
http://www.aimspress.com/journal/Math

AIMS Mathematics, 7(9): 16112–16146.
DOI: 10.3934/math.2022882
Received: 17 March 2022
Revised: 26 April 2022
Accepted: 14 May 2022
Published: 01 July 2022

Research article

An active-set with barrier method and trust-region mechanism to solve a
nonlinear Bilevel programming problem

B. El-Sobky1,∗, G. Ashry1 and Y. Abo-Elnaga2

1 Department of Mathematics and Computer Science, Alexandria University, Faculty of Science,
Egypt

2 Department of basic science, Tenth of Ramadan City, Higher Technological Institute, Egypt

* Correspondence: Email: bothinaelsobky@yahoo.com.

Abstract: Nonlinear Bilevel programming (NBLP) problem is a hard problem and very difficult to be
resolved by using the classical method. In this paper, Karush-Kuhn-Tucker (KKT) condition is used
with Fischer-Burmeister function to convert NBLP problem to an equivalent smooth single objective
nonlinear programming (SONP) problem. An active-set strategy is used with Barrier method and trust-
region technique to solve the smooth SONP problem effectively and guarantee a convergence to optimal
solution from any starting point. A global convergence theory for the active-set barrier trust-region
(ACBTR) algorithm is studied under five standard assumptions. An applications to mathematical
programs are introduced to clarify the effectiveness of ACBTR algorithm. The results show that
ACBTR algorithm is stable and capable of generating approximal optimal solution to the NBLP
problem.

Keywords: nonlinear Bilevel programming problem; active-set; barrier method; trust-region
mechanism; projected Hessian mechanism; global convergence
Mathematics Subject Classification: 49N10, 49N35, 65K05, 93D22, 93D52

1. Introduction

The NBLP problem is a nonlinear optimization problem that is constrained by another nonlinear
optimization problem. This mathematical programming model arises when two independent decision
makers, ordered within a hierarchical structure, have conflicting objectives. The decision maker at the
lower level has to optimize her objective under the given parameters from the upper level decision
maker, who, in return, with complete information on the possible reactions of the lower, selects the
parameters so as to optimize her own objective. The decision maker with the upper level objective,
fu(t, v) takes the lead, and chooses her decision vector t. The decision maker with lower level objective,

http://www.aimspress.com/journal/Math
http://dx.doi.org/ 10.3934/math.2022882

16113

fl(t, v), reacts accordingly by choosing her decision vector v to optimize her objective, parameterized in
t. Note that the upper level decision maker is limited to influencing, rather than controlling, the lower
level’s outcome. In fact, the problem has been proved to be NP-hard [5]. However, the NBLP problem
is used so extensively in transaction network, finance budget, resource allocation, price control etc.
Various approaches have been devoted to study this field, which leads to a a speedy development in
theories and algorithms, see [1,3,30,32,41]. For detailed exposition, the reader can review [23,25,35].

A mathematical formulation for the NBLP problem is

min fu(t, v)
s.t. gu(t, v) ≤ 0,

min fl(t, v),
s.t. gl(t, v) ≤ 0,

t ≥ 0, v ≥ 0,

(1.1)

where t ∈ <n1 and v ∈ <n2 .
Let n = n1 + n2, and assume that the functions fu : <n → <, fl : <n → <, gu : <n → <m1 , and

gl : <n →<m2 are at least twice continuously differentiable function in our method.
Several approaches have been proposed to solve the NBLP problem 1.1, see [2, 13, 14, 25, 27, 37,

40, 42]. KKT conditions one of these approaches and used in this paper to convert the original NBLP
problem 1.1 to the following one-level programming problem:

mint,v fu(t, v)
s.t. gu(t, v) ≤ 0,

∇v fl(t, v) + ∇vgl(t, v)λl = 0,
gl(t, v) ≤ 0,
(λl) jgl j(t, v) = 0, j = 1, ...,m2,

(λl) j ≥ 0, j = 1, ...,m2,

t ≥ 0 and v ≥ 0,

(1.2)

where λl ∈ <
m2 is a multiplier vector associated with inequality constraint gl(t, v). problem 1.2 is non-

convex and non-differentiable, moreover the regularity assumptions which are needed to successfully
handle smooth optimization problems are never satisfied and it is not good to use our approach to solve
problem 1.2. Dempe [13] presents smoothing method for the NBLP problem and the same method
is also presented in [28] for programming with complementary constraints. Following this smoothing
method we can propose our approach for the NBLP problem. Before presenting our approach for the
NBLP problem, we give some definitions firstly.

Definition 1.1. The Fischer-Burmeister function is Ψ(ã, b̃) : <2 → < defined by Ψ(ã, b̃) = ã + b̃ −√
ã2 + b̃2 and the perturbed Fischer-Burmeister function is Ψ(ã, b̃, ε̂) : <3 →< defined by Ψ(ã, b̃, ε) =

ã + b̃ −
√

ã2 + b̃2 + ε.

The Fischer-Burmeister function has the property that Ψ(ã, b̃) = 0 if and only if ã ≥ 0, b̃ ≥ 0, and
ãb̃ = 0. It is non-differentiable at ã = b̃ = 0. Its perturbed variant satisfies Ψ(ã, b̃, ε) = 0 if and only if
ã > 0, b̃ > 0, and ãb̃ = ε

2 for ε > 0. This function is smooth with respect to ã,b̃, for ε > 0. for more
details see [8–10, 28].

AIMS Mathematics Volume 7, Issue 9, 16112–16146.

16114

In this paper, to allow the proposed algorithm ACBTR solve the NBLP problem 1.1 and satisfy the
asymptotic stability conditions, we use the following changed perturbed Fischer-Burmeister function:

Ψ̃(ã, b̃, ε) =
√

ã2 + b̃2 + ε − ã − b̃. (1.3)

It is obvious that the changed perturbed Fischer-Burmeister function Ψ̃(ã, b̃, ε) has the same property
with the function Ψ(ã, b̃, ε). Using the Fischer-Burmeister function 1.3, problem 1.2 equivalents to the
following single objective constrained optimization problem

mint,v fu(t, v)
s.t. gu(t, v) ≤ 0,

∇v fl(t, v) + ∇vgl(t, v)µ = 0,√
g2

l j
+ (λl) j

2 + ε − (λl) j + gl j = 0, j = 1, ...,m2,

t ≥ 0 and v ≥ 0.

(1.4)

Let x = (t, v)T , m = n2 + m2 then the above problem can be written as SONP problem as follows

minimize fu(x)
sub ject to hl(x) = 0,

gu(x) ≤ 0,
x ≥ 0,

(1.5)

where fu : <n → <, hl : <n → <m, and gu : <n → <m1 are at least twice continuously differentiable
functions.

Various approaches have been proposed to solve the SONP problem 1.5, see [4, 7, 16–19, 24]. In
this paper, we use an active-set with barrier method to reduce SONP problem 1.5 to equivalent equality
constrained optimization problem. So, we can use one of methods which are used for solving equality
constrained optimization problem.

In this paper, we use a trust-region technique which is successful approach for solving SONP
problem and is very important to ensure global convergence from any starting point. The trust-region
strategy can induce strongly global convergence. It is more robust when it deals with rounding errors.
It does not require the Hessian of the objective function must be positive definite or the objective
function of the model must be convex. Also, some criteria are used to test the trial step is acceptable
or no. If it is not acceptable, then the subproblem must be resolved with a reduced the trust-region
radius. For the detailed expositions, the reader review [17, 20–24, 33, 36, 45–48].

A projected Hessian method which is suggested by [6, 38] and used by [19, 20, 22], utilizes in this
paper to treat the difficulty of having an infeasible trust-region subproblem. In this method, the trial
step is decomposed into two components and each component is computed by solving a trust-region
unconstrained subproblem.

Under standard five assumptions, a global convergence theory for ACBTR algorithm is introduced.
Moreover, numerical experiments display that ACBTR algorithm performers effectively and efficiently
in pursuance.

The balance of this paper is organized as follows. A detailed description for the proposed method
to solve SONP problem 1.5 is introduced in the next section. Section 3 is devoted to analysis of

AIMS Mathematics Volume 7, Issue 9, 16112–16146.

16115

the global convergence of ACBTR algorithm. In Section 4, we report preliminary numerical results.
Finally, some further remark is given in Section 5.

Notations: We use ‖.‖ to denote the Euclidean norm ‖.‖2. The i − th component of any vector such
as x is written as x(i). The jth trial iterate of iteration k is denoted by k j. Subscript k refers to iteration
indices. For example, fuk ≡ fu(xk), hlk ≡ hl(xk), guk ≡ gu(xk), Wk ≡ W(xk), ∇xLs

k ≡ ∇xLs(xk, λk;σk), and
so on to denote the function value at a particular point.

2. An active-set with barrier method and trust-region strategy

In this section, firstly, we will introduce the detailed description for the active-set strategy with
barrier method to reduce SONP problem 1.5 to equality constrained optimization problem. Secondly,
to solve the equality constrained optimization problem and guarantee convergence from any starting
point, we will introduce the detailed description for the trust-region algorithm. Finally, we will
introduce the main steps for the main algorithm ACBTR to solve NBLP problem 1.1.

2.1. An active-set strategy and barrier method

Motivated by the active-set strategy which is introduced by [12] and used by [17–21], we define a
0-1 diagonal matrix W(x) ∈ <m2×m2 whose diagonal entries are

wi(x) =

{
1, if gui(x) ≥ 0,
0, if gui(x) < 0,

(2.1)

where i = 1, ...,m2. By Using the diagonal matrix W(x) ∈ <m2×m2 , we can transform problem 1.5 to
the following equality constrained optimization problem with positive variables

minimizex fu(x)
sub ject to hl(x) = 0,

gu(x)T W(x)gu(x) = 0,
x ≥ 0.

Penalty methods usually more suitable on problems with equality constraints. These methods are
usually generate a sequence of points that converges to a solution of the problem from the exterior
of the feasible region. An advantage of penalty methods is that they do not request the iterates to be
strictly feasible. In this paper we use the penalty method to reduce the above problem to the following
equality constrained optimization problem with positive variables

minimizex fu(x) + σ
2 ‖W(x)gu(x)‖2

sub ject to hl(x) = 0,
x ≥ 0,

(2.2)

where σ is a positive parameter. Let F+(x) = {x|x > 0}.
Motivated by the barrier method which is discussed in [[7,26,43], problem 2.2, for any x ∈ F+ can

be written as follows

minimizex fu(x) − s
∑n

i=1 ln(x(i)) + σ
2 ‖W(x)gu(x)‖2

sub ject to hl(x) = 0,
(2.3)

AIMS Mathematics Volume 7, Issue 9, 16112–16146.

16116

for decreasing sequence of barrier parameters s converging to zero, see [26].
The Lagrangian function associated with problem 2.3 is

Ls(x, λ;σ) = fu(x) − s
n∑

i=1

ln(x(i)) + λT hl(x) +
σ

2
‖W(x)gu(x)‖2, (2.4)

where λ ∈ <m is a multiplier vector associated with the equality constraint hl(x) = 0.
The first-order necessary condition for the strictly positive point x∗ to be a local minimizer of

problem 2.3 is that there exists a Lagrange multiplier vector λ∗ ∈ <m, such that (x∗, λ∗) satisfies the
following nonlinear system

∇ fu(x∗) − sX∗−1e + ∇hl(x∗)λ∗ + σ∇gu(x∗)W(x∗)gu(x∗) = 0
hl(x∗) = 0,

where X is diagonal matrix whose diagonal entries are (x1, ..., xn) ∈ F+. Let sX∗−1e = y ∈ <n be an
auxiliary variable, then the above system can be written as follows

∇ fu(x∗) − y∗ + ∇hl(x∗)λ∗ + σ∇gu(x∗)W(x∗)gu(x∗) = 0, (2.5)
X∗y∗ − se = 0, (2.6)

hl(x∗) = 0, (2.7)

where x∗ ∈ F+. The conditions [2.5–2.7] are called the barrier KKT conditions. For more details
see [26].

Applying Newton’s method to the nonlinear system (2.5)–(2.7), we have
H + σ∇gu(x)W(x)∇gu(x)T ∇hl(x) −I

Y 0 X
∇hl(x)T 0 0




dx

dλ
dy

 = −


∇xLs(x, λ;σ)

Xy − se
hl(x)

 , (2.8)

where H is the Hessian matrix of the following function or an approximation to it

`s(x, λ) = fu(x) + λT hl(x) − s
n∑

i=1

ln(x(i)).

The matrix Y is a diagonal matrix whose diagonal entries are (y1, ..., yn) and ∇xLs(x, λ;σ) = ∇ fu(x) −
y + ∇hl(x)λ + σ∇gu(x)W(x)gu(x).

From the second equation of the system (2.8) we have

dy = −y + sX−1e − X−1Ydx. (2.9)

To decrease the dimension of system 2.8, we eliminate dy from the first equation of the system 2.8 by
using Eq 2.9 as follows

(H + σ∇gu(x)W(x)∇gu(x)T)dx + ∇hl(x)dλ − I(−y + sX−1e − X−1Ydx) = −∇xLs(x, λ;σ)

Using Eq 2.6, we have the following system(
B ∇hl(x)

∇hl(x)T 0

) (
dx

dλ

)
= −

(
∇xLs(x, λ;σ)

hl(x)

)
. (2.10)

AIMS Mathematics Volume 7, Issue 9, 16112–16146.

