , (0.7, 2π(0.2)))
(〈0.3, 2π(0.1)〉 , 〈0.6, 2π(0.6)〉 , 〈0.3, 2π(0.5)〉)
(〈0.4, 2π(0.8)〉 , 〈0.9, 2π(0.4)〉 , 〈0.5, 2π(0.3)〉)
(〈0.2, 2π(0.1)〉 , 〈0.7, 2π(0.2)〉 , 〈0.3, 2π(0.9)〉)

C4

(〈0.7, 2π(0.3)〉 , 〈0.3, 2π(0.4)〉 , 〈0.4, 2π(0.8)〉)
(〈0.3, 2π(0.4)〉 , 〈0.5, 2π(0.9)〉 , 〈0.6, 2π(0.2)〉)
(〈0.6, 2π(0.5)〉 , 〈0.4, 2π(0.5)〉 , 〈0.5, 2π(0.3)〉)
(〈0.5, 2π(0.3)〉 , 〈0.9, 2π(0.4)〉 , 〈0.3, 2π(0.8)〉)
(〈0.2, 2π(0.6)〉 , 〈0.1, 2π(0.3)〉 , 〈0.9, 2π(0.5)〉)

Table 3. CT-SF information given by expert E3.

C1

℘1 (〈0.2, 2π(0.6)〉 , 〈0.5, 2π(0.3)〉 , 〈0.3, 2π(0.4)〉)
℘2 (〈0.5, 2π(0.2)〉 , 〈0.1, 2π(0.4)〉 , 〈0.7, 2π(0.5)〉)
℘3 (〈0.8, 2π(0.3)〉 , 〈0.3, 2π(0.6)〉 , 〈0.4, 2π(0.8)〉)
℘4 (〈0.3, 2π(0.5)〉 , 〈0.4, 2π(0.9)〉 , 〈0.6, 2π(0.2)〉)
℘5 (〈0.6, 2π(0.4)〉 , 〈0.6, 2π(0.2)〉 , 〈0.5, 2π(0.7)〉)

C2

(〈0.5, 2π(0.7)〉 , 〈0.6, 2π(0.4)〉 , 〈0.3, 2π(0.2)〉)
(〈0.4, 2π(0.2)〉 , 〈0.7, 2π(0.5)〉 , 〈0.5, 2π(0.6)〉)
(〈0.6, 2π(0.5)〉 , 〈0.3, 2π(0.8)〉 , 〈0.4, 2π(0.5)〉)
(〈0.3, 2π(0.4)〉 , 〈0.8, 2π(0.6)〉 , 〈0.6, 2π(0.4)〉)
(〈0.7, 2π(0.8)〉 , 〈0.4, 2π(0.3)〉 , 〈0.8, 2π(0.3)〉)
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C3

(〈0.7, 2π(0.5)〉 , 〈0.4, 2π(0.6)〉 , 〈0.3, 2π(0.4)〉)
(〈0.5, 2π(0.8)〉 , 〈0.6, 2π(0.4)〉 , 〈0.7, 2π(0.2)〉)
(〈0.6, 2π(0.4)〉 , 〈0.5, 2π(0.7)〉 , 〈0.4, 2π(0.5)〉)
(〈0.8, 2π(0.6)〉 , 〈0.2, 2π(0.5)〉 , 〈0.6, 2π(0.7)〉)
(〈0.4, 2π(0.7)〉 , 〈0.3, 2π(0.4)〉 , 〈0.8, 2π(0.4)〉)

C4

(〈0.5, 2π(0.7)〉 , 〈0.7, 2π(0.4)〉 , 〈0.5, 2π(0.4)〉)
(〈0.8, 2π(0.5)〉 , 〈0.4, 2π(0.6)〉 , 〈0.6, 2π(0.5)〉)
(〈0.6, 2π(0.8)〉 , 〈0.5, 2π(0.5)〉 , 〈0.3, 2π(0.2)〉)
(〈0.4, 2π(0.2)〉 , 〈0.8, 2π(0.7)〉 , 〈0.6, 2π(0.6)〉)
(〈0.3, 2π(0.3)〉 , 〈0.9, 2π(0.8)〉 , 〈0.7, 2π(0.8)〉)

Step 2a. Different assessments of the experts Υ
(k)
i j (k = 1, 2, 3) are aggregated into a collective one

Ξi j(i = 1, ..., 5; j = 1, ..., 4), taking the function g(x) = x2 and using the CT-SFOWPA operator. The
obtained values are given in Table 4.

