Research article

An active-set with barrier method and trust-region mechanism to solve a nonlinear Bilevel programming problem

B. El-Sobky ${ }^{1, *}$, G. Ashry ${ }^{1}$ and Y. Abo-EInaga ${ }^{2}$
${ }^{1}$ Department of Mathematics and Computer Science, Alexandria University, Faculty of Science, Egypt
${ }^{2}$ Department of basic science, Tenth of Ramadan City, Higher Technological Institute, Egypt
* Correspondence: Email: bothinaelsobky @ yahoo.com.

Abstract

Nonlinear Bilevel programming (NBLP) problem is a hard problem and very difficult to be resolved by using the classical method. In this paper, Karush-Kuhn-Tucker (KKT) condition is used with Fischer-Burmeister function to convert NBLP problem to an equivalent smooth single objective nonlinear programming (SONP) problem. An active-set strategy is used with Barrier method and trustregion technique to solve the smooth SONP problem effectively and guarantee a convergence to optimal solution from any starting point. A global convergence theory for the active-set barrier trust-region (ACBTR) algorithm is studied under five standard assumptions. An applications to mathematical programs are introduced to clarify the effectiveness of ACBTR algorithm. The results show that ACBTR algorithm is stable and capable of generating approximal optimal solution to the NBLP problem.

Keywords: nonlinear Bilevel programming problem; active-set; barrier method; trust-region mechanism; projected Hessian mechanism; global convergence
Mathematics Subject Classification: 49N10, 49N35, 65K05, 93D22, 93D52

1. Introduction

The NBLP problem is a nonlinear optimization problem that is constrained by another nonlinear optimization problem. This mathematical programming model arises when two independent decision makers, ordered within a hierarchical structure, have conflicting objectives. The decision maker at the lower level has to optimize her objective under the given parameters from the upper level decision maker, who, in return, with complete information on the possible reactions of the lower, selects the parameters so as to optimize her own objective. The decision maker with the upper level objective, $f_{u}(t, v)$ takes the lead, and chooses her decision vector t . The decision maker with lower level objective,
$f_{l}(t, v)$, reacts accordingly by choosing her decision vector v to optimize her objective, parameterized in t. Note that the upper level decision maker is limited to influencing, rather than controlling, the lower level's outcome. In fact, the problem has been proved to be NP-hard [5]. However, the NBLP problem is used so extensively in transaction network, finance budget, resource allocation, price control etc. Various approaches have been devoted to study this field, which leads to a a speedy development in theories and algorithms, see [1,3,30,32,41]. For detailed exposition, the reader can review [23,25,35].

A mathematical formulation for the NBLP problem is

$$
\begin{align*}
\min & f_{u}(t, v) \\
\text { s.t. } & g_{u}(t, v) \leq 0, \\
\min & f_{l}(t, v), \tag{1.1}\\
\text { s.t. } & g_{l}(t, v) \leq 0, \\
& t \geq 0, \quad v \geq 0,
\end{align*}
$$

where $t \in \mathfrak{R}^{n_{1}}$ and $v \in \mathfrak{R}^{n_{2}}$.
Let $n=n_{1}+n_{2}$, and assume that the functions $f_{u}: \mathfrak{R}^{n} \rightarrow \mathfrak{R}, f_{l}: \mathfrak{R}^{n} \rightarrow \mathfrak{R}, g_{u}: \mathfrak{R}^{n} \rightarrow \mathfrak{R}^{m_{1}}$, and $g_{l}: \mathfrak{R}^{n} \rightarrow \mathfrak{R}^{m_{2}}$ are at least twice continuously differentiable function in our method.

Several approaches have been proposed to solve the NBLP problem 1.1, see [2, 13, 14, 25, 27, 37, 40,42]. KKT conditions one of these approaches and used in this paper to convert the original NBLP problem 1.1 to the following one-level programming problem:

$$
\begin{array}{ll}
\min _{t, v} & f_{u}(t, v) \\
s . t . & g_{u}(t, v) \leq 0, \\
& \nabla_{v} f_{l}(t, v)+\nabla_{v} g_{l}(t, v) \lambda_{l}=0, \\
& g_{l}(t, v) \leq 0, \tag{1.2}\\
& \left(\lambda_{l}\right)_{j} g_{l j}(t, v)=0, \quad j=1, \ldots, m_{2}, \\
& \left(\lambda_{l}\right)_{j} \geq 0, \quad j=1, \ldots, m_{2}, \\
& t \geq 0 \text { and } v \geq 0,
\end{array}
$$

where $\lambda_{l} \in \mathfrak{R}^{m_{2}}$ is a multiplier vector associated with inequality constraint $g_{l}(t, v)$. problem 1.2 is nonconvex and non-differentiable, moreover the regularity assumptions which are needed to successfully handle smooth optimization problems are never satisfied and it is not good to use our approach to solve problem 1.2. Dempe [13] presents smoothing method for the NBLP problem and the same method is also presented in [28] for programming with complementary constraints. Following this smoothing method we can propose our approach for the NBLP problem. Before presenting our approach for the NBLP problem, we give some definitions firstly.

Definition 1.1. The Fischer-Burmeister function is $\Psi(\tilde{a}, \tilde{b}): \mathfrak{R}^{2} \rightarrow \mathfrak{R}$ defined by $\Psi(\tilde{a}, \tilde{b})=\tilde{a}+\tilde{b}-$ $\sqrt{\tilde{a}^{2}+\tilde{b}^{2}}$ and the perturbed Fischer-Burmeister function is $\Psi(\tilde{a}, \tilde{b}, \hat{\varepsilon}): \mathfrak{R}^{3} \rightarrow \Re$ defined by $\Psi(\tilde{a}, \tilde{b}, \epsilon)=$ $\tilde{a}+\tilde{b}-\sqrt{\tilde{a}^{2}+\tilde{b}^{2}+\epsilon}$.

The Fischer-Burmeister function has the property that $\Psi(\tilde{a}, \tilde{b})=0$ if and only if $\tilde{a} \geq 0, \tilde{b} \geq 0$, and $\tilde{a} \tilde{b}=0$. It is non-differentiable at $\tilde{a}=\tilde{b}=0$. Its perturbed variant satisfies $\Psi(\tilde{a}, \tilde{b}, \epsilon)=0$ if and only if $\tilde{a}>0, \tilde{b}>0$, and $\tilde{a} \tilde{b}=\frac{\epsilon}{2}$ for $\epsilon>0$. This function is smooth with respect to \tilde{a}, \tilde{b}, for $\epsilon>0$. for more details see [8-10,28].

In this paper, to allow the proposed algorithm ACBTR solve the NBLP problem 1.1 and satisfy the asymptotic stability conditions, we use the following changed perturbed Fischer-Burmeister function:

$$
\begin{equation*}
\tilde{\Psi}(\tilde{a}, \tilde{b}, \epsilon)=\sqrt{\tilde{a}^{2}+\tilde{b}^{2}+\epsilon}-\tilde{a}-\tilde{b} . \tag{1.3}
\end{equation*}
$$

It is obvious that the changed perturbed Fischer-Burmeister function $\tilde{\Psi}(\tilde{a}, \tilde{b}, \epsilon)$ has the same property with the function $\Psi(\tilde{a}, \tilde{b}, \epsilon)$. Using the Fischer-Burmeister function 1.3, problem 1.2 equivalents to the following single objective constrained optimization problem

$$
\begin{array}{ll}
\min _{t, v} & f_{u}(t, v) \\
\text { s.t. } & g_{u}(t, v) \leq 0, \\
& \nabla_{v} f_{l}(t, v)+\nabla_{v} g_{l}(t, v) \mu=0, \tag{1.4}\\
& \sqrt{g_{l_{j}}^{2}+\left(\lambda_{l}\right)_{j}^{2}+\epsilon}-\left(\lambda_{l}\right)_{j}+g_{l_{j}}=0, \quad j=1, \ldots, m_{2}, \\
& t \geq 0 \text { and } v \geq 0 .
\end{array}
$$

Let $x=(t, v)^{T}, m=n_{2}+m_{2}$ then the above problem can be written as SONP problem as follows

$$
\begin{array}{cl}
\text { minimize } & f_{u}(x) \\
\text { subject to } & h_{l}(x)=0, \tag{1.5}\\
& g_{u}(x) \leq 0, \\
& x \geq 0,
\end{array}
$$

where $f_{u}: \mathfrak{R}^{n} \rightarrow \mathfrak{R}, h_{l}: \mathfrak{R}^{n} \rightarrow \mathfrak{R}^{m}$, and $g_{u}: \mathfrak{R}^{n} \rightarrow \mathfrak{R}^{m_{1}}$ are at least twice continuously differentiable functions.

Various approaches have been proposed to solve the SONP problem 1.5, see [4, 7, 16-19, 24]. In this paper, we use an active-set with barrier method to reduce SONP problem 1.5 to equivalent equality constrained optimization problem. So, we can use one of methods which are used for solving equality constrained optimization problem.

In this paper, we use a trust-region technique which is successful approach for solving SONP problem and is very important to ensure global convergence from any starting point. The trust-region strategy can induce strongly global convergence. It is more robust when it deals with rounding errors. It does not require the Hessian of the objective function must be positive definite or the objective function of the model must be convex. Also, some criteria are used to test the trial step is acceptable or no. If it is not acceptable, then the subproblem must be resolved with a reduced the trust-region radius. For the detailed expositions, the reader review [17,20-24,33, 36,45-48].

A projected Hessian method which is suggested by [6,38] and used by [19, 20, 22], utilizes in this paper to treat the difficulty of having an infeasible trust-region subproblem. In this method, the trial step is decomposed into two components and each component is computed by solving a trust-region unconstrained subproblem.

Under standard five assumptions, a global convergence theory for ACBTR algorithm is introduced. Moreover, numerical experiments display that ACBTR algorithm performers effectively and efficiently in pursuance.

The balance of this paper is organized as follows. A detailed description for the proposed method to solve SONP problem 1.5 is introduced in the next section. Section 3 is devoted to analysis of
the global convergence of ACBTR algorithm. In Section 4, we report preliminary numerical results. Finally, some further remark is given in Section 5.

Notations: We use ||.|| to denote the Euclidean norm ||.\|| ${ }_{2}$. The i - th component of any vector such as x is written as $x^{(i)}$. The $j^{\text {th }}$ trial iterate of iteration k is denoted by k^{j}. Subscript k refers to iteration indices. For example, $f_{u_{k}} \equiv f_{u}\left(x_{k}\right), h_{l_{k}} \equiv h_{l}\left(x_{k}\right), g_{u_{k}} \equiv g_{u}\left(x_{k}\right), W_{k} \equiv W\left(x_{k}\right), \nabla_{x} L_{k}^{s} \equiv \nabla_{x} L^{s}\left(x_{k}, \lambda_{k} ; \sigma_{k}\right)$, and so on to denote the function value at a particular point.

2. An active-set with barrier method and trust-region strategy

In this section, firstly, we will introduce the detailed description for the active-set strategy with barrier method to reduce SONP problem 1.5 to equality constrained optimization problem. Secondly, to solve the equality constrained optimization problem and guarantee convergence from any starting point, we will introduce the detailed description for the trust-region algorithm. Finally, we will introduce the main steps for the main algorithm ACBTR to solve NBLP problem 1.1.

2.1. An active-set strategy and barrier method

Motivated by the active-set strategy which is introduced by [12] and used by [17-21], we define a 0 - 1 diagonal matrix $W(x) \in \mathfrak{R}^{m_{2} \times m_{2}}$ whose diagonal entries are

$$
w_{i}(x)= \begin{cases}1, & \text { if } g_{u_{i}}(x) \geq 0, \tag{2.1}\\ 0, & \text { if } g_{u_{i}}(x)<0,\end{cases}
$$

where $i=1, \ldots, m_{2}$. By Using the diagonal matrix $W(x) \in \mathfrak{R}^{m_{2} \times m_{2}}$, we can transform problem 1.5 to the following equality constrained optimization problem with positive variables

$$
\begin{array}{ll}
\text { minimize }_{x} & f_{u}(x) \\
\text { subject to } & h_{l}(x)=0, \\
& g_{u}(x)^{T} W(x) g_{u}(x)=0, \\
& x \geq 0 .
\end{array}
$$

Penalty methods usually more suitable on problems with equality constraints. These methods are usually generate a sequence of points that converges to a solution of the problem from the exterior of the feasible region. An advantage of penalty methods is that they do not request the iterates to be strictly feasible. In this paper we use the penalty method to reduce the above problem to the following equality constrained optimization problem with positive variables

$$
\begin{array}{cc}
\text { minimize }_{x} & f_{u}(x)+\frac{\sigma}{2}\left\|W(x) g_{u}(x)\right\|^{2} \\
\text { subject to } & h_{l}(x)=0, \tag{2.2}\\
x \geq 0,
\end{array}
$$

where σ is a positive parameter. Let $F^{+}(x)=\{x \mid x>0\}$.
Motivated by the barrier method which is discussed in [[7,26,43], problem 2.2, for any $x \in F^{+}$can be written as follows

$$
\begin{array}{ll}
\text { minimize }_{x} & f_{u}(x)-s \sum_{i=1}^{n} \ln \left(x^{(i)}\right)+\frac{\sigma}{2}\left\|W(x) g_{u}(x)\right\|^{2} \tag{2.3}\\
\text { subject to } & h_{l}(x)=0,
\end{array}
$$

for decreasing sequence of barrier parameters s converging to zero, see [26].
The Lagrangian function associated with problem 2.3 is

$$
\begin{equation*}
L^{s}(x, \lambda ; \sigma)=f_{u}(x)-s \sum_{i=1}^{n} \ln \left(x^{(i)}\right)+\lambda^{T} h_{l}(x)+\frac{\sigma}{2}\left\|W(x) g_{u}(x)\right\|^{2}, \tag{2.4}
\end{equation*}
$$

where $\lambda \in \mathfrak{R}^{m}$ is a multiplier vector associated with the equality constraint $h_{l}(x)=0$.
The first-order necessary condition for the strictly positive point x_{*} to be a local minimizer of problem 2.3 is that there exists a Lagrange multiplier vector $\lambda_{*} \in \mathfrak{R}^{m}$, such that (x_{*}, λ_{*}) satisfies the following nonlinear system

$$
\begin{array}{r}
\nabla f_{u}\left(x_{*}\right)-s X_{*}{ }^{-1} e+\nabla h_{l}\left(x_{*}\right) \lambda_{*}+\sigma \nabla g_{u}\left(x_{*}\right) W\left(x_{*}\right) g_{u}\left(x_{*}\right)=0 \\
h_{l}\left(x_{*}\right)=0,
\end{array}
$$

where X is diagonal matrix whose diagonal entries are $\left(x_{1}, \ldots, x_{n}\right) \in F^{+}$. Let $s X_{*}{ }^{-1} e=y \in \mathfrak{R}^{n}$ be an auxiliary variable, then the above system can be written as follows

$$
\begin{array}{r}
\nabla f_{u}\left(x_{*}\right)-y_{*}+\nabla h_{l}\left(x_{*}\right) \lambda_{*}+\sigma \nabla g_{u}\left(x_{*}\right) W\left(x_{*}\right) g_{u}\left(x_{*}\right)=0, \\
X_{*} y_{*}-s e=0, \\
h_{l}\left(x_{*}\right)=0, \tag{2.7}
\end{array}
$$

where $x_{*} \in F^{+}$. The conditions [2.5-2.7] are called the barrier KKT conditions. For more details see [26].

Applying Newton's method to the nonlinear system (2.5)-(2.7), we have

$$
\left(\begin{array}{ccc}
H+\sigma \nabla g_{u}(x) W(x) \nabla g_{u}(x)^{T} & \nabla h_{l}(x) & -I \tag{2.8}\\
Y & 0 & X \\
\nabla h_{l}(x)^{T} & 0 & 0
\end{array}\right)\left(\begin{array}{c}
d_{x} \\
d_{\lambda} \\
d_{y}
\end{array}\right)=-\left(\begin{array}{c}
\nabla_{x} L^{s}(x, \lambda ; \sigma) \\
X y-s e \\
h_{l}(x)
\end{array}\right)
$$

where H is the Hessian matrix of the following function or an approximation to it

$$
\ell^{s}(x, \lambda)=f_{u}(x)+\lambda^{T} h_{l}(x)-s \sum_{i=1}^{n} \ln \left(x^{(i)}\right) .
$$

The matrix Y is a diagonal matrix whose diagonal entries are $\left(y_{1}, \ldots, y_{n}\right)$ and $\nabla_{x} L^{s}(x, \lambda ; \sigma)=\nabla f_{u}(x)-$ $y+\nabla h_{l}(x) \lambda+\sigma \nabla g_{u}(x) W(x) g_{u}(x)$.

From the second equation of the system (2.8) we have

$$
\begin{equation*}
d_{y}=-y+s X^{-1} e-X^{-1} Y d_{x} . \tag{2.9}
\end{equation*}
$$

To decrease the dimension of system 2.8 , we eliminate d_{y} from the first equation of the system 2.8 by using Eq 2.9 as follows

$$
\left(H+\sigma \nabla g_{u}(x) W(x) \nabla g_{u}(x)^{T}\right) d x+\nabla h_{l}(x) d_{\lambda}-I\left(-y+s X^{-1} e-X^{-1} Y d_{x}\right)=-\nabla_{x} L^{s}(x, \lambda ; \sigma)
$$

Using Eq 2.6, we have the following system

$$
\left(\begin{array}{cc}
B & \nabla h_{l}(x) \tag{2.10}\\
\nabla h_{l}(x)^{T} & 0
\end{array}\right)\binom{d_{x}}{d_{\lambda}}=-\binom{\nabla_{x} L^{s}(x, \lambda ; \sigma)}{h_{l}(x)} .
$$

where, $B=H+X^{-1} Y+\sigma \nabla g_{u}(x) W(x) \nabla g_{u}(x)^{T}$.
We notice that, the system 2.10 is equivalent to the first order necessary condition for the following sequential quadratic programming problem

$$
\begin{array}{cc}
\text { minimize } & L^{s}(x, \lambda ; \sigma)+\nabla_{x} L^{s}(x, \lambda ; \sigma)^{T} d+\frac{1}{2} d^{T} B d \\
\text { subject to } & h_{l}(x)+\nabla h_{l}(x)^{T} d=0 . \tag{2.11}
\end{array}
$$

That is, the point $\left(x_{*}, \lambda_{*}\right)$ that satisfies the KKT conditions for subproblem 2.11 will satisfy the KKT conditions for problem 1.5. A methods which are used to solve subproblem 2.11 is a local methods. That is, it may not converge to a stationary point if the starting point is far away from the solution. To guarantee convergence from any starting point, we use the trust-region technique.

2.2. Trust-region strategy

By using trust-region technique to ensure convergence of subproblem 2.11 and estimate the step d_{k}, we solve the following subproblem

$$
\begin{array}{lc}
\text { minimize } & \nabla_{x} L_{k}^{s T} d+\frac{1}{2} d^{T} B_{k} d \\
\text { subject to } & h_{l}\left(x_{k}\right)+\nabla h_{l}\left(x_{k}\right)^{T} d=0 \tag{2.12}\\
& \|d\| \leq \delta_{k},
\end{array}
$$

where $0<\delta_{k}$ represents the radius of the trust-region. The subproblem 2.12 may be infeasible because there may be no intersecting points between hyperplane of the linearized constraints $h_{l}(x)+\nabla h_{l}(x)^{T} d$ and the constraint $\|d\| \leq \delta_{k}$. Even if they intersect, there is no guarantee that this will keep true if δ_{k} is reduced, see [11]. So, a projected Hessian technique is used in our approach to overcome this problem. This technique was suggested by $[6,38]$ and used by $[19,20,22]$. In this technique, the trial step d_{k} is decomposed into two orthogonal components: the normal component d_{k}^{n} to improve feasibility and the tangential component d_{k}^{t} to improve optimality. Each of d_{k}^{n} and d_{k}^{t} is evaluated by solving unconstrained trust-region subproblem.

