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1. Introduction

Let q be a positive integer. For any integers m and n, The famous Kloosterman sums K(m, n; q) is
defined as follows:

K(m, n; q) =

q∑
a=1

(a,q)=1

e
(
ma + na

q

)
,

where e(y) = e2πiy, i2 = −1 and a is defined by the congruence a · a ≡ 1 mod q.
This sum plays a very important role in the study of analytic number theory, many number theory

problems are closely related to it, so many scholars have studied the various properties about K(m, n; q)
and obtained a series of significant research results. For example, Kloosterman’s pioneering work [3]
proved the identity

p∑
m=1

∣∣∣∣∣∣∣
p−1∑
a=1

e
(
ma + a

p

)∣∣∣∣∣∣∣
4

= p ·
(
2p2 − 3p − 3

)
,
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where p is an odd prime.
Estermann [4] studied the upper bound estimation of K(m, n; q), and obtained the best estimation

|K(m, n; q)| ≤ (m, n, q)
1
2 · d(q) · q

1
2 ,

where (m, n, q) denotes the greatest common divisor of m, n and q, d(q) denotes the Dirichlet divisor
function.

Zhang [5] used the elementary method to study the fourth power mean of K(m, n; q) for general
modulo q, and proved the identity

q∑
m=1

∣∣∣∣∣∣∣∣∣∣∣
q∑

a=1
(a,q)=1

e
(
ma + na

q

)∣∣∣∣∣∣∣∣∣∣∣
4

= 3ω(q) · q2 · φ(q) ·
∏
p‖q

(
2
3
−

1
3p
−

4
3(p − 1)

)
,

where ω(q) denotes the number of all distinct prime divisors of q, φ(q) denotes the Euler’s function,
and

∏
p‖q

denotes the product over all prime divisors of q such that p | q and p2 - q.

In addition, Chen and Hu [6] studied the hybrid power mean involving the cubic Gauss sums A(m)
and Kloosterman sums K(m, n; p), i.e.,

S k(p) =

p−1∑
m=1

Ak(m) · K2(m, 1; p) =

p−1∑
m=1

 p−1∑
a=0

e
(
ma3

p

)
k

·

∣∣∣∣∣∣∣
p−1∑
a=1

e
(
ma + a

p

)∣∣∣∣∣∣∣
2

,

and proved that for any positive integer k ≥ 1, one has the third-order linear recurrence formula

S k+3(p) = 3p · S k+1(p) + dp · S k(p),

with the first three values
S 1(p) = 2p2 + dp · A(1) − p · A2(1),

S 2(p) = 2p3 + 2(d − 1)p2 + p(d2 − p) · A(1) − dp · A2(1),

S 3(p) = (d + 6)p3 + 3dp2 · A(1) − 3p2 · A2(1) − dp(p + 1),

where 4p = d2 + 27 · b2, and d is uniquely determined by d ≡ 1 mod 3.
Some related contents can also be found in [7–16], we would not list them all here.
Obviously, the result in [6] is meaningful, it gives a calculation method for all S k(p). However, this

result does not look pretty, because it contains parameter A(1). Therefore, we can not calculate the
exact value of S k(p).

On the other hand, Kloosterman sums can be used to solve the Waring-Goldbach problem, to solve
the problems of prime distribution over short intervals, mean estimation of the Riemann Zata function
and Fourier coefficients in modular form, etc. Not only that, the properties of Kloosterman sums can
also be used to determine the generalized Hamming weight or the weight distribution of some linear
codes, so it has important applications in the field of communication, cryptography and coding theory.
Therefore, it is necessary to further study the properties of Klooaterman sums.
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Based on the above, in this paper, as a note of [6], we modify some parameters in [6] as follows:

Ck(h, p) =

p−1∑
m=1

Ak (m) · Kh(m, p)

=

p−1∑
m=1

 p−1∑
b=0

e
(
mb3

p

)
k

·

 p−1∑
a=1

e
(
ma + a

p

)
h

,

then we will get some more concise and prettier results. That is, we will prove the following two
conclusions:

Theorem 1. Let p be a prime with p ≡ 1 mod 3. Then for any integer k, we have the third-order linear
recurrence formula

Ck(1, p) = 3p ·Ck−2(1, p) + dp ·Ck−3(1, p), k ≥ 3,

with the first three values C0(1, p) = 1, C1(1, p) = dp and C2(1, p) = 2p·(p + 1), where 4p = d2+27·b2,
and d is uniquely determined by d ≡ 1 mod 3.