Table 4. Aggregated values obtained by using the CT-SFOWA operator.
C1

℘1 (〈0.432, 2π(0.123)〉 , 〈0.193, 2π(0.345)〉 , 〈0.274, 2π(0.213)〉)
℘2 (〈0.352, 2π(0.254)〉 , 〈0.327, 2π(0.351)〉 , 〈0.183, 2π(0.301)〉)
℘3 (〈0.142, 2π(0.242)〉 , 〈0.275, 2π(0.221)〉 , 〈0.272, 2π(0.121)〉)
℘4 (〈0.334, 2π(0.331)〉 , (0.342, 2π(0.141)) , (0.319, 2π(0.232)))
℘5 (〈0.422, 2π(0.224)〉 , 〈0.164, 2π(0.232)〉 , 〈0.280, 2π(0.326)〉)

C2

(〈0.381, 2π(0.326)〉 , 〈0.218, 2π(0.127)〉 , 〈0.281, 2π (0.190)〉)
(〈0.255, 2π(0.127)〉 , 〈0.119, 2π(0.342)〉 , 〈0.188, 2π (0.208)〉)
(〈0.142, 2π(0.469)〉 , 〈0.234, 2π(0.121)〉 , 〈0.162, 2π (0.165)〉)
(〈0.361, 2π(0.253)〉 , 〈0.311, 2π(0.322)〉 , 〈0.231, 2π (0.311)〉)
(〈0.531, 2π(0.326)〉 , 〈0.135, 2π(0.231)〉 , 〈0.314, 2π (0.253)〉)

C3

(〈0.241, 2π(0.114)〉 , 〈0.236, 2π(0.112)〉 , 〈0.302, 2π (0.291)〉)
(〈0.376, 2π(0.231)〉 , 〈0.212, 2π(0.228)〉 , 〈0.233, 2π (0.196)〉)
(〈0.457, 2π(0.262)〉 , 〈0.327, 2π(0.241)〉 , 〈0.200, 2π (0.175)〉)
(〈0.332, 2π(0.132)〉 , 〈0.219, 2π(0.133)〉 , 〈0.173, 2π (0.285)〉)
(〈0.128, 2π(0.313)〉 , 〈0.321, 2π(0.236)〉 , 〈0.362, 2π (0.321)〉)

C4

(〈0.242, 2π(0.168)〉 , 〈0.231, 2π(0.211)〉 , 〈0.143, 2π (0.112)〉)
(〈0.364, 2π(0.326)〉 , 〈0.212, 2π(0.123)〉 , 〈0.231, 2π (0.153)〉)
(〈0.351, 2π(0.235)〉 , 〈0.214, 2π(0.342)〉 , 〈0.184, 2π (0.207)〉)
(〈0.131, 2π(0.127)〉 , 〈0.281, 2π(0.232)〉 , 〈0.166, 2π (0.166)〉)
(〈0.123, 2π(0.272)〉 , 〈0.326, 2π(0.131)〉 , 〈0.340, 2π (0.214)〉)
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Step 2b. We use the CT-SFOWPA operator to aggregate the different assessments of the experts
Υ

(k)
i j (k = 1, 2, 3), into a collective one Ξi j(i = 1, ..., 5; j = 1, ..., 4), taking g(x) = x2. The values obtained

using this operator are described in Table 5.

