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1. Introduction 

The research of Ekeland’s variational principle (EVP) can be traced back to 1972. Ekeland [15] 

proposed a variational principle (see [16] for its proof), and Ekeland [17] described the wide 

application of this principle in 1979. Since then, EVP has attracted extensive attention in various fields 

and has been applied to optimization [7,9,21,28,33], control theory [6], nonlinear analysis [23,34], 

economics [5], biology [3,4], etc. 

There are many generalized forms and equivalent forms of EVP. It is worth noting that Phelps [24] 

gave the EVP in a Banach space by using Bishop and Phelps cone lemma. Qiu [25–27] studied the 

EVP in locally convex spaces. In 1994, Chang and Luo [10] combined EVP with fuzzy mapping and 

established the equivalence between EVP and Caristi’s fixed point theorem (CFPT). 

A quasi-metric (a quasi-norm, resp.) is also called an asymmetric metric (an asymmetric norm, 

resp.), if it is a function satisfying all the axioms of a metric (a norm, resp.) with the exception of the 

symmetry. There are some interesting applications of quasi-metric and quasi-norm in the study of the 

complexity of algorithms and languages (see, e.g., [19,29,30]). In 2011, Cobzas [12] gave some 
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versions of EVP and Takahashi minimization theorem (TMT) in 𝑇1 quasi-metric spaces and proved 

the equivalence of the weak Ekeland variational principle (wEVP) and CFPT. The extension of wEVP 

to an arbitrary quasi-metric space was given in [22]. In 2012, Cobzas [13] proved two versions of EVP 

in asymmetric locally convex spaces. In 2019, Al-Homidan et al. [2] also presented an equilibrium 

version of EVP and extended TMT in the setting of quasi-metric spaces. At the same time, Cobzas [14] 

proved the versions of EVP, TMT and CFPT in the sequentially K-complete quasi pseudo-metric space. 

Recently, Wu and Tang [32] investigated EVP, TMT and CFPT in fuzzy quasi-metric spaces. 

To the best of our knowledge, however, there are few research results on the variational principles 

in fuzzy quasi-normed spaces. Inspired by references [1,11,32], in this paper, we shall do some 

exploration in this field. The organization of the paper is as follows: In Section 2, we introduce some 

notations and results about fuzzy quasi-normed spaces. In Section 3, we extend EVP and wEVP to 

fuzzy quasi-normed spaces by means of the partial order induced in this paper. In Section 4, we give 

versions of TMT and CFPT in fuzzy quasi-normed spaces and prove the equivalence relation among 

these theorems. Finally, a brief conclusion is given in Section 5.  

In this paper, 𝑋 is a real vector space, 𝜃 is the zero vector, 𝜙 denotes the empty set, ℕ and ℝ 

mean the set of all natural numbers and the set of all real numbers, respectively. 

2. Preliminaries 

In this section, we recall some notations and results in fuzzy quasi-normed spaces. 

Definition 2.1. ([31]) A binary operation ∗: [0,1] × [0,1] → [0,1]  is a continuous 𝑡 − norm if it 

satisfies the following conditions: for all 𝑎, 𝑏, 𝑐, 𝑑 ∈ [0,1], 

(1) 𝑎 ∗ 𝑏 = 𝑏 ∗ 𝑎 (commutativity), 

(2) (𝑎 ∗ 𝑏) ∗ 𝑐 = 𝑎 ∗ (𝑏 ∗ 𝑐) (associativity), 

(3) 𝑎 ∗ 𝑏 ≤ 𝑐 ∗ 𝑑 whenever 𝑎 ≤ 𝑐 and 𝑏 ≤ 𝑑 (monotonicity), 

(4) 𝑎 ∗ 1 = 𝑎 (boundary condition), 

(5) ∗is continuous on [0,1] × [0,1] (continuity). 

Three paradigmatic examples of continuous t-norms are ∧, ⋅ and ∗𝐿 (the Lukasiewicz t-norm), 

which are defined by 

𝑎 ∗ 𝑏 =𝑎 𝑏, 𝑎 ∗ 𝑏 = 𝑎𝑏, 𝑎 ∗ 𝑏 = 𝑚𝑎𝑥{𝑎 + 𝑏 − 1,0}. 

Lemma 2.2. ([20]) Let ∗ be a continuous 𝑡 −norm. 

(1) If 1 > 𝑟1 > 𝑟2 > 0, then there exists 𝑟3 ∈ (0,1) such that 𝑟1 ∗ 𝑟3 ≥ 𝑟2; 

(2) If 𝑟4 ∈ (0,1), then there exists 𝑟5 ∈ (0,1) such that 𝑟5 ∗ 𝑟5 ≥ 𝑟4. 