- To compute the normal component d^{n}

$$
\begin{array}{ll}
\text { minimize } & \left\|h_{l_{k}}+\nabla h_{l_{k}}^{T} d^{n}\right\|^{2} \tag{2.13}\\
\text { subject to } & \left\|d^{n}\right\| \leq \zeta \delta_{k},
\end{array}
$$

for some $\zeta \in(0,1)$. To solve the subproblem 2.13, we use a conjugate gradient method which is introduced by [39] and used by [23], see Algorithm 2.1 in [23]. It is very cheap if the problem is largescale and the Hessian is indefinite. By using the conjugate gradient method, the following condition is hold

$$
\begin{equation*}
\left\|h_{l_{k}}\right\|^{2}-\left\|h_{l_{k}}+\nabla h_{l_{k}}^{T} d_{k}^{n}\right\|^{2} \geq \vartheta_{1}\left\{\left\|h_{l_{k}}\right\|^{2}-\left\|h_{l_{k}}+\nabla h_{l_{k}}^{T} n_{k}^{n c p}\right\|^{2}\right\} \tag{2.14}
\end{equation*}
$$

for some $\vartheta_{1} \in(0,1]$. That is, the normal predicted decrease obtained by the normal component d_{k}^{n} is greater than or equal to a fraction of the normal predicted decrease obtained by the normal Cauchy step $d_{k}^{n c p}$. The normal Cauchy step $d_{k}^{n c p}$ is defined as

$$
\begin{equation*}
d_{k}^{n c p}=-\alpha_{k}^{n c p} \nabla h_{l_{k}} h_{k}, \tag{2.15}
\end{equation*}
$$

where the parameter $\alpha_{k}^{n c p}$ is given by

$$
\alpha_{k}^{n c p}=\left\{\begin{array}{cc}
\frac{\left\|\nabla h_{l^{k}} h_{k}\right\|^{2}}{\|\left(\nabla h_{l_{k}} T^{2} \nabla h_{k} h_{k} l_{k} \|^{2}\right.} & \text { if } \frac{\left\|\nabla h_{l_{k}} h_{k}\right\|^{3}}{\left\|\nabla h_{l_{k}}^{T} \nabla h_{k} h_{k}\right\|_{k} \|^{2}} \leq \delta_{k} \tag{2.16}\\
\frac{\delta_{k}}{\left\|\nabla h_{k} h_{k}\right\|} & \text { and } \left.\| \nabla h_{l_{k}}^{T} \nabla h_{l_{k}} h_{l_{k}}\right) \|>0 \\
\text { otherwise. }
\end{array}\right.
$$

Once d_{k}^{n} is estimated, we will compute $d_{k}^{t}=Z_{k} \bar{d}_{k}^{t}$. A matrix Z_{k} is the matrix whose columns form a basis for the null space of $\left(\nabla h_{l_{k}}\right)^{T}$.

- To compute the tangential component d_{k}^{t}

To estimate the tangential component d_{k}^{t}, let

$$
\begin{equation*}
q(d)=L^{s}(x, \lambda ; \sigma)+\nabla_{x} L^{s}(x, \lambda ; \sigma)^{T} d+\frac{1}{2} d^{T} B d . \tag{2.17}
\end{equation*}
$$

and using the conjugate gradient method [23] to solve the following trust-region subproblem

$$
\begin{array}{cc}
\text { minimize } & {\left[Z_{k}^{T} \nabla q_{k}\left(d_{k}^{n}\right)\right]^{T} \bar{d}^{t}+\frac{1}{2} \bar{d}^{T} Z_{k}^{T} B_{k} Z_{k} \bar{d}^{t}} \tag{2.18}\\
\text { subject to } & \left\|Z_{k} \bar{d}^{t}\right\| \leq \Delta_{k},
\end{array}
$$

where $\nabla q_{k}\left(d_{k}^{n}\right)=\nabla_{x} L_{k}^{s}+B_{k} d_{k}^{n}$ and $\Delta_{k}=\sqrt{\delta_{k}^{2}-\left\|d_{k}^{n}\right\|^{2}}$.
Let a tangential predicted decrease which is obtained by the tangential component d_{k}^{t} be

$$
\begin{equation*}
\operatorname{Tpred}_{k}\left(\bar{d}_{k}^{t}\right)=q_{k}\left(d_{k}^{n}\right)-q_{k}\left(d_{k}^{n}+Z_{k} \bar{d}_{k}^{t}\right) . \tag{2.19}
\end{equation*}
$$

Since the conjugate gradient method is used to solve subproblem (2.18) and estimate d_{k}^{t}, then the following condition holds

$$
\begin{equation*}
\operatorname{Tpred}_{k}\left(\bar{d}_{k}^{t}\right) \geq \vartheta_{2} \operatorname{Tpred}_{k}\left(\bar{d}_{k}^{t c p}\right), \tag{2.20}
\end{equation*}
$$

for some $\vartheta_{2} \in(0,1]$. This condition clarified that the tangential predicted decrease which is obtained by tangential step \bar{d}_{k}^{t} is greater than or equal to a fraction of the tangential predicted decrease obtained by a tangential Cauchy step $\bar{d}_{k}^{t c p}$. The tangential Cauchy step $\bar{d}_{k}^{t c p}$ is defined as follows

$$
\begin{equation*}
\bar{d}_{k}^{t c p}=-\alpha_{k}^{t c p} Z_{k}^{T} \nabla q_{k}\left(d_{k}^{n}\right), \tag{2.21}
\end{equation*}
$$

where the parameter $\alpha_{k}^{t c p}$ is given by

$$
\alpha_{k}^{t c p}=\left\{\begin{array}{cc}
\frac{\left\|Z_{k}^{T} \nabla q_{k}\left(d_{k}^{n}\right)\right\|^{2}}{\left(Z_{k}^{T} \nabla q_{k}\left(d_{k}^{n}\right)\right)^{T} \bar{B}_{k} Z_{k}^{T} \nabla q_{k}\left(d_{k}^{n}\right)} & \text { if } \frac{\left\|Z_{k}^{T} \nabla q_{k}\left(d_{d}^{n}\right)\right\|^{3}}{\left(Z_{k}^{T} \nabla q_{k}\left(d_{k}^{n}\right)\right)^{T} \bar{B}_{k} Z_{k}^{T} \nabla q_{k}\left(d_{k}^{n}\right)} \leq \Delta_{k} \tag{2.22}\\
& \text { and }\left(Z_{k}^{T} \nabla q_{k}\left(d_{k}^{n}\right)\right)^{T} \bar{B}_{k} Z_{k}^{T} \nabla q_{k}\left(d_{k}^{n}\right)>0, \\
\frac{\Delta_{k}}{\left\|Z_{k}^{T} \nabla q_{k}\left(d_{k}^{n}\right)\right\|} & \text { otherwise, }
\end{array}\right.
$$

such that $\bar{B}_{k}=Z_{k}^{T} B_{k} Z_{k}$.
Once estimating d_{k}^{t}, we set $d_{k}=d_{k}^{n}+d_{k}^{t}$ and $x_{k+1}=x_{k}+d_{k}$. To guarantee that $x_{k+1} \in F^{+}$at every iteration k, we need to evaluate the damping parameter μ_{k}.

- To estimate the damping parameter μ_{k}

The damping parameter μ_{k} is defined as follows:

$$
\begin{equation*}
\mu_{k}=\min \left\{\min _{i}\left\{\theta_{k}^{(i)}\right\}, 1\right\}, \tag{2.23}
\end{equation*}
$$

where

$$
\theta_{k}^{(i)}= \begin{cases}\frac{-x_{k}^{(i)}}{d_{k}^{(i)}}, & \text { if } d_{k}^{(i)}<0 \\ 1 & \text { otherwise }\end{cases}
$$

To be decided whether the scale step $\mu_{k} d_{k}$ will be accepted or no, we need to a merit function. The merit function is the function which is tie the objective function $f_{u}(x)$ with the constraints $h_{l}(x)$ and $g_{u}(x)$ in such a way that progress in the merit function means progress in solving problem. In the proposed algorithm, we use the following an augmented Lagrange function as a merit function, see [31].

$$
\begin{equation*}
\Phi^{s}(x, \lambda ; \sigma ; \rho)=\ell^{s}(x, \lambda)+\frac{\sigma}{2}\left\|W(x) g_{u}(x)\right\|^{2}+\rho\left\|h_{l}(x)\right\|^{2} \tag{2.24}
\end{equation*}
$$

where $\rho>0$ is a penalty parameter.
To be decided whether the point $\left(x_{k}+\mu_{k} d_{k}, \lambda_{k+1}\right)$ will be taken as a next iterate or no, we need to define the actual reduction Ared_{k} and the predicted reduction Pred_{k} in the merit function $\Phi^{s}(x, \lambda ; \sigma ; \rho)$.

In the proposed algorithm, Ared $_{k}$ is defined as follows

$$
\operatorname{Ared}_{k}=\Phi^{s}\left(x_{k}, \lambda_{k} ; \sigma_{k} ; \rho_{k}\right)-\Phi^{s}\left(x_{k}+\mu_{k} d_{k}, \lambda_{k+1} ; \sigma_{k} ; \rho_{k}\right) .
$$

Also Ared $_{k}$ can be written as follows,

$$
\begin{equation*}
\text { Ared }_{k}=\ell^{s}\left(x_{k}, \lambda_{k}\right)-\ell^{s}\left(x_{k+1}, \lambda_{k}\right)-\Delta \lambda_{k}^{T} h_{l_{k+1}}+\frac{\sigma_{k}}{2}\left[\left\|W_{k} g_{u}\left(x_{k}\right)\right\|^{2}-\left\|W_{k+1} g_{u_{k+1}}\right\|^{2}\right]+\rho_{k}\left[\left\|h_{l_{k}}\right\|^{2}-\left\|h_{l_{k+1}}\right\|^{2}\right], \tag{2.25}
\end{equation*}
$$

where $\Delta \lambda_{k}=\left(\lambda_{k+1}-\lambda_{k}\right)$.
In the proposed algorithm, Pred $_{k}$ is defined as follows

$$
\begin{align*}
\text { Pred }_{k}= & -\nabla_{x} \ell^{s}\left(x_{k}, \lambda_{k}\right)^{T} \mu_{k} d_{k}-\frac{1}{2} \mu_{k}^{2} d_{k}^{T} \tilde{H}_{k} d_{k}-\Delta \lambda_{k}^{T}\left(h_{l_{k}}+\nabla h_{l_{k}}^{T} \mu_{k} d_{k}\right) \\
& +\frac{\sigma_{k}}{2}\left[\left\|W_{k} g_{u}\left(x_{k}\right)\right\|^{2}-\left\|W_{k}\left(g_{u}\left(x_{k}\right)+\nabla g_{u}\left(x_{k}\right)^{T} \mu_{k} d_{k}\right)\right\|^{2}\right] \\
& +\rho_{k}\left[\left\|h_{l_{k}}\right\|^{2}-\left\|h_{l_{k}}+\nabla h_{l_{k}}^{T} \mu_{k} d_{k}\right\|^{2}\right] . \tag{2.26}
\end{align*}
$$

where $\nabla_{x} l^{s}(x, \lambda)=\nabla f_{u}(x)-y+\nabla h_{l}(x) \lambda$ and $\tilde{H}=H+X^{-1} Y$.
Also, Pred $_{k}$ can be written as follows

$$
\begin{equation*}
\operatorname{Pred}_{k}=q_{k}(0)-q_{k}\left(\mu_{k} d_{k}\right)-\Delta \lambda_{k}^{T}\left(h_{l_{k}}+\nabla h_{l_{k}}^{T} \mu_{k} d_{k}\right)+\rho_{k}\left[\left\|h_{l_{k}}\right\|^{2}-\left\|h_{l_{k}}+\nabla h_{l_{k}}^{T} \mu_{k} d_{k}\right\|^{2}\right] . \tag{2.27}
\end{equation*}
$$

where the quadratic form $q(d)$ in 2.17 can be written as follows

$$
\begin{equation*}
q(d)=\ell^{s}(x, \lambda)+\nabla_{x} \ell^{s}(x, \lambda)^{T} d+\frac{1}{2} d^{T} \tilde{H} d+\frac{\sigma}{2}\left[\left\|W(x) g_{u}(x)\right\|^{2}-\left\|W(x)\left(g_{u}(x)+\nabla g_{u}(x)^{T} d\right)\right\|^{2}\right] . \tag{2.28}
\end{equation*}
$$

- To update ρ_{k}

To ensure that $\operatorname{Pred}_{k} \geq 0$, we update the penalty parameter ρ_{k} utilizing the following scheme.
Algorithm 2.1. If

$$
\begin{equation*}
\operatorname{Pred}_{k} \leq \frac{\rho_{k}}{2}\left[\left\|h_{l}\right\|^{2}-\left\|h_{l_{k}}+\nabla h_{l_{k}}^{T} \mu_{k} d_{k}\right\|^{2}\right], \tag{2.29}
\end{equation*}
$$

then, set

$$
\begin{equation*}
\rho_{k}=\frac{2\left[q_{k}\left(\mu_{k} d_{k}\right)-q_{k}(0)+\Delta \lambda_{k}^{T}\left(h_{l_{k}}+\nabla h_{l_{k}}^{T} \mu_{k} d_{k}\right)\right]}{\left\|h_{l_{k}}\right\|^{2}-\left\|h_{l_{k}}+\nabla h_{l_{k}}^{T} \mu_{k} d_{k}\right\|^{2}}+\beta_{0}, \tag{2.30}
\end{equation*}
$$

where $\beta_{0}>0$ is a small fixed constant.
Else, set

$$
\begin{equation*}
\rho_{k+1}=\max \left\{\rho_{k}, \sigma_{k}^{2}\right\} . \tag{2.31}
\end{equation*}
$$

End if.
For more details, see [15-19].

- To test the scaling step $\mu_{k} d_{k}$ and update δ_{k}

The framework to test the scaling step $\mu_{k} d_{k}$ and update δ_{k} is presented in the following algorithm.

Algorithm 2.2. Choose $0<\gamma_{1}<\gamma_{2}<1,0<\alpha_{1}<1<\alpha_{2}$, and $\delta_{\text {min }} \leq \delta_{0} \leq \delta_{\max }$.

While $\frac{\text { Ared }_{k}}{\text { Pred }_{k}} \in\left(0, \gamma_{1}\right)$ or Pred $_{k} \leq 0$.
Set $\delta_{k}=\alpha_{1}\left\|d_{k}\right\|$ and return to evaluate a new trial step and end while.
If $\frac{\text { Ared }_{k}}{\text { Pred }_{k}} \in\left[\gamma_{1}, \gamma_{2}\right)$. Set $x_{k+1}=x_{k}+\mu_{k} d_{k}$ and $\delta_{k+1}=\max \left(\delta_{k}, \delta_{\text {min }}\right)$.
End if.
If $\frac{\text { Ared }_{k}}{\text { Pred }_{k}} \in\left[\gamma_{2}, 1\right]$. Set $x_{k+1}=x_{k}+\mu_{k} d_{k}$ and $\delta_{k+1}=\min \left\{\delta_{\text {max }}, \max \left\{\delta_{\text {min }}, \alpha_{2} \delta_{k}\right\}\right\}$.
End if.

- To update the positive parameter σ_{k}

To update the positive parameter σ_{k}, we use the following scheme.

Algorithm 2.3. If

$$
\begin{equation*}
\frac{1}{2} \operatorname{Tpred}_{k}\left(\bar{d}_{k}^{t}\right) \geq\left\|\nabla g_{u}\left(x_{k}\right) W_{k} g_{u}\left(x_{k}\right)\right\| \min \left\{\left\|\nabla g_{u}\left(x_{k}\right) W_{k} g_{u}\left(x_{k}\right)\right\|, \Delta_{k}\right\} . \tag{2.32}
\end{equation*}
$$

Set $\sigma_{k+1}=\sigma_{k}$.
Else, set $\sigma_{k+1}=2 \sigma_{k}$. End if.
For more details see [18,23].
Finally, the algorithm is stopped when $\left\|Z_{k}^{T} \nabla_{x} \ell_{k}^{s}\right\|+\left\|\nabla g_{u}\left(x_{k}\right) W_{k} g_{u}\left(x_{k}\right)\right\|+\left\|h_{l_{k}}\right\| \leq \varepsilon_{1}$ or $\left\|d_{k}\right\| \leq \varepsilon_{2}$, for some $\varepsilon_{1}, \varepsilon_{2}>0$.

- A trust-region algorithm

The framework of the trust-region algorithm to solve subproblem 2.12 are summarized as follows.

Algorithm 2.4. (Trust-region algorithm)
Step 0. Starting with $x_{0} \in F^{+}$. Evaluate y_{0} and λ_{0}. Set $s_{0}=0.1, \rho_{0}=1, \sigma_{0}=1$, and $\beta_{0}=0.1$.
Choose $\varepsilon_{1}, \varepsilon_{2}, \alpha_{1}, \alpha_{2}, \gamma_{1}$, and γ_{2} such that $0<\varepsilon_{1}, 0<\varepsilon_{2}, 0<\alpha_{1}<1<\alpha_{2}$, and $0<\gamma_{1}<\gamma_{2}<1$.
Choose $\delta_{\min }, \delta_{\max }$, and δ_{0} such that $\delta_{\min } \leq \delta_{0} \leq \delta_{\max }$. Set $k=0$.
Step 1. If $\left\|Z_{k}^{T} \nabla_{x} \ell_{k}^{s}\right\|+\left\|\nabla g_{u}\left(x_{k}\right) W_{k} g_{u}\left(x_{k}\right)\right\|+\left\|h_{k}\right\| \leq \varepsilon_{1}$, then stop.
Step 2. (How to compute d_{k})
a). Evaluate the normal component d_{k}^{n} by solving subproblem (2.13).
b). Evaluate the tangential component \bar{d}_{k}^{t} by solving subproblem (2.18).
c). Set $d_{k}=d_{k}^{n}+Z_{k} \bar{d}_{k}^{t}$.

Step 3. If $\left\|d_{k}\right\| \leq \varepsilon_{2}$, then stop.
Step 4. (How to compute μ_{k})
a). Compute the damping parameter μ_{k} using (2.23).
b). Set $x_{k+1}=x_{k}+\mu_{k} d_{k}$.

Step 5. Compute the vector y_{k+1}, by using the following equation

$$
\begin{equation*}
y_{k+1}=s_{k} X_{k}^{-1} e-X_{k}^{-1} Y_{k} \mu_{k} d_{k} . \tag{2.33}
\end{equation*}
$$

The above equation is obtained from (2.9).
Step 6. Compute W_{k+1} given by (2.1).
Step 7. Evaluate λ_{k+1} by solving the following subproblem

$$
\begin{equation*}
\text { minimize }\left\|\nabla f_{k+1}-y_{k+1}+\nabla h_{l_{k+1}} \lambda+\rho_{k} \nabla g_{u_{k+1}} W_{k+1} g_{u_{k+1}}\right\|^{2} \tag{2.34}
\end{equation*}
$$

Step 8. Using scheme 2.1 to update the penalty parameter ρ_{k}.
Step 9. Using Algorithm (2.2) to test the scaled step $\mu_{k} d_{k}$ and update the radius δ_{k}.
Step 10. Update the positive parameter σ_{k} using scheme 2.3.
Step 11. To Update the barrier parameter s_{k}, set $s_{k+1}=\frac{s_{k}}{10}$.
Step 12. Set $k=k+1$ and go to Step 1 .
In the following subsection we will clarify the main steps for solving NBLP problem 1.1.

2.3. An Active-set-barrier-trust-region algorithm

The framework to solve NBLP problem 1.1 are summarized in the following algorithm.

[^0]In the following section we will introduce a global convergence analysis for ACBTR algorithm.

3. Global convergence analysis for ACBTR algorithm

let Ω be a convex subset of \mathfrak{R}^{n} that contains all iterates $x_{k} \in F^{+}$and $\left(x_{k}+\mu_{k} d_{k}\right) \in F^{+}$. To prove the global convergence theory of ACBTR algorithm on Ω, we assume that the following assumptions are hold.

- Assumptions

[A_{1}]. The functions $f_{u}(x), h_{l}(x)$, and $g_{u}(x)$ are twice continuously differentiable function for all $0<x \in S$.
$\left[A_{2}\right]$. All of $f_{u}(x), \nabla f_{u}(x), \nabla^{2} f_{u}(x), g_{u}(x), \nabla g_{u}(x), h_{l}(x), \nabla h_{l}(x), \nabla^{2} h_{l_{i}}(x)$ for $i=1, \ldots, m$, and $\left(\nabla h_{l_{k}}\right)\left[\left(\nabla h_{l_{k}}\right)^{T}\left(\nabla h_{l_{k}}\right)\right]^{-1}$ are uniformly bounded in S.
$\left[A_{3}\right]$. The columns of the matrix $\nabla h_{l}(x)$ are linearly independent.
$\left[A_{4}\right]$. The sequence $\left\{\lambda_{k}\right\}$ is bounded.
[A_{5}]. The sequence of matrices $\left\{\tilde{H}_{k}\right\}$ is bounded.
In the above assumptions, even though we assume that $\nabla h_{l}(x)$ has full column rank for all $x_{k} \in F^{+}$, we do not require $\nabla g_{u}(x)$ has full column rank for all $x_{k} \in F^{+}$. So, we may have other kinds of stationary points which are presented in the following definitions.