Table 5. Aggregated values obtained by using the CT-SFOWPG operator.
C1

℘1 (〈0.125, 2π(0.231)〉 , 〈0.244, 2π(0.124)〉 , 〈0.276, 2π (0.291)〉)
℘2 (〈0.342, 2π(0.132)〉 , 〈0.221, 2π(0.347)〉 , 〈0.201, 2π (0.182)〉)
℘3 (〈0.250, 2π(0.237)〉 , 〈0.313, 2π(0.221)〉 , 〈0.193, 2π (0.102)〉)
℘4 (〈0.213, 2π(0.321)〉 , 〈0.131, 2π(0.353)〉 , 〈0.201, 2π (0.198)〉)
℘5 (〈0.123, 2π(0.212)〉 , 〈0.243, 2π(0.132)〉 , 〈0.223, 2π (0.271)〉)

C2

(〈0.213, 2π(0.215)〉 , 〈0.139, 2π(0.144)〉 , 〈0.321, 2π (0.221)〉)
(〈0.142, 2π(0.336)〉 , 〈0.326, 2π(0.242)〉 , 〈0.281, 2π (0.183)〉)
(〈0.325, 2π(0.223)〉 , 〈0.433, 2π(0.136)〉 , 〈0.163, 2π (0.172)〉)
(〈0.238, 2π(0.232)〉 , 〈0.189, 2π(0.336)〉 , 〈0.136, 2π (0.261)〉)
(〈0.137, 2π(0.121)〉 , 〈0.231, 2π(0.211)〉 , 〈0.275, 2π (0.147)〉)

C3

(〈0.212, 2π(0.231)〉 , 〈0.237, 2π(0.351)〉 , 〈0.231, 2π (0.286)〉)
(〈0.121, 2π(0.132)〉 , 〈0.362, 2π(0.191)〉 , 〈0.123, 2π (0.133)〉)
(〈0.238, 2π(0.313)〉 , 〈0.223, 2π(0.401)〉 , 〈0.248, 2π (0.192)〉)
(〈0.183, 2π(0.151)〉 , 〈0.313, 2π(0.232)〉 , 〈0.210, 2π (0.316)〉)
(〈0.332, 2π(0.172)〉 , 〈0.128, 2π(0.213)〉 , 〈0.321, 2π (0.242)〉)

C4

(〈0.192, 2π(0.221)〉 , 〈0.339, 2π(0.321)〉 , 〈0.243, 2π (0.184)〉)
(〈0.320, 2π(0.113)〉 , 〈0.242, 2π(0.252)〉 , 〈0.199, 2π (0.121)〉)
(〈0.222, 2π(0.434)〉 , 〈0.355, 2π(0.342)〉 , 〈0.326, 2π (0.398)〉)
(〈0.346, 2π(0.231)〉 , 〈0.127, 2π(0.221)〉 , 〈0.135, 2π (0.231)〉)
(〈0.138, 2π(0.215)〉 , 〈0.212, 2π(0.131)〉 , 〈0.272, 2π (0.216)〉)

Step 3a. Now, we use the CT-SFWPA operator to aggregate the different values Ξi j(i = 1, ..., 5; j =

1, ..., 4), obtained from Table 4, with the corresponding weights are ψ = (0.20, 0.25, 0.25, 0.30)T . The
total values of each alternative ℘i(i = 1, ..., 5) are,

℘1 = (〈0.385, 2π(0.298)〉 , 〈0.194, 2π(0.221)〉 , 〈0.242, 2π (0.183)〉) ,
℘2 = (〈0.331, 2π(0.390)〉 , 〈0.216, 2π(0.234)〉 , 〈0.164, 2π (0.276)〉) ,
℘3 = (〈0.289, 2π(0.326)〉 , 〈0.266, 2π(0.195)〉 , 〈0.351, 2π (0.123)〉) ,
℘4 = (〈0.312, 2π(0.240)〉 , 〈0.186, 2π(0.247)〉 , 〈0.232, 2π (0.285)〉) ,
℘5 = (〈0.273, 2π(0.318)〉 , 〈0.162, 2π(0.229)〉 , 〈0.187, 2π (0.101)〉) .