Definition 2.3. ([1]) A fuzzy quasi-norm on a real linear space 𝑋 is a pair (𝑁,∗) such that ∗ is a 

continuous 𝑡 −norm and 𝑁 is a fuzzy set in 𝑋 × 0,+∞) satisfying the following conditions: for any 

𝑥, 𝑦 ∈ 𝑋, 

(FQN1) 𝑁(𝑥, 0) = 0;  

(FQN2) 𝑁(𝑥, 𝑡) = 𝑁(−𝑥, 𝑡) = 1, for all 𝑡 > 0 ⇔ 𝑥 = 𝜃;  

(FQN3) 𝑁(𝜆𝑥, 𝑡) = 𝑁 (𝑥,
𝑡

𝜆
), for all 𝜆, 𝑡 > 0; 

(FQN4) 𝑁(𝑥 + 𝑦, 𝑡 + 𝑠) ≥ 𝑁(𝑥, 𝑡) ∗ 𝑁(𝑦, 𝑠), for all 𝑡, 𝑠 > 0; 

(FQN5) 𝑁(𝑥, ): [0,∞) → [0,1] is left continuous; 
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(FQN6) 𝑙𝑖𝑚
𝑡→∞
𝑁(𝑥, 𝑡) = 1.  

Obviously, the function 𝑁(𝑥, ) is increasing for any 𝑥 ∈ 𝑋. 

A fuzzy quasi-norm (𝑁,∗) is called a fuzzy norm if 𝑁(𝑐𝑥, 𝑡) = 𝑁 (𝑥,
𝑡

|𝑐|
) for all 𝑥 ∈ 𝑋 and 

𝑐 ∈ ℝ\{0}. Let (𝑁,∗) be a fuzzy quasi-norm, set 

𝑁−1(𝑥, 𝑡) = 𝑁(−𝑥, 𝑡), ( ),sN x t =𝑚𝑖𝑛{𝑁(𝑥, 𝑡), 𝑁−1(𝑥, 𝑡)}, ∀𝑥 ∈ 𝑋, 𝑡 > 0, 

then (𝑁−1,∗) and (𝑁𝑠,∗) are a fuzzy quasi-norm and a fuzzy norm on 𝑋, respectively. 

If (𝑁,∗) is a fuzzy quasi-norm (a fuzzy norm, resp.) on 𝑋, we call (𝑋, 𝑁,∗)  a fuzzy quasi-

normed space (a fuzzy normed space, resp.). 

Each fuzzy quasi-norm (𝑁,∗) on 𝑋 induces a topology 𝜏𝑁 which has a base given by the family 

of open balls at 𝑥 ∈ 𝑋 

ℬ(𝑥) = {𝐵𝑁(𝑥, 𝑟, 𝑡): 𝑟 ∈ (0,1), 𝑡 > 0}, 

where 

( ), , =NB x r t {𝑦 ∈ 𝑋:𝑁(𝑦 − 𝑥, 𝑡) > 1 − 𝑟}. 

It is easy to see that the topology 𝜏𝑁  is 𝑇0  and first countable. Since 𝑥 + 𝐵𝑁(𝜃, 𝑟, 𝑡) =
𝐵𝑁(𝑥, 𝑟, 𝑡), the topology 𝜏𝑁 is translation invariant. A sequence {𝑥𝑛} of 𝑋 converges to 𝑥 with 

respect to (w.r.t.) 𝜏𝑁 (denoted by 𝑥𝑛
𝜏𝑁
→ 𝑥) if and only if 𝑙𝑖𝑚

𝑛→∞
𝑁(𝑥𝑛 − 𝑥, 𝑡) = 1, ∀𝑡 > 0. 

It is well known, a quasi-norm on a real vector space 𝑋 is a function 𝑝:𝑋 → 0,+∞) satisfying 

the following conditions: for all 𝑥, 𝑦 ∈ 𝑋 and 𝜆 ∈ [0,∞), 

(QN1) 𝑝(𝑥) = 𝑝(−𝑥) = 0 ⇒ 𝑥 = 𝜃, 

(QN2) 𝑝(𝜆𝑥) = 𝜆𝑝(𝑥), 

(QN3) 𝑝(𝑥 + 𝑦) ≤ 𝑝(𝑥) + 𝑝(𝑦). 

If 𝑝 only satisfies the conditions (QN2) and (QN3), then it is called a quasi-seminorm. 