Definition 3.1. A point $x_{*} \in F^{+}$is called a Fritz John (FJ) point if there exist γ_{*}, λ_{*}, and γ_{*}, not all zeros, such that

$$
\begin{align*}
\tau_{*} \nabla f\left(x_{*}\right)+\nabla h_{l}\left(x_{*}\right) \lambda_{*}+\nabla g_{u}\left(x_{*}\right) v_{*} & =0, \tag{3.1}\\
h_{l}\left(x_{*}\right) & =0, \tag{3.2}\\
W_{*} g_{u}\left(x_{*}\right) & =0, \tag{3.3}\\
\left(v_{*}\right)_{i}\left(g_{u}\left(x_{*}\right)\right)_{i} & =0, \quad i=1, \ldots, m_{2}, \tag{3.4}\\
\tau_{*},\left(v_{*}\right)_{i} & \geq 0, \quad i=1, \ldots, m_{2} . \tag{3.5}
\end{align*}
$$

Equations (3.1)-(3.5) are called FJ conditions. More details see [4].
If $\tau_{*} \neq 0$, then the point $\left(x_{*}, 1, \frac{\lambda_{*}}{\tau_{*}}, \frac{v_{*}}{\tau_{*}}\right)$ is called a KKT point and FJ conditions are called the KKT conditions.
Definition 3.2. A point $x_{*} \in F^{+}$is called an infeasible Fritz John (IFJ) point if there exist τ_{*}, λ_{*}, and v_{*} such that

$$
\begin{align*}
\tau_{*} \nabla f_{u}\left(x_{*}\right)+\nabla h_{l}\left(x_{*}\right) \lambda_{*}+\nabla g_{u}\left(x_{*}\right) v_{*} & =0, \tag{3.6}\\
h_{l}\left(x_{*}\right) & =0, \tag{3.7}\\
\nabla g_{u}\left(x_{*}\right) W_{*} g_{u}\left(x_{*}\right) & =0 \quad \text { but }\left\|W_{*} g_{u}\left(x_{*}\right)\right\|>0, \tag{3.8}\\
\left(v_{*}\right)_{i}\left(g_{u}\left(x_{*}\right)\right)_{i} & \geq 0, \quad i=1, \ldots, m_{2}, \tag{3.9}\\
\tau_{*},\left(v_{*}\right)_{i} & \geq 0, \quad i=1, \ldots, m_{2} . \tag{3.10}
\end{align*}
$$

Equations (3.6)-(3.10) are called IFJ conditions.
If $\tau_{*} \neq 0$, then the point $\left(x_{*}, 1, \frac{\lambda_{*}}{\tau_{*}}, \frac{v_{*}}{\tau_{*}}\right)$ is called an infeasible KKT point and IFJ conditions are called infeasible KKT conditions.

Lemma 3.1. Under assumptions $A_{1}-A_{5}$, a subsequence $\left\{x_{k_{i}}\right\}$ of the iteration sequence asymptotically satisfies IFJ conditions if it satisfies:
1). $\lim _{k_{i} \rightarrow \infty} h_{l}\left(x_{k_{i}}\right)=0$.
2). $\lim _{k_{i} \rightarrow \infty}\left\|W_{k_{i}} g_{u}\left(x_{k_{i}}\right)\right\|>0$.
3). $\lim _{k_{i} \rightarrow \infty}\left\{\min _{d \in \mathfrak{R}^{n-m_{2}}}\left\|W_{k_{i}}\left(g_{u_{k_{i}}}+\nabla g_{u_{k_{i}}}^{T} Z_{k_{i}} \mu_{k_{i}} \bar{d}^{t}\right)\right\|^{2}\right\}=\lim _{k_{i} \rightarrow \infty}\left\|W_{k_{i}} g_{u_{k_{i}}}\right\|^{2}$.

Proof. To simplify the notations, let the subsequence $\left\{k_{i}\right\}$ be renamed to $\{k\}$. Let \hat{d}_{k} be a minimizer of minimize $e_{d^{t}}\left\|W_{k}\left(g_{u}\left(x_{k}\right)+\nabla g_{u}\left(x_{k}\right)^{T} Z_{k} \mu_{k} \bar{d}^{t}\right)\right\|^{2}$, then it satisfies

$$
\begin{equation*}
Z_{k}^{T} \nabla g_{u}\left(x_{k}\right) W_{k} g_{u}\left(x_{k}\right) \mu_{k}+Z_{k}^{T} \nabla g_{u}\left(x_{k}\right) W_{k} \nabla g_{u}\left(x_{k}\right)^{T} Z_{k} \mu_{k}^{2} \hat{d}_{k}=0 . \tag{3.11}
\end{equation*}
$$

From condition 3, we have

$$
\begin{equation*}
\lim _{k \rightarrow \infty}\left\{2 \mu_{k} \hat{d}_{k}^{T} Z_{k}^{T} \nabla g_{u}\left(x_{k}\right) W_{k} g_{u}\left(x_{k}\right)+\mu_{k}^{2} \hat{d}_{k}^{T} Z_{k}^{T} \nabla g_{u}\left(x_{k}\right) W_{k} \nabla g_{u}\left(x_{k}\right)^{T} Z_{k} \hat{d}_{k}\right\}=0 . \tag{3.12}
\end{equation*}
$$

Now, we will consider two cases:
Firstly, if $\lim _{k \rightarrow \infty} \hat{d}_{k}=0$, then from (3.11) we have $\lim _{k \rightarrow \infty} \mu_{k} Z_{k}^{T} \nabla g_{u}\left(x_{k}\right) W_{k} g_{u}\left(x_{k}\right)=0$.
Secondly, if $\lim _{k \rightarrow \infty} \hat{d}_{k} \neq 0$, then multiplying (3.11) from the left by $2 \hat{d}_{k}^{T}$ and subtract it from the limit (3.12), we have $\lim _{k \rightarrow \infty}\left\|W_{k} \nabla g_{u}\left(x_{k}\right)^{T} Z_{k} \mu_{k} \hat{d}_{k}\right\|^{2}=0$. This implies $\lim _{k \rightarrow \infty} \mu_{k} Z_{k}^{T} \nabla g_{u}\left(x_{k}\right) W_{k} g_{u}\left(x_{k}\right)=0$.

That is, in either case, we have

$$
\begin{equation*}
\lim _{k \rightarrow \infty} Z_{k}^{T} \nabla g_{u}\left(x_{k}\right) W_{k} g_{u}\left(x_{k}\right)=0 . \tag{3.13}
\end{equation*}
$$

Take $\left(v_{k}\right)_{i}=\left(W_{k} g_{u}\left(x_{k}\right)\right)_{i}, i=1, \ldots, p$. Since $\lim _{k \rightarrow \infty}\left\|W_{k} g_{u}\left(x_{k}\right)\right\|>0$, then $\lim _{k \rightarrow \infty}\left(v_{k}\right)_{i} \geq 0$, for $i=1, \ldots, p$ and $\lim _{k \rightarrow \infty}\left(v_{k}\right)_{i}>0$, for some i. Therefore $\lim _{k \rightarrow \infty} Z_{k}^{T} \nabla g_{u}\left(x_{k}\right) v_{k}=0$. But this implies the existence of a sequence $\left\{\lambda_{k}\right\}$ such that $\lim _{k \rightarrow \infty}\left\{\nabla h_{l_{k}} \lambda_{k}+\nabla g_{u}\left(x_{k}\right) v_{k}\right\}=0$. Thus IFJ conditions are hold in the limit with $\tau_{*}=0$.

The following lemma clarify that, for any subsequence $\left\{x_{k_{i}}\right\}$ of the iteration sequence that asymptotically satisfies the FJ conditions, the corresponding subsequence of smallest singular values of $\left\{Z_{k}^{T} \nabla g_{u}\left(x_{k}\right) W_{k}\right\}$ is not bounded away from zero. That is, asymptotically the gradient of the active constraints are linearly dependent.

Lemma 3.2. Under assumptions $A_{1}-A_{5}$, a subsequence $\left\{x_{k_{i}}\right\}$ of the iteration sequence asymptotically satisfies FJ conditions if it satisfies:
1). $\lim _{k_{i} \rightarrow \infty} h\left(x_{k_{i}}\right)=0$.
2). For all $k_{i},\left\|W_{k_{i}} g_{u_{k_{i}}}\right\|>0$ and $\lim _{k_{i} \rightarrow \infty} W_{k_{i}} g_{u_{k_{i}}}=0$.
3). $\lim _{k_{i} \rightarrow \infty}\left\{\min _{d \in \mathcal{K}^{n-p}} \frac{\left\|W_{k_{i}}\left(g_{k_{k_{i}}}+\nabla g_{u_{k_{i}}}^{T} Z_{k_{i}} \mu_{k_{i}} d^{t}\right)\right\|^{2}}{\left\|W_{k_{i}} g_{u_{i}}\right\|^{2}}\right\}=1$.

Proof. The proof of this lemma is similar to the proof of Lemma 4.4 in [19].
In the following section, we introduce some basic lemmas which are requisite to prove global convergence analysis for ACBTR algorithm.

3.1. Basic lemmas

In this section, we introduce some significant lemmas which are required to prove global convergence theory for ACBTR algorithm.

Lemma 3.3. Under assumptions A_{1} and $A_{3}, W(x) g_{u}(x)$ is Lipschitz continuous in Ω.
Proof. The proof of this lemma is similar to the proof of Lemma 4.1 of [12].
From the above lemma, we conclude that $g_{u}(x)^{T} W(x) g_{u}(x)$ is differentiable and $\nabla g_{u}(x) W(x) g_{u}(x)$ is Lipschitz continuous in Ω.

Lemma 3.4. At any iteration k, let $E\left(x_{k}\right) \in \mathfrak{R}^{m_{2} \times m_{2}}$ be a diagonal matrix whose diagonal entries are

$$
\left(e_{k}\right)_{i}=\left\{\begin{array}{cc}
1 & \text { if }\left(g_{u}\left(x_{k}\right)\right)_{i}<0 \text { and }\left(g_{u_{k+1}}\right)_{i} \geq 0, \tag{3.14}\\
-1 & \text { if }\left(g_{u}\left(x_{k}\right)\right)_{i} \geq 0 \text { and }\left(g_{u_{k+1}}\right)_{i}<0, \\
0 & \text { otherwise }
\end{array}\right.
$$

where $i=1,2, \ldots, m_{2}$. Then

$$
\begin{equation*}
W_{k+1}=W_{k}+E_{k} . \tag{3.15}
\end{equation*}
$$

Proof. See Lemma 6.2 of [17].
Lemma 3.5. Under assumptions $A_{1}-A_{3}$, there exists at any iteration k, a constant $C_{1}>0$ independent of k such that

$$
\begin{equation*}
\left\|E_{k} g_{u}\left(x_{k}\right)\right\| \leq C_{1}\left\|d_{k}\right\|, \tag{3.16}
\end{equation*}
$$

where $E_{k} \in \mathfrak{R}^{m_{2} \times m_{2}}$ is the diagonal matrix whose diagonal entries are defined in (3.14).
Proof. See Lemma 6.3 of [17].
Lemma 3.6. Under assumptions $A_{1}-A_{3}$, there exists at any iteration k, a constant $0<C_{2}$ independent of k such that

$$
\begin{equation*}
\left\|d_{k}^{n}\right\| \leq C_{2}\left\|h_{l_{k}}\right\| . \tag{3.17}
\end{equation*}
$$

Proof. Since d_{k}^{n} is normal to the tangent space, then we have

$$
\begin{aligned}
\left\|d_{k}^{n}\right\| & =\left\|\nabla h_{l_{k}}\left(\nabla h_{l_{k}}^{T} \nabla h_{l_{k}}\right)^{-1} \nabla h_{l_{k}}^{T} d_{k}\right\| \\
& =\left\|\nabla h_{l_{k}}\left(\nabla h_{l_{k}}^{T} \nabla h_{l_{k}}\right)^{-1}\left[h_{l_{k}}+\nabla h_{l_{k}}^{T} d_{k}-h_{l_{k}}\right]\right\| \\
& \leq\left\|\nabla h_{l_{k}}\left(\nabla h_{l_{k}}^{T} \nabla h_{l_{k}}\right)^{-1}\right\|\left[\left\|h_{l_{k}}+\nabla h_{l_{k}}^{T} d_{k}\right\|+\left\|h_{l_{k}}\right\|\right] \\
& \leq\left\|h_{l_{k}}\left(\nabla h_{l_{k}}^{T} \nabla h_{l_{k}}\right)^{-1}\right\|\left\|h_{l_{k}}\right\| .
\end{aligned}
$$

where $\left\|h_{l_{k}}+\nabla h_{l_{k}}^{T} d_{k}\right\| \leq\left\|h_{l_{k}}\right\|$. Using the assumptions $A_{1}-A_{5}$, we have the desired result.
The next lemma clarifies how delicate the definition of Ared $_{k}$ is as an approximation to Pred $_{k}$.
Lemma 3.7. Under assumptions $A_{1}-A_{5}$, there exists a constant $0<C_{3}$, such that

$$
\begin{equation*}
\mid \text { Ared }_{k}-\text { Pred }_{k} \mid \leq C_{3} \mu_{k} \rho_{k}\left\|d_{k}\right\|^{2} \tag{3.18}
\end{equation*}
$$

Proof. From the definition of Ared_{k} (2.25) and using (3.15), we have

$$
\begin{aligned}
\text { Ared }_{k}= & \ell^{s}\left(x_{k}, \lambda_{k}\right)-\ell^{s}\left(x_{k+1}, \lambda_{k}\right)-\Delta \lambda_{k}^{T} h_{l_{k+1}} \\
& +\frac{\sigma_{k}}{2}\left[g_{u}\left(x_{k}\right)^{T} W_{k} g_{u}\left(x_{k}\right)-g_{u_{k+1}}^{T}\left(W_{k}+E_{k}\right) g_{u_{k+1}}\right]+\rho_{k}\left[\left\|h_{l_{k}}\right\|^{2}-\left\|h_{l_{k+1}}\right\|^{2}\right] .
\end{aligned}
$$

From the above equation, the definition of Pred_{k} (2.26), and using the inequality of Cauchy-Schwarz, we have

$$
\begin{aligned}
\mid \text { Ared }_{k}-\text { Pred }_{k} \mid \leq & \frac{1}{2} \mu_{k}^{2}\left|d_{k}^{T}\left[H_{l_{k}}-\nabla^{2} \ell^{s}\left(x_{k}+\xi_{1} d_{k}\right)\right] d_{k}\right|+\frac{\mu_{k}^{2}}{2}\left|d_{k}^{T} X_{k}^{-1} Y_{k} d_{k}\right| \\
& +\sigma_{k} \mu_{k}\left|\left(\nabla g_{u}\left(x_{k}\right)-\nabla g\left(x_{k}+\xi_{2} \mu_{k} d_{k}\right)\right) W_{k} g_{u}\left(x_{k}\right) d_{k}\right| \\
& +\frac{\sigma_{k} \mu_{k}^{2}}{2}\left|d_{k}^{T}\left[\nabla g_{u}\left(x_{k}\right) W_{k} \nabla g_{u}\left(x_{k}\right)^{T}-\nabla g\left(x_{k}+\xi_{2} d_{k}\right) W_{k} \nabla g\left(x_{k}+\xi_{2} \mu_{k} d_{k}\right)^{T}\right] d_{k}\right| \\
& +\frac{\sigma_{k} \mu_{k}^{2}}{2}\left\|E_{k} g_{u}\left(x_{k}\right)\right\|^{2}+\sigma_{k} \mu_{k}\left|\nabla g\left(x_{k}+\xi_{2} \mu_{k} d_{k}\right) E_{k} g_{u}\left(x_{k}\right) d_{k}\right| \\
& +\frac{\sigma_{k} \mu_{k}^{2}}{2}\left|d_{k}^{T}\left[\nabla g\left(x_{k}+\xi_{2} d_{k}\right) E_{k} \nabla g\left(x_{k}+\xi_{2} \mu_{k} d_{k}\right)^{T}\right] d_{k}\right| \\
& +\mu_{k}\left|\Delta \lambda_{k}\left[\nabla h_{l_{k}}-\nabla h\left(x_{k}+\xi_{2} d_{k}\right)\right]^{T} d_{k}\right| \\
& +2 \rho_{k} \mu_{k}\left[\left[\left(\nabla h_{l_{k}}-\nabla h\left(x_{k}+\xi_{2} \mu_{k} d_{k}\right)\right) h_{l_{k}}\right]^{T} d_{k} \mid\right. \\
& +\rho_{k} \mu_{k}^{2}\left|d_{k}^{T}\left[\nabla h_{l_{k}} \nabla h_{l_{k}}^{T}-\nabla h\left(x_{k}+\xi_{2} \mu_{k} d_{k}\right) \nabla h\left(x_{k}+\xi_{2} \mu_{k} d_{k}\right)^{T}\right] d_{k}\right|
\end{aligned}
$$

for some ξ_{1} and $\xi_{2} \in(0,1)$. By using assumptions $A_{1}-A_{5}, \rho_{k} \geq \sigma_{k}, \rho_{k} \geq 1$, and inequality (3.16), we have

$$
\begin{equation*}
\mid \text { Ared }_{k}-\operatorname{Pred}_{k} \mid \leq \mu_{k}\left[\kappa_{1}\left\|d_{k}\right\|^{2}+\kappa_{2} \rho_{k}\left\|d_{k}\right\|^{3}+\kappa_{3} \rho_{k}\left\|d_{k}\right\|^{2}\left\|h_{l_{k}}\right\|\right] \tag{3.19}
\end{equation*}
$$

where κ_{1}, κ_{2}, and κ_{3} are positive constants. Since $\rho_{k} \geq 1,\left\|d_{k}\right\| \leq \delta_{\max }$, and $\left\|h_{l_{k}}\right\|$ is uniformly bounded, then inequality (3.18) hold.

The proof of the following two lemmas depends on the fact that d_{k}^{n} and \bar{d}_{k}^{t} satisfy the condition of the fraction of Cauchy decrease.

Lemma 3.8. Under assumptions $A_{1}-A_{5}$, there exists a constant $0<C_{4}$ such that

$$
\begin{equation*}
\left\|h_{l_{k}}\right\|^{2}-\left\|h_{l_{k}}+\nabla h_{l_{k}}^{T} n_{k}^{n}\right\|^{2} \geq C_{4}\left\|h_{l_{k}}\right\| \min \left\{\left\|h_{l_{k}}\right\|, \delta_{k}\right\} . \tag{3.20}
\end{equation*}
$$

Proof. From the definition of the normal Cauchy step (2.15), we will consider two cases: Firstly, if $d_{k}^{n c p}=-\frac{\delta_{k}}{\left\|\nabla h_{k} h_{k}\right\|}\left(\nabla h_{l_{k}} h_{l_{k}}\right)$ and $\delta_{k}\left\|\nabla h_{l_{k}}^{T} \nabla h_{l_{k}} h_{l_{k}}\right\|^{2} \leq\left\|\nabla h_{l_{k}} h_{l_{k}}\right\|^{3}$, then we have

$$
\begin{align*}
\left\|h_{l_{k}}\right\|^{2}-\left\|h_{l_{k}}+\nabla h_{l_{k}}^{T} d_{k}^{n c p}\right\|^{2} & =-2\left(\nabla h_{l_{k}} h_{l_{k}}\right)^{T} d_{k}^{n c p}-d_{k}^{n c p^{T}} \nabla h_{l_{k}} \nabla h_{l_{k}}^{T} d_{k}^{n c p} \\
& =2 \delta_{k}\left\|\nabla h_{l_{k}} h_{l_{k}}\right\|-\frac{\delta_{k}^{2}\left\|\nabla h_{l_{k}}^{T} \nabla h_{l_{k}} h_{l_{k}}\right\|^{2}}{\left\|\nabla h_{l_{k}} h_{l_{k}}\right\|^{2}} \\
& \geq 2 \delta_{k}\left\|\nabla h_{l_{k}} h_{l_{k}}\right\|-\delta_{k}\left\|\nabla h_{l_{k}} h_{l_{k}}\right\| \\
& \geq \delta_{k}\left\|\nabla h_{l_{k}} h_{l_{k}}\right\| . \tag{3.21}
\end{align*}
$$

Secondly, if $d_{k}^{n c p}=-\frac{\left\|\nabla h_{k} h_{k}\right\|^{2}}{\left\|\nabla h_{k}^{T} h_{l_{k}} h_{k}\right\|^{2}}\left(\nabla h_{l_{k}} h_{l_{k}}\right)$ and $\delta_{k}\left\|\nabla h_{l_{k}}^{T} \nabla h_{l_{k}} h_{l_{k}}\right\|^{2} \geq\left\|\nabla h_{l_{k}} h_{l_{k}}\right\|^{3}$, then we have

$$
\begin{aligned}
\left\|h_{l_{k}}\right\|^{2}-\left\|h_{l_{k}}+\nabla h_{l_{k}}^{T} k_{k}^{n c p}\right\|^{2} & =-2\left(\nabla h_{l_{k}} h_{l_{k}}\right)^{T} d_{k}^{n c p}-d_{k}^{n c T^{T}} \nabla h_{l_{k}} \nabla h_{l_{k}}^{T} d_{k}^{n c p} \\
& =\frac{2\left\|\nabla h_{l_{k}} h_{l_{k}}\right\|^{4}}{\left\|\nabla h_{l_{k}}^{T} \nabla h_{l_{k}} h_{l_{k}}\right\|^{2}}-\frac{\left\|\nabla h_{l_{k}} h_{l_{k}}\right\|^{4}}{\left\|\nabla h_{l_{k}}^{T} \nabla h_{l_{k}} h_{l_{k}}\right\|^{2}}
\end{aligned}
$$

$$
\begin{align*}
& =\frac{\left\|\nabla h_{l_{k}} h_{l_{k}}\right\|^{4}}{\left\|\nabla h_{l_{k}}^{T} \nabla h_{l_{k}} h_{l_{k}}\right\|^{2}} \\
& \geq \frac{\left\|\nabla h_{l_{k}}^{h_{k}}\right\|^{2}}{\left\|\nabla h_{l_{k}}^{T} \nabla h_{l_{k}} h_{l_{k}}\right\|^{2}} . \tag{3.22}
\end{align*}
$$

Using assumption A_{3}, we have $\left\|\nabla h_{l_{k}} h_{l_{k}}\right\| \geq \frac{\left\|h_{l_{k}}\right\|}{\left\|\left(\nabla h_{l_{k}}^{T} \nabla h_{l_{k}}\right)^{-1} \nabla h_{l_{k} \|}\right\|}$. Hence, from inequalities (2.14), (3.21), (3.22), and using assumption A_{2}, we obtain the inequality (3.20).