16117

where, B = H + X−1Y + σ∇gu(x)W(x)∇gu(x)T .
We notice that, the system 2.10 is equivalent to the first order necessary condition for the following

sequential quadratic programming problem

minimize Ls(x, λ;σ) + ∇xLs(x, λ;σ)T d + 1
2dT Bd

sub ject to hl(x) + ∇hl(x)T d = 0.
(2.11)

That is, the point (x∗, λ∗) that satisfies the KKT conditions for subproblem 2.11 will satisfy the KKT
conditions for problem 1.5. A methods which are used to solve subproblem 2.11 is a local methods.
That is, it may not converge to a stationary point if the starting point is far away from the solution. To
guarantee convergence from any starting point, we use the trust-region technique.

2.2. Trust-region strategy

By using trust-region technique to ensure convergence of subproblem 2.11 and estimate the step dk,
we solve the following subproblem

minimize ∇xLs
k

T d + 1
2dT Bkd

sub ject to hl(xk) + ∇hl(xk)T d = 0,
‖d‖ ≤ δk,

(2.12)

where 0 < δk represents the radius of the trust-region. The subproblem 2.12 may be infeasible because
there may be no intersecting points between hyperplane of the linearized constraints hl(x) + ∇hl(x)T d
and the constraint ‖d‖ ≤ δk. Even if they intersect, there is no guarantee that this will keep true if δk is
reduced, see [11]. So, a projected Hessian technique is used in our approach to overcome this problem.
This technique was suggested by [6, 38] and used by [19, 20, 22]. In this technique, the trial step dk is
decomposed into two orthogonal components: the normal component dn

k to improve feasibility and the
tangential component dt

k to improve optimality. Each of dn
k and dt

k is evaluated by solving unconstrained
trust-region subproblem.

• To compute the normal component dn

minimize ‖hlk + ∇hT
lk
dn‖2

sub ject to ‖dn‖ ≤ ζδk,
(2.13)

for some ζ ∈ (0, 1). To solve the subproblem 2.13, we use a conjugate gradient method which is
introduced by [39] and used by [23], see Algorithm 2.1 in [23]. It is very cheap if the problem is large-
scale and the Hessian is indefinite. By using the conjugate gradient method, the following condition is
hold

‖hlk‖
2 − ‖hlk + ∇hT

lkd
n
k‖

2 ≥ ϑ1{‖hlk‖
2 − ‖hlk + ∇hT

lkd
ncp
k ‖

2}, (2.14)

for some ϑ1 ∈ (0, 1]. That is, the normal predicted decrease obtained by the normal component dn
k is

greater than or equal to a fraction of the normal predicted decrease obtained by the normal Cauchy step
dncp

k . The normal Cauchy step dncp
k is defined as

dncp
k = −α

ncp
k ∇hlkhlk , (2.15)

AIMS Mathematics Volume 7, Issue 9, 16112–16146.

16118

where the parameter αncp
k is given by

α
ncp
k =



‖∇hlk hlk ‖
2

‖(∇hlk)T∇hlk hlk ‖
2 if

‖∇hlk hlk ‖
3

‖∇hT
lk
∇hlk hlk)‖2 ≤ δk

and ‖∇hT
lk
∇hlkhlk)‖ > 0,

δk
‖∇hlk hlk ‖

otherwise.

(2.16)

Once dn
k is estimated, we will compute dt

k = Zkd̄t
k. A matrix Zk is the matrix whose columns form a

basis for the null space of (∇hlk)
T .

• To compute the tangential component dt
k

To estimate the tangential component dt
k, let

q(d) = Ls(x, λ;σ) + ∇xLs(x, λ;σ)T d +
1
2

dT Bd. (2.17)

and using the conjugate gradient method [23] to solve the following trust-region subproblem

minimize [ZT
k ∇qk(dn

k)]T d̄t + 1
2 d̄tT ZT

k BkZkd̄t

sub ject to ‖Zkd̄t‖ ≤ ∆k,
(2.18)

where ∇qk(dn
k) = ∇xLs

k + Bkdn
k and ∆k =

√
δ2

k − ‖d
n
k‖

2.
Let a tangential predicted decrease which is obtained by the tangential component dt

k be

T predk(d̄t
k) = qk(dn

k) − qk(dn
k + Zkd̄t

k). (2.19)

Since the conjugate gradient method is used to solve subproblem (2.18) and estimate dt
k, then the

following condition holds
T predk(d̄t

k) ≥ ϑ2 T predk(d̄
tcp
k), (2.20)

for some ϑ2 ∈ (0, 1]. This condition clarified that the tangential predicted decrease which is obtained
by tangential step d̄t

k is greater than or equal to a fraction of the tangential predicted decrease obtained
by a tangential Cauchy step d̄tcp

k . The tangential Cauchy step d̄tcp
k is defined as follows

d̄tcp
k = −α

tcp
k ZT

k ∇qk(dn
k), (2.21)

where the parameter αtcp
k is given by

α
tcp
k =



‖ZT
k ∇qk(dn

k)‖2

(ZT
k ∇qk(dn

k))T B̄kZT
k ∇qk(dn

k) if ‖ZT
k ∇qk(dn

k)‖3

(ZT
k ∇qk(dn

k))T B̄kZT
k ∇qk(dn

k) ≤ ∆k

and (ZT
k ∇qk(dn

k))T B̄kZT
k ∇qk(dn

k) > 0,

∆k
‖ZT

k ∇qk(dn
k)‖ otherwise,

(2.22)

such that B̄k = ZT
k BkZk.

Once estimating dt
k, we set dk = dn

k + dt
k and xk+1 = xk + dk. To guarantee that xk+1 ∈ F+ at every

iteration k, we need to evaluate the damping parameter µk.

AIMS Mathematics Volume 7, Issue 9, 16112–16146.

16119

• To estimate the damping parameter µk

The damping parameter µk is defined as follows:

µk = min{min
i
{θ(i)

k }, 1}, (2.23)

where

θ(i)
k =


−x(i)

k

d(i)
k
, if d(i)

k < 0

1 otherwise.

To be decided whether the scale step µkdk will be accepted or no, we need to a merit function. The merit
function is the function which is tie the objective function fu(x) with the constraints hl(x) and gu(x) in
such a way that progress in the merit function means progress in solving problem. In the proposed
algorithm, we use the following an augmented Lagrange function as a merit function, see [31].

Φs(x, λ;σ; ρ) = `s(x, λ) +
σ

2
‖W(x)gu(x)‖2 + ρ‖hl(x)‖2, (2.24)

where ρ > 0 is a penalty parameter.
To be decided whether the point (xk + µkdk, λk+1) will be taken as a next iterate or no, we need to

define the actual reduction Aredk and the predicted reduction Predk in the merit function Φs(x, λ;σ; ρ).
In the proposed algorithm, Aredk is defined as follows

Aredk = Φs(xk, λk;σk; ρk) − Φs(xk + µkdk, λk+1;σk; ρk).

Also Aredk can be written as follows,

Aredk = `s(xk, λk) − `s(xk+1, λk) − ∆λT
k hlk+1 +

σk

2
[‖Wkgu(xk)‖2 − ‖Wk+1guk+1‖

2] + ρk[‖hlk‖
2 − ‖hlk+1‖

2],

(2.25)

where ∆λk = (λk+1 − λk).
In the proposed algorithm, Predk is defined as follows

Predk = −∇x`
s(xk, λk)Tµkdk −

1
2
µ2

kdT
k H̃kdk − ∆λT

k (hlk + ∇hT
lkµkdk)

+
σk

2
[‖Wkgu(xk)‖2 − ‖Wk(gu(xk) + ∇gu(xk)Tµkdk)‖2]

+ρk[‖hlk‖
2 − ‖hlk + ∇hT

lkµkdk‖
2]. (2.26)

where ∇xls(x, λ) = ∇ fu(x) − y + ∇hl(x)λ and H̃ = H + X−1Y .
Also, Predk can be written as follows

Predk = qk(0) − qk(µkdk) − ∆λT
k (hlk + ∇hT

lkµkdk) + ρk[‖hlk‖
2 − ‖hlk + ∇hT

lkµkdk‖
2]. (2.27)

where the quadratic form q(d) in 2.17 can be written as follows

q(d) = `s(x, λ) + ∇x`
s(x, λ)T d +

1
2

dT H̃d +
σ

2
[‖W(x)gu(x)‖2 − ‖W(x)(gu(x) + ∇gu(x)T d)‖2]. (2.28)

AIMS Mathematics Volume 7, Issue 9, 16112–16146.

16120

• To update ρk

To ensure that Predk ≥ 0, we update the penalty parameter ρk utilizing the following scheme.

Algorithm 2.1. If
Predk ≤

ρk

2
[‖hlk‖

2 − ‖hlk + ∇hT
lkµkdk‖

2], (2.29)

then, set

ρk =
2[qk(µkdk) − qk(0) + ∆λT

k (hlk + ∇hT
lk
µkdk)]

‖hlk‖
2 − ‖hlk + ∇hT

lk
µkdk‖

2
+ β0, (2.30)

where β0 > 0 is a small fixed constant.
Else, set

ρk+1 = max{ρk, σ
2
k}. (2.31)

End if.

For more details, see [15–19].

• To test the scaling step µkdk and update δk

The framework to test the scaling step µkdk and update δk is presented in the following algorithm.

Algorithm 2.2. Choose 0 < γ1 < γ2 < 1, 0 < α1 < 1 < α2, and δmin ≤ δ0 ≤ δmax.
While Aredk

Predk
∈ (0, γ1) or Predk ≤ 0.

Set δk = α1‖dk‖ and return to evaluate a new trial step and end while.
If Aredk

Predk
∈ [γ1, γ2). Set xk+1 = xk + µkdk and δk+1 = max(δk, δmin).

End if.
If Aredk

Predk
∈ [γ2, 1]. Set xk+1 = xk + µkdk and δk+1 = min{δmax,max{δmin, α2δk}} .

End if.

• To update the positive parameter σk

To update the positive parameter σk, we use the following scheme.

Algorithm 2.3. If

1
2

T predk(d̄t
k) ≥ ‖∇gu(xk)Wkgu(xk)‖min{‖∇gu(xk)Wkgu(xk)‖,∆k}. (2.32)

Set σk+1 = σk.
Else, set σk+1 = 2σk. End if.

For more details see [18, 23].
Finally, the algorithm is stopped when ‖ZT

k ∇x`
s
k‖ + ‖∇gu(xk)Wkgu(xk)‖ + ‖hlk‖ ≤ ε1 or ‖dk‖ ≤ ε2, for

some ε1, ε2 > 0.

• A trust-region algorithm

The framework of the trust-region algorithm to solve subproblem 2.12 are summarized as follows.

AIMS Mathematics Volume 7, Issue 9, 16112–16146.

16121

Algorithm 2.4. (Trust-region algorithm)
Step 0. Starting with x0 ∈ F+. Evaluate y0 and λ0. Set s0 = 0.1, ρ0 = 1, σ0 = 1, and β0 = 0.1.
Choose ε1, ε2, α1, α2, γ1, and γ2 such that 0 < ε1, 0 < ε2, 0 < α1 < 1 < α2, and 0 < γ1 < γ2 < 1.
Choose δmin, δmax, and δ0 such that δmin ≤ δ0 ≤ δmax. Set k = 0.
Step 1. If ‖ZT

k ∇x`
s
k‖ + ‖∇gu(xk)Wkgu(xk)‖ + ‖hlk‖ ≤ ε1, then stop.

Step 2. (How to compute dk)

a). Evaluate the normal component dn
k by solving subproblem (2.13).

b). Evaluate the tangential component d̄t
k by solving subproblem (2.18).

c). Set dk = dn
k + Zkd̄t

k.

Step 3. If ‖dk‖ ≤ ε2, then stop.
Step 4. (How to compute µk)

a). Compute the damping parameter µk using (2.23).
b). Set xk+1 = xk + µkdk.

Step 5. Compute the vector yk+1, by using the following equation

yk+1 = skXk
−1e − Xk

−1Ykµkdk. (2.33)

The above equation is obtained from (2.9).
Step 6. Compute Wk+1 given by (2.1).
Step 7. Evaluate λk+1 by solving the following subproblem

minimize ‖∇ fk+1 − yk+1 + ∇hlk+1λ + ρk∇guk+1Wk+1guk+1‖
2. (2.34)

Step 8. Using scheme 2.1 to update the penalty parameter ρk.
Step 9. Using Algorithm (2.2) to test the scaled step µkdk and update the radius δk.
Step 10. Update the positive parameter σk using scheme 2.3.
Step 11. To Update the barrier parameter sk, set sk+1 = sk

10 .
Step 12. Set k = k + 1 and go to Step 1.

In the following subsection we will clarify the main steps for solving NBLP problem 1.1.

2.3. An Active-set-barrier-trust-region algorithm

The framework to solve NBLP problem 1.1 are summarized in the following algorithm.