Definition 2.4. ([18]) Let 𝑋  be a linear space and ∗  be a continuous 𝑡 − norm. 𝑃 = {𝑝𝛼: 𝑋 →

[0,+∞), 𝛼 ∈ (0,1)} is called a family of star quasi-seminorms if it satisfies the following conditions: 

for all 𝑥, 𝑦 ∈ 𝑋, 𝛼, 𝛽 ∈ (0,1) and 𝜆 > 0, 

(*QN1) 𝑝𝛼(𝜆𝑥) = 𝜆𝑝𝛼(𝑥), 

(*QN2) 𝑝𝛼∗𝛽(𝑥 + 𝑦) ≤ 𝑝𝛼(𝑥) + 𝑝𝛽(𝑦). 

If 𝑃 satisfies the following condition: 

(*QN3) 𝑝𝛼(𝑥) = 𝑝𝛼(−𝑥) = 0 for every 𝛼 ∈ (0,1) implies 𝑥 = 𝜃, then 𝑃 is said to be separating. 

Proposition 2.5. ([18]) (𝑋, 𝑁,∗) is a fuzzy quasi-normed space. For any 𝛼 ∈ (0,1), define a function 

‖⋅‖𝛼: 𝑋 → 0,+∞) as: 

‖𝑥‖𝛼 = 𝑖𝑛𝑓{𝑡 > 0:𝑁(𝑥, 𝑡) ≥ 𝛼}, ∀𝑥 ∈ 𝑋.      (2-1) 

𝑃𝑁 = {‖⋅‖𝛼: 𝛼 ∈ (0,1)}. Then, 
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(1) ‖𝑥‖𝛼 = 𝑠𝑢𝑝{𝑡 > 0:𝑁(𝑥, 𝑡) < 𝛼} for all 𝑥 ∈ 𝑋 and 𝛼 ∈ (0,1); 

(2) 𝑃𝑁 is increasing, that is, ‖𝑥‖𝛼 is increasing with respect to 𝛼 ∈ (0,1) for the given 𝑥 ∈ 𝑋; 

(3) 𝑃𝑁 is a separating family of star quasi-seminorms. 

𝑃𝑁 is called the family of star quasi-seminorms induced by (𝑁,∗). 

Remark 2.6. If ∗=∧, then 𝑃𝑁 is just a family of quasi-norms. 

Proposition 2.7. Let (𝑋, 𝑁,∗) be a fuzzy quasi-normed space. The follows are equivalent: 

(1) the topology 𝜏𝑁 is 𝑇1, 

(2) 𝑁(𝑥, 𝑡) = 1 for all 𝑡 > 0 ⇒ 𝑥 = 𝜃, 

(3) if 𝑥 ≠ 𝜃, then there exists an 𝛼 ∈ (0,1) such that ‖𝑥‖𝛼 > 0. 

Proof. (1)(2): Suppose 𝜏𝑁 is 𝑇1 and 𝑁(𝑥, 𝑡) = 1 for all 𝑡 > 0, meanwhile, 𝑥 ≠ 𝜃. Since 𝜏𝑁 is 

𝑇1 , {𝑥}  is a closed subset of 𝑋 . So there exists 𝐵𝑁(𝜃, 𝑟0, 𝑡0) , such that 𝐵𝑁(𝜃, 𝑟0, 𝑡0) ∩ {𝑥} = 𝜙 , 

which means that 𝑥 ∉ 𝐵𝑁(𝜃, 𝑟0, 𝑡0) , that is, 𝑁(𝑥, 𝑡0) ≤ 1 − 𝑟0 < 1 . Which is contradicted by 

𝑁(𝑥, 𝑡) = 1 for all 𝑡 > 0. 

(2)(3): Suppose 𝑥 ≠ 𝜃. It follows from (2) that there exists 𝑡0 > 0 such that 𝑁(𝑥, 𝑡0) < 1. 

Take 𝑁(𝑥, 𝑡0) < 𝛼 < 1, then 𝛼 ∈ (0,1). From Proposition 2.5 (1), we know ‖𝑥‖𝛼 ≥ 𝑡0 > 0. 

(3)(1): Let 𝑥, 𝑦 ∈ 𝑋 with 𝑥 ≠ 𝑦. It follows from (3) that there are 𝛼1, 𝛼2 ∈ (0,1) such that 

‖𝑥 − 𝑦‖𝛼1 > 0  and ‖𝑦 − 𝑥‖𝛼2 > 0 . Taking ‖𝑥 − 𝑦‖𝛼1 > 𝑠1 > 0  and ‖𝑦 − 𝑥‖𝛼2 > 𝑠2 > 0 . yy 

using Proposition 2.5 (1), we know that there exist 𝑡1 > 𝑠1 and 𝑡2 > 𝑠2, such that 𝑁(𝑥 − 𝑦, 𝑡1) <

𝛼1  and 𝑁(𝑦 − 𝑥, 𝑡2) < 𝛼2 . Therefore, 𝑥 ∉ 𝐵𝑁(𝑦, 1 − 𝛼1, 𝑡1)  and 𝑦 ∉ 𝐵𝑁(𝑥, 1 − 𝛼2, 𝑡2) . So 𝜏𝑁  is 

𝑇1.  