Theorem 2. Let p be a prime with p ≡ 1 mod 3. Then for any integer k, we have the third-order linear
recurrence formula

Ck(2, p) = 3p ·Ck−2(2, p) + dp ·Ck−3(2, p), k ≥ 3,

with the first three values

C0(2, p) = p2 − p − 1, C1(2, p) = p ·
(
d2 − 2p

)
and

C2(2, p) = p ·
(
2p2 + dp − 2p − 2

)
.

From these two theorems we may immediately deduce the following corollaries:

Corollary 1. For any prime p with p ≡ 1 mod 3, we have the identity

p−1∑
m=1

p−1∑
a=1

e
(
ma + a

p

)
p−1∑
b=0

e
(
mb3

p

) =
2p − 1

d
.

Corollary 2. For any prime p with p ≡ 1 mod 3, we have the identity

p−1∑
m=1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

p−1∑
a=1

e
(
ma + a

p

)
p−1∑
b=0

e
(
mb3

p

)
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2

=
3p2 − 5dp + d3 − 3p − 3

d2 .
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Corollary 3. For any prime p with p ≡ 1 mod 3, we have the identity

p−1∑
m=1

∣∣∣∣∣∣∣
p−1∑
b=0

e
(
mb3

p

)∣∣∣∣∣∣∣
4

·

∣∣∣∣∣∣∣
p−1∑
a=1

e
(
ma + a

p

)∣∣∣∣∣∣∣
2

= p2 ·
(
6p2 + dp + d3 − 6p − 6

)
.

Some notes: In our theorems, we only consider the prime p with p ≡ 1 mod 3. In fact if 3 - (p − 1),
then for any integer m with (m, p) = 1, we have A (m) = 0 and Ck(h, p) = 0 for all k ≥ 1. So in this
case, the results are trivial.

Note that K(m, n; p) is a real number, so if we replace A (m) in Theorem 2 with A(m), then the values
of Ck(h, p) are the same as in [6].

In addition, since A (m) , 0 for all (m, p) = 1, so the third-order linear recurrence formulas in
Theorem 1 and Theorem 2 are also hold for all integers k < 3.

For any integer h ≥ 3, whether there is an exact calculating formula for Ck(h, p) is an open problem.
It remains to be further studied.

2. Several lemmas

To complete the proofs of our all results, we need three necessary lemmas. The proofs of these
lemmas requires some knowledge of elementary or analytic number theory, all these can be found in
references [1, 2], so we do not repeat them here. First we have the following:

Lemma 1. Let p be an odd prime with p ≡ 1 mod 3. Then for any third-order character λ modulo p,
we have the identity

τ3 (λ) + τ3
(
λ
)

= dp,

where τ(χ) =

p−1∑
a=1

χ(a)e
(

a
p

)
denotes the classical Gauss sums, 4p = d2 + 27 · b2, and d is uniquely

determined by d ≡ 1 mod 3.

Proof. The proof of this Lemma see Zhang and Hu [17] or Berndt and Evans [18].

Lemma 2. Let p be a prime with p ≡ 1 mod 3, then for any three-order character λ modulo p, we have

p−1∑
m=1

 p−1∑
a=0

e
(
ma3

p

) ·
 p−1∑

a=1

e
(
ma + a

p

) = dp

and
p−1∑
m=1

 p−1∑
a=0

e
(
ma3

p

)
2

·

 p−1∑
a=1

e
(
ma + a

p

) = 2p(p + 1).