Algorithm 2.5. (An active-set-barrier-trust-region (ACBTR) algorithm)
Step 1. Using KKT optimality conditions for the lower level problem 1.1 to reduce problem 1.1 to
one-level problem 1.2.
Step 2. Using Fischer-Burmeister function 1.3 with ε = 0.001 to obtain the smooth problem 1.4 and
which is equivalent problem 1.5.
Step 3. Using An active set strategy with Barrier method to obtain subproblem 2.11.
Step 4. Using trust-region Algorithm 2.4 to solve subproblem 2.11 and obtained approximate solution
for problem 1.5.

In the following section we will introduce a global convergence analysis for ACBTR algorithm.

AIMS Mathematics Volume 7, Issue 9, 16112–16146.

16122

3. Global convergence analysis for ACBTR algorithm

let Ω be a convex subset of<n that contains all iterates xk ∈ F+ and (xk + µkdk) ∈ F+. To prove the
global convergence theory of ACBTR algorithm on Ω, we assume that the following assumptions are
hold.

• Assumptions

[A1]. The functions fu(x), hl(x), and gu(x) are twice continuously differentiable function for all
0 < x ∈ S .
[A2]. All of fu(x), ∇ fu(x), ∇2 fu(x), gu(x), ∇gu(x), hl(x), ∇hl(x), ∇2hli(x) for i = 1, ...,m, and
(∇hlk)[(∇hlk)

T (∇hlk)]
−1 are uniformly bounded in S .

[A3]. The columns of the matrix ∇hl(x) are linearly independent.
[A4]. The sequence {λk} is bounded.
[A5]. The sequence of matrices {H̃k} is bounded.

In the above assumptions, even though we assume that ∇hl(x) has full column rank for all xk ∈ F+,
we do not require ∇gu(x) has full column rank for all xk ∈ F+. So, we may have other kinds of
stationary points which are presented in the following definitions.

Definition 3.1. A point x∗ ∈ F+ is called a Fritz John (FJ) point if there exist γ∗, λ∗, and ν∗, not all
zeros, such that

τ∗∇ f (x∗) + ∇hl(x∗)λ∗ + ∇gu(x∗)ν∗ = 0, (3.1)
hl(x∗) = 0, (3.2)

W∗gu(x∗) = 0, (3.3)
(ν∗)i(gu(x∗))i = 0, i = 1, ...,m2, (3.4)

τ∗, (ν∗)i ≥ 0, i = 1, ...,m2. (3.5)

Equations (3.1)–(3.5) are called FJ conditions. More details see [4].
If τ∗ , 0, then the point (x∗, 1, λ∗τ∗ ,

ν∗
τ∗

) is called a KKT point and FJ conditions are called the KKT
conditions.

Definition 3.2. A point x∗ ∈ F+ is called an infeasible Fritz John (IFJ) point if there exist τ∗, λ∗, and
ν∗ such that

τ∗∇ fu(x∗) + ∇hl(x∗)λ∗ + ∇gu(x∗)ν∗ = 0, (3.6)
hl(x∗) = 0, (3.7)

∇gu(x∗)W∗gu(x∗) = 0 but ‖W∗gu(x∗)‖ > 0, (3.8)
(ν∗)i(gu(x∗))i ≥ 0, i = 1, ...,m2, (3.9)

τ∗, (ν∗)i ≥ 0, i = 1, ...,m2. (3.10)

Equations (3.6)–(3.10) are called IFJ conditions.
If τ∗ , 0, then the point (x∗, 1, λ∗τ∗ ,

ν∗
τ∗

) is called an infeasible KKT point and IFJ conditions are called
infeasible KKT conditions.

AIMS Mathematics Volume 7, Issue 9, 16112–16146.

16123

Lemma 3.1. Under assumptions A1–A5, a subsequence {xki} of the iteration sequence asymptotically
satisfies IFJ conditions if it satisfies:
1). limki→∞ hl(xki) = 0.
2). limki→∞ ‖Wkigu(xki)‖ > 0.
3). limki→∞

{
mind∈<n−m2 ‖Wki(guki

+ ∇gT
uki

Zkiµki d̄
t)‖2

}
= limki→∞ ‖Wkiguki

‖2.

Proof. To simplify the notations, let the subsequence {ki} be renamed to {k}. Let d̂k be a minimizer of
minimized̄t‖Wk(gu(xk) + ∇gu(xk)T Zkµkd̄t)‖2, then it satisfies

ZT
k ∇gu(xk)Wkgu(xk)µk + ZT

k ∇gu(xk)Wk∇gu(xk)T Zkµ
2
k d̂k = 0. (3.11)

From condition 3, we have

lim
k→∞
{2µkd̂k

T ZT
k ∇gu(xk)Wkgu(xk) + µ2

k d̂k
T ZT

k ∇gu(xk)Wk∇gu(xk)T Zkd̂k} = 0. (3.12)

Now, we will consider two cases:
Firstly, if limk→∞ d̂k = 0, then from (3.11) we have limk→∞ µkZT

k ∇gu(xk)Wkgu(xk) = 0.
Secondly, if limk→∞ d̂k , 0, then multiplying (3.11) from the left by 2d̂T

k and subtract it from the limit
(3.12), we have limk→∞ ‖Wk∇gu(xk)T Zkµkd̂k‖

2 = 0. This implies limk→∞ µkZT
k ∇gu(xk)Wkgu(xk) = 0.

That is, in either case, we have

lim
k→∞

ZT
k ∇gu(xk)Wkgu(xk) = 0. (3.13)

Take (νk)i = (Wkgu(xk))i, i = 1, ..., p. Since limk→∞ ‖Wkgu(xk)‖ > 0, then limk→∞(νk)i ≥ 0, for i = 1, ..., p
and limk→∞(νk)i > 0, for some i. Therefore limk→∞ ZT

k ∇gu(xk)νk = 0. But this implies the existence of
a sequence {λk} such that limk→∞{∇hlkλk + ∇gu(xk)νk} = 0. Thus IFJ conditions are hold in the limit
with τ∗ = 0.

The following lemma clarify that, for any subsequence {xki} of the iteration sequence that
asymptotically satisfies the FJ conditions, the corresponding subsequence of smallest singular values
of {ZT

k ∇gu(xk)Wk} is not bounded away from zero. That is, asymptotically the gradient of the active
constraints are linearly dependent.

Lemma 3.2. Under assumptions A1–A5, a subsequence {xki} of the iteration sequence asymptotically
satisfies FJ conditions if it satisfies:
1). limki→∞ h(xki) = 0.
2). For all ki, ‖Wkiguki

‖ > 0 and limki→∞Wkiguki
= 0.

3). limki→∞

{
mind∈<n−p

‖Wki (guki
+∇gT

uki
Zkiµki d̄

t)‖2

‖Wki guki
‖2

}
= 1.

Proof. The proof of this lemma is similar to the proof of Lemma 4.4 in [19].
In the following section, we introduce some basic lemmas which are requisite to prove global

convergence analysis for ACBTR algorithm.

3.1. Basic lemmas

In this section, we introduce some significant lemmas which are required to prove global
convergence theory for ACBTR algorithm.

AIMS Mathematics Volume 7, Issue 9, 16112–16146.

16124

Lemma 3.3. Under assumptions A1 and A3, W(x)gu(x) is Lipschitz continuous in Ω.

Proof. The proof of this lemma is similar to the proof of Lemma 4.1 of [12].
From the above lemma, we conclude that gu(x)T W(x)gu(x) is differentiable and ∇gu(x)W(x)gu(x) is

Lipschitz continuous in Ω.

Lemma 3.4. At any iteration k, let E(xk) ∈ <m2×m2 be a diagonal matrix whose diagonal entries are

(ek)i =


1 if (gu(xk))i < 0 and (guk+1)i ≥ 0,
−1 if (gu(xk))i ≥ 0 and (guk+1)i < 0,
0 otherwise,

(3.14)

where i = 1, 2, ...,m2. Then
Wk+1 = Wk + Ek. (3.15)

Proof. See Lemma 6.2 of [17].

Lemma 3.5. Under assumptions A1–A3, there exists at any iteration k, a constant C1 > 0 independent
of k such that

‖Ekgu(xk)‖ ≤ C1‖dk‖, (3.16)

where Ek ∈ <
m2×m2 is the diagonal matrix whose diagonal entries are defined in (3.14).

Proof. See Lemma 6.3 of [17].

Lemma 3.6. Under assumptions A1–A3, there exists at any iteration k, a constant 0 < C2 independent
of k such that

‖dn
k‖ ≤ C2‖hlk‖. (3.17)

Proof. Since dn
k is normal to the tangent space, then we have

‖dn
k‖ = ‖∇hlk(∇hT

lk∇hlk)
−1∇hT

lkdk‖

= ‖∇hlk(∇hT
lk∇hlk)

−1[hlk + ∇hT
lkdk − hlk]‖

≤ ‖∇hlk(∇hT
lk∇hlk)

−1‖[‖hlk + ∇hT
lkdk‖ + ‖hlk‖]

≤ ‖∇hlk(∇hT
lk∇hlk)

−1‖‖hlk‖.

where ‖hlk + ∇hT
lk
dk‖ ≤ ‖hlk‖. Using the assumptions A1–A5, we have the desired result.

The next lemma clarifies how delicate the definition of Aredk is as an approximation to Predk.

Lemma 3.7. Under assumptions A1–A5, there exists a constant 0 < C3, such that

|Aredk − Predk| ≤ C3µkρk‖dk‖
2. (3.18)

Proof. From the definition of Aredk (2.25) and using (3.15), we have

Aredk = `s(xk, λk) − `s(xk+1, λk) − ∆λT
k hlk+1

+
σk

2
[gu(xk)T Wkgu(xk) − gT

uk+1
(Wk + Ek)guk+1] + ρk[‖hlk‖

2 − ‖hlk+1‖
2].

AIMS Mathematics Volume 7, Issue 9, 16112–16146.

16125

From the above equation, the definition of Predk (2.26), and using the inequality of Cauchy-Schwarz,
we have

|Aredk − Predk| ≤
1
2
µ2

k |d
T
k [Hlk − ∇

2`s(xk + ξ1dk)]dk| +
µ2

k

2
| dT

k X−1
k Ykdk |

+σkµk | (∇gu(xk) − ∇g(xk + ξ2µkdk))Wkgu(xk)dk |

+
σkµ

2
k

2
| dT

k [∇gu(xk)Wk∇gu(xk)T − ∇g(xk + ξ2dk)Wk∇g(xk + ξ2µkdk)T]dk |

+
σkµ

2
k

2
‖Ekgu(xk)‖2 + σkµk | ∇g(xk + ξ2µkdk)Ekgu(xk)dk |

+
σkµ

2
k

2
| dT

k [∇g(xk + ξ2dk)Ek∇g(xk + ξ2µkdk)T]dk |

+µk|∆λk[∇hlk − ∇h(xk + ξ2dk)]T dk|

+2ρkµk|[(∇hlk − ∇h(xk + ξ2µkdk))hlk]
T dk|

+ρkµ
2
k |d

T
k [∇hlk∇hT

lk − ∇h(xk + ξ2µkdk)∇h(xk + ξ2µkdk)T]dk|,

for some ξ1 and ξ2 ∈ (0, 1). By using assumptions A1–A5, ρk ≥ σk, ρk ≥ 1, and inequality (3.16), we
have

|Aredk − Predk| ≤ µk[κ1‖dk‖
2 + κ2ρk‖dk‖

3 + κ3ρk‖dk‖
2‖hlk‖], (3.19)

where κ1, κ2, and κ3 are positive constants. Since ρk ≥ 1, ‖dk‖ ≤ δmax, and ‖hlk‖ is uniformly bounded,
then inequality (3.18) hold.

The proof of the following two lemmas depends on the fact that dn
k and d̄t

k satisfy the condition of
the fraction of Cauchy decrease.

Lemma 3.8. Under assumptions A1–A5, there exists a constant 0 < C4 such that

‖hlk‖
2 − ‖hlk + ∇hT

lkd
n
k‖

2 ≥ C4‖hlk‖min{‖hlk‖, δk}. (3.20)

Proof. From the definition of the normal Cauchy step (2.15), we will consider two cases:
Firstly, if dncp

k = − δk
‖∇hlk hlk ‖

(∇hlkhlk) and δk‖∇hT
lk
∇hlkhlk‖

2 ≤ ‖∇hlkhlk‖
3, then we have

‖hlk‖
2 − ‖hlk + ∇hT

lkd
ncp
k ‖

2 = −2(∇hlkhlk)
T dncp

k − dncpT

k ∇hlk∇hT
lkd

ncp
k

= 2δk‖∇hlkhlk‖ −
δ2

k‖∇hT
lk
∇hlkhlk‖

2

‖∇hlkhlk‖
2

≥ 2δk‖∇hlkhlk‖ − δk‖∇hlkhlk‖

≥ δk‖∇hlkhlk‖. (3.21)

Secondly, if dncp
k = −

‖∇hlk hlk ‖
2

‖∇hT
lk
∇hlk hlk ‖

2 (∇hlkhlk) and δk‖∇hT
lk
∇hlkhlk‖

2 ≥ ‖∇hlkhlk‖
3, then we have

‖hlk‖
2 − ‖hlk + ∇hT

lkd
ncp
k ‖

2 = −2(∇hlkhlk)
T dncp

k − dncpT

k ∇hlk∇hT
lkd

ncp
k

=
2‖∇hlkhlk‖

4

‖∇hT
lk
∇hlkhlk‖

2
−
‖∇hlkhlk‖

4

‖∇hT
lk
∇hlkhlk‖

2

AIMS Mathematics Volume 7, Issue 9, 16112–16146.