Remark 2.8. Let (𝑋, 𝑁,∗) be a fuzzy quasi-normed space, and 𝑃𝑁 = {‖⋅‖𝛼: 𝛼 ∈ (0,1)} be the family 

of star quasi-seminorms induced by (𝑁,∗). For each 𝑥 ∈ 𝑋, set  

𝑈𝑃𝑁(𝑥) = {𝑈(𝑥; 𝛼1, 𝛼2, … , 𝛼𝑛; 𝜀): 𝜀 > 0; 𝛼1, 𝛼2, … , 𝛼𝑛 ∈ (0,1), 𝑛 ∈ ℕ}, 

where 

𝑈(𝑥; 𝛼1, 𝛼2, … , 𝛼𝑛; 𝜀) = {𝑦 ∈ 𝑋: ‖𝑦 − 𝑥‖𝛼𝑖 < 𝜀, 𝛼𝑖 ∈ (0,1), 𝑖 = 1,2, … , 𝑛} 

          =∩𝑖=1
𝑛 {𝑦 ∈ 𝑋: ‖𝑦 − 𝑥‖𝛼𝑖 < 𝜀, 𝛼𝑖 ∈ (0,1)} 

      = {𝑦 ∈ 𝑋: ‖𝑦 − 𝑥‖𝑚𝑎𝑥{𝛼𝑖:1≤𝑖≤𝑛} < 𝜀}. 

Then, from Proposition 5 and Theorem 1 in [18], we know that 𝑈𝑃𝑁(𝑥)  is a basis of 

neighborhood of 𝑥  w.r.t. 𝜏𝑁 . Therefore, for any sequence {𝑥𝑛}  of 𝑋, 𝑥𝑛
𝜏𝑁
→ 𝑥 ∈ 𝑋  if and only if 

𝑙𝑖𝑚
𝑛→∞

‖𝑥𝑛 − 𝑥‖𝛼 = 0 for every 𝛼 ∈ (0,1). 

Definition 2.9. Suppose(𝑋, 𝑁,∗)  is a fuzzy quasi-normed space, 𝑃𝑁  is the family of star quasi-

seminorms induced by (𝑁,∗), {𝑥𝑛} is a sequence of 𝑋. 

(1) {𝑥𝑛} is called left 𝑁 -Cauchy if for every 𝜀 > 0 and 𝛼 ∈ (0,1), there exists𝑛0 ∈ ℕ such 

that ‖𝑥𝑚 − 𝑥𝑛‖𝛼 < 𝜀, for any 𝑚, 𝑛 ∈ ℕ with 𝑚 > 𝑛 > 𝑛0. 

(2) {𝑥𝑛}  is called right 𝑁  -Cauchy if for every 𝜀 > 0  and 𝛼 ∈ (0,1) , there exists 𝑛0 ∈ ℕ 

such that ‖𝑥𝑛 − 𝑥𝑚‖𝛼 < 𝜀, for any 𝑚, 𝑛 ∈ ℕ with 𝑚 > 𝑛 > 𝑛0. 

Definition 2.10. A fuzzy quasi-normed space (𝑋, 𝑁,∗) is called left (right, resp.) 𝑁 − 𝜏𝑁 complete 

if every left (right, resp.) 𝑁 -Cauchy sequence is convergent w.r.t. 𝜏𝑁. 

Let (𝑋, 𝜏) be a topological space. A function 𝑓: 𝑋 → ℝ is called to be upper semi-continuous 

(u.s.c.), if for any 𝑎 ∈ ℝ, {𝑥: 𝑓(𝑥) < 𝑎} ∈ 𝜏; 𝑓: 𝑋 → ℝ is called to be lower semi-continuous (l.s.c.), 
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if for any 𝑎 ∈ ℝ, {𝑥: 𝑓(𝑥) > 𝑎} ∈ 𝜏.  

Remark 2.11. If the topology 𝜏 is the first countable, it is well known that 𝑓 is u.s.c. (l.s.c., resp.) if 

and only if 𝑙𝑖𝑚
𝑛→∞

𝑠𝑢𝑝 𝑓 (𝑥𝑛) ≤ 𝑓(𝑥) ( 𝑙𝑖𝑚
𝑛→∞

𝑖𝑛𝑓 𝑓 (𝑥𝑛) ≥ 𝑓(𝑥) , resp.) for any sequence {𝑥𝑛} which 

converges to 𝑥 ∈ 𝑋. 