From the above lemma and the fact that

$$
\left\|h_{l_{k}}\right\|^{2}-\left\|h_{l_{k}}+\nabla h_{l_{k}}^{T} \mu_{k} d_{k}^{n}\right\|^{2} \geq \mu_{k}\left[\left\|h_{l_{k}}\right\|^{2}-\left\|h_{l_{k}}+\nabla h_{l_{k}}^{T} d_{k}^{n}\right\|^{2}\right],
$$

where $\mu_{k} \in(0,1]$, then we have

$$
\begin{equation*}
\left\|h_{l_{k}}\right\|^{2}-\left\|h_{l_{k}}+\nabla h_{l_{k}}^{T} \mu_{k} d_{k}^{n}\right\|^{2} \geq C_{4} \mu_{k}\left\|h_{l_{k}}\right\| \min \left\{\left\|h_{l_{k}}\right\|, \delta_{k}\right\} . \tag{3.23}
\end{equation*}
$$

From the way of updating ρ_{k} shown in Step 8 in Algorithm (2.4) and above inequality, we have

$$
\begin{equation*}
\operatorname{Pred}_{k} \geq \frac{1}{2} C_{4} \mu_{k} \rho_{k}\left\|h_{l_{k}}\right\| \min \left\{\left\|h_{l_{k}}\right\|, \delta_{k}\right\} . \tag{3.24}
\end{equation*}
$$

Lemma 3.9. Under assumptions $A_{1}-A_{5}$, there exists a constant $0<C_{5}$, such that

$$
\begin{equation*}
\operatorname{Tpred}_{k}\left(\bar{d}_{k}^{t}\right) \geq C_{5}\left\|Z_{k}^{T} \nabla q_{k}\left(d_{k}^{n}\right)\right\| \min \left\{\frac{\left\|Z_{k}^{T} \nabla q_{k}\left(d_{k}^{n}\right)\right\|}{\left\|\bar{B}_{k}\right\|}, \Delta_{k}\right\} \tag{3.25}
\end{equation*}
$$

Proof. From the definition of the tangential Cauchy step (2.21), we will consider two cases:
Firstly, if $\bar{d}_{k}^{t c p}=-\frac{\Delta_{k}}{\left\|Z_{k}^{T} \nabla q_{k}\left(d_{k}^{n}\right)\right\|} Z_{k}^{T} \nabla q_{k}\left(d_{k}^{n}\right)$ and $\Delta_{k}\left(Z_{k}^{T} \nabla q_{k}\left(d_{k}^{n}\right)\right)^{T} \bar{B}_{k} Z_{k}^{T} \nabla q_{k}\left(d_{k}^{n}\right) \leq\left\|Z_{k}^{T} \nabla q_{k}\left(d_{k}^{n}\right)\right\|^{3}$, then we have

$$
\begin{align*}
\operatorname{Tpred}_{k}\left(\bar{d}_{k}^{t c p}\right)= & q_{k}\left(d_{k}^{n}\right)-q_{k}\left(d_{k}^{n}+Z_{k} \bar{d}_{k}^{t c p}\right) \\
= & -\left(Z_{k}^{T} \nabla q_{k}\left(d_{k}^{n}\right)\right)^{T} \bar{d}_{k}^{t c p}-\frac{1}{2} \bar{d}_{k}^{t c p^{T}} \bar{B}_{k} \bar{d}_{k}^{t c p} \\
= & \Delta_{k}\left\|Z_{k}^{T} \nabla q_{k}\left(d_{k}^{n}\right)\right\| \\
& -\frac{\Delta_{k}^{2}}{2\left\|Z_{k}^{T} \nabla q_{k}\left(d_{k}^{n}\right)\right\|^{2}}\left[\left(Z_{k}^{T} \nabla q_{k}\left(d_{k}^{n}\right)\right)^{T} \bar{B}_{k} Z_{k}^{T} \nabla q_{k}\left(d_{k}^{n}\right)\right] \\
\geq & \Delta_{k}\left\|Z_{k}^{T} \nabla q_{k}\left(d_{k}^{n}\right)\right\|-\frac{1}{2} \Delta_{k}\left\|Z_{k}^{T} \nabla q_{k}\left(d_{k}^{n}\right)\right\| \\
\geq & \frac{1}{2} \Delta_{k}\left\|Z_{k}^{T} \nabla q_{k}\left(d_{k}^{n}\right)\right\| . \tag{3.26}
\end{align*}
$$

Secondly, if $\bar{d}_{k}^{t c p}=-\frac{\left\|Z_{k}^{T} \nabla q_{k}\left(d_{k}^{n}\right)\right\|^{2}}{\left.Z_{k}^{T} \nabla q_{k}\left(d_{k}^{n}\right)\right)^{T} \bar{B}_{k} k_{k}^{T} \nabla q_{k}\left(d_{k}^{n}\right)} Z_{k}^{T} \nabla q_{k}\left(d_{k}^{n}\right)$ and $\Delta_{k}\left(Z_{k}^{T} \nabla q_{k}\left(d_{k}^{n}\right)\right)^{T} \bar{B}_{k} Z_{k}^{T} \nabla q_{k}\left(d_{k}^{n}\right) \geq\left\|Z_{k}^{T} \nabla q_{k}\left(d_{k}^{n}\right)\right\|^{3}$, then we have

$$
\begin{aligned}
\operatorname{Tpred}_{k}\left(\bar{d}_{k}^{t c p}\right) & =q_{k}\left(d_{k}^{n}\right)-q_{k}\left(d_{k}^{n}+Z_{k} \bar{d}_{k}^{t c p}\right) \\
& =-\left(Z_{k}^{T} \nabla q_{k}\left(d_{k}^{n}\right)\right)^{T} \bar{d}_{k}^{t p}-\frac{1}{2} \bar{d}_{k}^{t c p^{T}} \bar{B}_{k} \bar{d}_{k}^{t c p}
\end{aligned}
$$

$$
\begin{align*}
= & \frac{\left\|Z_{k}^{T} \nabla q_{k}\left(d_{k}^{n}\right)\right\|^{4}}{\left(Z_{k}^{T} \nabla q_{k}\left(d_{k}^{n}\right)\right)^{T} \bar{B}_{k} Z_{k}^{T} \nabla q_{k}\left(d_{k}^{n}\right)} \\
& -\frac{\left\|Z_{k}^{T} \nabla q_{k}\left(d_{k}^{n}\right)\right\|^{4}}{2\left(Z_{k}^{T} \nabla q_{k}\left(d_{k}^{n}\right)\right)^{T} \bar{B}_{k} Z_{k}^{T} \nabla q_{k}\left(d_{k}^{n}\right)} \\
= & \frac{\left\|Z_{k}^{T} \nabla q_{k}\left(d_{k}^{n}\right)\right\|^{4}}{2\left(Z_{k}^{T} \nabla q_{k}\left(d_{k}^{n}\right)\right)^{T} \bar{B}_{k} Z_{k}^{T} \nabla q_{k}\left(d_{k}^{n}\right)} \\
\geq & \frac{\left\|Z_{k}^{T} \nabla q_{k}\left(d_{k}^{n}\right)\right\|^{2}}{2\left\|\bar{B}_{k}\right\|} . \tag{3.27}
\end{align*}
$$

Hence, from inequalities (2.20), (3.26), (3.27), and using assumptions $A_{1}-A_{5}$, we obtain the desired result.

From (2.19), (3.25), and the fact that

$$
q_{k}\left(\mu_{k} d_{k}^{n}\right)-q_{k}\left(\mu_{k}\left(d_{k}^{n}+Z_{k} \bar{d}_{k}^{t}\right)\right) \geq \mu_{k}\left[q_{k}\left(d_{k}^{n}\right)-q_{k}\left(d_{k}^{n}+Z_{k} \bar{d}_{k}^{t}\right)\right],
$$

where $\mu_{k} \in(0,1]$, then we have

$$
\begin{equation*}
q_{k}\left(\mu_{k} d_{k}^{n}\right)-q_{k}\left(\mu_{k} d_{k}\right) \geq C_{5} \mu_{k}\left\|Z_{k}^{T} \nabla q_{k}\left(d_{k}^{n}\right)\right\| \min \left\{\frac{\left\|Z_{k}^{T} \nabla q_{k}\left(d_{k}^{n}\right)\right\|}{\left\|\bar{B}_{k}\right\|}, \Delta_{k}\right\} . \tag{3.28}
\end{equation*}
$$

That is

$$
\begin{equation*}
\operatorname{Tpred}_{k}\left(\mu_{k} \bar{d}_{k}^{t}\right) \geq C_{5} \mu_{k}\left\|Z_{k}^{T} \nabla q_{k}\left(d_{k}^{n}\right)\right\| \min \left\{\frac{\left\|Z_{k}^{T} \nabla q_{k}\left(d_{k}^{n}\right)\right\|}{\left\|\bar{B}_{k}\right\|}, \Delta_{k}\right\} . \tag{3.29}
\end{equation*}
$$

The following lemma clarifies that if at any iteration k, the point $x_{k} \in F^{+}$is not feasible, then algorithm ACBTR can not loop infinitely without finding an acceptable step.

Lemma 3.10. Under assumptions $A_{1}-A_{5}$. If $\left\|h_{l_{k}}\right\| \geq \varepsilon>0$, then the condition $\frac{\text { Ared }_{k j}}{\text { Pred }_{k j}} \geq \gamma_{1}$ will be satisfied for some finite j.

Proof. From inequalities (3.18), (3.24), and the condition $\left\|h_{l_{k}}\right\| \geq \varepsilon$, we have

$$
\left|\frac{\text { Ared }_{k}}{\text { Pred }_{k}}-1\right|=\frac{\mid \text { Ared }_{k}-\text { Pred }_{k} \mid}{\text { Pred }_{k}} \leq \frac{2 C_{3} \delta_{k}^{2}}{C_{4} \varepsilon \min \left\{\varepsilon, \delta_{k}\right\}}
$$

Now as the trial step $d_{k^{j}}$ gets rejected, $\delta_{k^{j}}$ becomes small and eventually we will have

$$
\left|\frac{\text { Ared }_{k^{j}}}{\text { Pred }_{k^{j}}}-1\right| \leq \frac{2 C_{3} \delta_{k^{j}}}{C_{4} \varepsilon} .
$$

For j finite, this inequality implies that, the acceptance rule will be met. This completes the proof.
Lemma 3.11. Under assumptions $A_{1}-A_{5}$ and the $j^{\text {th }}$ trial step of iteration k satisfies,

$$
\begin{equation*}
\left\|d_{k^{j}}\right\| \leq \min \left\{\frac{\left(1-\gamma_{1}\right) C_{4}}{4 C_{3}}, 1\right\}\left\|h_{l_{k}}\right\|, \tag{3.30}
\end{equation*}
$$

then the step accepted.

Proof. The proof of this lemma by contradiction. Assume that the inequality (3.30) holds and the step $d_{k^{j}}$ is rejected. From inequalities (3.18), (3.24), and using inequality (3.30), we have

$$
\left(1-\gamma_{1}\right)<\frac{\mid \text { Ared }_{k^{j}}-\text { Pred }_{k^{j}} \mid}{\operatorname{Pred}_{k^{j}}}<\frac{2 C_{3}\left\|d_{k^{j}}\right\|}{C_{4}\left\|h_{l_{k}}\right\|} \leq \frac{1}{2}\left(1-\gamma_{1}\right) .
$$

This is a contradiction and this completes the proof.
Lemma 3.12. Under assumptions $A_{1}-A_{5}$ and for all $j^{\text {th }}$ trial step of any iteration k, then $\delta_{k j}$ satisfies

$$
\begin{equation*}
\delta_{k^{j}} \geq \min \left\{\frac{\delta_{\min }}{b_{1}}, \frac{\alpha_{1}\left(1-\gamma_{1}\right) C_{4}}{4 C_{3}}, \alpha_{1}\right\}\left\|h_{l_{k}}\right\|, \tag{3.31}
\end{equation*}
$$

where $b_{1}>0$ is a constant.
Proof. For all $j^{\text {th }}$ trial step of any iteration k, we will consider tow cases:
Firstly, if $j=1$ and the step accepted, then $\delta_{k} \geq \delta_{\min }$. Hence,

$$
\begin{equation*}
\delta_{k} \geq \delta_{\min } \geq \frac{\delta_{m i n}}{b_{1}}\left\|h_{l_{k}}\right\|, \tag{3.32}
\end{equation*}
$$

where $b_{1}=\sup _{x \in S}\left\|h_{l_{k}}\right\|$. Then (3.31) holds in this case.
Secondly, if $j>1$, then there exists at least one rejected trial step and hence from Lemma (3.11) we have

$$
\left\|d_{k^{i}}\right\|>\min \left\{\frac{\left(1-\gamma_{1}\right) C_{4}}{4 C_{3}}, 1\right\}\left\|h_{l_{k}}\right\|,
$$

for all $i=1,2, \ldots j-1$. From Algorithm 2.2 and $d_{k^{i}}$ is a rejected trial step, then we have

$$
\begin{equation*}
\delta_{k^{j}}=\alpha_{1}\left\|d_{k^{j-1}}\right\|>\alpha_{1} \min \left\{\frac{\left(1-\gamma_{1}\right) C_{4}}{4 C_{3}}, 1\right\}\left\|h_{l_{k}}\right\| . \tag{3.33}
\end{equation*}
$$

From inequalities (3.32) and (3.32) the desired result is obtained.
The next lemma prove that as long as $\left\|h_{l_{k}}\right\|$ is bound away from zero, the trust-region radius is also bound away from zero.

Lemma 3.13. Under assumptions $A_{1}-A_{5}$. If $\left\|h_{l_{k}}\right\| \geq \varepsilon>0$, then

$$
\delta_{k^{j}} \geq C_{6},
$$

where $C_{6}>0$ is a constant.
Proof. The proof follows directly by taking

$$
\begin{equation*}
C_{6}=\varepsilon \min \left\{\frac{\delta_{\min }}{b_{1}}, \frac{\alpha_{1}\left(1-\gamma_{1}\right) C_{4}}{4 C_{3}}, \alpha_{1}\right\}, \tag{3.34}
\end{equation*}
$$

in inequality (3.31).

3.2. Global convergence theory when $\sigma_{k} \rightarrow \infty$

In this section, we clarify the convergence of the sequence of iteration when the positive parameter $\sigma_{k} \rightarrow \infty$.

Lemma 3.14. Under assumptions $A_{1}-A_{5}$. If ρ_{k} is increased at any iteration k, then

$$
\begin{equation*}
\sigma_{k} \mu_{k}\left\|h_{l_{k}}\right\|^{2} \leq C_{7}, \tag{3.35}
\end{equation*}
$$

where C_{7} is a positive constant.
Proof. From the way of updating the positive penalty parameter ρ_{k}, we notice that ρ_{k} is increased at a given iteration k according to one of the two rules (2.31) or (2.30). Suppose that ρ_{k} is increased according to the rule (2.30), then

$$
\begin{aligned}
\frac{\rho_{k}}{2}\left[\left\|h_{l_{k}}\right\|^{2}-\left\|h_{l_{k}}+\nabla h_{l_{k}}^{T} \mu_{k} d_{k}\right\|^{2}\right] & =\left[q_{k}\left(\mu_{k} d_{k}\right)-q_{k}(0)+\Delta \lambda_{k}^{T}\left(h_{l_{k}}+\nabla h_{l_{k}}^{T} \mu_{k} d_{k}\right)\right] \\
& +\frac{b_{0}}{2}\left[\left\|h_{l_{k}}\right\|^{2}-\left\|h_{l_{k}}+\nabla h_{l_{k}}^{T} \mu_{k} d_{k}\right\|^{2}\right] .
\end{aligned}
$$

Using inequalities (3.23) and (3.31), then we have

$$
\begin{aligned}
\frac{\rho_{k}}{2} C_{4} \mu_{k}\left\|h_{l_{k}}\right\|^{2} \min \left\{\frac{\delta_{\min }}{b_{1}}, \frac{\alpha_{1}\left(1-\gamma_{1}\right) C_{4}}{4 C_{3}}, \alpha_{1}\right\} & \left.\leq \nabla_{x} \ell^{s}\left(x_{k}, \lambda_{k}\right)\right)^{T} \mu_{k} d_{k}+\frac{1}{2} \mu_{k}^{2} d_{k}^{T} \tilde{H}_{k} d_{k} \\
& +\Delta \lambda_{k}^{T}\left(h_{l_{k}}+\nabla h_{l_{k}}^{T} \mu_{k} d_{k}\right) \\
& +\frac{\sigma_{k}}{2}\left[\left\|W_{k}\left(g_{u}\left(x_{k}\right)+\nabla g_{u}\left(x_{k}\right)^{T} \mu_{k} d_{k}\right)\right\|^{2}-\left\|W_{k} g_{u}\left(x_{k}\right)\right\|^{2}\right] \\
& +\frac{b_{0}}{2}\left[\left\|h_{l_{k}}\right\|^{2}-\left\|h_{l_{k}}+\nabla h_{l_{k}}^{T} \mu_{k} d_{k}\right\|^{2}\right] .
\end{aligned}
$$

According to rule (2.31), we have $\rho_{k} \geq \sigma_{k}^{2}$. Hence

$$
\begin{aligned}
\frac{\sigma_{k}^{2}}{2} C_{4} \mu_{k}\left\|h_{l_{k}}\right\|^{2} \min \left\{\frac{\delta_{\min }}{b_{1}}, \frac{\alpha_{1}\left(1-\gamma_{1}\right) C_{3}}{4 C_{4}}, \alpha_{1}\right\} & \leq\left(\nabla_{x} \ell^{s}\left(x_{k}, \lambda_{k}\right)\right)^{T} \mu_{k} d_{k}+\frac{1}{2} \mu_{k}^{2} d_{k}^{T} \tilde{H}_{k} d_{k} \\
& +\Delta \lambda_{k}^{T}\left(h_{l_{k}}+\nabla h_{l_{k}}^{T} \mu_{k} d_{k}\right) \\
& +\frac{\sigma_{k}}{2}\left[\left\|W_{k}\left(g_{u}\left(x_{k}\right)+\nabla g_{u}\left(x_{k}\right)^{T} \mu_{k} d_{k}\right)\right\|^{2}+\frac{b_{0}}{2}\left\|h_{l_{k}}\right\|^{2} .\right.
\end{aligned}
$$

Then,

$$
\begin{aligned}
\frac{\sigma_{k}}{2} C_{4} \mu_{k}\left\|h_{l_{k}}\right\|^{2} \min \left\{\frac{\delta_{\min }}{b_{1}}, \frac{\alpha_{1}\left(1-\gamma_{1}\right) C_{3}}{4 C_{4}}, \alpha_{1}\right\} & \leq \frac{1}{\sigma_{k}}\left[\left(\nabla_{x} \ell^{s}\left(x_{k}, \lambda_{k}\right)\right)^{T} \mu_{k} d_{k}+\frac{1}{2} \mu_{k}^{2} d_{k}^{T} \tilde{H}_{k} d_{k}\right. \\
& \left.+\Delta \lambda_{k}^{T}\left(h_{l_{k}}+\nabla h_{l_{k}}^{T} \mu_{k} d_{k}\right)+\frac{b_{0}}{2}\left\|h_{l_{k}}\right\|^{2}\right] \\
& +\frac{1}{2}\left\|W_{k}\left(g_{u}\left(x_{k}\right)+\nabla g_{u}\left(x_{k}\right)^{T} \mu_{k} d_{k}\right)\right\|^{2} \\
& \left.\leq \frac{1}{\sigma_{k}}\left[\mid \nabla_{x} \ell^{s}\left(x_{k}, \lambda_{k}\right)\right)^{T} d_{k}\left|+\frac{1}{2}\right| d_{k}^{T} \tilde{H}_{k} d_{k} \right\rvert\, \\
& \left.+\left|\Delta \lambda_{k}^{T}\left(h_{l_{k}}+\nabla h_{l_{k}}^{T} \mu_{k} d_{k}\right)\right|+\frac{b_{0}}{2}\left\|h_{l_{k}}\right\|^{2}\right]
\end{aligned}
$$

$$
+\frac{1}{2}\left\|W_{k}\left(g_{u}\left(x_{k}\right)+\nabla g_{u}\left(x_{k}\right)^{T} \mu_{k} d_{k}\right)\right\|^{2}
$$

where $\mu_{k} \leq 1$. Using the Cauchy-Schwarz inequality, assumptions $A_{3}-A_{5}$, and the fact that $\left\|d_{k}\right\| \leq \delta_{\max }$, the proof is completed.