Step 3b. We use the CT-SFWPG operator to aggregate the different values Ξi j(i = 1, ..., 5; j =

1, ..., 4), obtained from Table 5, with the corresponding weights ψ = (0.20, 0.25, 0.25, 0.30)T . The total
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values of each alternative ℘i(i = 1, ..., 5) are,

℘1 = (〈0.136, 2π(0.125)〉 , 〈0.236, 2π(0.323)〉 , 〈0.143, 2π (0.198)〉) ,
℘2 = (〈0.237, 2π(0.214)〉 , 〈0.282, 2π(0.227)〉 , 〈0.265, 2π (0.209)〉) ,
℘3 = (〈0.122, 2π(0.193)〉 , 〈0.306, 2π(0.325)〉 , 〈0.287, 2π (0.162)〉) ,
℘4 = (〈0.329, 2π(0.202)〉 , 〈0.197, 2π(0.284)〉 , 〈0.321, 2π (0.318)〉) ,
℘5 = (〈0.219, 2π(0.267)〉 , 〈0.222, 2π(0.314)〉 , 〈0.259, 2π (0.190)〉) .

Step 4. The scores of the alternatives ℘i(i = 1, ..., 5) are computed on the basis of the overall
assessment values of Ξi(i = 1, ..., 5; j = 1, ..., 4) as follows:

S c∗(℘1) = 0.684, S c∗(℘2) = 0.528, S c∗(℘3) = 0.603, S c∗(℘4) = 0.429, S c∗(℘5) = 0.378.

Meanwhile, the scores of the alternatives ℘i(i = 1, ..., 5) are based on the aggregated values of
Step 3b.

S c∗(℘1) = 0.724, S c∗(℘2) = 0.542, S c∗(℘3) = 0.594, S c∗(℘4) = 0.496, S c∗(℘5) = 0.438.

Step 5. The ranking of all feasible alternatives ℘i(i = 1, ..., 5) is shown as follows.

℘1 > ℘3 > ℘2 > ℘4 > ℘5

Thus, the best alternative is ℘1, that is, ℘1 is the most optimal choice.
In Figure 2, we show graphically the ranking order of the alternatives.

Figure 2. The graph of the alternatives based on the score values.

Now, we take a transferred alternative Table 6, as shown as:
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Table 6. The transferred alternative’s rating values℘/5.

C1

E(1) (〈0.2, 2π(0.3)〉 , 〈0.5, 2π(0.6)〉 , 〈0.3, 2π (0.4)〉)
E(2) (〈0.3, 2π(0.5)〉 , 〈0.3, 2π(0.1)〉 , 〈0.7, 2π (0.8)〉)
E(3) (〈0.5, 2π(0.2)〉 , 〈0.8, 2π(0.3)〉 , 〈0.5, 2π (0.5)〉)

C2

(〈0.2, 2π(0.1)〉 , 〈0.6, 2π(0.2)〉 , 〈0.4, 2π (0.9)〉)
(〈0.3, 2π(0.4)〉 , 〈0.4, 2π(0.6)〉 , 〈0.6, 2π (0.5)〉)
(〈0.4, 2π(0.8)〉 , 〈0.5, 2π(0.4)〉 , 〈0.7, 2π (0.4)〉)

C3

(〈0.2, 2π(0.4)〉 , 〈0.6, 2π(0.3)〉 , 〈0.4, 2π (0.6)〉)
(〈0.4, 2π(0.6)〉 , 〈0.3, 2π(0.5)〉 , 〈0.8, 2π (0.4)〉)
(〈0.5, 2π(0.1)〉 , 〈0.4, 2π(0.2)〉 , 〈0.6, 2π (0.9)〉)

C4

(〈0.1, 2π(0.3)〉 , 〈0.6, 2π(0.5)〉 , 〈0.8, 2π (0.7)〉)
(〈0.6, 2π(0.4)〉 , 〈0.2, 2π(0.2)〉 , 〈0.7, 2π (0.9)〉)
(〈0.3, 2π(0.7)〉 , 〈0.5, 2π(0.4)〉 , 〈0.4, 2π (0.3)〉)

6.1. Validity test

When various MCGDM techniques are used to solve the same DM problem, they produce different
outcomes (rankings), which contributes to ambiguous results. In order to investigate the reliability and
validity of the MCGDM techniques, Wang & Triantaphyllou [50] offered the following test conditions.