Proof. Let p be a prime with p ≡ 1 mod 3, let λ be any third-order character modulo p. Then for
any integer m with (m, p) = 1, from the properties of the third-order character modulo p we have the
identity

A(m) = 1 +

p−1∑
a=1

(
1 + λ(a) + λ(a)

)
e
(
ma
p

)
= λ(m)τ(λ) + λ(m)τ

(
λ
)
. (2.1)
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From the properties of the classical Gauss sums we have

p−1∑
m=1

λ(m)

 p−1∑
a=1

e
(
ma + a

p

) =

p−1∑
a=1

e
(

a
p

) p−1∑
m=1

λ(m)e
(
ma
p

)
= τ(λ)

p−1∑
a=1

λ(a)e
(

a
p

)
= τ2(λ) (2.2)

and

p−1∑
m=1

λ(m)

 p−1∑
a=1

e
(
ma + a

p

) = τ2
(
λ
)
. (2.3)

From (2.1)–(2.3) and Lemma 1, we have

p−1∑
m=1

 p−1∑
a=0

e
(
ma3

p

) ·
 p−1∑

a=1

e
(
ma + a

p

) = τ3(λ) + τ3
(
λ
)

= dp. (2.4)

Note that τ(λ) · τ
(
λ
)

= p, from (2.4) and λ2 = λ we also have

A2 (m) = λ(m)τ2
(
λ
)

+ λ(m)τ2 (λ) + 2p. (2.5)

p−1∑
m=1

 p−1∑
a=1

e
(
ma + a

p

) = 1. (2.6)

From (2.2), (2.3), (2.5), (2.6) and Lemma 1, we have

p−1∑
m=1

 p−1∑
a=0

e
(
ma3

p

)
2

·

 p−1∑
a=1

e
(
ma + a

p

)
=

p−1∑
m=1

(
λ(m)τ2 (λ) + λ(m)τ2

(
λ
)

+ 2p
)
·

 p−1∑
a=1

e
(
ma + a

p

)
= τ2(λ) · τ2

(
λ
)

+ τ2(λ) · τ2
(
λ
)

+ 2p = 2p · (p + 1). (2.7)

Now Lemma 2 follows from (2.4) and (2.7).

Lemma 3. Let p be a prime with p ≡ 1 mod 3. Then we have the identities

p−1∑
m=1

A (m) ·

 p−1∑
a=1

e
(
ma + a

p

)
2

= p ·
(
d2 − 2p

)
and

p−1∑
m=1

A2 (m) ·

 p−1∑
a=1

e
(
ma + a

p

)
2

= p ·
(
2p2 + dp − 2p − 2

)
.
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Proof. From the properties of the classical Gauss sums we have

p−1∑
m=1

λ(m) ·

 p−1∑
a=1

e
(
ma + a

p

)
2

= τ(λ)
p−1∑
a=1

p−1∑
b=1

λ (a + b) e
a + b

p


= τ(λ)

p−1∑
a=1

λ (a + 1)
p−1∑
b=1

λ(b)e
b (a + 1)

p


= τ2(λ)

p−1∑
a=1

λ (a + 1) λ (a + 1) = τ2(λ)
p−1∑
a=1

λ(a)λ
2

(a + 1)

= τ2(λ)
p−1∑
a=1

λ(a)λ (a + 1) =
τ2(λ)

τ
(
λ
) p−1∑

b=1

λ(b)
p−1∑
a=1

λ(a)e
(
b(a + 1)

p

)

=
τ3(λ)

τ
(
λ
) p−1∑

b=1

λ
2
(b)e

(
b
p

)
=
τ4(λ)

τ
(
λ
) =

τ5(λ)
p

. (2.8)

Similarly, we also have

p−1∑
m=1

λ(m) ·

 p−1∑
a=1

e
(
ma + a

p

)
2

=
τ5

(
λ
)

p
. (2.9)

From (2.1), (2.8), (2.9) and Lemma 1, we have

p−1∑
m=1

A (m) ·

 p−1∑
a=1

e
(
ma + a

p

)
2

=

p−1∑
m=1

(
λ(m)τ(λ) + λ(m)τ

(
λ
))
·

 p−1∑
a=1

e
(
ma + a

p

)
2

=
τ6(λ)

p
+
τ6

(
λ
)

p

=
1
p
·

[(
τ3 (λ) + τ3

(
λ
))2
− 2τ3 (λ) · τ3

(
λ
)]

=
1
p
·
(
d2 p2 − 2p3

)
= p ·

(
d2 − 2p

)
. (2.10)

Note that the identity

p−1∑
m=1

 p−1∑
a=1

e
(
ma + a

p

)
2

= p2 − p − 1, (2.11)

AIMS Mathematics Volume 7, Issue 9, 16102–16111.