Lemma 3.15. Under assumptions $A_{1}-A_{5}$. If $\sigma_{k} \rightarrow \infty$ and there exists an infinite subsequence $\left\{k_{i}\right\}$ of the iteration sequence at which ρ_{k} is increased, then

$$
\begin{equation*}
\lim _{k_{i} \rightarrow \infty}\left\|h_{k_{i}}\right\|=0 \tag{3.36}
\end{equation*}
$$

Proof. The proof follows directly from $\lim _{k_{i} \rightarrow \infty} \mu_{k_{i}}=1, \sigma_{k} \rightarrow \infty$, and Lemma (3.14).
Theorem 3.1. Under assumptions $A_{1}-A_{5}$. If $\sigma_{k} \rightarrow \infty$, then

$$
\begin{equation*}
\lim _{k \rightarrow \infty}\left\|h_{l_{k}}\right\|=0 \tag{3.37}
\end{equation*}
$$

Proof. The proof similar to the proof of Theorem 4.18 [19].
We notice from the way of updating σ that, the sequence $\left\{\sigma_{k}\right\}$ is unbounded only when there exist an infinite subsequence of indices $\left\{k_{i}\right\}$, at which

$$
\begin{equation*}
\frac{1}{2} \operatorname{Tpred}_{k}\left(\mu_{k} \bar{d}_{k}^{t}\right)<\left\|\nabla g_{u}\left(x_{k}\right) W_{k} g_{u}\left(x_{k}\right)\right\| \min \left\{\left\|\nabla g_{u}\left(x_{k}\right) W_{k} g_{u}\left(x_{k}\right)\right\|, \Delta_{k}\right\} \tag{3.38}
\end{equation*}
$$

The following lemma shows that, if $\sigma_{k} \rightarrow \infty$ and $\lim \sup _{k \rightarrow \infty}\left\|W_{k} g_{u}\left(x_{k}\right)\right\|>0$, then the iteration sequence generated by the algorithm ACBTR has a subsequence that satisfies IFJ conditions in the limit.

Lemma 3.16. Under assumptions $A_{1}-A_{5}$. If $\sigma_{k} \rightarrow \infty$ and there exists a subsequence $\left\{k_{j}\right\}$ of indices indexing iterates that satisfy $\left\|W_{k} g_{u}\left(x_{k}\right)\right\| \geq \varepsilon>0$ for all $k \in\left\{k_{j}\right\}$, then a subsequence of the iteration sequence indexed $\left\{k_{j}\right\}$ satisfies the IFJ conditions as $k \rightarrow \infty$.

Proof. The proof is by contradiction. Let the subsequence $\left\{k_{j}\right\}$ be renamed to $\{k\}$ to simplify the notation. Suppose that there is no a subsequence of the sequence of iterates that satisfies IFJ conditions in the limit. Then we have $\left\|W_{k} g_{u}\left(x_{k}\right)\right\|^{2}-\left\|W_{k}\left(g_{u}\left(x_{k}\right)+\nabla g_{u}\left(x_{k}\right)^{T} Z_{k} \mu_{k} \bar{d}_{k}^{t}\right)\right\|^{2} \mid \geq \varepsilon_{1}>0$ from Lemma (3.1). Also we have $\left\|Z_{k} \nabla g_{u}\left(x_{k}\right) W_{k} g_{u}\left(x_{k}\right)\right\| \geq \varepsilon_{2}>0$ from (3.13). Since

$$
\left\|Z_{k}^{T} \nabla g_{u}\left(x_{k}\right) W_{k}\left(g_{u}\left(x_{k}\right)+\nabla g_{u}\left(x_{k}\right)^{T} d_{k}^{n}\right)\right\| \geq\left\|Z_{k}^{T} \nabla g_{u}\left(x_{k}\right) W_{k} g_{u}\left(x_{k}\right)\right\|-\left\|Z_{k}^{T} \nabla g_{u}\left(x_{k}\right) W_{k} \nabla g_{u}\left(x_{k}\right)^{T}\right\|\left\|d_{k}^{n}\right\|
$$

and using (3.17), then we have

$$
\left\|Z_{k}^{T} \nabla g_{u}\left(x_{k}\right) W_{k}\left(g_{u}\left(x_{k}\right)+\nabla g_{u}\left(x_{k}\right)^{T} d_{k}^{n}\right)\right\| \geq \varepsilon_{2}-C_{2}\left\|Z_{k}^{T} \nabla g_{u}\left(x_{k}\right) W_{k} \nabla g_{u}\left(x_{k}\right)^{T}\right\|\left\|h_{l_{k}}\right\| .
$$

But $\left\{\left\|h_{l_{k}}\right\|\right\}$ convergence to zero and $\left\|Z_{k}^{T} \nabla g_{u}\left(x_{k}\right) W_{k} \nabla g_{u}\left(x_{k}\right)^{T}\right\|$ is bounded. Then $\| Z_{k}^{T} \nabla g_{u}\left(x_{k}\right) W_{k}\left(g_{u}\left(x_{k}\right)+\right.$ $\left.\nabla g_{u}\left(x_{k}\right)^{T} d_{k}^{n}\right) \| \geq \frac{\varepsilon_{2}}{2}$ and therefore

$$
\begin{aligned}
\left\|Z_{k}^{T} \nabla q_{k}\left(d_{k}^{n}\right)\right\| & \geq \sigma_{k}\left\|Z_{k}^{T} \nabla g_{u}\left(x_{k}\right) W_{k}\left(g_{u}\left(x_{k}\right)+\nabla g_{u}\left(x_{k}\right)^{T} d_{k}^{n}\right)\right\|-\left\|Z_{k}^{T}\left(\nabla_{x} \ell_{k}^{s}+\tilde{H}_{k} d_{k}^{n}\right)\right\| \\
& \geq \sigma_{k} \frac{\varepsilon_{2}}{2}-\left\|Z_{k}^{T}\left(\nabla_{x} \ell_{k}^{s}+\tilde{H}_{k} d_{k}^{n}\right)\right\| .
\end{aligned}
$$

Hence inequality (3.29) can be written as follows

$$
\begin{aligned}
\operatorname{Tpred}_{k}\left(\mu_{k} \bar{d}_{k}^{t}\right) \geq & \frac{1}{2} C_{5} \mu_{k} \sigma_{k}\left[\frac{\varepsilon_{2}}{2}-\frac{1}{\sigma_{k}}\left\|Z_{k}^{T}\left[\nabla_{x} \ell_{k}^{s}+\tilde{H}_{k} d_{k}^{n}\right]\right\|\right. \\
& \min \left\{\Delta_{k}, \frac{\frac{\varepsilon_{2}}{2}-\frac{1}{\sigma_{k}}\left\|Z_{k}^{T}\left[\nabla_{x} \ell_{k}^{s}+\tilde{H}_{k} d_{k}^{n}\right]\right\|}{\left\|Z_{k}^{T} \nabla g_{u}\left(x_{k}\right) W_{k} \nabla g_{u}\left(x_{k}\right)^{T} Z_{k}\right\|+\frac{1}{\sigma_{k}}\left\|Z_{k}^{T} \tilde{H}_{k} Z_{k}\right\|}\right\} .
\end{aligned}
$$

That is for k sufficiently large we have

$$
\operatorname{Tpred}_{k}\left(\mu_{k} \bar{d}_{k}^{t}\right) \geq \frac{\varepsilon_{2}}{4} C_{5} \mu_{k} \sigma_{k} \min \left\{\Delta_{k}, \frac{\varepsilon_{2}}{2\left\|Z_{k}^{T} \nabla g_{u}\left(x_{k}\right) W_{k} \nabla g_{u}\left(x_{k}\right)^{T} Z_{k}\right\|}\right\}
$$

Since $\sigma_{k} \rightarrow \infty$, then there exists infinite number of acceptable iterates at which (3.38) holds. That is, there exists a contradiction unless $\sigma_{k} \Delta_{k}$ is bounded. Hence $\Delta_{k} \rightarrow 0$ and therefore $\left\|d_{k}\right\| \rightarrow 0$. Now we will consider two cases:
Firstly, if $\left\|W_{k} g_{u}\left(x_{k}\right)\right\|^{2}-\left\|W_{k}\left(g_{u}\left(x_{k}\right)+\nabla g_{u}\left(x_{k}\right)^{T} Z_{k} \mu_{k} \bar{d}_{k}^{t}\right)\right\|^{2}>\varepsilon_{1}$, we have

$$
\begin{equation*}
\sigma_{k}\left\{\left\|W_{k} g_{u}\left(x_{k}\right)\right\|^{2}-\left\|W_{k}\left(g_{u}\left(x_{k}\right)+\nabla g_{u}\left(x_{k}\right)^{T} Z_{k} \mu_{k} \bar{d}_{k}^{t}\right)\right\|^{2} \mid\right\}>\sigma_{k} \varepsilon_{1} \rightarrow \infty . \tag{3.39}
\end{equation*}
$$

Thus, from (2.19), (3.39), and using assumptions $A_{3}-A_{5}$, we have $\operatorname{Tpred}_{k}\left(\mu_{k} \bar{d}_{k}^{t}\right) \rightarrow \infty$. That is, the left hand side of inequality (3.38) goes to infinity while the right hand side of the same inequality goes to zero. That is, there exists a contradiction in this case.
Secondly, if $\left\|W_{k} g_{u}\left(x_{k}\right)\right\|^{2}-\left\|W_{k}\left(g_{u}\left(x_{k}\right)+\nabla g_{u}\left(x_{k}\right)^{T} Z_{k} \mu_{k} \bar{d}_{k}^{t}\right)\right\|^{2}<-\varepsilon_{1}$, then

$$
\sigma_{k}\left\{\left\|W_{k} g_{u}\left(x_{k}\right)\right\|^{2}-\left\|W_{k}\left(g_{u}\left(x_{k}\right)+\nabla g_{u}\left(x_{k}\right)^{T} Z_{k} \mu_{k} \bar{d}_{k}^{t}\right)\right\|^{2} \mid\right\}<-\sigma_{k} \varepsilon_{1} \rightarrow-\infty,
$$

where $\sigma_{k} \rightarrow \infty$ as $k \rightarrow \infty$. Similar to the above case, $\operatorname{Tpred}_{k}\left(\mu_{k} \bar{d}_{k}^{t}\right) \rightarrow-\infty$. This gives a contradiction in this case with $\operatorname{Tpred}_{k}\left(\mu_{k} \bar{d}_{k}^{t}\right)>0$. This two contradictions prove the lemma.

The following lemma shows that if $\lim _{k \rightarrow \infty} \sigma_{k} \rightarrow \infty$ and $\liminf _{k \rightarrow \infty}\left\|W_{k} g_{u}\left(x_{k}\right)\right\|=0$, then the iteration sequence generated by the algorithm ACBTR has a subsequence that satisfies FJ conditions in the limit.
Lemma 3.17. Under assumptions $A_{1}-A_{5}$. Let $\left\{k_{j}\right\}$ be a subsequence of iterates that satisfy $\left\|W_{k} g_{u}\left(x_{k}\right)\right\|>0$ for all $k \in\left\{k_{j}\right\}$ and $\lim _{k_{j} \rightarrow \infty}\left\|W_{k_{j}} g_{k_{j}}\right\|=0$. If $\lim _{k \rightarrow \infty} \sigma_{k}=\infty$, then a subsequence of $\left\{k_{j}\right\}$ satisfies FJ conditions in the limit.
Proof. The proof of this lemma is similar to the proof of Lemma 4.20 [19].

3.3. Global convergence theory when σ_{k} is bounded

In this section, we will continue our discussion assuming that the parameter σ_{k} is bounded. We mean that there exists an integer \bar{k} such that for all $k \geq \bar{k}, \sigma_{k}=\bar{\sigma}<\infty$, and

$$
\begin{equation*}
\frac{1}{2} \operatorname{Tpred}_{k}\left(\mu_{k} \bar{d}_{k}^{t}\right) \geq\left\|\nabla g_{u}\left(x_{k}\right) W_{k} g_{u}\left(x_{k}\right)\right\| \min \left\{\left\|\nabla g_{u}\left(x_{k}\right) W_{k} g_{u}\left(x_{k}\right)\right\|, \Delta_{k}\right\} \tag{3.40}
\end{equation*}
$$

From assumptions A_{3}, A_{5}, and assumption (3.40), we can say that there exists a constant $0<b_{2}$ such that for all $k \geq \bar{k}$

$$
\begin{equation*}
\left\|B_{k}\right\| \leq b_{2}, \quad\left\|Z_{k}^{T} B_{k}\right\| \leq b_{2}, \quad \text { and } \quad\left\|Z_{k}^{T} B_{k} Z_{k}\right\| \leq b_{2}, \tag{3.41}
\end{equation*}
$$

where $B_{k}=\tilde{H}_{k}+\bar{\sigma} \nabla g_{u}\left(x_{k}\right) W_{k} \nabla g_{u}\left(x_{k}\right)^{T}$.

Lemma 3.18. Under assumptions $A_{1}-A_{5}$, there exists a constant $C_{8}>0$ such that

$$
\begin{equation*}
q_{k}(0)-q_{k}\left(\mu_{k} d_{k}^{n}\right)-\Delta \lambda_{k}^{T}\left(h_{l_{k}}+\nabla h_{l_{k}}^{T} \mu_{k} d_{k}\right) \geq-C_{8} \mu_{k}\left\|h_{l_{k}}\right\|, \tag{3.42}
\end{equation*}
$$

for all $k \geq \bar{k}$.
Proof. By using the definition (2.28), we have

$$
\begin{aligned}
q_{k}(0)-q_{k}\left(\mu_{k} d_{k}^{n}\right)= & -\left(\nabla_{x} \ell^{s}\left(x_{k}, \lambda_{k}\right)\right)^{T} \mu_{k} d_{k}^{n}-\frac{1}{2} \mu_{k}^{2} d_{k}^{n^{T}} \tilde{H}_{k} d_{k}^{n} \\
& +\frac{\bar{\sigma}}{2}\left[\left\|W_{k} g_{u}\left(x_{k}\right)\right\|^{2}-\left\|W_{k}\left(g_{u}\left(x_{k}\right)+\nabla g_{u}\left(x_{k}\right)^{T} \mu_{k} d_{k}^{n}\right)\right\|^{2}\right] \\
= & -\left(\nabla_{x} \ell^{s}\left(x_{k}, \lambda_{k}\right)+\bar{\sigma} \nabla g_{u}\left(x_{k}\right) W_{k} g_{u}\left(x_{k}\right)\right)^{T} \mu_{k} d_{k}^{n} \\
& -\frac{1}{2} \mu_{k}^{2} d_{k}^{n T}\left(\tilde{H}_{k}+\bar{\sigma} \nabla g_{u}\left(x_{k}\right) W_{k} \nabla g_{u}\left(x_{k}\right)^{T}\right) d_{k}^{n} \\
= & -\left(\nabla_{x} \ell^{s}\left(x_{k}, \lambda_{k}\right)+\bar{\sigma} \nabla g_{u}\left(x_{k}\right) W_{k} g_{u}\left(x_{k}\right)\right)^{T} \mu_{k} d_{k}^{n}-\frac{1}{2} \mu_{k}^{2} d_{k}^{n T} B_{k} d_{k}^{n} .
\end{aligned}
$$

That is,

$$
\begin{aligned}
q_{k}(0)-q_{k}\left(\mu_{k} d_{k}^{n}\right)- & \Delta \lambda_{k}^{T}\left(h_{l_{k}}+\nabla h_{l_{k}}^{T} \mu_{k} d_{k}\right)=-\left(\nabla_{x} \ell^{s}\left(x_{k}, \lambda_{k}\right)+\bar{\sigma} \nabla g_{u}\left(x_{k}\right) W_{k} g_{u}\left(x_{k}\right)\right)^{T} \mu_{k} d_{k}^{n} \\
& -\frac{1}{2} \mu_{k}^{2} d_{k}^{n T} B_{k} d_{k}^{n}-\Delta \lambda_{k}^{T}\left(h_{l_{k}}+\nabla h_{l_{k}}^{T} \mu_{k} d_{k}\right) \\
\geq & -\mu_{k}\left\|\nabla_{x} \ell^{s}\left(x_{k}, \lambda_{k}\right)\right\|\| \| d_{k}^{n}\left\|-\bar{\sigma} \mu_{k}\right\| \nabla g_{u}\left(x_{k}\right) W_{k} g_{u}\left(x_{k}\right)\| \| d_{k}^{n}\left\|-\mu_{k}^{2}\right\| B_{k}\| \| d_{k}^{n} \|^{2} \\
& -\left\|\Delta \lambda_{k}\right\|\left\|h_{l_{k}}+\nabla h_{l_{k}}^{T} \mu_{k} d_{k}\right\| \\
\geq & -\mu_{k}\left[\left\|\nabla_{x} \ell^{s}\left(x_{k}, \lambda_{k}\right)\right\|+\bar{\sigma}\left\|\nabla g_{u}\left(x_{k}\right) W_{k} g_{u}\left(x_{k}\right)\right\|+\left\|B_{k}\right\|\left\|d_{k}^{n}\right\|\right]\left\|d_{k}^{n}\right\| \\
& -\mu_{k}\left\|\Delta \lambda_{k}\right\|\left\|\nabla h_{l_{k}}\right\|\left\|d_{k}^{n}\right\| .
\end{aligned}
$$

By using inequality (3.17), we can obtain the following inequality

$$
\begin{aligned}
q_{k}(0)-q_{k}\left(\mu_{k} d_{k}^{n}\right)-\Delta \lambda_{k}^{T}\left(h_{l_{k}}+\nabla h_{l_{k}}^{T} \mu_{k} d_{k}\right) \geq & -\mu_{k}\left[\left(\left\|\nabla_{x} \ell^{s}\left(x_{k}, \lambda_{k}\right)\right\|+\bar{\sigma}\left\|\nabla g_{u}\left(x_{k}\right) W_{k} g_{u}\left(x_{k}\right)\right\|\right.\right. \\
& \left.\left.+\left\|B_{k}\right\|\left\|d_{k}^{n}\right\|+\left\|\Delta \lambda_{k}\right\|\left\|\nabla h_{l_{k}}\right\|\right) C_{2}\right]\left\|h_{l_{k}}\right\| .
\end{aligned}
$$

From assumptions $A_{3}-A_{5}$, the fact that $\left\|d_{k}^{n}\right\| \leq \delta_{\max }$, and using (3.41), then for all $k \geq \bar{k}$ there exists a constant $C_{8}>0$ such that inequality (3.42) hold. This completes the proof.