Test criteria on 1. The MCGDM strategy is effective if the better option remains the same and
the nonoptimal alternative is converted to a worse alternative while the relative values of the decision
criteria remains constant.

Test criteria on 2. A successful MCGDM strategy should follow transitive properties.
Test criteria on 3. When dividing the MCGDM problem into sub-problems and applying the

proposed MCGDM approach to these sub-problems for ranking alternatives, the MCGDM approach is
effective. The ranking of the alternatives is identical to the ranking of the problem.

The above criteria are used to determine the correctness of the suggested solution.

6.2. Validity check with criteria on 1

In order to evaluate the validity of the developed method using criteria on 1, the non-optimal
alternative ℘5 is substituted by the worst alternative ℘/5 in the original decision matrix for each expert,
and the rating values are reported in Table 4.

We now compute the scores of the alternatives using the CT-SFOWPA operator in Step 2 and the
CT-SFWPA operator in Step 3 for these modified results, which are; S c∗(℘1) = 0.822, S c∗(℘2) = 0.641,
S c∗(℘3) = 0.683, S c∗(℘4) = 0.435, S c∗(℘5) = 0.263. As a result, the final ranking of the alternatives
indicates that ℘1 remains the best choice and that the method developed fulfills test criteria on 1.
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6.3. Validity check with criteria 2 and 3

We divided the original decision making problem into sub DM problems, which contained the
options (℘1, ℘2, ℘3, ℘4) , (℘2, ℘3, ℘4, ℘5) and (℘1, ℘3, ℘4, ℘5), in order to test the defined MCGDM
approach with criteria 2 and 3.When we apply the suggested MCGDM technique to these subproblems,
we get the ratings as ℘1 > ℘3 > ℘2 > ℘4, ℘3 > ℘2 > ℘4 > ℘5 and ℘1 > ℘3 > ℘4 > ℘5. We get the
final ranking order as ℘1 > ℘3 > ℘2 > ℘4 > ℘5 by introducing the ranking of alternatives to these
smaller problems. This is a non-decomposed problem that discloses a transitive property. As a result,
the defined MCGDM approach is consistent with criteria 2 and 3.

6.4. Comparative study

In order to demonstrate the benefits of the defined aggregation operators, we compare the proposed
approach to previous methods in this section. First the priorities considered by the experts are translated
into SFNs, taking the phase term relevant to the CT-SFN as zero. On the basis of this information, we
tested the current methods, as follows.

(1) If we apply the T-SFS aggregation operators, proposed by Garg et al. [12], on the stated problem,
then the alternatives ℘i(i = 1, ..., 5) score values are S c∗(℘1) = 0.672, S c∗(℘2) = 0.529, S c∗(℘3) =

0.632, S c∗(℘4) = 0.347, S c∗(℘5) = 0.274. Therefore, their corresponding ranking order is ℘1 >

℘3 > ℘2 > ℘4 > ℘5, which means that ℘1 is the appropriate option.

(2) If we apply the T-SFS aggregation operators, proposed by Liu et al. [27], on the stated problem,
then the alternatives ℘i(i = 1, ..., 5) score values are S c∗(℘1) = 0.794, S c∗(℘2) = 0.653, S c∗(℘3) =

0.812, S c∗(℘4) = 0.645, S c∗(℘5) = 0.573. Therefore, their corresponding ranking order is ℘3 >

℘1 > ℘2 > ℘4 > ℘5, which means that ℘3 is the appropriate option.

(3) If we apply T-SFS power Maclaurin symmetric mean operators, proposed by Munir et al. [31], on
the stated problem, then the alternatives ℘i(i = 1, ..., 5) score values are S c∗(℘1) = 0.434, S c∗(℘2) =

0.424, S c∗(℘3) = 0.326, S c∗(℘4) = 0.223, S c∗(℘5) = 0.238. Therefore, their corresponding ranking
order is ℘1 > ℘2 > ℘3 > ℘5 > ℘4, which means that ℘1 is the appropriate option.