Let(𝑍,≤) be a partial order set. For𝑥 ∈ 𝑍, put𝑆+(𝑥) = {𝑧 ∈ 𝑍: 𝑥 ≤ 𝑧} and𝑆−(𝑥) = {𝑧 ∈ 𝑍: 𝑧 ≤

𝑥}, we shall use the notation 𝑥 < 𝑦 to designate the situation𝑥 ≤ 𝑦 and 𝑥 ≠ 𝑦. 

Lemma 2.12. ([7]) Let (𝑍,≤) be a partial order set. 

(1) Suppose that 𝜑: 𝑍 → ℝ is a function satisfying the conditions  

(𝑎) 𝜑 is strictly increasing, i.e.,𝑥 < 𝑦 ⇒ 𝜑(𝑥) < 𝜑(𝑦); 
(𝑏) 𝜑(𝑆−(𝑥)) is bounded below for each 𝑥 ∈ 𝑍; 

(𝑐) for any decreasing sequence {𝑥𝑛} in 𝑍 there exists 𝑦 ∈ 𝑍 such that 𝑦 ≤ 𝑥𝑛, 𝑛 ∈ ℕ. 

Then, for each 𝑥 ∈ 𝑍 there exists a minimal element 𝑧 in 𝑍 such that 𝑧 ≤ 𝑥. 

(2) Let 𝜑: 𝑍 → ℝ be a function satisfying the conditions: 

(𝑎′) 𝜑 is strictly increasing, i.e.,𝑥 < 𝑦 ⇒ 𝜑(𝑥) < 𝜑(𝑦); 
(𝑏′) 𝜑(𝑆+(𝑥)) is bounded above for each 𝑥 ∈ 𝑍; 

(𝑐′) for any increasing sequence {𝑥𝑛} in 𝑍 there exists 𝑦 ∈ 𝑍 such that 𝑥𝑛 ≤ 𝑦, 𝑛 ∈ ℕ. 

Then, for each 𝑥 ∈ 𝑍 there exists a maximal element 𝑧 in 𝑍 such that 𝑥 ≤ 𝑧. 

3. Ekeland’s variational principle 

In this section, (𝑋, 𝑁,∗)  is always supposed to be a fuzzy quasi-normed space such that the 

topology 𝜏𝑁 is 𝑇1, and 𝑃𝑁 = {‖⋅‖𝛼: 𝛼 ∈ (0,1)} is the family of star quasi-seminorms induced by 

(𝑁,∗). 
Theorem 3.1. Suppose (𝑋, 𝑁,∗)  is right 𝑁 − 𝜏𝑁  complete, the function 𝜑:𝑋 → ℝ  is bounded 

below and l.s.c. with respect to 𝜏𝑁, 𝜀 > 0. Define a relation " ≤𝜑 " on 𝑋 by 

𝑥 ≤𝜑 𝑦 ⇔ 𝜑(𝑥) + 𝜀‖𝑦 − 𝑥‖𝛼 ≤ 𝜑(𝑦), ∀𝛼 ∈ (0,1).    (3-1) 

Then, 

(1) the relation " ≤𝜑 " is a partial order; 

(2) every element of 𝑋 is minored by a minimal element 𝑧 in 𝑋. 

Proof. (1) Reflexivity. It is obvious. 

Transitivity. For any 𝛼 ∈ (0,1), we take 𝛽 ∈ (0,1) such that 𝛽 ∗ 𝛽 ≥ 𝛼. If 𝑥 ≤𝜑 𝑦 and 𝑦 ≤𝜑 𝑧, 

then 𝜑(𝑥) + 𝜀‖𝑦 − 𝑥‖𝛽 ≤ 𝜑(𝑦) and 𝜑(𝑦) + 𝜀‖𝑧 − 𝑦‖𝛽 ≤ 𝜑(𝑧), hence 

𝜑(𝑥) + 𝜀‖𝑧 − 𝑥‖𝛼 ≤ 𝜑(𝑥) + 𝜀‖𝑧 − 𝑥‖𝛽∗𝛽 ≤ 𝜑(𝑥) + 𝜀‖𝑦 − 𝑥‖𝛽 + 𝜀‖𝑧 − 𝑦‖𝛽 ≤ 𝜑(𝑧). 

Therefore 𝑥 ≤𝜑 𝑧. 

Anti-symmetry. Suppose 𝑥 ≤𝜑 𝑦 and 𝑦 ≤𝜑 𝑥. Then, for any 𝛼 ∈ (0,1), 

𝜑(𝑥) + 𝜀‖𝑦 − 𝑥‖𝛼 ≤ 𝜑(𝑦),𝜑(𝑦) + 𝜀‖𝑥 − 𝑦‖𝛼 ≤ 𝜑(𝑥). 