Lemma 3.19. Under assumptions $A_{1}-A_{5}$, we have

$$
\begin{align*}
\text { Pred }_{k} \geq & \frac{1}{2} C_{5} \mu_{k}\left\|Z_{k}^{T} \nabla q_{k}\left(d_{k}^{n}\right)\right\| \min \left\{\Delta_{k}, \frac{\left\|Z_{k}^{T} \nabla q_{k}\left(d_{k}^{n}\right)\right\|}{\left\|\bar{B}_{k}\right\|}\right\} \\
& +\left\|\nabla g_{u}\left(x_{k}\right) W_{k} g_{u}\left(x_{k}\right)\right\| \min \left\{\left\|\nabla g_{u}\left(x_{k}\right) W_{k} g_{u}\left(x_{k}\right)\right\|, \Delta_{k}\right\} \\
& -C_{8} \mu_{k}\left\|h_{l_{k}}\right\|+\rho_{k}\left[\left\|h_{l_{k}}\right\|^{2}-\left\|h_{l_{k}}+\nabla h_{l_{k}}^{T} \mu_{k} d_{k}\right\|^{2}\right], \tag{3.43}
\end{align*}
$$

for all $k \geq \bar{k}$.
Proof. Since the definition of Pred_{k} (2.27) can be written as follows

$$
\text { Pred }_{k}=\left[q_{k}\left(\mu_{k} d_{k}^{n}\right)-q_{k}\left(\mu_{k} d_{k}\right)\right]+\left[q_{k}(0)-q_{k}\left(\mu_{k} d_{k}^{n}\right)-\Delta \lambda_{k}^{T}\left(h_{l_{k}}+\nabla h_{l_{k}}^{T} \mu_{k} d_{k}\right)\right]
$$

$$
+\rho_{k}\left[\left\|h_{l_{k}}\right\|^{2}-\left\|h_{l_{k}}+\nabla h_{l_{k}}^{T} \mu_{k} d_{k}\right\|^{2}\right] .
$$

and by using (2.19), we have

$$
\begin{aligned}
\text { Pred }_{k}= & \frac{1}{2} \operatorname{Tred}_{k}\left(\mu_{k} \bar{d}_{k}^{t}\right)+\frac{1}{2} \operatorname{Tpred}_{k}\left(\mu_{k} \bar{d}_{k}^{t}\right) \\
& +\left[q_{k}(0)-q_{k}\left(\mu_{k} d_{k}^{n}\right)-\Delta \lambda_{k}^{T}\left(h_{l_{k}}+\nabla h_{l_{k}}^{T} \mu_{k} d_{k}\right)\right] \\
& +\rho_{k}\left[\left\|h_{l_{k}}\right\|^{2}-\left\|h_{l_{k}}+\nabla h_{l_{k}}^{T} \mu_{k} d_{k}\right\|^{2}\right] .
\end{aligned}
$$

Using inequalities (3.29), (3.40), and (3.42), we can obtain the desired result.
Lemma 3.20. Under assumptions $A_{1}-A_{5}$. If ρ_{k} increased at iteration k, then there exists a constant $C_{9}>0$ such that

$$
\begin{equation*}
\rho_{k} \mu_{k} \min \left\{\left\|h_{l_{k}}\right\|, \delta_{k}\right\} \leq C_{9} . \tag{3.44}
\end{equation*}
$$

Proof. Since ρ_{k} is increased at iteration k, then from (2.30) we have

$$
\begin{aligned}
\frac{\rho_{k}}{2}\left[\left\|h_{l_{k}}\right\|^{2}-\left\|h_{l_{k}}+\nabla h_{l_{k}}^{T} \mu_{k} d_{k}\right\|^{2}\right]= & {\left[q_{k}\left(\mu_{k} d_{k}\right)-q_{k}\left(\mu_{k} d_{k}^{n}\right)\right]+\left[q_{k}\left(\mu_{k} d_{k}^{n}\right)-q_{k}(0)\right] } \\
& +\Delta \lambda_{k}^{T}\left(h_{l_{k}}+\nabla h_{l_{k}}^{T} \mu_{k} d_{k}\right) \\
& +\frac{b_{0}}{2}\left[\left\|h_{l_{k}}\right\|^{2}-\left\|h_{l_{k}}+\nabla h_{l_{k}}^{T} \mu_{k} d_{k}\right\|^{2}\right] \\
= & -\frac{1}{2} \text { Tpred }_{k}\left(\mu_{k} \bar{d}_{k}^{t}\right)-\frac{1}{2} \text { Tpred }_{k}\left(\mu_{k} \bar{d}_{k}^{t}\right) \\
& +\left[q_{k}\left(\mu_{k} d_{k}^{n}\right)-q_{k}(0)+\Delta \lambda_{k}^{T}\left(h_{l_{k}}+\nabla h_{l_{k}}^{T} \mu_{k} d_{k}\right)\right] \\
& +\frac{b_{0}}{2}\left[\left\|h_{l_{k}}\right\|^{2}-\left\|h_{l_{k}}+\nabla h_{l_{k}}^{T} \mu_{k} d_{k}\right\|^{2}\right] .
\end{aligned}
$$

Applying inequality (3.23) to the left hand side and inequalities (3.29), (3.40), and (3.42) to the right hand side, we obtain

$$
\begin{aligned}
\frac{\rho_{k}}{2} C_{4} \mu_{k}\left\|h_{l_{k}}\right\| \min \left\{\delta_{k},\left\|h_{l_{k}}\right\|\right\} \leq & -\frac{C_{5}}{2} \mu_{k}\left\|Z_{k}^{T} \nabla q_{k}\left(d_{k}^{n}\right)\right\| \min \left\{\Delta_{k}, \frac{\left\|Z_{k}^{T} \nabla q_{k}\left(d_{k}^{n}\right)\right\|}{\left\|\bar{B}_{k}\right\|}\right\} \\
& -\left\|\nabla g_{u}\left(x_{k}\right) W_{k} g_{u}\left(x_{k}\right)\right\| \min \left\{\left\|\nabla g_{u}\left(x_{k}\right) W_{k} g_{u}\left(x_{k}\right)\right\|, \Delta_{k}\right\} \\
& +C_{8} \mu_{k}\left\|h_{l_{k}}\right\|+\frac{b_{0}}{2}\left\|h_{l_{k}}\right\|^{2} \\
\leq & C_{8} \mu_{k}\left\|h_{l_{k}}\right\|+\frac{b_{0}}{2}\left\|h_{l_{k}}\right\|^{2} .
\end{aligned}
$$

The rest of the proof follows using the fact that $\mu_{k} \leq 1$ and assumption A_{3}.

Lemma 3.21. Under assumptions $A_{1}-A_{5}$. If

 $\left\|Z_{k}^{T}\left(\nabla_{x} \ell^{s}\left(x_{k}, \lambda_{k}\right)+\bar{\sigma} \nabla g_{u}\left(x_{k}\right) W_{k} g_{u}\left(x_{k}\right)\right)\right\|+\left\|\nabla g_{u}\left(x_{k}\right) W_{k} g_{u}\left(x_{k}\right)\right\| \geq \varepsilon>0$ and $\left\|h_{l_{k}}\right\| \leq \eta \delta_{k}$ where $\eta>0$ is given by$$
\begin{equation*}
\eta \leq \min \left\{\frac{\varepsilon}{6 b_{2} C_{2} \delta_{\max }}, \frac{\sqrt{3}}{2 C_{2}}, \frac{C_{5} \varepsilon}{12 C_{8}} \min \left\{\frac{2 \varepsilon}{3 \delta_{\max }}, 1\right\}, \frac{\varepsilon}{4 C_{8}} \min \left\{\frac{\varepsilon}{\delta_{\max }}, 1\right\}\right\} . \tag{3.45}
\end{equation*}
$$

then there exists a constant $C_{10}>0$, such that

$$
\begin{equation*}
\text { Pred }_{k} \geq C_{10} \mu_{k} \delta_{k}+\rho_{k}\left[\left\|h_{l_{k}}\right\|^{2}-\left\|h_{l_{k}}+\nabla h_{l_{k}}^{T} \mu d_{k}\right\|^{2}\right] . \tag{3.46}
\end{equation*}
$$

Proof. Suppose that $\| Z_{k}^{T}\left(\nabla_{x} \ell^{s}\left(x_{k}, \lambda_{k}\right)+\bar{\sigma} \nabla g_{u}\left(x_{k}\right) W_{k} g_{u}\left(x_{k}\right) \| \geq \frac{\varepsilon}{2}\right.$, then $\left\|\nabla g_{u}\left(x_{k}\right) W_{k} g_{u}\left(x_{k}\right)\right\| \geq \frac{\varepsilon}{2}$. From inequality (3.17) and using (3.41), we have

$$
\begin{aligned}
\left\|Z_{k}^{T}\left(\nabla_{x} \ell^{s}\left(x_{k}, \lambda_{k}\right)+\bar{\sigma} \nabla g_{u}\left(x_{k}\right) W_{k} g_{u}\left(x_{k}\right)+B_{k} d_{k}^{n}\right)\right\| \geq & \left\|Z_{k}^{T}\left(\nabla_{x} \ell^{s}\left(x_{k}, \lambda_{k}\right)+\bar{\sigma} \nabla g_{u}\left(x_{k}\right) W_{k} g_{u}\left(x_{k}\right)\right)\right\| \\
& -\left\|Z_{k}^{T} B_{k} d_{k}^{n}\right\| \\
\geq & \left\|Z_{k}^{T}\left(\nabla_{x} \ell^{s}\left(x_{k}, \lambda_{k}\right)+\bar{\sigma} \nabla g_{u}\left(x_{k}\right) W_{k} g_{u}\left(x_{k}\right)\right)\right\| \\
& -b_{2} C_{2}\left\|h_{l_{k}}\right\| \\
\geq & \frac{\varepsilon}{2}-b_{2} C_{2} \eta \delta_{k} .
\end{aligned}
$$

Since $\eta \leq \frac{\varepsilon}{6 b_{2} C_{2} \delta_{\text {max }}}$, then we have

$$
\begin{equation*}
\left\|Z_{k}^{T}\left(\nabla_{x} \ell^{s}\left(x_{k}, \lambda_{k}\right)+\bar{\sigma} \nabla g_{u}\left(x_{k}\right) W_{k} g_{u}\left(x_{k}\right)+B_{k} d_{k}^{n}\right)\right\| \geq \frac{\varepsilon}{2}-\frac{\varepsilon}{6} \geq \frac{\varepsilon}{3} . \tag{3.47}
\end{equation*}
$$

Because $\Delta_{k}=\sqrt{\delta_{k}^{2}-\left\|d_{k}^{n}\right\|^{2}}$ and $\left\|d_{k}^{n}\right\| \leq C_{2}\left\|h_{l_{k}}\right\| \leq C_{2} \eta \delta_{k} \leq C_{2} \frac{\sqrt{3}}{2 C_{2}} \delta_{k}=\frac{\sqrt{3}}{2} \delta_{k}$, hence $\Delta_{k}^{2}=\delta_{k}^{2}-\left\|d_{k}^{n}\right\|^{2} \geq$ $\delta_{k}^{2}-\frac{3}{4} \delta_{k}^{2}=\frac{1}{4} \delta_{k}^{2}$. Thus,

$$
\begin{equation*}
\Delta_{k} \geq \frac{1}{2} \delta_{k} . \tag{3.48}
\end{equation*}
$$

From inequalities (3.43), (3.47) and (3.48), we have

$$
\begin{aligned}
\text { Pred }_{k} \geq & \frac{1}{2} C_{5} \mu_{k}\left\|Z_{k}^{T}\left(\nabla_{x} \ell^{s}\left(x_{k}, \lambda_{k}\right)+\bar{\sigma} \nabla g_{u}\left(x_{k}\right) W_{k} g_{u}\left(x_{k}\right)+B_{k} d_{k}^{n}\right)\right\| \\
& \min \left\{\left\|Z_{k}^{T}\left(\nabla_{x} \ell^{s}\left(x_{k}, \lambda_{k}\right)+\bar{\sigma} \nabla g_{u}\left(x_{k}\right) W_{k} g_{u}\left(x_{k}\right)+B_{k} d_{k}^{n}\right)\right\|, \frac{1}{2} \delta_{k}\right\} \\
& +\left\|\nabla g_{u}\left(x_{k}\right) W_{k} g_{u}\left(x_{k}\right)\right\| \min \left\{\left\|\nabla g_{u}\left(x_{k}\right) W_{k} g_{u}\left(x_{k}\right)\right\|, \frac{1}{2} \delta_{k}\right\} \\
& -C_{8} \mu_{k}\left\|h_{l_{k}}\right\|+\rho_{k}\left[\left\|h_{l k}\right\|^{2}-\left\|h_{l k}+\nabla h_{l_{k}}^{T} \mu d_{k}\right\|^{2}\right] \\
\geq & \frac{C_{5} \mu_{k} \varepsilon}{12} \delta_{k} \min \left\{\frac{2 \varepsilon}{3 \delta_{\max }}, 1\right\}+\frac{\mu \varepsilon}{4} \min \left\{\frac{\varepsilon}{\delta_{\max }}, 1\right\} \delta_{k} \\
& -\frac{1}{2} C_{8} \eta \mu_{k} \delta_{k}-\frac{1}{2} C_{8} \eta \mu_{k} \delta_{k}+\rho_{k}\left[\left\|h_{l k}\right\|^{2}-\left\|h_{l_{k}}+\nabla h_{l_{k}}^{T} \mu_{k} d_{k}\right\|^{2}\right] .
\end{aligned}
$$

Since $\eta \leq \min \left\{\frac{C_{5} \varepsilon}{12 C_{8}} \min \left\{\frac{2 \varepsilon}{3 \delta_{\text {max }}}, 1\right\}, \frac{\varepsilon}{4 C_{8}} \min \left\{\frac{\varepsilon}{\delta_{\text {max }}}, 1\right\}\right\}$, then we have

$$
\operatorname{Pred}_{k} \geq \frac{C_{5} \mu_{k} \varepsilon}{24} \min \left\{\frac{2 \varepsilon}{3 \delta_{\max }}, 1\right\} \delta_{k}+\frac{\mu \varepsilon}{8} \min \left\{\frac{2 \varepsilon}{\delta_{\max }}, 1\right\} \delta_{k}+\rho_{k}\left[\left\|h_{l_{k}}\right\|^{2}-\left\|h_{l_{k}}+\nabla h_{l_{k}}^{T} \mu_{k} d_{k}\right\|^{2}\right] .
$$

The result follows if we take $C_{10}=\min \left\{\frac{C_{5} \varepsilon}{24} \min \left\{\frac{2 \varepsilon}{3 \delta_{\text {max }}}, 1\right\}, \frac{\varepsilon}{8} \min \left\{\frac{2 \varepsilon}{\delta_{\text {max }}}, 1\right\}\right\}$.
We can easily see from lemma 3.21 that, at any iteration at which $\left\|Z_{k}^{T}\left(\nabla_{x} \ell^{s}\left(x_{k}, \lambda_{k}\right)+\bar{\sigma} \nabla g_{u}\left(x_{k}\right) W_{k} g_{u}\left(x_{k}\right)\right)+\nabla g_{u}\left(x_{k}\right) W_{k} g_{u}\left(x_{k}\right)\right\| \geq \varepsilon$ and $\left\|h_{l_{k}}\right\| \leq \eta \delta_{k}$, where η is given by (3.45), there is no need to increase the value of ρ_{k}. It is only increased when $\left\|h_{l_{k}}\right\| \geq \eta \delta_{k}$.

Lemma 3.22. Under assumptions $A_{1}-A_{5}$. If $\rho_{k^{j}}$ increased at the $j^{\text {th }}$ trial iterate of any iteration k, then

$$
\begin{equation*}
\rho_{k^{j}} \mu_{k^{j}}\left\|h_{l_{k}}\right\| \leq C_{11}, \tag{3.49}
\end{equation*}
$$

where $C_{11}>0$ is a constant.

Proof. The proof of this lemma follows directly from inequalities (3.31) and (3.44).
Lemma 3.23. Under assumptions $A_{1}-A_{5}$. If $\rho_{k} \rightarrow \infty$, then

$$
\begin{equation*}
\lim _{k_{i} \rightarrow \infty}\left\|h_{l_{k_{i}}}\right\|=0 \tag{3.50}
\end{equation*}
$$

where $\left\{k_{i}\right\}$ is a subsequence of iterates at which the penalty parameter is increased.
Proof. The proof of this lemma follows directly from Lemma 3.22 and $\lim _{k \rightarrow \infty} \mu_{k}=1$.

3.4. Main global convergence theory

In this section, we will prove the main global convergence theorems for the proposed algorithm ACBTR.

Theorem 3.2. Assume that assumptions $A_{1}-A_{5}$ hold, then the sequence of iterates generated by $A C B T R$ algorithm satisfies

$$
\begin{equation*}
\lim _{k \rightarrow \infty}\left\|h_{l_{k}}\right\|=0 \tag{3.51}
\end{equation*}
$$

Proof. Suppose that $\lim \sup _{k \rightarrow \infty}\left\|h_{k}\right\| \geq \varepsilon$, where $\varepsilon>0$ is a constant. Then there exists an infinite subsequence of indices $\left\{k_{j}\right\}$ indexing iterates that satisfy $\left\|h_{k_{j}}\right\| \geq \frac{\varepsilon}{2}$. From Lemma (3.10), we know that there exists an infinite sequence of acceptable steps, so to simplify, we assume that all members of the sequence $\left\{k_{j}\right\}$ are acceptable iterates. Now we will consider two cases:
Firstly, we consider that, if $\left\{\rho_{k}\right\}$ is unbounded. Then there exists an infinite number of iterates $\left\{k_{i}\right\}$ at which ρ_{k} is increased. From Lemma (3.23) and for k sufficiently large, we can say $\left\{k_{i}\right\} \cap\left\{k_{j}\right\}=\emptyset$. Let $k_{\zeta_{1}}$ and $k_{\zeta_{2}}$ be two consecutive iterates at which ρ_{k} is increased and $k_{\zeta_{1}}<k<k_{\zeta_{2}}$, for any $k \in\left\{k_{j}\right\}$. Notice that, ρ_{k} is the same for all iterates between $k_{\zeta_{1}}$ and $k_{\zeta_{2}}$. Since all the iterates of $\left\{k_{j}\right\}$ are acceptable, then

$$
\Phi_{k}-\Phi_{k+1}=\text { Ared }_{k} \geq \gamma_{1} \text { Pred }_{k}
$$

for all $k \in\left\{k_{j}\right\}$. Using inequality (3.24), we have

$$
\frac{\Phi_{k}-\Phi_{k+1}}{\rho_{k}} \geq \frac{\gamma_{1} C_{4} \mu_{k}}{2}\left\|h_{l_{k}}\right\| \min \left\{\left\|h_{l_{k}}\right\|, \delta_{k}\right\} .
$$

Summing over all acceptable iterates that lie between $k_{\zeta 1}$ and $k_{\zeta 2}$, we have

$$
\sum_{k=k_{k_{1}}}^{k_{\xi_{2}-1}} \frac{\Phi_{k}-\Phi_{k+1}}{\rho_{k}} \geq \frac{\gamma_{1} C_{4} \mu_{k} \varepsilon}{4} \min \left\{\hat{C}_{6}, \frac{\varepsilon}{2}\right\}
$$

where \hat{C}_{6} is as C_{6} in (3.34), with ε is replaced by $\frac{\varepsilon}{2}$. Hence,

$$
\frac{\ell^{s}\left(x_{k_{1}}, \mu_{k_{\xi_{1}}} ; \bar{\sigma}\right)-\ell^{s}\left(x_{k_{\xi_{2}}}, \mu_{k_{\xi_{2}}} ; \bar{\sigma}\right)}{\rho_{k_{\xi_{1}}}}+\left[\left\|h_{k_{k_{1}}}\right\|^{2}-\left\|h_{k_{\xi_{2}}}\right\|^{2}\right] \geq \frac{\gamma_{1} C_{4} \varepsilon}{4} \min \left\{\hat{C}_{6}, \frac{\varepsilon}{2}\right\}
$$

Since $\rho_{k} \rightarrow \infty$, then for $k_{\zeta_{1}}$ sufficiently large, we have

$$
\frac{\left|\ell^{s}\left(x_{k_{\xi_{1}}}, \lambda_{k_{1}} ; \bar{\sigma}\right)-\ell^{s}\left(x_{k_{\xi_{2}}}, \lambda_{k_{2}} ; \bar{\sigma}\right)\right|}{\rho_{k_{\xi_{1}}}}<\frac{\gamma_{1} C_{4} \varepsilon}{8} \min \left\{\hat{C}_{6}, \frac{\varepsilon}{2}\right\} .
$$

Therefore,

$$
\left\|h_{l_{k_{1}}}\right\|^{2}-\left\|h_{l_{k_{\xi_{2}}}}\right\|^{2} \geq \frac{\gamma_{1} C_{4} \varepsilon}{8} \min \left\{\hat{C}_{6}, \frac{\varepsilon}{2}\right\} .
$$

But this leads to a contradiction with Lemma (3.23) unless $\varepsilon=0$.
Secondly, if $\left\{\rho_{k}\right\}$ is bounded, then there exists an integer \tilde{k} such that for all $k \geq \tilde{k}, \rho_{k}=\tilde{\rho}$. Hence from inequality (3.24), we have for any $\hat{k} \in\left\{k_{j}\right\}$ and $\hat{k} \geq \tilde{k}$

$$
\begin{equation*}
\operatorname{Pred}_{\hat{k}} \geq \frac{\tilde{\rho} C_{4} \mu_{\hat{k}}}{2}\left\|h_{l_{\hat{k}}}\right\| \min \left\{\delta_{\hat{k}},\left\|h_{\hat{k}}\right\|\right\} \geq \frac{\varepsilon \tilde{\rho} C_{4} \mu_{\hat{k}}}{4} \min \left\{\frac{\varepsilon}{2 \delta_{\max }}, 1\right\} \delta_{\hat{k}} . \tag{3.52}
\end{equation*}
$$