16126

=
‖∇hlkhlk‖

4

‖∇hT
lk
∇hlkhlk‖

2

≥
‖∇hlkhlk‖

2

‖∇hT
lk
∇hlkhlk‖

2
. (3.22)

Using assumption A3, we have ‖∇hlkhlk‖ ≥
‖hlk ‖

‖(∇hT
lk
∇hlk)−1∇hlk ‖

. Hence, from inequalities (2.14), (3.21),

(3.22), and using assumption A2, we obtain the inequality (3.20).
From the above lemma and the fact that

‖hlk‖
2 − ‖hlk + ∇hT

lkµkdn
k‖

2 ≥ µk[‖hlk‖
2 − ‖hlk + ∇hT

lkd
n
k‖

2],

where µk ∈ (0, 1], then we have

‖hlk‖
2 − ‖hlk + ∇hT

lkµkdn
k‖

2 ≥ C4µk‖hlk‖min{‖hlk‖, δk}. (3.23)

From the way of updating ρk shown in Step 8 in Algorithm (2.4) and above inequality, we have

Predk ≥
1
2

C4µkρk‖hlk‖min{‖hlk‖, δk}. (3.24)

Lemma 3.9. Under assumptions A1–A5, there exists a constant 0 < C5, such that

T predk(d̄t
k) ≥ C5‖ZT

k ∇qk(dn
k)‖min{

‖ZT
k ∇qk(dn

k)‖

‖B̄k‖
,∆k}. (3.25)

Proof. From the definition of the tangential Cauchy step (2.21), we will consider two cases:
Firstly, if d̄tcp

k = − ∆k
‖ZT

k ∇qk(dn
k)‖Z

T
k ∇qk(dn

k) and ∆k(ZT
k ∇qk(dn

k))T B̄kZT
k ∇qk(dn

k) ≤ ‖ZT
k ∇qk(dn

k)‖3, then we have

T predk(d̄
tcp
k) = qk(dn

k) − qk(dn
k + Zkd̄

tcp
k)

= −(ZT
k ∇qk(dn

k))T d̄tcp
k −

1
2

d̄tcpT

k B̄kd̄
tcp
k

= ∆k‖ZT
k ∇qk(dn

k)‖

−
∆2

k

2‖ZT
k ∇qk(dn

k)‖2
[(ZT

k ∇qk(dn
k))T B̄kZT

k ∇qk(dn
k)]

≥ ∆k‖ZT
k ∇qk(dn

k)‖ −
1
2

∆k‖ZT
k ∇qk(dn

k)‖

≥
1
2

∆k‖ZT
k ∇qk(dn

k)‖. (3.26)

Secondly, if d̄tcp
k = −

‖ZT
k ∇qk(dn

k)‖2

ZT
k ∇qk(dn

k))T B̄kZT
k ∇qk(dn

k)Z
T
k ∇qk(dn

k) and ∆k(ZT
k ∇qk(dn

k))T B̄kZT
k ∇qk(dn

k) ≥ ‖ZT
k ∇qk(dn

k)‖3,
then we have

T predk(d̄
tcp
k) = qk(dn

k) − qk(dn
k + Zkd̄

tcp
k)

= −(ZT
k ∇qk(dn

k))T d̄tcp
k −

1
2

d̄tcpT

k B̄kd̄
tcp
k

AIMS Mathematics Volume 7, Issue 9, 16112–16146.

16127

=
‖ZT

k ∇qk(dn
k)‖4

(ZT
k ∇qk(dn

k))T B̄kZT
k ∇qk(dn

k)

−
‖ZT

k ∇qk(dn
k)‖4

2(ZT
k ∇qk(dn

k))T B̄kZT
k ∇qk(dn

k)

=
‖ZT

k ∇qk(dn
k)‖4

2(ZT
k ∇qk(dn

k))T B̄kZT
k ∇qk(dn

k)

≥
‖ZT

k ∇qk(dn
k)‖2

2‖B̄k‖
. (3.27)

Hence, from inequalities (2.20), (3.26), (3.27), and using assumptions A1–A5, we obtain the desired
result.

From (2.19), (3.25), and the fact that

qk(µkdn
k) − qk(µk(dn

k + Zkd̄t
k)) ≥ µk[qk(dn

k) − qk(dn
k + Zkd̄t

k)],

where µk ∈ (0, 1], then we have

qk(µkdn
k) − qk(µkdk) ≥ C5µk‖ZT

k ∇qk(dn
k)‖min{

‖ZT
k ∇qk(dn

k)‖

‖B̄k‖
,∆k}. (3.28)

That is

T predk(µkd̄t
k) ≥ C5µk‖ZT

k ∇qk(dn
k)‖min{

‖ZT
k ∇qk(dn

k)‖

‖B̄k‖
,∆k}. (3.29)

The following lemma clarifies that if at any iteration k, the point xk ∈ F+ is not feasible, then algorithm
ACBTR can not loop infinitely without finding an acceptable step.

Lemma 3.10. Under assumptions A1–A5. If ‖hlk‖ ≥ ε > 0, then the condition Aredk j

Predk j
≥ γ1 will be

satisfied for some finite j.

Proof. From inequalities (3.18), (3.24), and the condition ‖hlk‖ ≥ ε, we have

|
Aredk

Predk
− 1 |=

| Aredk − Predk |

Predk
≤

2C3δ
2
k

C4εmin{ε, δk}
.

Now as the trial step dk j gets rejected, δk j becomes small and eventually we will have∣∣∣∣∣Aredk j

Predk j
− 1

∣∣∣∣∣ ≤ 2C3δk j

C4ε
.

For j finite, this inequality implies that, the acceptance rule will be met. This completes the proof.

Lemma 3.11. Under assumptions A1–A5 and the jth trial step of iteration k satisfies,

‖dk j‖ ≤ min{
(1 − γ1)C4

4C3
, 1}‖hlk‖, (3.30)

then the step accepted.

AIMS Mathematics Volume 7, Issue 9, 16112–16146.

16128

Proof. The proof of this lemma by contradiction. Assume that the inequality (3.30) holds and the step
dk j is rejected. From inequalities (3.18), (3.24), and using inequality (3.30), we have

(1 − γ1) <
|Aredk j − Predk j |

Predk j
<

2C3‖dk j‖

C4‖hlk‖
≤

1
2

(1 − γ1).

This is a contradiction and this completes the proof.

Lemma 3.12. Under assumptions A1–A5 and for all jth trial step of any iteration k, then δk j satisfies

δk j ≥ min{
δmin

b1
,
α1(1 − γ1)C4

4C3
, α1}‖hlk‖, (3.31)

where b1 > 0 is a constant.

Proof. For all jth trial step of any iteration k, we will consider tow cases:
Firstly, if j = 1 and the step accepted, then δk ≥ δmin. Hence,

δk ≥ δmin ≥
δmin

b1
‖hlk‖, (3.32)

where b1 = supx∈S ‖hlk‖. Then (3.31) holds in this case.
Secondly, if j > 1, then there exists at least one rejected trial step and hence from Lemma (3.11) we
have

‖dki‖ > min{
(1 − γ1)C4

4C3
, 1}‖hlk‖,

for all i = 1, 2, ... j − 1. From Algorithm 2.2 and dki is a rejected trial step, then we have

δk j = α1‖dk j−1‖ > α1 min{
(1 − γ1)C4

4C3
, 1}‖hlk‖. (3.33)

From inequalities (3.32) and (3.32) the desired result is obtained.
The next lemma prove that as long as ‖hlk‖ is bound away from zero, the trust-region radius is also

bound away from zero.

Lemma 3.13. Under assumptions A1–A5 . If ‖hlk‖ ≥ ε > 0, then

δk j ≥ C6,

where C6 > 0 is a constant.

Proof. The proof follows directly by taking

C6 = εmin{
δmin

b1
,
α1(1 − γ1)C4

4C3
, α1}, (3.34)

in inequality (3.31).

AIMS Mathematics Volume 7, Issue 9, 16112–16146.

16129

3.2. Global convergence theory when σk → ∞

In this section, we clarify the convergence of the sequence of iteration when the positive parameter
σk → ∞.

Lemma 3.14. Under assumptions A1–A5. If ρk is increased at any iteration k, then

σkµk‖hlk‖
2 ≤ C7, (3.35)

where C7 is a positive constant.

Proof. From the way of updating the positive penalty parameter ρk, we notice that ρk is increased at
a given iteration k according to one of the two rules (2.31) or (2.30). Suppose that ρk is increased
according to the rule (2.30), then

ρk

2
[‖hlk‖

2 − ‖hlk + ∇hT
lkµkdk‖

2] = [qk(µkdk) − qk(0) + ∆λT
k (hlk + ∇hT

lkµkdk)]

+
b0

2
[‖hlk‖

2 − ‖hlk + ∇hT
lkµkdk‖

2].

Using inequalities (3.23) and (3.31), then we have

ρk

2
C4µk‖hlk‖

2 min{
δmin

b1
,
α1(1 − γ1)C4

4C3
, α1} ≤ ∇x`

s(xk, λk))Tµkdk +
1
2
µ2

kdT
k H̃kdk

+ ∆λT
k (hlk + ∇hT

lkµkdk)

+
σk

2
[‖Wk(gu(xk) + ∇gu(xk)Tµkdk)‖2 − ‖Wkgu(xk)‖2]

+
b0

2
[‖hlk‖

2 − ‖hlk + ∇hT
lkµkdk‖

2].

According to rule (2.31), we have ρk ≥ σ
2
k . Hence

σ2
k

2
C4µk‖hlk‖

2 min{
δmin

b1
,
α1(1 − γ1)C3

4C4
, α1} ≤ (∇x`

s(xk, λk))Tµkdk +
1
2
µ2

kdT
k H̃kdk

+ ∆λT
k (hlk + ∇hT

lkµkdk)

+
σk

2
[‖Wk(gu(xk) + ∇gu(xk)Tµkdk)‖2 +

b0

2
‖hlk‖

2.

Then,

σk

2
C4µk‖hlk‖

2 min{
δmin

b1
,
α1(1 − γ1)C3

4C4
, α1} ≤

1
σk

[(∇x`
s(xk, λk))Tµkdk +

1
2
µ2

kdT
k H̃kdk

+ ∆λT
k (hlk + ∇hT

lkµkdk) +
b0

2
‖hlk‖

2]

+
1
2
‖Wk(gu(xk) + ∇gu(xk)Tµkdk)‖2

≤
1
σk

[|∇x`
s(xk, λk))T dk| +

1
2
|dT

k H̃kdk|

+ |∆λT
k (hlk + ∇hT

lkµkdk)| +
b0

2
‖hlk‖

2]

AIMS Mathematics Volume 7, Issue 9, 16112–16146.

16130

+
1
2
‖Wk(gu(xk) + ∇gu(xk)Tµkdk)‖2,

where µk ≤ 1. Using the Cauchy-Schwarz inequality, assumptions A3–A5, and the fact that ‖dk‖ ≤ δmax,
the proof is completed.

Lemma 3.15. Under assumptions A1–A5. If σk → ∞ and there exists an infinite subsequence {ki} of
the iteration sequence at which ρk is increased, then

lim
ki→∞
‖hki‖ = 0. (3.36)

Proof. The proof follows directly from limki→∞ µki = 1, σk → ∞, and Lemma (3.14).

Theorem 3.1. Under assumptions A1–A5. If σk → ∞, then

lim
k→∞
‖hlk‖ = 0. (3.37)

Proof. The proof similar to the proof of Theorem 4.18 [19].
We notice from the way of updating σ that, the sequence {σk} is unbounded only when there exist

an infinite subsequence of indices {ki}, at which

1
2

T predk(µkd̄t
k) < ‖∇gu(xk)Wkgu(xk)‖min{‖∇gu(xk)Wkgu(xk)‖,∆k}. (3.38)

The following lemma shows that, if σk → ∞ and lim supk→∞ ‖Wkgu(xk)‖ > 0, then the iteration
sequence generated by the algorithm ACBTR has a subsequence that satisfies IFJ conditions in the
limit.

Lemma 3.16. Under assumptions A1–A5. If σk → ∞ and there exists a subsequence {k j} of indices
indexing iterates that satisfy ‖Wkgu(xk)‖ ≥ ε > 0 for all k ∈ {k j}, then a subsequence of the iteration
sequence indexed {k j} satisfies the IFJ conditions as k → ∞.

Proof. The proof is by contradiction. Let the subsequence {k j} be renamed to {k} to simplify the
notation. Suppose that there is no a subsequence of the sequence of iterates that satisfies IFJ conditions
in the limit. Then we have |‖Wkgu(xk)‖2−‖Wk(gu(xk) +∇gu(xk)T Zkµkd̄t

k)‖
2| ≥ ε1 > 0 from Lemma (3.1).

Also we have ‖Zk∇gu(xk)Wkgu(xk)‖ ≥ ε2 > 0 from (3.13). Since

‖ZT
k ∇gu(xk)Wk(gu(xk) + ∇gu(xk)T dn

k)‖ ≥ ‖ZT
k ∇gu(xk)Wkgu(xk)‖ − ‖ZT

k ∇gu(xk)Wk∇gu(xk)T ‖‖dn
k‖,

and using (3.17), then we have

‖ZT
k ∇gu(xk)Wk(gu(xk) + ∇gu(xk)T dn

k)‖ ≥ ε2 −C2‖ZT
k ∇gu(xk)Wk∇gu(xk)T ‖‖hlk‖.