(4) If we apply T-SFS operators, proposed by Ullah et al. [49], on the stated problem, then the
alternatives ℘i(i = 1, ..., 5) score values are S c∗(℘1) = 0.742, S c∗(℘2) = 0.463, S c∗(℘3) = 0.572,
S c∗(℘4) = 0.651, S c∗(℘5) = 0.552. Therefore, their corresponding ranking order is ℘1 > ℘4 >

℘3 > ℘5 > ℘2, which means that ℘1 is the appropriate option.

(5) If we apply CT-SFS aggregation operators, proposed by Ali et al. [2], on the stated problem, then
the alternatives ℘i(i = 1, ..., 5) score values are S c∗(℘1) = 0.532, S c∗(℘2) = 0.413, S c∗(℘3) = 0.628,
S c∗(℘4) = 0.611, S c∗(℘5) = 0.537. Therefore, their corresponding ranking order is ℘3 > ℘4 > ℘5 >

℘1 > ℘2, which means that ℘3 is the appropriate option.

(6) If we apply CT-SF Dombi aggregation operators, proposed by Karaaslan and Dawood [22], on the
stated problem, then the alternatives ℘i(i = 1, ..., 5) score values are S c∗(℘1) = 0.574, S c∗(℘2) =

0.462, S c∗(℘3) = 0.382, S c∗(℘4) = 0.283, S c∗(℘5) = 0.299. Therefore, their corresponding ranking
order is ℘1 > ℘2 > ℘3 > ℘5 > ℘4, which means that ℘1 is the appropriate option.
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(7) If we apply CT-SF 2-tuple linguistic Muirhead mean AOs, proposed by Liu et al. [29], on the stated
problem, then the alternatives ℘i(i = 1, ..., 5) score values are S c∗(℘1) = 0.630, S c∗(℘2) = 0.625,
S c∗(℘3) = 0.651, S c∗(℘4) = 0.563, S c∗(℘5) = 0.517. Therefore, their corresponding ranking order
is ℘3 > ℘1 > ℘2 > ℘4 > ℘5, which means that ℘3 is the appropriate option.

In Figure 3, we show graphically the ranking of alternatives using different approaches.

Figure 3. The graph of the alternative using existing methods.

Figure 3 shows the ranking order of alternatives. The example of the operators studied in this paper
shows that the best alternative is ℘1 whereas the best alternatives are ℘1 and ℘3 when we apply the
existing operators. It’s worth noting that the existing operators can only work with one dimension at a
time. As a result, the operators provided here are more generic, as they may capture two dimensions and
convey more full data. Hence, the CT-SFS model is an extension of current theories that simultaneously
deal with imprecision and periodicity.

7. Conclusions

The CT-SFS theory combines the features of both the CFS and T-SFS theories. CT-SFSs have three
degrees (MD, NuMD and NMD) in polar coordinates, in such a way that the range of the degrees is
extended from [0, 1] to the unit disk in a complex plane. The concept that prioritized AOs for CT-SFNs
would enable us to tackle a new class of decision-making problems motivated us to write this research
paper.

The purpose of this article is to provide information in the form of CT-SFSs and using PA operators
involved in the DM process. First, we’ve established some fundamental operational laws as well as
a new score function for ranking the CT-SFNs. We offer a variety of power averaging and geometric
AOs, such as CT-SFPA, CT-SFWPA, CT-SFOWPA, CT-SFPG, CT-SFWPG and CT-SFOWPG; and
we investigate the basic properties of these operators, keeping these points in mind with the CT-
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SFS details. We have provided the mathematical description of the MCGDM problem, and then an
algorithm we initiated for the MCGDM problem. To demonstrate the validity of the approach, a
practical example we used to describe the stated method, and the results we compared to some of
the other current methods. A validity test was also used to assess the effectiveness and validity of
our proposed technique. Using the proposed operators, we conducted a comparison with existing
operators in the literature to demonstrate the superiority of the proposed operators. It should also be
mentioned that under the CT-SFSs information, existing operators can be considered a special case of
the developed method.

Other aggregation operators such as Hamacher, Bonferroni mean, similarity measures, Dombi,
Maclaurin’s symmetric mean, Banzhaf-Choquet copula, Heronian mean and fractional orthotriple
fuzzy operators will be studied in the future for this structure.
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