Since all the iterates of $\left\{k_{j}\right\}$ are acceptable, then for any $\hat{k} \in\left\{k_{j}\right\}$, we have

$$
\Phi_{\hat{k}}-\Phi_{\hat{k}+1}=\operatorname{Ared}_{\hat{k}} \geq \gamma_{1} \operatorname{Pred}_{\hat{k}} .
$$

Using inequality (3.52), we have

$$
\Phi_{\hat{k}}-\Phi_{\hat{k}+1} \geq \frac{\gamma_{1} \varepsilon \tilde{\rho} C_{4} \mu_{\hat{k}}}{4} \min \left\{\frac{\varepsilon}{2 \delta_{\max }}, 1\right\} \delta_{\hat{k}} .
$$

Using Lemma (3.13), we have

$$
\Phi_{\hat{k}}-\Phi_{\hat{k}+1} \geq \frac{\gamma_{1} \varepsilon \tilde{\rho} C_{4} \mu_{\hat{k}}}{4} \min \left\{\frac{\varepsilon}{2 \delta_{\max }}, 1\right\} \hat{C}_{6}>0 .
$$

Thus there exists a contradiction with the fact that $\left\{\Phi_{k}\right\}$ is bounded when the sequence of the penalty parameter $\left\{\rho_{k}\right\}$ is bounded. Hence, in both cases the supposition is not correct and the theorem is proved.
Theorem 3.3. Under assumptions $A_{1}-A_{5}$, the sequence of iterates generated by ACBTR algorithm satisfies

$$
\begin{equation*}
\liminf _{k \rightarrow \infty}\left[\left\|Z_{k}^{T} \nabla_{x} \ell_{k}^{s}\right\|+\left\|\nabla g_{u}\left(x_{k}\right) W_{k} g_{u}\left(x_{k}\right)\right\|\right]=0 \tag{3.53}
\end{equation*}
$$

Proof. To prove this theorem we will prove

$$
\begin{equation*}
\liminf _{k \rightarrow \infty}\left[\left\|Z_{k}^{T}\left(\nabla_{x} \ell_{k}^{s}+\bar{\sigma} \nabla g_{u}\left(x_{k}\right) W_{k} g_{u}\left(x_{k}\right)\right)\right\|+\left\|\nabla g_{u}\left(x_{k}\right) W_{k} g_{u}\left(x_{k}\right)\right\|\right]=0, \tag{3.54}
\end{equation*}
$$

by contradiction. That is, we assume $\left\|Z_{k}^{T}\left(\nabla_{x} \ell_{k}^{s}+\bar{\sigma} \nabla g_{u}\left(x_{k}\right) W_{k} g_{u}\left(x_{k}\right)\right)\right\|+\left\|\nabla g_{u}\left(x_{k}\right) W_{k} g_{u}\left(x_{k}\right)\right\|>\varepsilon$ and there exists an infinite subsequence $\left\{k_{i}\right\}$ of the iteration sequence such that $\left\|h_{l_{k_{i}}}\right\|>\eta \delta_{k_{i} .}$. Since $\left\|h_{l_{i}}\right\| \rightarrow 0$ as $k_{i} \rightarrow 0$, then

$$
\lim _{k_{i} \rightarrow \infty} \delta_{k_{i}}=0
$$

Let k^{j} be any iteration in $\left\{k_{i}\right\}$. Then we will consider two cases:
Firstly, if $\left\{\rho_{k}\right\}$ is unbounded and the trial step $j-1$ of iteration k is rejected. Thus $\left\|h_{h_{k}}\right\|>\eta \delta_{k^{j}}=$ $\alpha_{1} \eta\left\|d_{k^{j-1}}\right\|$. Hence, from inequalities (3.24), (3.19), and $d_{k^{j-1}}$ was rejected, we have

$$
\begin{aligned}
\left(1-\gamma_{1}\right) & \leq \frac{\mid \text { red }_{k^{j-1}}-\text { Pred }_{k^{j-1}} \mid}{\operatorname{Pred}_{k^{j-1}}} \\
& \leq \frac{\left[2 \kappa_{1}\left\|d_{k^{j-1}}\right\|+2 \kappa_{2} \rho_{k^{j-1}}\left\|d_{k^{j-1}}\left|\left\|| | h_{l_{k}}\right\|+2 \kappa_{3} \rho_{k^{j-1}}\left\|d_{k^{j-1}}\right\|^{2}\right]\right.\right.}{\rho_{k^{j-1}} C_{4} \min \left(\alpha_{1} \eta, 1\right)\left\|h_{l_{k}}\right\|}
\end{aligned}
$$

$$
\leq \frac{2 \kappa_{1}}{\rho_{k^{j-1}} C_{4} \alpha_{1} \eta \min \left(\alpha_{1} \eta, 1\right)}+\frac{2 \kappa_{2}+2 \kappa_{3} \alpha_{1} \eta}{C_{4} \alpha_{1} \eta \min \left(\alpha_{1} \eta, 1\right)}\left\|d_{k^{j-1}}\right\| .
$$

Since $\left\{\rho_{k}\right\}$ is unbounded, then there exists an iterate \hat{k} sufficiently large such that for all $k \geq \hat{k}$, we have

$$
\rho_{k^{j-1}}<\frac{4 \kappa_{1}}{C_{4} \alpha_{1} \eta \min \left(\alpha_{1} \eta, 1\right)\left(1-\gamma_{1}\right)} .
$$

and

$$
\left\|d_{k^{j-1}}\right\| \geq \frac{C_{4} \alpha_{1} \eta \min \left(\alpha_{1} \eta, 1\right)\left(1-\gamma_{1}\right)}{4\left(\kappa_{2}+\kappa_{3} \alpha_{1} \eta\right)}
$$

From the way of updating the radius of the trust region, we have

$$
\delta_{k^{j}}=\alpha_{1}\left\|d_{k^{j-1}}\right\| \geq \frac{C_{4} \alpha_{1}^{2} \eta \min \left(\alpha_{1} \eta, 1\right)\left(1-\gamma_{1}\right)}{4\left(\kappa_{2}+\kappa_{3} \alpha_{1} \eta\right)}
$$

But this is a contradiction and this means that $\delta_{k^{j}}$ can not go to zero in this case.
Secondly, if $\left\{\rho_{k}\right\}$ is bounded and there exists an integer \bar{k} and a constant $\bar{\rho}$ such that for all $k \geq \bar{k}, \rho_{k}=\bar{\rho}$. Let j be a trial step of iteration k at which $\left\|h_{k}\right\|>\eta \delta_{k^{j}}$. Now we will consider the following two cases: I). If $j=1$, then from our way of updating the radius of the trust-region, we have $\delta_{k^{j}} \geq \delta_{\text {min }}$. That is, $\delta_{k^{j}}$ is bounded in this case.
II). If $j>1$ and $\left\|h_{l_{k}}\right\|>\eta \delta_{k^{l}}$ for all $l=1, \cdots, j$, then for all rejected trial steps $l=1, \cdots, j-1$ of iteration k, we have

$$
\left(1-\gamma_{1}\right) \leq \frac{\mid \text { Ared }_{k^{l}}-\operatorname{Pred}_{k^{\prime}} \mid}{\operatorname{Pred}_{k^{l}}} \leq \frac{2 C_{3}\left\|d_{k^{\prime}}\right\|}{C_{4} \min (\eta, 1)\left\|h_{l_{k}}\right\|} .
$$

That is

$$
\begin{aligned}
\delta_{k^{j}}=\alpha_{1}\left\|d_{k^{j-1}}\right\| & \geq \frac{\alpha_{1} C_{4} \min (\eta, 1)\left(1-\gamma_{1}\right)\left\|h_{l_{k}}\right\|}{2 C_{3}} \geq \frac{\alpha_{1} C_{4} \min (\eta, 1)\left(1-\gamma_{1}\right) \eta}{2 C_{3}} \delta_{k^{1}} \\
& \geq \frac{\alpha_{1} C_{4} \min (\eta, 1)\left(1-\gamma_{1}\right) \eta}{2 C_{3}} \delta_{\min } .
\end{aligned}
$$

This means that, $\delta_{k^{j}}$ is bounded.
Otherwise, if $j>1$ and $\left\|h_{l_{k}}\right\|>\eta \delta_{k^{\prime}}$ holds for some l, then there exists an integer β_{1} such that $\left\|h_{l_{k}}\right\|>\eta \delta_{k^{l}}$ holds for $l=\beta_{1}+1, \ldots, j$ and $\left\|h_{l_{k}}\right\| \leq \eta \delta_{k^{\prime}}$ for $l=1, \ldots, \beta_{1}$. As in the above case, we can write

$$
\begin{equation*}
\delta_{k^{j}} \geq \frac{\alpha_{1} C_{4} \min (\alpha, 1)\left(1-\gamma_{1}\right)}{2 C_{3}}\left\|h_{l_{k}}\right\| \geq \frac{\alpha_{1} C_{4} \min (\eta, 1)\left(1-\gamma_{1}\right) \eta}{2 C_{3}} \delta_{k^{\beta_{1}+1}} . \tag{3.55}
\end{equation*}
$$

But from the way of updating the radius of the trust-region, we have

$$
\begin{equation*}
\delta_{k^{\beta_{1}+1}} \geq \alpha_{1}\left\|d_{k^{\beta_{1}}}\right\| \tag{3.56}
\end{equation*}
$$

Since $\left\|h_{l_{k}}\right\| \leq \eta \delta_{k^{l}}$ for $l=1, \ldots, \beta_{1}$, then from Lemma (3.21) and the fact that $d_{k^{\beta_{1}}}$ is rejected, we have

$$
\left(1-\gamma_{1}\right) \leq \frac{\left|\operatorname{Ared}_{k^{\beta_{1}}}-\operatorname{Pred}_{k^{\beta_{1}}}\right|}{\operatorname{Pred}_{k^{\beta_{1}}}} \leq \frac{2 C_{3} \bar{\rho}\left\|d_{k^{\beta_{1}}}\right\|}{C_{10}} .
$$

This implies

$$
\left\|d_{k^{\beta_{1}}}\right\| \geq \frac{C_{10}\left(1-\gamma_{1}\right)}{2 C_{3} \bar{\rho}}
$$

This implies that, $\left\|d_{k^{\beta_{1}}}\right\|$ is bounded. Hence, $\delta_{k j}$ is bounded in this case too. But this is a contradiction. That is $\left\|h_{l_{k}}\right\| \leq \eta \delta_{k j}$ for all k^{j} sufficiently large.

Letting $k^{j} \geq \bar{k}$ and using Lemma (3.21), we have

$$
\Phi_{k^{j}}-\Phi_{k^{j}+1}=\operatorname{Ared}_{k^{j}} \geq \gamma_{1} \operatorname{Pred}_{k^{j}} \geq \gamma_{1} C_{10} \delta_{k^{j}}
$$

As $k \rightarrow \infty$, then

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \delta_{k^{j}}=0 . \tag{3.57}
\end{equation*}
$$

That is $\delta_{k j}$ is not bounded below. But this leads to a contradiction and to prove this contradiction we will consider the following two cases:
i). If $k^{j}>\bar{k}$ and the step was accepted at $j=1$, then $\delta_{k} \geq \delta_{\text {min }}$. Hence $\delta_{k^{j}}$ is bounded in this case.
ii). If $j>1$ and there exists at least one rejected trial step $d_{k^{j-1}}$. Then from Lemmas (3.7) and (3.21), we have

$$
\left(1-\gamma_{1}\right)<\frac{\bar{\rho} C_{3}\left\|d_{k^{j-1}}\right\|^{2}}{C_{10} \delta_{k^{j-1}}} .
$$

From the way of updating $\delta_{k^{j}}$ we have

$$
\delta_{k^{j}}=\alpha_{1}\left\|d_{k^{j-1}}\right\|>\frac{\alpha_{1} C_{10}\left(1-\gamma_{1}\right)}{\bar{\rho} C_{3}} .
$$

Hence $\delta_{k^{j}}$ is bounded in this case too. But this contradicts (3.57). This means that, the supposition is incorrect. Hence,

$$
\liminf _{k \rightarrow \infty}\left[\left\|Z_{k}^{T}\left(\nabla_{x} \ell_{k}^{s}+\bar{\sigma} \nabla g_{u}\left(x_{k}\right) W_{k} g_{u}\left(x_{k}\right)\right)\right\|+\left\|\nabla g_{u}\left(x_{k}\right) W_{k} g_{u}\left(x_{k}\right)\right\|\right]=0 .
$$

But this also implies (3.53). This completes the proof of the theorem.
From the above two theorems, we conclude that, given any $\varepsilon>0$, the algorithm terminates because $\left\|Z_{k}^{T} \nabla_{x} \ell_{k}^{s}\right\|+\left\|\nabla g_{u}\left(x_{k}\right) W_{k} g_{u}\left(x_{k}\right)\right\|+\left\|h_{k k}\right\|<\varepsilon$, for some finite k.

4. Numerical results

Algorithm ACBTR was implemented as a MATLAB code and run under MATLAB version 8.2.701 (R2013b) 64-bit(win64). We begin by a starting point $x_{0} \in F^{+}$and the following parameter setting is used: $\delta_{\min }=10^{-4}, \delta_{0}=\max \left(\left\|d_{0}^{c p}\right\|, \delta_{\min }\right), \delta_{\max }=10^{4} \delta_{0}, \gamma_{1}=10^{-4}, \gamma_{2}=0.75, \alpha_{1}=0.5, \alpha_{2}=2$ and $\varepsilon=10^{-8}$.

Secondly, an extensive variety of possible numeric NBLP problems are introduced to clarify the effectiveness of the proposed ACBTR algorithm.

For each test problem, 10 independent runs with different initial starting point are proceeded to observe the matchmaking of the results. Statistical results of all test problems are summarized in Table 1. The results in Table 1 show that the resuls by the ACBTR Algorithm (2.5) are approximate or equal to those by the compared algorithms in the literature.

In Table 1, we adding the average of number of iterations (iter), the average of number of function evaluations (nfunc), the average of value of CPU time (CPUs) per seconds.

For comparison, we have included the corresponding results of the avarge value of CPU time (CPUs) which are obtained by Methods in [34] (Table 2), [29] (Table 3), and [44] (Table 4) respectively. It is obviously from the results that our algorithm ACBTR is qualified for treating NBLP problems even the upper and the lower levels are convex or not and the results converge to the optimal solution which is similarly or approximate to the optimal that reported in literature. Finally, it is obviously from the comparison between the solutions obtained by using ACBTR algorithm with literature, that ACBTR is able to find the optimal solution of all problems by a small number of iterations, small number of function evaluations, and less time.

Problem 1 [34]:

$$
\begin{array}{cl}
\min _{t} & f_{u}=v_{1}^{2}+v_{2}^{2}+t^{2}-4 t \\
\text { s.t. } & 0 \leq t \leq 2, \\
\min _{v} & f_{l}=v_{1}^{2}+0.5 v_{2}^{2}+v_{1} v_{2}+ \\
& (1-3 t) v_{1}+(1+t) v_{2}, \\
\text { s.t. } & 2 v_{1}+v_{2}-2 t \leq 1, \\
& v_{1} \geq 0, \quad v_{2} \geq 0 .
\end{array}
$$

Problem 3 [34]:

$\begin{array}{cl}\min _{t} & f_{u}=0.1\left(t_{1}^{2}+t_{2}^{2}\right)-3 v_{1}-4 v_{2}+0.5\left(v_{1}^{2}+v_{2}^{2}\right) \\ \text { s.t. } & \\ \min _{v} & f_{l}=0.5\left(v_{1}^{2}+5 v_{2}^{2}\right)-2 v_{1} v_{2}-t_{1} v_{1}-t_{2} v_{2}, \\ \text { s.t. } & -0.333 v_{1}+v_{2}-2 \leq 0, \\ & v_{1}-0.333 v_{2}-2 \leq 0, \\ & v_{1} \geq 0, \quad v_{2} \geq 0,\end{array}$

$$
\begin{array}{cl}
\text { s.t. } & \\
\min _{v} & f_{l}=0.5\left(v_{1}^{2}+5 v_{2}^{2}\right)-2 v_{1} v_{2}-t_{1} v_{1}-t_{2} v_{2} \\
\text { s.t. } & -0.333 v_{1}+v_{2}-2 \leq 0 \\
& v_{1}-0.333 v_{2}-2 \leq 0 \\
& v_{1} \geq 0, \quad v_{2} \geq 0
\end{array}
$$

Problem 5 [34]:

$$
\min _{t} \quad f_{u}=t^{2}+(v-10)^{2}
$$

s.t. $-t+v \leq 0$,
$0 \leq t \leq 15$,
$\min _{v} \quad f_{l}=(t+2 v-30)^{2}$,
s.t. $\quad t+v \leq 20$,
$0 \leq v \leq 20$,
$\min _{t} \quad f_{u}=v_{1}^{2}+v_{3}^{2}-v_{1} v_{3}-4 v_{2}-7 t_{1}+4 t_{2}$
s.t. $\quad t_{1}+t_{2} \leq 1$, $t_{1} \geq 0, \quad t_{2} \geq 0$
$\min _{v} \quad f_{l}=v_{1}^{2}+0.5 v_{2}^{2}+0.5 v_{3}^{2}+v_{1} v_{2}+$ $\left(1-3 t_{1}\right) v_{1}+\left(1+t_{2}\right) v_{2}$,
s.t. $2 v_{1}+v_{2}-v_{3}+t_{1}-2 t_{2}+2 \leq 0$, $v_{1} \geq 0 ; \quad v_{2} \geq 0 \quad v_{3} \geq 0$.

Problem 4 [34]:

$\min _{t} \quad f_{u}=t_{1}^{2}-2 t_{1}+t_{2}^{2}-2 t_{2}+v_{1}^{2}+v_{2}^{2}$
s.t. $t_{1} \geq 0, \quad t_{2} \geq 0$
$\min _{v} f_{l}=\left(v_{1}-t_{1}\right)^{2}+\left(v_{2}-t_{2}\right)^{2}$,
s.t. $\quad 0.5 \leq v_{1} \leq 1.5$,
$0.5 \leq v_{2} \leq 1.5$,

Problem 6 [34]:

Problem 2 [34]:

$$
\begin{array}{cl}
\min _{t} & f_{u}=(t-1)^{2}+2 v_{1}^{2}-2 t \\
\text { s.t. } & t \geq 0, \\
\min _{v} & f_{l}=\left(2 v_{1}-4\right)^{2}+\left(2 v_{2}-1\right)^{2}+t v_{1}, \\
\text { s.t. } & 4 t+5 v_{1}+4 v_{2} \leq 12, \\
& -4 t-5 v_{1}+4 v_{2} \leq-4, \\
& 4 t-4 v_{1}+5 v_{2} \leq 4, \\
& -4 t+4 v_{1}+5 v_{2} \leq 4, \\
& v_{1} \geq 0, \quad v_{2} \geq 0,
\end{array}
$$

Problem 7 [34]:

$$
\begin{array}{cl}
\min _{t} & f_{u}=(t-5)^{2}+(2 v+1)^{2} \\
\text { s.t. } & t \geq 0 \\
\min _{v} & f_{l}=(2 v-1)^{2}-1.5 t v \\
\text { s.t. } & -3 t+v \leq-3 \\
& t-0.5 v \leq 4 \\
& t+v \leq 7 \\
& v \geq 0
\end{array}
$$

Problem 9 [29]:

$$
\begin{array}{cl}
\min _{t} & f_{u}=16 t^{2}+9 v^{2} \\
\text { s.t. } & -4 t+v \leq 0 \\
& t \geq 0 \\
\min _{v} & f_{l}=(t+v-20)^{4} \\
\text { s.t. } & 4 t+v-50 \leq 0 \\
& v \geq 0
\end{array}
$$

Problem 8 [34]:

$\min _{t} \quad f_{u}=t_{1}^{2}-3 t_{1}+t_{2}^{2}-3 t_{2}+v_{1}^{2}+v_{2}^{2}$
s.t. $\quad t_{1} \geq 0, \quad t_{2} \geq 0$,
$\min _{v} \quad f_{l}=\left(v_{1}-t_{1}\right)^{2}+\left(v_{2}-t_{2}\right)^{2}$,
s.t. $\quad 0.5 \leq v_{1} \leq 1.5$,
$0.5 \leq v_{2} \leq 1.5$,

Problem 10 [29]:

$$
\begin{array}{cl}
\min _{t} & f_{u}=t^{3} v_{1}+v_{2} \\
\text { s.t. } & 0 \leq t \leq 1 \\
\min _{v} & f_{l}=-v_{2} \\
\text { s.t. } & t v_{1} \leq 10 \\
& v_{1}^{2}+t v_{2} \leq 1 \\
& v_{2} \geq 0
\end{array}
$$

Problem 11 [44]:

$$
\begin{array}{cl}
\min _{t} & f_{u}=-8 t_{1}-4 t_{2}+4 v_{1}-40 v_{2}-4 v_{3} \\
\text { s.t. } & t_{1} \geq 0, \quad t_{2} \geq 0 \\
\min _{v} & f_{l}=\frac{1+t_{1}+t_{2}+2 v_{1}-v_{2}+v_{3}}{6+2 t_{1}+v_{1}+v_{2}-3 v_{3}} \\
\text { s.t. } & -v_{1}+v_{2}+v_{3}+v_{4}=1, \\
& 2 t_{1}-v_{1}+2 v_{2}-0.5 v_{3}+v_{5}=1 \\
& 2 t_{2}+2 v_{1}-v_{2}-0.5 v_{3}+v_{6}=1 \\
& v_{i} \geq 0, \quad i=1, \ldots, 6
\end{array}
$$

Problem 13 [44]:

$$
\begin{array}{ll}
\min _{t} & f_{u}=-t_{1}^{2}-3 t_{2}^{2}-4 v_{1}+v_{2}^{2} \\
\text { s.t. } & t_{1}^{2}+2 t_{2} \leq 4, \\
& t_{1} \geq 0, \quad t_{2} \geq 0, \\
\min _{v} & f_{l}=2 t_{1}^{2}+v_{1}^{2}-5 v_{2}, \\
\text { s.t. } & t_{1}^{2}-2 t_{1}+2 t_{2}^{2}-2 v_{1}+v_{2} \geq-3, \\
& t_{2}+3 v_{1}-4 v_{2} \geq 4, \\
& v_{1} \geq 0, \quad v_{2} \geq 0 .
\end{array}
$$

Problem 12 [29]:

$\min _{t} \quad f_{u}=(t-3)^{2}+(v-2)^{2}$
s.t. $\quad-2 t+v-1 \leq 0$,
$t-2 v+2 \leq 0$,
$t+2 v-14 \leq 0$,
$0 \leq t \leq 8$,
$\min _{v} \quad f_{l}=(v-5)^{2}$
s.t. $\quad v \geq 0$.