But {‖hlk‖} convergence to zero and ‖ZT
k ∇gu(xk)Wk∇gu(xk)T ‖ is bounded. Then ‖ZT

k ∇gu(xk)Wk(gu(xk) +

∇gu(xk)T dn
k)‖ ≥ ε2

2 and therefore

‖ZT
k ∇qk(dn

k)‖ ≥ σk‖ZT
k ∇gu(xk)Wk(gu(xk) + ∇gu(xk)T dn

k)‖ − ‖ZT
k (∇x`

s
k + H̃kdn

k)‖

≥ σk
ε2

2
− ‖ZT

k (∇x`
s
k + H̃kdn

k)‖.

AIMS Mathematics Volume 7, Issue 9, 16112–16146.

16131

Hence inequality (3.29) can be written as follows

T predk(µkd̄t
k) ≥

1
2

C5µkσk[
ε2

2
−

1
σk
‖ZT

k [∇x`
s
k + H̃kdn

k]‖

min{∆k,

ε2
2 −

1
σk
‖ZT

k [∇x`
s
k + H̃kdn

k]‖

‖ZT
k ∇gu(xk)Wk∇gu(xk)T Zk‖ + 1

σk
‖ZT

k H̃kZk‖
}.

That is for k sufficiently large we have

T predk(µkd̄t
k) ≥

ε2

4
C5µkσk min{∆k,

ε2

2‖ZT
k ∇gu(xk)Wk∇gu(xk)T Zk‖

}.

Since σk → ∞, then there exists infinite number of acceptable iterates at which (3.38) holds. That is,
there exists a contradiction unless σk∆k is bounded. Hence ∆k → 0 and therefore ‖dk‖ → 0. Now we
will consider two cases:
Firstly, if ‖Wkgu(xk)‖2 − ‖Wk(gu(xk) + ∇gu(xk)T Zkµkd̄t

k)‖
2 > ε1, we have

σk{‖Wkgu(xk)‖2 − ‖Wk(gu(xk) + ∇gu(xk)T Zkµkd̄t
k)‖

2|} > σkε1 → ∞. (3.39)

Thus, from (2.19), (3.39), and using assumptions A3–A5, we have T predk(µkd̄t
k) → ∞. That is, the

left hand side of inequality (3.38) goes to infinity while the right hand side of the same inequality goes
to zero. That is, there exists a contradiction in this case.
Secondly, if ‖Wkgu(xk)‖2 − ‖Wk(gu(xk) + ∇gu(xk)T Zkµkd̄t

k)‖
2 < −ε1, then

σk{‖Wkgu(xk)‖2 − ‖Wk(gu(xk) + ∇gu(xk)T Zkµkd̄t
k)‖

2|} < −σkε1 → −∞,

where σk → ∞ as k → ∞. Similar to the above case, T predk(µkd̄t
k) → −∞. This gives a contradiction

in this case with T predk(µkd̄t
k) > 0. This two contradictions prove the lemma.

The following lemma shows that if limk→∞ σk → ∞ and lim infk→∞ ‖Wkgu(xk)‖ = 0, then the
iteration sequence generated by the algorithm ACBTR has a subsequence that satisfies FJ conditions
in the limit.

Lemma 3.17. Under assumptions A1–A5. Let {k j} be a subsequence of iterates that satisfy
‖Wkgu(xk)‖ > 0 for all k ∈ {k j} and limk j→∞ ‖Wk jgk j‖ = 0. If limk→∞ σk = ∞, then a subsequence of {k j}

satisfies FJ conditions in the limit.

Proof. The proof of this lemma is similar to the proof of Lemma 4.20 [19].

3.3. Global convergence theory when σk is bounded

In this section, we will continue our discussion assuming that the parameter σk is bounded. We
mean that there exists an integer k̄ such that for all k ≥ k̄, σk = σ̄ < ∞, and

1
2

T predk(µkd̄t
k) ≥ ‖∇gu(xk)Wkgu(xk)‖min{‖∇gu(xk)Wkgu(xk)‖,∆k}. (3.40)

From assumptions A3, A5, and assumption (3.40), we can say that there exists a constant 0 < b2 such
that for all k ≥ k̄

‖Bk‖ ≤ b2, ‖ZT
k Bk‖ ≤ b2, and ‖ZT

k BkZk‖ ≤ b2, (3.41)

where Bk = H̃k + σ̄∇gu(xk)Wk∇gu(xk)T .

AIMS Mathematics Volume 7, Issue 9, 16112–16146.

16132

Lemma 3.18. Under assumptions A1–A5, there exists a constant C8 > 0 such that

qk(0) − qk(µkdn
k) − ∆λT

k (hlk + ∇hT
lkµkdk) ≥ −C8µk‖hlk‖, (3.42)

for all k ≥ k̄.

Proof. By using the definition (2.28), we have

qk(0) − qk(µkdn
k) = −(∇x`

s(xk, λk))Tµkdn
k −

1
2
µ2

kdnT

k H̃kdn
k

+
σ̄

2
[‖Wkgu(xk)‖2 − ‖Wk(gu(xk) + ∇gu(xk)Tµkdn

k)‖2]

= −(∇x`
s(xk, λk) + σ̄∇gu(xk)Wkgu(xk))Tµkdn

k

−
1
2
µ2

kdn
k

T (H̃k + σ̄∇gu(xk)Wk∇gu(xk)T)dn
k

= −(∇x`
s(xk, λk) + σ̄∇gu(xk)Wkgu(xk))Tµkdn

k −
1
2
µ2

kdn
k

T Bkdn
k .

That is,

qk(0) − qk(µkdn
k) − ∆λT

k (hlk + ∇hT
lkµkdk) = −(∇x`

s(xk, λk) + σ̄∇gu(xk)Wkgu(xk))Tµkdn
k

−
1
2
µ2

kdn
k

T Bkdn
k − ∆λT

k (hlk + ∇hT
lkµkdk)

≥ −µk‖∇x`
s(xk, λk)‖‖dn

k‖ − σ̄µk‖∇gu(xk)Wkgu(xk)‖‖dn
k‖ − µ

2
k‖Bk‖‖dn

k‖
2

−‖∆λk‖‖hlk + ∇hT
lkµkdk‖

≥ −µk[‖∇x`
s(xk, λk)‖ + σ̄‖∇gu(xk)Wkgu(xk)‖ + ‖Bk‖‖dn

k‖]‖d
n
k‖

−µk‖∆λk‖‖∇hlk‖‖d
n
k‖.

By using inequality (3.17), we can obtain the following inequality

qk(0) − qk(µkdn
k) − ∆λT

k (hlk + ∇hT
lkµkdk) ≥ −µk[(‖∇x`

s(xk, λk)‖ + σ̄‖∇gu(xk)Wkgu(xk)‖
+‖Bk‖‖dn

k‖ + ‖∆λk‖‖∇hlk‖)C2]‖hlk‖.

From assumptions A3–A5, the fact that ‖dn
k‖ ≤ δmax, and using (3.41), then for all k ≥ k̄ there exists a

constant C8 > 0 such that inequality (3.42) hold. This completes the proof.

Lemma 3.19. Under assumptions A1–A5, we have

Predk ≥
1
2

C5µk‖ZT
k ∇qk(dn

k)‖min{∆k,
‖ZT

k ∇qk(dn
k)‖

‖B̄k‖
}

+‖∇gu(xk)Wkgu(xk)‖min{‖∇gu(xk)Wkgu(xk)‖,∆k}

−C8µk‖hlk‖ + ρk[‖hlk‖
2 − ‖hlk + ∇hT

lkµkdk‖
2], (3.43)

for all k ≥ k̄.

Proof. Since the definition of Predk (2.27) can be written as follows

Predk = [qk(µkdn
k) − qk(µkdk)] + [qk(0) − qk(µkdn

k) − ∆λT
k (hlk + ∇hT

lkµkdk)]

AIMS Mathematics Volume 7, Issue 9, 16112–16146.

16133

+ρk[‖hlk‖
2 − ‖hlk + ∇hT

lkµkdk‖
2].

and by using (2.19), we have

Predk =
1
2

T predk(µkd̄t
k) +

1
2

T predk(µkd̄t
k)

+[qk(0) − qk(µkdn
k) − ∆λT

k (hlk + ∇hT
lkµkdk)]

+ρk[‖hlk‖
2 − ‖hlk + ∇hT

lkµkdk‖
2].

Using inequalities (3.29), (3.40), and (3.42), we can obtain the desired result.

Lemma 3.20. Under assumptions A1–A5. If ρk increased at iteration k, then there exists a constant
C9 > 0 such that

ρkµk min{‖hlk‖, δk} ≤ C9. (3.44)

Proof. Since ρk is increased at iteration k, then from (2.30) we have
ρk

2
[‖hlk‖

2 − ‖hlk + ∇hT
lkµkdk‖

2] = [qk(µkdk) − qk(µkdn
k)] + [qk(µkdn

k) − qk(0)]

+∆λT
k (hlk + ∇hT

lkµkdk)

+
b0

2
[‖hlk‖

2 − ‖hlk + ∇hT
lkµkdk‖

2]

= −
1
2

T predk(µkd̄t
k) −

1
2

T predk(µkd̄t
k)

+[qk(µkdn
k) − qk(0) + ∆λT

k (hlk + ∇hT
lkµkdk)]

+
b0

2
[‖hlk‖

2 − ‖hlk + ∇hT
lkµkdk‖

2].

Applying inequality (3.23) to the left hand side and inequalities (3.29), (3.40), and (3.42) to the right
hand side, we obtain

ρk

2
C4µk‖hlk‖min{δk, ‖hlk‖} ≤ −

C5

2
µk‖ZT

k ∇qk(dn
k)‖min{∆k,

‖ZT
k ∇qk(dn

k)‖

‖B̄k‖
}

−‖∇gu(xk)Wkgu(xk)‖min{‖∇gu(xk)Wkgu(xk)‖,∆k}

+C8µk‖hlk‖ +
b0

2
‖hlk‖

2

≤ C8µk‖hlk‖ +
b0

2
‖hlk‖

2.

The rest of the proof follows using the fact that µk ≤ 1 and assumption A3.

Lemma 3.21. Under assumptions A1–A5. If
‖ZT

k (∇x`
s(xk, λk) + σ̄∇gu(xk)Wkgu(xk))‖ + ‖∇gu(xk)Wkgu(xk)‖ ≥ ε > 0 and ‖hlk‖ ≤ ηδk where η > 0 is

given by

η ≤ min

 ε

6b2C2δmax
,

√
3

2C2
,

C5ε

12C8
min{

2ε
3δmax

, 1},
ε

4C8
min{

ε

δmax
, 1}

 . (3.45)

then there exists a constant C10 > 0, such that

Predk ≥ C10µkδk + ρk[‖hlk‖
2 − ‖hlk + ∇hT

lkµdk‖
2]. (3.46)

AIMS Mathematics Volume 7, Issue 9, 16112–16146.

16134

Proof. Suppose that ‖ZT
k (∇x`

s(xk, λk) + σ̄∇gu(xk)Wkgu(xk))‖ ≥ ε
2 , then ‖∇gu(xk)Wkgu(xk)‖ ≥ ε

2 . From
inequality (3.17) and using (3.41), we have

‖ZT
k (∇x`

s(xk, λk) + σ̄∇gu(xk)Wkgu(xk) + Bkdn
k)‖ ≥ ‖ZT

k (∇x`
s(xk, λk) + σ̄∇gu(xk)Wkgu(xk))‖

−‖ZT
k Bkdn

k‖

≥ ‖ZT
k (∇x`

s(xk, λk) + σ̄∇gu(xk)Wkgu(xk))‖
−b2C2‖hlk‖

≥
ε

2
− b2C2ηδk.

Since η ≤ ε
6b2C2δmax

, then we have

‖ZT
k (∇x`

s(xk, λk) + σ̄∇gu(xk)Wkgu(xk) + Bkdn
k)‖ ≥

ε

2
−
ε

6
≥
ε

3
. (3.47)

Because ∆k =

√
δk

2 − ‖dn
k‖

2 and ‖dn
k‖ ≤ C2‖hlk‖ ≤ C2ηδk ≤ C2

√
3

2C2
δk =

√
3

2 δk, hence ∆2
k = δ2

k − ‖d
n
k‖

2 ≥

δ2
k −

3
4δ

2
k = 1

4δ
2
k . Thus,

∆k ≥
1
2
δk. (3.48)

From inequalities (3.43), (3.47) and (3.48), we have

Predk ≥
1
2

C5µk‖ZT
k (∇x`

s(xk, λk) + σ̄∇gu(xk)Wkgu(xk) + Bkdn
k)‖

min{‖ZT
k (∇x`

s(xk, λk) + σ̄∇gu(xk)Wkgu(xk) + Bkdn
k)‖,

1
2
δk}

+‖∇gu(xk)Wkgu(xk)‖min{‖∇gu(xk)Wkgu(xk)‖,
1
2
δk}

−C8µk‖hlk‖ + ρk[‖hlk‖
2 − ‖hlk + ∇hT

lkµdk‖
2]

≥
C5µkε

12
δk min{

2ε
3δmax

, 1} +
µε

4
min{

ε

δmax
, 1}δk

−
1
2

C8ηµkδk −
1
2

C8ηµkδk + ρk[‖hlk‖
2 − ‖hlk + ∇hT

lkµkdk‖
2].