So 

𝜑(𝑥) + 𝜀‖𝑦 − 𝑥‖𝛼 + 𝜀‖𝑥 − 𝑦‖𝛼 ≤ 𝜑(𝑥). 

Thus ‖𝑦 − 𝑥‖𝛼 = ‖𝑦 − 𝑥‖𝛼 = 0. Since 𝑃𝑁 is separating, we get 𝑥 = 𝑦. 

(2) It is sufficient to verify that " ≤𝜑 " satisfies the conditions (𝑎)–(𝑐) in Lemma 2.12. Let 𝑥 <𝜑 𝑦, 
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then 

𝜑(𝑥) + 𝜀‖𝑦 − 𝑥‖𝛼 ≤ 𝜑(𝑦), ∀𝛼 ∈ (0,1). 

Therefore 𝜑(𝑦) ≥ 𝜑(𝑥) . Since 𝑥 ≠ 𝑦 , it follows from Proposition 2.7 that there exists 𝛼0 ∈
(0,1) such that ‖𝑦 − 𝑥‖𝛼0 > 0. So 𝜑(𝑦) ≠ 𝜑(𝑥), i.e., 𝜑(𝑦) > 𝜑(𝑥). Thus, 𝜑 is strictly increasing. 

The condition (𝑎) holds. 

Since 𝜑 is bounded below, (𝑏) holds too. 

To prove (𝑐), we suppose that {𝑦𝑛} is a decreasing sequence in (𝑋,≤𝜑). Then for any 𝑛 ∈ ℕ, 

we have 𝑦𝑚 ≤𝜑 𝑦𝑛 with 𝑚 > 𝑛. yy (3-1) 

𝜑(𝑦𝑚) + 𝜀‖𝑦𝑛 − 𝑦𝑚‖𝛼 ≤ 𝜑(𝑦𝑛), ∀𝛼 ∈ (0,1).      (3-2) 

Firstly, we prove that {𝑦𝑛}  is right 𝑁  -Cauchy. Since {𝑦𝑛}  is decreasing and 𝜑 is strictly 

increasing, {𝜑(𝑦𝑛)} is decreasing too. So {𝜑(𝑦𝑛)} is convergent. For any 𝜂 > 0, there exists 𝑛0 ∈
ℕ such that 

0 ≤ 𝜑(𝑦𝑛) − 𝜑(𝑦𝑚) < 𝜀𝜂 with 𝑚 > 𝑛 > 𝑛0. 

Which together with (3-2) implies that 

‖𝑦𝑛 − 𝑦𝑚‖𝛼 < 𝜂 with 𝑚 > 𝑛 > 𝑛0, ∀𝛼 ∈ (0,1). 

Consequently, {𝑦𝑛} is right 𝑁 -Cauchy. 

Secondly, we prove that there exists 𝑦 ∈ 𝑋 such that 𝑦 ≤𝜑 𝑦𝑛 for all 𝑛 ∈ ℕ. Recall that 𝑋 is 

right 𝑁 − 𝜏𝑁 complete, we know that {𝑦𝑛} converges to a point 𝑦 ∈ 𝑋 w.r.t. 𝜏𝑁. Hence, for any 

𝛼 ∈ (0,1), we have 

𝑙𝑖𝑚
𝑚→∞

‖𝑦𝑚 − 𝑦‖𝛼 = 0.          (3-3) 

Now, we take 𝛽 ∈ (0,1) such that 𝛽 ∗ 𝛽 ≥ 𝛼. yy (3-2), for every 𝑛 ∈ ℕ, we have, 

𝜀‖𝑦𝑛 − 𝑦‖𝛼 ≤ 𝜀‖𝑦𝑛 − 𝑦‖𝛽∗𝛽 ≤ 𝜀(‖𝑦𝑛 − 𝑦𝑚‖𝛽 + ‖𝑦𝑚 − 𝑦‖𝛽) 

≤ 𝜑(𝑦𝑛) − 𝜑(𝑦𝑚) + 𝜀‖𝑦𝑚 − 𝑦‖𝛽 with 𝑚 > 𝑛.   (3-4) 

Since 𝜑 is l.s.c. with respect to 𝜏𝑁 and {𝜑(𝑦𝑛)} is decreasing, we have 𝜑(𝑦) ≤ 𝑙𝑖𝑚
𝑚→∞

𝜑(𝑦𝑚). 

Let 𝑚 → ∞in (3-4), by using (3-3), we obtain 

𝜀‖𝑦𝑛 − 𝑦‖𝛼 ≤ 𝜑(𝑦𝑛) − 𝜑(𝑦), ∀𝛼 ∈ (0,1). 