Problem 14 [44]:

$\min _{t} \quad f_{u}=(t-1)^{2}+(v-1)^{2}$
s.t. $\quad t \geq 0$,
$\min _{v} \quad f_{l}=0.5 v^{2}+500 v-50 t v$
s.t. $\quad v \geq 0$.

Table 1. Comparisons of the results by ACBTR Algorithm 2.5 and Methods in reference.

Problem	$\left(t_{*}, v_{*}\right)$	f_{u}^{*} f_{l}^{*}	iter nfunc	CPUs time	$\left(t_{*}, v_{*}\right)$	f_{l}^{*} f_{l}^{*}
name	ACBTR	ACBTR	ACBTR	ACBTR	Ref.	Ref.
prob1 [34]	(0.8438, 0.7657,	-2.0769	14	1.77	(0.8438, 0.7657, 0)	-2.0769
	$1.121 \mathrm{e}-8)$	-0.5863	16			-0.5863
prob2 [34]	(0.609, 0.391, 0 ,	0.6086	12	2.1	$\begin{aligned} & (0.609,0.391,0, \\ & 0,1.828) \end{aligned}$	0.6426
	0,1.828)	1.6713	15			1.6708
prob3 [34]	(0.97, 3.14,	-8.92	9	3.09	$\begin{aligned} & (0.97,3.14, \\ & 2.6,1.8) \end{aligned}$	-8.92
	2.6, 1.8)	-6.05	10			-6.05
prob4 [34]	(.5,.5,.5,.5)	-1	13	1.87	(0.5, 0.5, 0.5, 0.5)	-1
		0	15			0
prob5 [34]	(10.03, 9.9691)	100.58	6	1.8	(10.03, 9.969)	100.58
		0.0012	8			0.001
prob6 [34]	(1.6879, 0.8805,0)	-1.3519	8	4.5	NA	3.57
		7.4991	12			2.4
prob7 [34]	$(1,0)$	17	10	2.05	$(1,0)$	17
		1	11			1
prob8 [34]	(0.75,0.75,	-2.25	9	1.05	$\begin{aligned} & (\sqrt{3} / 2, \sqrt{3} / 2, \sqrt{3} / 2, \\ & \sqrt{3} / 2) \end{aligned}$	-2.1962
	$0.75,0.75)$	0	11			0
prob9 [29]	(11.138,5)	2209.8	11	1.85	$(11.25,5)$	2250
		222.52	13			197.753
prob10 [29]	(1,0,7.6287e-08)	$7.6287 \mathrm{e}-08$	7	3.34	$(1,0,1)$	1
		-7.6287e-08	9			-1
prob11 [44]	(0,0.9,0,0.6,0.4, $0,0,0)$	-29.2	8	42.311	(0,0.9,0,0.6,0.4,0,0,0)	-29.2
		0.3148	11			0.3148
prob12 [29]	$(3,5)$	9	10	2.23	$(3,5)$	9
		0	14			0
prob13 [44]	(0,1.7405,	-15.548	6	2.5	(0,2,1.875,0.9063)	-12.68
	1.8497,0.9692)	-1.4247	7			-1.016
prob14 [44]	(10.016,0.81967)	81.328	8	2.15	(10.04,0.1429)	82.44
		-0.3359	11			0.271

Table 2. Comparisons of the results by ACBTR (2.5) and Method [34].

Problem	$\left(t_{*}, v_{*}\right)$	f_{u}^{*}	CPUs	$\left(t_{*}, v_{*}\right)$	f_{u}^{*}	CPUs
		f_{l}^{*}			f_{l}^{*}	
name	ACBTR	ACBTR	ACBTR	method [34]	method [34]	method [34].
prob1	$(0.8438,0.7657$,	-2.0769	1.77	$(0.8462,0.769$	$2,0)$	-2.0769
	$1.121 \mathrm{e}-8)$	-0.5863			-0.5917	
prob2	$(0.609,0.391,0$,	0.6086	2.1	$(0.6111,0.3889,0$,	0.6389	2.375
	$0,1.828)$	1.6713		$0,1.8333)$	1.6806	
prob3	$(0.97,3.14$,	-8.92	3.9	$(1.0316,3.0978$,	-8.9172	3.315
	$2.6,1.8)$	-6.05		$2.5970,1.7929)$	-6.1370	
prob4	$(0.5,0.5,0.5,0.5)$	-1	1.87	$(0.5,0.5,0.5,0.5)$	-1	1.576
		0			0	
prob5	$(10.03,9.9691)$	100.58	1.8	$(10,10)$	100	1.825
		0.0012			0	
prob6	$(1.6879,0.8805,0)$	-1.3519	4.5	$(1.8889,0.8889,0)$	-1.2099	4.689
		7.4991			7.6173	
prob7	$(1,0)$	17	2.05	$(1,0)$	17	1.769
		1			1	
prob8	$(0.75,0.75$,	-2.25	1.05	$(0.75,0.75$,	-2.25	1.124
	$0.75,0.75)$	0		$0.75,0.75)$	0	

Table 3. Comparisons of the results by ACBTR (2.5) and Method [29].

Problem	$\left(t_{*}, v_{*}\right)$	f_{u}^{*}	CPUs	$\left(t_{*}, v_{*}\right)$	f_{u}^{*}	CPUs
		f_{l}^{*}			f_{l}^{*}	
name	ACBTR	ACBTR	ACBTR	method [29]	method [29]	method [29].
prob9	$(11.138,5)$	2209.8	1.85	$(11.25,5)$	2250	2.21
		222.52			197.753	
prob10	$(1,0,7.6287 \mathrm{e}-08)$	$7.6287 \mathrm{e}-08$	3.34	$(1,0,-1)$	-1	3.38
		$-7.6287 \mathrm{e}-08$			1	
prob12	$(3,5)$	9	2.23	$(3,5)$	9	-
		0			0	

Table 4. Comparisons of the results by ACBTR (2.5) and Method [44].

Problem	$\left(t_{*}, y_{*}\right)$	f_{*}^{*}	CPUs	$\left(t_{*}, y_{*}\right)$	f_{u}^{*}	CPUs
		f_{l}^{*}			f_{l}^{*}	
name	ACBTR	ACBTR	ACBTR	method [44]	method [44]	method [44].
prob3	$(0.97,3.14$,	-8.92	3.9	$(1.03,3.097$,	-8.92	11.854
	$2.6,1.8)$	-6.05		$2.59,1.79$	-6.14	
prob5	$(10.03,9.9691)$	100.58	1.8	$(10,10)$	100.014	5.888
		0.0012			$4.93 \mathrm{e}-7$	
prob6	$(1.6879,0.8805,0)$	-1.3519	4.5	$(1.8888,0.888)$	-1.2091	25.332
		7.4991			7.6145	
prob11	$(0,0.9,0,0.6,0.4,0,0,0)$	-29.2	42.311	$(0,0.9,0,0.6,0.4,0,0,0)$	-29.2	107.55
		0.3148			0.3148	
prob13	$(0,1.7405$,	-15.548	2.5	$(4.4 \mathrm{e}-7,2$,	-12.65	14.42
	$1.8497,0.9692)$	-1.4247		$1.875,0.9063)$	-1.021	
prob14	$(10.016,0.81967)$	81.328	2.15	$(10.0164,0.8197)$	18.3279	4.218
		-0.3359			-0.3359	

5. Conclusions

In this paper, we introduce an effective solution algorithm to solve NBLP problem with positive variables. This algorithm based on using KKT condition with Fischer-Burmeister function to transform NBLP problem into an equivalent smooth SONP problem. An active-set strategy with barrier method and the trust-region mechanism is used to ensure global convergence from any starting point. ACBTR algorithm can reduce the number of iteration and the number of function evaluation. The projected Hessian mechanism is used in ACBTR algorithm to overcome the difficulty of having an infeasible trust region subproblem. A global convergence theory of ACBTR algorithm is studied under five standard assumptions.

Preliminary numerical experiment on the algorithm is presented. The performance of the algorithm is reported. The numerical results show that our approach is of value and merit further investigation. For future work, there are many question should be answered

- Our approach used to transform problem 1.2 which is not smooth to smooth problem.
- Using the interior-point method guarantees the converges quadratically to a stationary point.

Conflict of interest

The authors declare that there is no conflict of interest in this paper.

References

1. D. Aksen, S. Akca, N. Aras, A bilevel partial interdiction problem with capacitated facilities and demand outsourcing, Comput. Oper. Res., 41 (2014), 346-358. https://doi.org/10.1016/j.cor.2012.08.013
2. Y. Abo-Elnaga, M. El-Shorbagy, Multi-sine cosine algorithm for solving nonlinear bilevel programming problems, Int. J. Comput. Int. Sys., 13 (2020), 421-432. https://doi.org/10.2991/ijcis.d.200411.001
3. A. Burgard, P. Pharkya, C. Maranas, Optknock: A bilevel programming framework for identifying gene knockout strategies formicrobial strain optimization, Biotechnol. Bioeng., 84 (2003), 647657. https://doi.org/10.1002/bit. 10803
4. M. Bazaraa, H. Sherali, C. Shetty, Nonlinear programming theory and algorithms, Hoboken: John Wiley and Sons, 2006.
5. O. Ben-Ayed, O. Blair, Computational difficulty of bilevel linear programming, Oper. Res., 38 (1990), 556-560. https://doi.org/10.1287/opre.38.3.556
6. R. Byrd, Omojokun, Robust trust-region methods for nonlinearly constrained optimization, The second SIAM conference on optimization, 1987.
7. R. Byrd, J. Gilbert, J. Nocedal, A trust region method based on interior point techniques for nonlinear programming, Math. Program., 89 (2000), 149-185. https://doi.org/10.1007/PL00011391
8. J. Chen, The semismooth-related properties of a merit function and a descent method for the nonlinear complementarity problem, J. Glob. Optim., 36 (2006), 565-580. https://doi.org/10.1007/s 10898-006-9027-y
9. J. Chen, On some NCP-functions based on the generalized Fischer-Burmeister function, Asia Pac. J. Oper. Res., 24 (2007), 401-420. https://doi.org/10.1142/S0217595907001292
10. J. Chen, S. Pan, A family of NCP-functions and a descent method for the nonlinear complementarity problem, Comput. Optim. Appl., 40 (2008), 389-404. https://doi.org/10.1007/s10589-007-9086-0
11. J. Dennis, M. Heinkenschloss, L. Vicente. Trust-region interior-point SQP algorithms for a class of nonlinear programming problems. SIAM J. Control Optim., 36 (1998), 1750-1794. https://doi.org/10.1137/S036012995279031
12. J. Dennis, M. El-Alem, K. Williamson, A trust-region approach to nonlinear systems of equalities and inequalities, SIAM J. Optim., 9 (1999), 291-315. https://doi.org/10.1137/S1052623494276208
13. S. Dempe, Foundation of bilevel programming, London: Kluwer Academic Publishers, 2002.
14. T. Edmunds, J. Bard, Algorithms for nonlinear bilevel mathematical programs, IEEE T. Syst. Man Cy., 21 (1991), 83-89. https://doi.org/10.1109/21.101139
15. B. El-Sobky, A robust trust-region algorithm for general nonlinear constrained optimization problems, PhD thesis, Alexandria University, 1998.
16. B. El-Sobky, A global convergence theory for an active trust region algorithm for solving the general nonlinear programming problem, Appl. Math. Comput., 144 (2003), 127-157. https://doi.org/10.1016/S0096-3003(02)00397-1
17. B. El-Sobky, A Multiplier active-set trust-region algorithm for solving constrained optimization problem, Appl. Math. Comput., 219 (2012), 928-946. https://doi.org/10.1016/j.amc.2012.06.072
18. B. El-Sobky, An interior-point penalty active-set trust-region algorithm, J. Egypt. Math. Soc., 24 (2016), 672-680. https://doi.org/10.1016/j.joems.2016.04.003
19. B. El-Sobky, An active-set interior-point trust-region algorithm, Pac. J. Optim., 14 (2018), 125159.
20. B. El-Sobky, A. Abotahoun, An active-set algorithm and a trust-region approach in constrained minimax problem, Comp. Appl. Math., 37 (2018), 2605-2631. https://doi.org/10.1007/s40314-017-0468-3
21. B. El-Sobky, A. Abotahoun, A trust-region algorithm for solving mini-max problem, J. Comput. Math., 36 (2018), 776-791. https://doi.org/10.4208/jcm.1705-m2016-0735
22. B. El-Sobky, Y. Abouel-Naga, Multi-objective optimal load flow problem with interior-point trust-region strategy, Electr. Pow. Syst. Res., 148 (2017), 127-135. https://doi.org/10.1016/j.epsr.2017.03.014
23. B. El-Sobky, Y. Abouel-Naga, A penalty method with trust-region mechanism for nonlinear bilevel optimization problem, J. Comput. Appl. Math., 340 (2018), 360-374. https://doi.org/10.1016/j.cam.2018.03.004
24. B. El-Sobky, Y.Abo-Elnaga, A. Mousa, A. El-Shorbagy, Trust-region based penalty barrier algorithm for constrained nonlinear programming problems: An application of design of minimum cost canal sections, Mathematics, 9 (2021), 1551. https://doi.org/10.3390/math9131551
25. B. El-Sobky, G. Ashry, An interior-point trust-region algorithm to solve a nonlinear bilevel programming problem, AIMS Mathematics, 7 (2022), 5534-5562. https://doi.org/10.3934/math. 2022307
26. A. Fiacco, G. McCormick. Nonlinear programming: Sequential unconstrained minimization techniques, New York: John Wiley and Sons, 1968.
27. J. Falk, J. M. Liu, On bilevel programming, Part I: General nonlinear cases, Math. Program., 70 (1995), 47-72. https://doi.org/10.1007/BF01585928
28. F. Facchinei, H. Y. Jiang, L. Q. Qi, A smoothing method for mathematical programming with equilibrium constraints, Math. Program., 85 (1999), 107-134. https://doi.org/10.1007/s 10107990015a
29. H. Gumus, A. Flouda, Global optimization of nonlinear bilevel programming problems, J. Global Optim., 20 (2001), 1-31. https://doi.org/10.1023/A:1011268113791
30. J. L. Gonzalez Velarde, J. F. Camacho-Vallejo, G. Pinto Serranoo, A scatter search algorithm for solving a bilevel optimization model for determining highway tolls, Comput. Syst., 19 (2015), 516. https://doi.org/10.13053/CyS-19-1-1916
31. M. Hestenes, Muliplier and gradient methods, J. Optim. Theorey Appl., 4 (1969), 303-320. https://doi.org/10.1007/BF00927673
32. G. Hibino, M. Kainuma, Y. Matsuoka, Two-level mathematical programming for analyzing subsidy options to reduce greenhouse-gas emissions, IIASA Working Paper, 1996.
33. D. Kouri, M. Heinkenschloss, D. Ridzal, B. van Bloemen Waanders, A trust-region algorithm with adaptive stochastic collocation for PDE optimization under uncertainty, SIAM J. Sci. Comput., 35 (2013), A1847-A1879. https://doi.org/10.1137/120892362
34. H. Li, Y. C. Jiao, L. Zhang, Orthogonal genetic algorithm for solving quadratic bilevel programming problems. J. Syst. Eng. Electron., 21 (2010), 763-770. https://doi.org/10.3969/j.issn.1004-4132.2010.05.008
35. Y. B. Lv, T. S. Hu, G. M. Wang, Z. P. Wan, A neural network approach for solving nonlinear bilevel programming problem, Comput. Math. Appl., 55 (2008), 2823-2829. https://doi.org/10.1016/j.camwa.2007.09.010
36. N. N. Li, D. Xue, W. Y. Sun, J. Wang, A stochastic trust-region method for unconstrained optimization problems, Math. Probl. Eng., 2019 (2019), 8095054. https://doi.org/10.1155/2019/8095054
37. L. M. Ma, G. M. Wang, A Solving algorithm for nonlinear bilevel programing problems based on human evolutionary model, Algorithms, 13 (2020), 260. https://doi.org/10.3390/a13100260
38. E. Omojokun, Trust-region strategies for optimization with nonlinear equality and inequality constraints, PhD thesis, University of Colorado, 1989.
39. T. Steihaug, The conjugate gradient method and trust-region in large scale optimization, SIAM J. Numer. Anal., 20 (1983), 626-637. https://doi.org/10.1137/0720042
40. G. Savard, J. Gauvin, The steepest descent direction for the nonlinear bilevel programming problem, Oper. Res. Lett., 15 (1994), 265-272. https://doi.org/10.1016/0167-6377(94)90086-8
41. S. Sadatrasou, M. Gholamian, K. Shahanaghi, An application of data mining classification and bi-level programming for optimal credit allocation, Decis. Sci. Lett., 4 (2015), 35-50. https://doi.org/10.5267/j.dsl.2014.9.005
42. N. Thoai, Y. Yamamoto, A. Yoshise, Global optimization method for solving mathematical programs with linear complementarity constraints, Mathematical programs with complementarity, 2002.
43. M. Ulbrich, S. Ulbrich, L. N. Vicente, A globally convergent primal-dual interiorpoint filter method for nonlinear programming, Math. Program., 100 (2004), 379-410. https://doi.org/10.1007/s 10107-003-0477-4
44. Y. L. Wang, Y. C. Jiao, H. Li, An evolutionary algorithm for solving nonlinear bilevel programming based on a new constraint-handling scheme, IEEE T. Syst. Man Cy. C, 35 (2005), 221-232. https://doi.org/10.1109/TSMCC.2004.841908
45. X. Wang, Y. X. Yuan, A trust region method based on a new affine scaling technique for simple bounded optimization, Optim. Method. Softw., 28 (2013), 871-888. https://doi.org/10.1080/10556788.2011.622378
46. X. Wang, Y. X. Yuan, An augmented Lagrangian trust region method for equality constrained optimization, Optim. Method. Softw., 30 (2015), 559-582. https://doi.org/10.1080/10556788.2014.940947
47. Y. X. Yuan, Recent advances in trust region algorithms. Math. Program., 151 (2015), 249-281. https://doi.org/10.1007/s 10107-015-0893-2
48. M. Zeng, Q. Ni, A new trust region method for nonlinear equations involving fractional mode. Pac. J. Optim., 15 (2019), 317-329.

AIMS Press

© 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)

[^0]: Algorithm 2.5. (An active-set-barrier-trust-region (ACBTR) algorithm)
 Step 1. Using KKT optimality conditions for the lower level problem 1.1 to reduce problem 1.1 to one-level problem 1.2.
 Step 2. Using Fischer-Burmeister function 1.3 with $\epsilon=0.001$ to obtain the smooth problem 1.4 and which is equivalent problem 1.5.
 Step 3. Using An active set strategy with Barrier method to obtain subproblem 2.11.
 Step 4. Using trust-region Algorithm 2.4 to solve subproblem 2.11 and obtained approximate solution for problem 1.5.