Since η ≤ min
{

C5ε
12C8

min{ 2ε
3δmax

, 1}, ε
4C8

min{ ε
δmax

, 1}
}
, then we have

Predk ≥
C5µkε

24
min{

2ε
3δmax

, 1}δk +
µε

8
min{

2ε
δmax

, 1}δk + ρk[‖hlk‖
2 − ‖hlk + ∇hT

lkµkdk‖
2].

The result follows if we take C10 = min
{

C5ε
24 min{ 2ε

3δmax
, 1} , ε

8 min{ 2ε
δmax

, 1}
}
.

We can easily see from lemma 3.21 that, at any iteration at which
‖ZT

k (∇x`
s(xk, λk) + σ̄∇gu(xk)Wkgu(xk)) + ∇gu(xk)Wkgu(xk)‖ ≥ ε and ‖hlk‖ ≤ ηδk, where η is given by

(3.45), there is no need to increase the value of ρk. It is only increased when ‖hlk‖ ≥ ηδk.

Lemma 3.22. Under assumptions A1–A5. If ρk j increased at the jth trial iterate of any iteration k,then

ρk jµk j‖hlk‖ ≤ C11, (3.49)

where C11 > 0 is a constant.

AIMS Mathematics Volume 7, Issue 9, 16112–16146.

16135

Proof. The proof of this lemma follows directly from inequalities (3.31) and (3.44).

Lemma 3.23. Under assumptions A1–A5. If ρk → ∞, then

lim
ki→∞
‖hlki
‖ = 0, (3.50)

where {ki} is a subsequence of iterates at which the penalty parameter is increased.

Proof. The proof of this lemma follows directly from Lemma 3.22 and limk→∞ µk = 1.

3.4. Main global convergence theory

In this section, we will prove the main global convergence theorems for the proposed algorithm
ACBTR.

Theorem 3.2. Assume that assumptions A1–A5 hold, then the sequence of iterates generated by ACBTR
algorithm satisfies

lim
k→∞
‖hlk‖ = 0. (3.51)

Proof. Suppose that lim supk→∞ ‖hlk‖ ≥ ε, where ε > 0 is a constant. Then there exists an infinite
subsequence of indices {k j} indexing iterates that satisfy ‖hk j‖ ≥

ε
2 . From Lemma (3.10), we know that

there exists an infinite sequence of acceptable steps, so to simplify, we assume that all members of the
sequence {k j} are acceptable iterates. Now we will consider two cases:
Firstly, we consider that, if {ρk} is unbounded. Then there exists an infinite number of iterates {ki} at
which ρk is increased. From Lemma (3.23) and for k sufficiently large, we can say {ki}

⋂
{k j} = ∅. Let

kζ1 and kζ2 be two consecutive iterates at which ρk is increased and kζ1 < k < kζ2 , for any k ∈ {k j}. Notice
that, ρk is the same for all iterates between kζ1 and kζ2 . Since all the iterates of {k j} are acceptable, then

Φk − Φk+1 = Aredk ≥ γ1Predk,

for all k ∈ {k j}. Using inequality (3.24), we have

Φk − Φk+1

ρk
≥
γ1C4µk

2
‖hlk‖min{‖hlk‖, δk}.

Summing over all acceptable iterates that lie between kζ1 and kζ2 , we have

kζ2−1∑
k=kζ1

Φk − Φk+1

ρk
≥
γ1C4µkε

4
min{Ĉ6,

ε

2
},

where Ĉ6 is as C6 in (3.34), with ε is replaced by ε
2 . Hence,

`s(xkζ1
, µkζ1

; σ̄) − `s(xkζ2
, µkζ2

; σ̄)

ρkζ1

+ [‖hlkζ1
‖2 − ‖hkζ2

‖2] ≥
γ1C4ε

4
min{Ĉ6,

ε

2
}.

Since ρk → ∞, then for kζ1 sufficiently large, we have

| `s(xkζ1
, λkζ1

; σ̄) − `s(xkζ2
, λkζ2

; σ̄) |

ρkζ1

<
γ1C4ε

8
min{Ĉ6,

ε

2
}.

AIMS Mathematics Volume 7, Issue 9, 16112–16146.

16136

Therefore,

‖hlkζ1
‖2 − ‖hlkζ2

‖2 ≥
γ1C4ε

8
min{Ĉ6,

ε

2
}.

But this leads to a contradiction with Lemma (3.23) unless ε = 0.
Secondly, if {ρk} is bounded, then there exists an integer k̃ such that for all k ≥ k̃, ρk = ρ̃. Hence from
inequality (3.24), we have for any k̂ ∈ {k j} and k̂ ≥ k̃

Predk̂ ≥
ρ̃C4µk̂

2
‖hlk̂‖min{δk̂, ‖hlk̂‖} ≥

ερ̃C4µk̂

4
min{

ε

2δmax
, 1}δk̂. (3.52)

Since all the iterates of {k j} are acceptable, then for any k̂ ∈ {k j}, we have

Φk̂ − Φk̂+1 = Aredk̂ ≥ γ1Predk̂.

Using inequality (3.52), we have

Φk̂ − Φk̂+1 ≥
γ1ερ̃C4µk̂

4
min{

ε

2δmax
, 1}δk̂.

Using Lemma (3.13), we have

Φk̂ − Φk̂+1 ≥
γ1ερ̃C4µk̂

4
min{

ε

2δmax
, 1}Ĉ6 > 0.

Thus there exists a contradiction with the fact that {Φk} is bounded when the sequence of the penalty
parameter {ρk} is bounded. Hence, in both cases the supposition is not correct and the theorem is
proved.

Theorem 3.3. Under assumptions A1–A5, the sequence of iterates generated by ACBTR algorithm
satisfies

lim inf
k→∞

[‖ZT
k ∇x`

s
k‖ + ‖∇gu(xk)Wkgu(xk)‖] = 0. (3.53)

Proof. To prove this theorem we will prove

lim inf
k→∞

[‖ZT
k (∇x`

s
k + σ̄∇gu(xk)Wkgu(xk))‖ + ‖∇gu(xk)Wkgu(xk) ‖] = 0, (3.54)

by contradiction. That is, we assume ‖ ZT
k (∇x`

s
k + σ̄∇gu(xk)Wkgu(xk)) ‖ + ‖∇gu(xk)Wkgu(xk)‖ > ε and

there exists an infinite subsequence {ki} of the iteration sequence such that ‖hlki
‖ > ηδki . Since ‖hlki

‖ → 0
as ki → 0, then

lim
ki→∞

δki = 0.

Let k j be any iteration in {ki}. Then we will consider two cases:
Firstly, if {ρk} is unbounded and the trial step j − 1 of iteration k is rejected. Thus ‖hlk‖ > ηδk j =

α1η‖dk j−1‖. Hence, from inequalities (3.24), (3.19), and dk j−1 was rejected, we have

(1 − γ1) ≤
|Aredk j−1 − Predk j−1 |

Predk j−1

≤
[2κ1‖dk j−1‖ + 2κ2ρk j−1‖dk j−1‖‖hlk‖ + 2κ3ρk j−1‖dk j−1‖2]

ρk j−1C4 min(α1η, 1)‖hlk‖

AIMS Mathematics Volume 7, Issue 9, 16112–16146.

16137

≤
2κ1

ρk j−1C4α1ηmin(α1η, 1)
+

2κ2 + 2κ3α1η

C4α1ηmin(α1η, 1)
‖dk j−1‖.

Since {ρk} is unbounded, then there exists an iterate k̂ sufficiently large such that for all k ≥ k̂, we have

ρk j−1 <
4κ1

C4α1ηmin(α1η, 1)(1 − γ1)
.

and

‖dk j−1‖ ≥
C4α1ηmin(α1η, 1)(1 − γ1)

4(κ2 + κ3α1η)
.

From the way of updating the radius of the trust region, we have

δk j = α1‖dk j−1‖ ≥
C4α

2
1ηmin(α1η, 1)(1 − γ1)

4(κ2 + κ3α1η)
.

But this is a contradiction and this means that δk j can not go to zero in this case.
Secondly, if {ρk} is bounded and there exists an integer k̄ and a constant ρ̄ such that for all k ≥ k̄, ρk = ρ̄.
Let j be a trial step of iteration k at which ‖hk‖ > ηδk j . Now we will consider the following two cases:
I). If j = 1, then from our way of updating the radius of the trust-region, we have δk j ≥ δmin. That is,
δk j is bounded in this case.
II). If j > 1 and ‖hlk‖ > ηδkl for all l = 1, · · · , j, then for all rejected trial steps l = 1, · · · , j − 1 of
iteration k, we have

(1 − γ1) ≤
|Aredkl − Predkl |

Predkl
≤

2C3‖dkl‖

C4 min(η, 1)‖hlk‖
.

That is

δk j = α1‖dk j−1‖ ≥
α1C4 min(η, 1)(1 − γ1)‖hlk‖

2C3
≥
α1C4 min(η, 1)(1 − γ1)η

2C3
δk1

≥
α1C4 min(η, 1)(1 − γ1)η

2C3
δmin.

This means that, δk j is bounded.
Otherwise, if j > 1 and ‖hlk‖ > ηδkl holds for some l, then there exists an integer β1 such that ‖hlk‖ > ηδkl

holds for l = β1 + 1, ..., j and ‖hlk‖ ≤ ηδkl for l = 1, ..., β1. As in the above case, we can write

δk j ≥
α1C4 min(α, 1)(1 − γ1)

2C3
‖hlk‖ ≥

α1C4 min(η, 1)(1 − γ1)η
2C3

δkβ1+1 . (3.55)

But from the way of updating the radius of the trust-region, we have

δkβ1+1 ≥ α1‖dkβ1 ‖. (3.56)

Since ‖hlk‖ ≤ ηδkl for l = 1, ..., β1, then from Lemma (3.21) and the fact that dkβ1 is rejected, we have

(1 − γ1) ≤
|Aredkβ1 − Predkβ1 |

Predkβ1

≤
2C3ρ̄‖dkβ1 ‖

C10
.

AIMS Mathematics Volume 7, Issue 9, 16112–16146.

16138

This implies

‖dkβ1 ‖ ≥
C10(1 − γ1)

2C3ρ̄
.

This implies that, ‖dkβ1 ‖ is bounded. Hence, δk j is bounded in this case too. But this is a contradiction.
That is ‖hlk‖ ≤ ηδk j for all k j sufficiently large.

Letting k j ≥ k̄ and using Lemma (3.21), we have

Φk j − Φk j+1 = Aredk j ≥ γ1Predk j ≥ γ1C10δk j .

As k → ∞, then
lim
k→∞

δk j = 0. (3.57)

That is δk j is not bounded below. But this leads to a contradiction and to prove this contradiction we
will consider the following two cases:
i). If k j > k̄ and the step was accepted at j = 1, then δk ≥ δmin. Hence δk j is bounded in this case.
ii). If j > 1 and there exists at least one rejected trial step dk j−1 . Then from Lemmas (3.7) and (3.21),
we have

(1 − γ1) <
ρ̄C3‖dk j−1‖2

C10δk j−1
.

From the way of updating δk j we have

δk j = α1‖dk j−1‖ >
α1C10(1 − γ1)

ρ̄C3
.

Hence δk j is bounded in this case too. But this contradicts (3.57). This means that, the supposition is
incorrect. Hence,

lim inf
k→∞

[‖ZT
k (∇x`

s
k + σ̄∇gu(xk)Wkgu(xk))‖ + ‖∇gu(xk)Wkgu(xk)‖] = 0.

But this also implies (3.53). This completes the proof of the theorem.
From the above two theorems, we conclude that, given any ε > 0, the algorithm terminates because

‖ZT
k ∇x`

s
k‖ + ‖∇gu(xk)Wkgu(xk)‖ + ‖hlk‖ < ε, for some finite k.

4. Numerical results

Algorithm ACBTR was implemented as a MATLAB code and run under MATLAB version 8.2.701
(R2013b) 64-bit(win64). We begin by a starting point x0 ∈ F+ and the following parameter setting is
used: δmin = 10−4, δ0 = max(‖dcp

0 ‖, δmin), δmax = 104δ0, γ1 = 10−4, γ2 = 0.75, α1 = 0.5, α2 = 2 and
ε = 10−8.

Secondly, an extensive variety of possible numeric NBLP problems are introduced to clarify the
effectiveness of the proposed ACBTR algorithm.

For each test problem, 10 independent runs with different initial starting point are proceeded to
observe the matchmaking of the results. Statistical results of all test problems are summarized in
Table 1. The results in Table 1 show that the resuls by the ACBTR Algorithm (2.5) are approximate or
equal to those by the compared algorithms in the literature.

AIMS Mathematics Volume 7, Issue 9, 16112–16146.

16139

In Table 1, we adding the average of number of iterations (iter),the average of number of function
evaluations (nfunc), the average of value of CPU time (CPUs) per seconds.