Thus, 𝑦 ≤𝜑 𝑦𝑛 for all 𝑛 ∈ ℕ. The condition (𝑐) is verified.  

Theorem 3.2. (EVP) Suppose (𝑋, 𝑁,∗)  is right 𝑁 − 𝜏𝑁  complete, the function 𝜑:𝑋 → ℝ  is 

bounded below and l.s.c. with respect 𝜏𝑁, 𝜀 > 0. Let 𝑥0 ∈ 𝑋 be such that 

𝜑(𝑥0) ≤ 𝑖𝑛𝑓 𝜑 (𝑋) + 𝜀.         (3-5) 

Then, there exists 𝑧 ∈ 𝑋 such that 

(i) 𝜑(𝑧) + 𝜀‖𝑥0 − 𝑧‖𝛼 ≤ 𝜑(𝑥0), ∀𝛼 ∈ (0,1); 
(ii) ‖𝑥0 − 𝑧‖𝛼 ≤ 1, ∀𝛼 ∈ (0,1); 
(iii) for any 𝑥 ∈ 𝑋\{𝑧}, there exists 𝛼0 ∈ (0,1) such that 𝜑(𝑥) + 𝜀‖𝑧 − 𝑥‖𝛼0 > 𝜑(𝑧). 

Proof. Define a relation " ≤𝜑 "  on 𝑋  by (3-1). From Theorem 3.1, there exists 𝑧 ∈ 𝑋  such that 

𝑧 ≤𝜑 𝑥0 and 𝑧 is a minimal element of 𝑋, which means that (i) and (iii) hold. Moreover, by using 
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(3-5) and (𝑖), we have 

𝜑(𝑧) + 𝜀‖𝑥0 − 𝑧‖𝛼 ≤ 𝑖𝑛𝑓 𝜑 (𝑋) + 𝜀 ≤ 𝜑(𝑧) + 𝜀, ∀𝛼 ∈ (0,1). 

Which implies that (ii) holds.  

The following corollary is called the weak Ekeland’s variational principle (wEVP). 

Corollary 3.3. (wEVP) Suppose (𝑋, 𝑁,∗)  is right 𝑁 − 𝜏𝑁  complete, the function 𝜑:𝑋 → ℝ  is 

bounded below and l.s.c. with respect to 𝜏𝑁. Then, for any 𝜀 > 0, there exists 𝑧 ∈ 𝑋 such that: for 

any 𝑥 ∈ 𝑋\{𝑧}, there exists 𝛼0 ∈ (0,1) such that 𝜑(𝑥) + 𝜀‖𝑧 − 𝑥‖𝛼0 > 𝜑(𝑧). 

Proof. For the given 𝜀 > 0, there exists 𝑥0 ∈ 𝑋 such that 𝜑(𝑥0) < 𝑖𝑛𝑓 𝜑 (𝑋) + 𝜀. From Theorem 

3.2, there exists 𝑧 ∈ 𝑋 such that 𝑧 satisfies the conclusions (i)–(iii) in Theorem 3.2. It can be seen 

that 𝑧 is what is wanted.  

4. Caristi’s fixed point theorem and Takahashi minimization theorem 

In this section, we study CFPT and TMT in fuzzy quasi-normed spaces. Moreover, we prove the 

equivalence chain among wEVP, CFPT and TMT. 

Theorem 4.1. (CFPT) Suppose (𝑋, 𝑁,∗)  is right 𝑁  -𝜏𝑁  complete, 𝜑:𝑋 → ℝ  is proper bounded 

below and l.s.c with respect to 𝜏𝑁, 𝜀 > 0. If 𝑓: 𝑋 → 𝑋 satisfies the condition: for any 𝑥 ∈ 𝑋, 

𝜑(𝑓(𝑥)) + 𝜀‖𝑥 − 𝑓(𝑥)‖𝛼 ≤ 𝜑(𝑥), ∀𝛼 ∈ (0,1).     (4-1) 

Then, 𝑓 has a fixed point in 𝑋. 

Proof. From wEVP, there exists 𝑧 ∈ 𝑋 such that: for any 𝑥 ∈ 𝑋\{𝑧}, there exists 𝛼0 ∈ (0,1) such 

that 𝜑(𝑥) + 𝜀‖𝑧 − 𝑥‖𝛼0 > 𝜑(𝑧) . If 𝑓(𝑧) ≠ 𝑧 , then there exists 𝛼1 ∈ (0,1)  such that 𝜑(𝑓(𝑧)) +

𝜀‖𝑧 − 𝑓(𝑧)‖𝛼1 > 𝜑(𝑧), which contradicts (4-1). Thus, 𝑓(𝑧) = 𝑧, that is, 𝑓 has a fixed point 𝑧.  