16108

from (2.5), (2.8), (2.9), (2.11) and Lemma 1, we have the identity

p−1∑
m=1

A2 (m) ·

 p−1∑
a=1

e
(
ma + a

p

)
2

=

p−1∑
m=1

(
λ(m)τ2(λ) + λ(m)τ2

(
λ
)

+ 2p
)
·

 p−1∑
a=1

e
(
ma + a

p

)
2

=
τ2(λ) · τ5

(
λ
)

p
+
τ2

(
λ
)
· τ5 (λ)

p
+ 2p

(
p2 − p − 1

)
= p ·

(
τ3(λ) + τ3

(
λ
))

+ 2p
(
p2 − p − 1

)
= p ·

(
2p2 + dp − 2p − 2

)
. (2.12)

Now Lemma 3 follows from (2.10) and (2.12).

3. Proofs of the theorems

Applying Lemma 1 and Lemma 2 we can easily prove our theorems. First we prove Theorem 1.
For any prime p with p ≡ 1 mod 3 and integer m with (m, p) = 1, from (2.1) and Lemma 1 we have
the identity

A3 (m) = τ3(λ) + τ3
(
λ
)

+ 3p · A (m) = dp + 3p · A (m) . (3.1)

From (3.1) we can deduce that

Ak (m) = Ak−3 (m) · A3 (m) = Ak−3 (m) · (dp + 3p · A (m))

= 3p · Ak−2 (m) + dp · Ak−3 (m) . (3.2)

From (3.2) we can deduce the third-order linear recurrence formula

Ck(h, p) =

p−1∑
m=1

Ak (m) ·

 p−1∑
a=1

e
(
ma + a

p

)
h

= 3p ·Ck−2(h, p) + dp ·Ck−3(h, p), k ≥ 3. (3.3)

Taking h = 1, from Lemma 2 we have C0(1, p) = 1, C1(1, p) = dp and C2(1, p) = 2p · (p + 1). This
proves Theorem 1.

Now we prove Theorem 2. Taking h = 2 in (3.3), from (2.11) and Lemma 3 we have

C0(2, p) = p2 − p − 1, C1(2, p) = p ·
(
d2 − 2p

)
and

C2(2, p) = p ·
(
2p2 + dp − 2p − 2

)
.

This proves Theorem 2.
From (3.1) we know that A (m) , 0. So formula (3.3) also holds for all integers k < 0. Taking k = 2

in Theorem 1 we have

C2(1, p) = 3p ·C0(1, p) + dp ·C−1(1, p)
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or

p−1∑
m=1

p−1∑
a=1

e
(
ma + a

p

)
p−1∑
b=0

e
(
mb3

p

) =
2p − 1

d
.

This proves Corollary 1.
Taking k = 2 in Theorem 2, note that

C2(2, p) = 3p ·C0(2, p) + dp ·C−1(2, p)

and
C1(2, p) = 3p ·C−1(2, p) + dp ·C−2(2, p).

Therefore, we have

C−1(2, p) =
1

dp
·
[
2p3 + dp2 − 2p2 − 2p − 3p ·

(
p2 − p − 1

)]
=
−p2 + dp + p + 1

d

and

C−2(2, p) =
1

dp
· (C1(2, p) − 3p ·C−1(2, p))

=
1

dp
·

[
d2 p − 2p2 − 3p ·

−p2 + dp + p + 1
d

]
=

3p2 − 5dp + d3 − 3p − 3
d2 .

This completes the proofs of our all results.

4. Conclusions

The main results of this paper is to give two theorems for the hybrid power mean involving the
cubic Gauss sums and Kloosterman sums. In addition, we also obtained a third-order linear recurrence
formula for Ck(h, p) with h = 1 and 2. That is, for any integer k, we have the three-order linear
recurrence formula

Ck(h, p) = 3p ·Ck−2(h, p) + dp ·Ck−3(h, p)

with the exact values C0(h, p), C1(h, p) and C2(h, p), where d is uniquely determined by 4p = d2 +27b2

and d ≡ 1 mod 3.
At the same time, our results also provides an effective method for the study of the hybrid power

mean involving the k-th Gauss sums and Kloosterman sums.
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