For comparison, we have included the corresponding results of the avarge value of CPU time (CPUs)
which are obtained by Methods in [34] (Table 2), [29] (Table 3), and [44] (Table 4) respectively. It is
obviously from the results that our algorithm ACBTR is qualified for treating NBLP problems even
the upper and the lower levels are convex or not and the results converge to the optimal solution which
is similarly or approximate to the optimal that reported in literature. Finally, it is obviously from the
comparison between the solutions obtained by using ACBTR algorithm with literature, that ACBTR
is able to find the optimal solution of all problems by a small number of iterations, small number of
function evaluations, and less time.

Problem 1 [34]:

mint fu = v2
1 + v2

2 + t2 − 4t
s.t. 0 ≤ t ≤ 2,
minv fl = v2

1 + 0.5v2
2 + v1v2+

(1 − 3t)v1 + (1 + t)v2,

s.t. 2v1 + v2 − 2t ≤ 1,
v1 ≥ 0, v2 ≥ 0.

Problem 2 [34]:

mint fu = v2
1 + v2

3 − v1v3 − 4v2 − 7t1 + 4t2

s.t. t1 + t2 ≤ 1,
t1 ≥ 0, t2 ≥ 0

minv fl = v2
1 + 0.5v2

2 + 0.5v2
3 + v1v2+

(1 − 3t1)v1 + (1 + t2)v2,

s.t. 2v1 + v2 − v3 + t1 − 2t2 + 2 ≤ 0,
v1 ≥ 0; v2 ≥ 0 v3 ≥ 0.

Problem 3 [34]:

mint fu = 0.1(t2
1 + t2

2) − 3v1 − 4v2 + 0.5(v2
1 + v2

2)
s.t.

minv fl = 0.5(v2
1 + 5v2

2) − 2v1v2 − t1v1 − t2v2,

s.t. −0.333v1 + v2 − 2 ≤ 0,
v1 − 0.333v2 − 2 ≤ 0,
v1 ≥ 0, v2 ≥ 0,

Problem 4 [34]:

mint fu = t2
1 − 2t1 + t2

2 − 2t2 + v2
1 + v2

2
s.t. t1 ≥ 0, t2 ≥ 0

minv fl = (v1 − t1)2 + (v2 − t2)2,

s.t. 0.5 ≤ v1 ≤ 1.5,
0.5 ≤ v2 ≤ 1.5,

Problem 5 [34]:

mint fu = t2 + (v − 10)2

s.t. −t + v ≤ 0,
0 ≤ t ≤ 15,

minv fl = (t + 2v − 30)2,

s.t. t + v ≤ 20,
0 ≤ v ≤ 20,

Problem 6 [34]:

mint fu = (t − 1)2 + 2v2
1 − 2t

s.t. t ≥ 0,
minv fl = (2v1 − 4)2 + (2v2 − 1)2 + tv1,

s.t. 4t + 5v1 + 4v2 ≤ 12,
−4t − 5v1 + 4v2 ≤ −4,
4t − 4v1 + 5v2 ≤ 4,
−4t + 4v1 + 5v2 ≤ 4,
v1 ≥ 0, v2 ≥ 0,

AIMS Mathematics Volume 7, Issue 9, 16112–16146.

16140

Problem 7 [34]:

mint fu = (t − 5)2 + (2v + 1)2

s.t. t ≥ 0,
minv fl = (2v − 1)2 − 1.5tv,
s.t. −3t + v ≤ −3,

t − 0.5v ≤ 4,
t + v ≤ 7,
v ≥ 0.

Problem 8 [34]:

mint fu = t2
1 − 3t1 + t2

2 − 3t2 + v2
1 + v2

2
s.t. t1 ≥ 0, t2 ≥ 0,

minv fl = (v1 − t1)2 + (v2 − t2)2,

s.t. 0.5 ≤ v1 ≤ 1.5,
0.5 ≤ v2 ≤ 1.5,

Problem 9 [29]:

mint fu = 16t2 + 9v2

s.t. −4t + v ≤ 0,
t ≥ 0,

minv fl = (t + v − 20)4,

s.t. 4t + v − 50 ≤ 0,
v ≥ 0.

Problem 10 [29]:

mint fu = t3v1 + v2

s.t. 0 ≤ t ≤ 1,
minv fl = −v2

s.t. tv1 ≤ 10,
v2

1 + tv2 ≤ 1,
v2 ≥ 0.

Problem 11 [44]:

mint fu = −8t1 − 4t2 + 4v1 − 40v2 − 4v3

s.t. t1 ≥ 0, t2 ≥ 0
minv fl = 1+t1+t2+2v1−v2+v3

6+2t1+v1+v2−3v3
,

s.t. −v1 + v2 + v3 + v4 = 1,
2t1 − v1 + 2v2 − 0.5v3 + v5 = 1,
2t2 + 2v1 − v2 − 0.5v3 + v6 = 1,
vi ≥ 0, i = 1, ..., 6.

Problem 12 [29]:

mint fu = (t − 3)2 + (v − 2)2

s.t. −2t + v − 1 ≤ 0,
t − 2v + 2 ≤ 0,
t + 2v − 14 ≤ 0,
0 ≤ t ≤ 8,

minv fl = (v − 5)2

s.t. v ≥ 0.

Problem 13 [44]:

mint fu = −t2
1 − 3t2

2 − 4v1 + v2
2

s.t. t2
1 + 2t2 ≤ 4,

t1 ≥ 0, t2 ≥ 0,
minv fl = 2t2

1 + v2
1 − 5v2,

s.t. t2
1 − 2t1 + 2t2

2 − 2v1 + v2 ≥ −3,
t2 + 3v1 − 4v2 ≥ 4,
v1 ≥ 0, v2 ≥ 0.

Problem 14 [44]:

mint fu = (t − 1)2 + (v − 1)2

s.t. t ≥ 0,
minv fl = 0.5v2 + 500v − 50tv

s.t. v ≥ 0.

AIMS Mathematics Volume 7, Issue 9, 16112–16146.

16141

Table 1. Comparisons of the results by ACBTR Algorithm 2.5 and Methods in reference.

Problem (t∗, v∗) f ∗u iter CPUs (t∗, v∗) f ∗u
f ∗l nfunc time f ∗l

name ACBTR ACBTR ACBTR ACBTR Ref. Ref.
prob1 [34] (0.8438, 0.7657, -2.0769 14 1.77 (0.8438, 0.7657, 0) -2.0769

1.121e-8) -0.5863 16 -0.5863
prob2 [34] (0.609, 0.391, 0, 0.6086 12 2.1 (0.609, 0.391, 0, 0.6426

0,1.828) 1.6713 15 0, 1.828) 1.6708
prob3 [34] (0.97, 3.14, -8.92 9 3.09 (0.97, 3.14, -8.92

2.6, 1.8) -6.05 10 2.6, 1.8) -6.05
prob4 [34] (.5,.5,.5,.5) -1 13 1.87 (0.5, 0.5, 0.5, 0.5) -1

0 15 0
prob5 [34] (10.03, 9.9691) 100.58 6 1.8 (10.03, 9.969) 100.58

0.0012 8 0.001
prob6 [34] (1.6879, 0.8805,0) -1.3519 8 4.5 NA 3.57

7.4991 12 2.4
prob7 [34] (1, 0) 17 10 2.05 (1, 0) 17

1 11 1
prob8 [34] (0.75,0.75, -2.25 9 1.05 (

√
3/2,
√

3/2,
√

3/2, -2.1962
0.75, 0.75) 0 11

√
3/2) 0

prob9 [29] (11.138,5) 2209.8 11 1.85 (11.25,5) 2250
222.52 13 197.753

prob10 [29] (1,0,7.6287e-08) 7.6287e-08 7 3.34 (1,0,1) 1
-7.6287e-08 9 -1

prob11 [44] (0,0.9,0,0.6,0.4,0,0,0) -29.2 8 42.311 (0,0.9,0,0.6,0.4,0,0,0) -29.2
0.3148 11 0.3148

prob12 [29] (3,5) 9 10 2.23 (3,5) 9
0 14 0

prob13 [44] (0,1.7405, -15.548 6 2.5 (0,2,1.875,0.9063) -12.68
1.8497,0.9692) -1.4247 7 -1.016

prob14 [44] (10.016,0.81967) 81.328 8 2.15 (10.04,0.1429) 82.44
-0.3359 11 0.271

AIMS Mathematics Volume 7, Issue 9, 16112–16146.

16142

Table 2. Comparisons of the results by ACBTR (2.5) and Method [34].

Problem (t∗, v∗) f ∗u CPUs (t∗, v∗) f ∗u CPUs
f ∗l f ∗l

name ACBTR ACBTR ACBTR method [34] method [34] method [34].
prob1 (0.8438, 0.7657, -2.0769 1.77 (0.8462,0.769 2,0) -2.0769 1.734

1.121e-8) -0.5863 -0.5917
prob2 (0.609, 0.391, 0, 0.6086 2.1 (0.6111, 0.3889,0, 0.6389 2.375

0,1.828) 1.6713 0, 1.8333) 1.6806
prob3 (0.97, 3.14, -8.92 3.9 (1.031 6, 3.097 8, -8.9172 3.315

2.6, 1.8) -6.05 2.597 0, 1.792 9) -6.137 0
prob4 (0.5,0.5,0.5,0.5) -1 1.87 (0.5,0.5,0.5,0.5) -1 1.576

0 0
prob5 (10.03, 9.9691) 100.58 1.8 (10, 10) 100 1.825

0.0012 0
prob6 (1.6879, 0.8805,0) -1.3519 4.5 (1.8889, 0.8889,0) -1.2099 4.689

7.4991 7.6173
prob7 (1, 0) 17 2.05 (1,0) 17 1.769

1 1
prob8 (0.75,0.75, -2.25 1.05 (0.75,0.75, -2.25 1.124

0.75, 0.75) 0 0.75, 0.75) 0

Table 3. Comparisons of the results by ACBTR (2.5) and Method [29].

Problem (t∗, v∗) f ∗u CPUs (t∗, v∗) f ∗u CPUs
f ∗l f ∗l

name ACBTR ACBTR ACBTR method [29] method [29] method [29].
prob9 (11.138,5) 2209.8 1.85 (11.25, 5) 2250 2.21

222.52 197.753
prob10 (1,0,7.6287e-08) 7.6287e-08 3.34 (1,0,-1) -1 3.38

-7.6287e-08 1
prob12 (3,5) 9 2.23 (3,5) 9 -

0 0

AIMS Mathematics Volume 7, Issue 9, 16112–16146.

16143

Table 4. Comparisons of the results by ACBTR (2.5) and Method [44].
Problem (t∗, y∗) f ∗u CPUs (t∗, y∗) f ∗u CPUs

f ∗l f ∗l
name ACBTR ACBTR ACBTR method [44] method [44] method [44].
prob3 (0.97, 3.14, -8.92 3.9 (1.03, 3.097, -8.92 11.854

2.6, 1.8) -6.05 2.59,1.79 -6.14
prob5 (10.03, 9.9691) 100.58 1.8 (10,10) 100.014 5.888

0.0012 4.93e-7
prob6 (1.6879, 0.8805,0) -1.3519 4.5 (1.8888,0.888) -1.2091 25.332

7.4991 7.6145
prob11 (0,0.9,0,0.6,0.4,0,0,0) -29.2 42.311 (0,0.9,0,0.6,0.4,0,0,0) -29.2 107.55

0.3148 0.3148
prob13 (0,1.7405, -15.548 2.5 (4.4e-7,2, -12.65 14.42

1.8497,0.9692) -1.4247 1.875,0.9063) -1.021
prob14 (10.016,0.81967) 81.328 2.15 (10.0164,0.8197) 18.3279 4.218

-0.3359 -0.3359

5. Conclusions

In this paper, we introduce an effective solution algorithm to solve NBLP problem with positive
variables. This algorithm based on using KKT condition with Fischer-Burmeister function to transform
NBLP problem into an equivalent smooth SONP problem. An active-set strategy with barrier method
and the trust-region mechanism is used to ensure global convergence from any starting point. ACBTR
algorithm can reduce the number of iteration and the number of function evaluation. The projected
Hessian mechanism is used in ACBTR algorithm to overcome the difficulty of having an infeasible
trust region subproblem. A global convergence theory of ACBTR algorithm is studied under five
standard assumptions.

Preliminary numerical experiment on the algorithm is presented. The performance of the algorithm
is reported. The numerical results show that our approach is of value and merit further investigation.
For future work, there are many question should be answered

• Our approach used to transform problem 1.2 which is not smooth to smooth problem.
• Using the interior-point method guarantees the converges quadratically to a stationary point.

Conflict of interest

The authors declare that there is no conflict of interest in this paper.

References

1. D. Aksen, S. Akca, N. Aras, A bilevel partial interdiction problem with capacitated
facilities and demand outsourcing, Comput. Oper. Res., 41 (2014), 346–358.
https://doi.org/10.1016/j.cor.2012.08.013

AIMS Mathematics Volume 7, Issue 9, 16112–16146.

http://dx.doi.org/https://doi.org/10.1016/j.cor.2012.08.013

16144

2. Y. Abo-Elnaga, M. El-Shorbagy, Multi-sine cosine algorithm for solving nonlinear
bilevel programming problems, Int. J. Comput. Int. Sys., 13 (2020), 421–432.
https://doi.org/10.2991/ijcis.d.200411.001

3. A. Burgard, P. Pharkya, C. Maranas, Optknock: A bilevel programming framework for identifying
gene knockout strategies formicrobial strain optimization, Biotechnol. Bioeng., 84 (2003), 647–
657. https://doi.org/10.1002/bit.10803

4. M. Bazaraa, H. Sherali, C. Shetty, Nonlinear programming theory and algorithms, Hoboken: John
Wiley and Sons, 2006.

5. O. Ben-Ayed, O. Blair, Computational difficulty of bilevel linear programming, Oper. Res., 38
(1990), 556–560. https://doi.org/10.1287/opre.38.3.556

6. R. Byrd, Omojokun, Robust trust-region methods for nonlinearly constrained optimization, The
second SIAM conference on optimization, 1987.