From the above proof, we see that CFPT is implied by wEVP. In fact, we have the following 

result. 

Theorem 4.2. CFPT and wEVP are mutually equivalent. 

Proof. It is sufficient to show that wEVP can be implied by CFPT. Suppose that wEVP does not hold. 

Then, there exists 𝜀 > 0 , for any 𝑥 ∈ 𝑋 , there is 𝑦𝑥 ∈ 𝑋\{𝑥}  such that 𝜑(𝑦𝑥) + 𝜀‖𝑥 − 𝑦𝑥‖𝛼 ≤
𝜑(𝑥), ∀𝛼 ∈ (0,1). Define 𝑓: 𝑋 → 𝑋 as 𝑓(𝑥) = 𝑦𝑥, ∀𝑥 ∈ 𝑋. Then 

𝜑(𝑓(𝑥)) + 𝜀‖𝑥 − 𝑓(𝑥)‖𝛼 ≤ 𝜑(𝑥), ∀𝛼 ∈ (0,1). 

From CFPT, there exists 𝑧 ∈ 𝑋  such that 𝑓(𝑧) = 𝑧 . Which contradicts the fact that 𝑓(𝑥) =
𝑦𝑥 ∈ 𝑋\{𝑥}, ∀𝑥 ∈ 𝑋. Thus, wEVP holds.  

From wEVP, we can get Takahashi minimization theorem as following. 

Theorem 4.3. (TMT) Suppose (𝑋, 𝑁,∗)  is right 𝑁 − 𝜏𝑁  complete, the function 𝜑:𝑋 → ℝ  is 

bounded below and l.s.c. with respect to 𝜏𝑁, 𝜀 > 0. If the following condition (A) holds: 

(A) for any 𝑧 ∈ 𝑋 with 𝜑(𝑧) > 𝑖𝑛𝑓
𝑥∈𝑋
𝜑(𝑥), there is 𝑥 ∈ 𝑋\{𝑧} such that 𝜑(𝑥) + 𝜀‖𝑧 − 𝑥‖𝛼 ≤

𝜑(𝑧) for all 𝛼 ∈ (0,1),  

then, there exists 𝑢 ∈ 𝑋 such that 𝜑(𝑢) = 𝑖𝑛𝑓
𝑥∈𝑋
𝜑(𝑥). 

Proof. It follows from wEVP, there exists 𝑧 ∈ 𝑋 such that: for any 𝑥 ∈ 𝑋\{𝑧}, there exists 𝛼0 ∈

(0,1)  such that 𝜑(𝑥) + 𝜀‖𝑧 − 𝑥‖𝛼0 > 𝜑(𝑧) . It is easy to see that 𝜑(𝑧) = 𝑖𝑛𝑓
𝑥∈𝑋
𝜑(𝑥) . In fact, if 
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𝜑(𝑧) ≠ 𝑖𝑛𝑓
𝑥∈𝑋
𝜑(𝑥), then 𝜑(𝑧) > 𝑖𝑛𝑓

𝑥∈𝑋
𝜑(𝑥), which is impossible by the condition (A).  

Moreover, we have the following theorem. 

Theorem 4.4. TMT and wEVP are mutually equivalent. 

Proof. From the proof of Theorem 4.3, it is sufficient to show that wEVP can be implied by TMT. To 

use the method of proof by contradiction, we assumed that wEVP does not hold, that is, there exists 

𝜀 > 0, for any 𝑧 ∈ 𝑋, there exists 𝑥 ∈ 𝑋\{𝑧} such that 

𝜑(𝑥) + 𝜀‖𝑧 − 𝑥‖𝛼 ≤ 𝜑(𝑧) for all 𝛼 ∈ (0,1).     (4-2) 

Therefore, the condition (A) is satisfied. Since 𝜏𝑁 is 𝑇1, it follows from (4-2) that𝜑(𝑥) < 𝜑(𝑧). So, 

𝜑(𝑧) > 𝑖𝑛𝑓
𝑥∈𝑋
𝜑(𝑥). By the arbitrariness of 𝑧 ∈ 𝑋 , we know 𝜑  cannot get its minimum on 𝑋 . This 

contradicts TMT.  

5. Conclusions 

The Ekeland’s variational principle, Caristi’s fixed point theorem and Takahashi minimization 

theorem are extended to fuzzy quasi-normed spaces. The obtained results enrich and develop 

asymmetric analysis and provide important tools for studying asymmetry in mathematics and other 

fields. On the other hand, the main results in the paper are obtained under the condition that the 

topology 𝜏𝑁 is 𝑇1, Therefore, the following question is also worthy of further study: Is it possible to 

give types of these theorems in the framework of the general fuzzy quasi-normed spaces? 
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