7. R. Byrd, J. Gilbert, J. Nocedal, A trust region method based on interior point
techniques for nonlinear programming, Math. Program., 89 (2000), 149–185.
https://doi.org/10.1007/PL00011391

8. J. Chen, The semismooth-related properties of a merit function and a descent method
for the nonlinear complementarity problem, J. Glob. Optim., 36 (2006), 565–580.
https://doi.org/10.1007/s10898-006-9027-y

9. J. Chen, On some NCP-functions based on the generalized Fischer-Burmeister function, Asia Pac.
J. Oper. Res., 24 (2007), 401–420. https://doi.org/10.1142/S0217595907001292

10. J. Chen, S. Pan, A family of NCP-functions and a descent method for the
nonlinear complementarity problem, Comput. Optim. Appl., 40 (2008), 389–404.
https://doi.org/10.1007/s10589-007-9086-0

11. J. Dennis, M. Heinkenschloss, L. Vicente. Trust-region interior-point SQP algorithms for a
class of nonlinear programming problems. SIAM J. Control Optim., 36 (1998), 1750–1794.
https://doi.org/10.1137/S036012995279031

12. J. Dennis, M. El-Alem, K. Williamson, A trust-region approach to nonlinear systems of equalities
and inequalities, SIAM J. Optim., 9 (1999), 291–315. https://doi.org/10.1137/S1052623494276208

13. S. Dempe, Foundation of bilevel programming, London: Kluwer Academic Publishers, 2002.
14. T. Edmunds, J. Bard, Algorithms for nonlinear bilevel mathematical programs, IEEE T. Syst. Man

Cy., 21 (1991), 83–89. https://doi.org/10.1109/21.101139
15. B. El-Sobky, A robust trust-region algorithm for general nonlinear constrained optimization

problems, PhD thesis, Alexandria University, 1998.
16. B. El-Sobky, A global convergence theory for an active trust region algorithm for solving

the general nonlinear programming problem, Appl. Math. Comput., 144 (2003), 127–157.
https://doi.org/10.1016/S0096-3003(02)00397-1

17. B. El-Sobky, A Multiplier active-set trust-region algorithm for solving constrained optimization
problem, Appl. Math. Comput., 219 (2012), 928–946. https://doi.org/10.1016/j.amc.2012.06.072

18. B. El-Sobky, An interior-point penalty active-set trust-region algorithm, J. Egypt. Math. Soc., 24
(2016), 672–680. https://doi.org/10.1016/j.joems.2016.04.003

19. B. El-Sobky, An active-set interior-point trust-region algorithm, Pac. J. Optim., 14 (2018), 125–
159.

AIMS Mathematics Volume 7, Issue 9, 16112–16146.

http://dx.doi.org/https://doi.org/10.2991/ijcis.d.200411.001
http://dx.doi.org/https://doi.org/10.1002/bit.10803
http://dx.doi.org/https://doi.org/10.1287/opre.38.3.556
http://dx.doi.org/https://doi.org/10.1007/PL00011391
http://dx.doi.org/https://doi.org/10.1007/s10898-006-9027-y
http://dx.doi.org/https://doi.org/10.1142/S0217595907001292
http://dx.doi.org/https://doi.org/10.1007/s10589-007-9086-0
http://dx.doi.org/https://doi.org/10.1137/S036012995279031
http://dx.doi.org/https://doi.org/10.1137/S1052623494276208
http://dx.doi.org/https://doi.org/10.1109/21.101139
http://dx.doi.org/https://doi.org/10.1016/S0096-3003(02)00397-1
http://dx.doi.org/https://doi.org/10.1016/j.amc.2012.06.072
http://dx.doi.org/https://doi.org/10.1016/j.joems.2016.04.003

16145

20. B. El-Sobky, A. Abotahoun, An active-set algorithm and a trust-region approach in constrained
minimax problem, Comp. Appl. Math., 37 (2018), 2605–2631. https://doi.org/10.1007/s40314-017-
0468-3

21. B. El-Sobky, A. Abotahoun, A trust-region algorithm for solving mini-max problem, J. Comput.
Math., 36 (2018), 776–791. https://doi.org/10.4208/jcm.1705-m2016-0735

22. B. El-Sobky, Y. Abouel-Naga, Multi-objective optimal load flow problem with
interior-point trust-region strategy, Electr. Pow. Syst. Res., 148 (2017), 127–135.
https://doi.org/10.1016/j.epsr.2017.03.014

23. B. El-Sobky, Y. Abouel-Naga, A penalty method with trust-region mechanism for
nonlinear bilevel optimization problem, J. Comput. Appl. Math., 340 (2018), 360–374.
https://doi.org/10.1016/j.cam.2018.03.004

24. B. El-Sobky, Y.Abo-Elnaga, A. Mousa, A. El-Shorbagy, Trust-region based penalty barrier
algorithm for constrained nonlinear programming problems: An application of design of minimum
cost canal sections, Mathematics, 9 (2021), 1551. https://doi.org/10.3390/math9131551

25. B. El-Sobky, G. Ashry, An interior-point trust-region algorithm to solve a
nonlinear bilevel programming problem, AIMS Mathematics, 7 (2022), 5534–5562.
https://doi.org/10.3934/math.2022307

26. A. Fiacco, G. McCormick. Nonlinear programming: Sequential unconstrained minimization
techniques, New York: John Wiley and Sons, 1968.

27. J. Falk, J. M. Liu, On bilevel programming, Part I: General nonlinear cases, Math. Program., 70
(1995), 47–72. https://doi.org/10.1007/BF01585928

28. F. Facchinei, H. Y. Jiang, L. Q. Qi, A smoothing method for mathematical
programming with equilibrium constraints, Math. Program., 85 (1999), 107–134.
https://doi.org/10.1007/s10107990015a

29. H. Gumus, A. Flouda, Global optimization of nonlinear bilevel programming problems, J. Global
Optim., 20 (2001), 1–31. https://doi.org/10.1023/A:1011268113791

30. J. L. Gonzalez Velarde, J. F. Camacho-Vallejo, G. Pinto Serranoo, A scatter search algorithm for
solving a bilevel optimization model for determining highway tolls, Comput. Syst., 19 (2015), 5–
16. https://doi.org/10.13053/CyS-19-1-1916

31. M. Hestenes, Muliplier and gradient methods, J. Optim. Theorey Appl., 4 (1969), 303–320.
https://doi.org/10.1007/BF00927673

32. G. Hibino, M. Kainuma, Y. Matsuoka, Two-level mathematical programming for analyzing subsidy
options to reduce greenhouse-gas emissions, IIASA Working Paper, 1996.

33. D. Kouri, M. Heinkenschloss, D. Ridzal, B. van Bloemen Waanders, A trust-region algorithm with
adaptive stochastic collocation for PDE optimization under uncertainty, SIAM J. Sci. Comput., 35
(2013), A1847–A1879. https://doi.org/10.1137/120892362

34. H. Li, Y. C. Jiao, L. Zhang, Orthogonal genetic algorithm for solving quadratic
bilevel programming problems. J. Syst. Eng. Electron., 21 (2010), 763–770.
https://doi.org/10.3969/j.issn.1004-4132.2010.05.008

35. Y. B. Lv, T. S. Hu, G. M. Wang, Z. P. Wan, A neural network approach for solving
nonlinear bilevel programming problem, Comput. Math. Appl., 55 (2008), 2823–2829.
https://doi.org/10.1016/j.camwa.2007.09.010

AIMS Mathematics Volume 7, Issue 9, 16112–16146.

http://dx.doi.org/https://doi.org/10.1007/s40314-017-0468-3
http://dx.doi.org/https://doi.org/10.1007/s40314-017-0468-3
http://dx.doi.org/https://doi.org/10.4208/jcm.1705-m2016-0735
http://dx.doi.org/https://doi.org/10.1016/j.epsr.2017.03.014
http://dx.doi.org/https://doi.org/10.1016/j.cam.2018.03.004
http://dx.doi.org/https://doi.org/10.3390/math9131551
http://dx.doi.org/https://doi.org/10.3934/math.2022307
http://dx.doi.org/https://doi.org/10.1007/BF01585928
http://dx.doi.org/https://doi.org/10.1007/s10107990015a
http://dx.doi.org/https://doi.org/10.1023/A:1011268113791
http://dx.doi.org/https://doi.org/10.13053/CyS-19-1-1916
http://dx.doi.org/https://doi.org/10.1007/BF00927673
http://dx.doi.org/https://doi.org/10.1137/120892362
http://dx.doi.org/https://doi.org/10.3969/j.issn.1004-4132.2010.05.008
http://dx.doi.org/https://doi.org/10.1016/j.camwa.2007.09.010

16146

36. N. N. Li, D. Xue, W. Y. Sun, J. Wang, A stochastic trust-region method for
unconstrained optimization problems, Math. Probl. Eng., 2019 (2019), 8095054.
https://doi.org/10.1155/2019/8095054

37. L. M. Ma, G. M. Wang, A Solving algorithm for nonlinear bilevel programing problems based on
human evolutionary model, Algorithms, 13 (2020), 260. https://doi.org/10.3390/a13100260

38. E. Omojokun, Trust-region strategies for optimization with nonlinear equality and inequality
constraints, PhD thesis, University of Colorado, 1989.

39. T. Steihaug, The conjugate gradient method and trust-region in large scale optimization, SIAM J.
Numer. Anal., 20 (1983), 626–637. https://doi.org/10.1137/0720042

40. G. Savard, J. Gauvin, The steepest descent direction for the nonlinear bilevel programming
problem, Oper. Res. Lett., 15 (1994), 265–272. https://doi.org/10.1016/0167-6377(94)90086-8

41. S. Sadatrasou, M. Gholamian, K. Shahanaghi, An application of data mining classification
and bi-level programming for optimal credit allocation, Decis. Sci. Lett., 4 (2015), 35–50.
https://doi.org/10.5267/j.dsl.2014.9.005

42. N. Thoai, Y. Yamamoto, A. Yoshise, Global optimization method for solving mathematical
programs with linear complementarity constraints, Mathematical programs with complementarity,
2002.

43. M. Ulbrich, S. Ulbrich, L. N. Vicente, A globally convergent primal-dual interior-
point filter method for nonlinear programming, Math. Program., 100 (2004), 379–410.
https://doi.org/10.1007/s10107-003-0477-4

44. Y. L. Wang, Y. C. Jiao, H. Li, An evolutionary algorithm for solving nonlinear bilevel programming
based on a new constraint-handling scheme, IEEE T. Syst. Man Cy. C, 35 (2005), 221–232.
https://doi.org/10.1109/TSMCC.2004.841908

45. X. Wang, Y. X. Yuan, A trust region method based on a new affine scaling technique
for simple bounded optimization, Optim. Method. Softw., 28 (2013), 871–888.
https://doi.org/10.1080/10556788.2011.622378

46. X. Wang, Y. X. Yuan, An augmented Lagrangian trust region method for
equality constrained optimization, Optim. Method. Softw., 30 (2015), 559–582.
https://doi.org/10.1080/10556788.2014.940947

47. Y. X. Yuan, Recent advances in trust region algorithms. Math. Program., 151 (2015), 249–281.
https://doi.org/10.1007/s10107-015-0893-2

48. M. Zeng, Q. Ni, A new trust region method for nonlinear equations involving fractional mode. Pac.
J. Optim., 15 (2019), 317–329.

c© 2022 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 7, Issue 9, 16112–16146.

http://dx.doi.org/https://doi.org/10.1155/2019/8095054
http://dx.doi.org/https://doi.org/10.3390/a13100260
http://dx.doi.org/https://doi.org/10.1137/0720042
http://dx.doi.org/https://doi.org/10.1016/0167-6377(94)90086-8
http://dx.doi.org/https://doi.org/10.5267/j.dsl.2014.9.005
http://dx.doi.org/https://doi.org/10.1007/s10107-003-0477-4
http://dx.doi.org/https://doi.org/10.1109/TSMCC.2004.841908
http://dx.doi.org/https://doi.org/10.1080/10556788.2011.622378
http://dx.doi.org/https://doi.org/10.1080/10556788.2014.940947
http://dx.doi.org/https://doi.org/10.1007/s10107-015-0893-2
http://creativecommons.org/licenses/by/4.0

	Introduction
	An active-set with barrier method and trust-region strategy
	An active-set strategy and barrier method
	Trust-region strategy
	An Active-set-barrier-trust-region algorithm

	Global convergence analysis for ACBTR algorithm
	Basic lemmas
	 Global convergence theory when k
	Global convergence theory when k is bounded
	Main global convergence theory

	Numerical results
	 Conclusions

