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1. Introduction

Record statistics are interest and importance in many areas of real-life applications including data
relating to meteorology and weather, economics, sport, athletic events, oil, mining surveys and life
testing studies and so on. In the midst of practical life there are many situations that depend entirely
on the record statistics (record values) involving: Guinness World Records where only record values
are observed (lower or upper record values). Shortest ever tennis matches both in terms of number of
games (number of runs) and duration in terms of time (lower record values). News items like fastest
time taken to recite the periodic table of the elements (lower record values). Weightlifting competitions
where the highest weight is lifted in the fewest number of attempts (upper record values). Swimming
competitions where the swimmer travels a certain distance in the least time of swimming (lower record
values). Mountaineering, fastest marathon, longest time to hop, etc are of great importance to sports
federations and athletes.

From the above, we note that to create a record, several attempts are made, and when the attempt is
successful, the record is created, and accordingly we do not get the data for all the attempts that were
made to break records. The data that we have are records. Many scientists specially the statisticians
have become interested in record values and discussed the statistical inferences for different models
based on lower and upper record values including Chandler [1] studied the distribution and frequency
of lower record values, Resnick [2] compared the behavior of the sequence of record values,
Shorrock [3] proposed asymptotic results on record values and inter-record times, Glick [4] discussed
the breaking records and breaking boards, Nevzorov [5] and Nagaraja [6] listed some theoretical
characteristics for record values for various univariate model, Kumar [7] developed some recurrence
relations for generalized logistic distribution based on lower record values, Mahmoud et al. [8]
studied the estimation problem for the behavior of the coefficient of variation of Lomax distribution
based on upper record values, Kumar and Saran [9] investigated the ratio and inverse moments of
record values from Marshall-Olkin log-logistic distribution, and EL-Sagheer [10] studied the
estimation of the parameters for generalized logistic distribution based on the lower record values.
Arnold et al. [11] summarized the study of upper and lower record values and presented many of the
basic properties of them as follows: Assume X1, X2, X3, ... a sequence of independent and identically
distributed random variables with probability density function (PDF) f (x) and cumulative distribution
function (CDF) F (x). Setting Y j = max

(
X1, X2, X3, ..., X j

)
, for j ≥ 1, we say X j an upper record and

denoted by XU( j) if Y j > Y j−1 , j > 1. Also, let Y j = min
(
X1, X2, X3, ..., X j

)
, for j ≥ 1 we say that X j is

a lower record and denoted by XL( j) if Y j < Y j−1 , j > 1. Thus the joint density function of the first n
upper record values is given by

f1,2,3,...,n
(
xU(1), xU(2), xU(3), ..., xU(n)

)
= f

(
xU(n)

) n−1∏
i=1

f (xU(i))
1 − F(xU(i))

, (1)

and the joint density function of the first n lower record values is given by

f1,2,3,...,n
(
xL(1), xL(2), xL(3), ..., xL(n)

)
= f (xL(n))

n−1∏
i=1

f (xL(i))
F(xL(i))

. (2)
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Dagum [12] introduced a statistical distribution closely fitting income distributions which
accommodating the heavy tails, called the Dagum distribution (DD). In the actuarial literature, is also
called the inverse Burr. Furthermore, DD admits a mixture representation in terms of generalized
Gamma and inverse Weibull distributions. The DD can also be obtained as a compound generalized
Gamma distribution whose scale parameter follows an inverse Weibull distribution with identical
shape parameters. Since Dagum introduced his model as income distribution, many authors have
discussed its properties in economics and financial fields, reliability, and survival data, etc. See for
instance, Kleiber and Kotz [13], Kleiber [14], Domma et al. [15], Domma and Condino [16], among
others. Recently, Alotaib et al. [17] discussed parameter estimation for the DD based on progressive
type-I interval censored data. A random variable X has the Dagum distribution and denoted by
X ∼ D(λ, θ, β), if it has PDF, CDF, reliability function r (x) and hazard rate function h (x), given by

f (x) = λθβx−(β+1)
(
1 + λx−β

)−(θ+1)
, x > 0, (3)

F (x) =
(
1 + λx−β

)−θ
, x > 0, (4)

r (x) = 1 −
(
1 + λx−β

)−θ
, x > 0, (5)

and

h (x) =
λθβx−(β+1)

(
1 + λx−β

)−(θ+1)

1 − (1 + λx−β)−θ
, x > 0, (6)

where β, θ > 0 are the shape parameters and λ > 0 is the scale parameter.
In this article, we investigate the Bayes and maximum likelihood estimates for the unknown

quantities of the DD using lower record values. The Lindley’s approximation and the
Metropolis-Hasting (M-H) algorithm within Gibbs sampler are proposed to construct the Bayes
estimates. To this end, the results of the Bayes estimates are obtained under both squared error (SE)
and linear exponential (LINEX) loss functions. Also, the corresponding credible intervals (CRIs) are
constructed under MCMC technique.

The rest of this article is organized as follows. Section 2 deals with the maximum likelihood
estimates and asymptotic confidence intervals. Bayesian estimates using Lindley’s approximation and
MCMC technique are provided in Section 3. In Section 4 a simulation study is provided to examine
the performance of the proposed estimation methods. Section 5 discusses an application to real life
data. Finally, a brief conclusion is given in Section 6.

2. Maximum likelihood estimation

In this section, we discuss the maximum likelihood estimates (MLEs) and approximate confidence
intervals (ACIs) of the parameters as well as reliability and hazard rate functions of DD given in (3)
when the available data are lower record values. Suppose that x = xL(1), xL(2), xL(3), ..., xL(n) be the lower
record values of size n from D(λ, θ, β), then the likelihood function for observed record x is given by

L
(
λ, θ, β|x

)
= λnβnθn

(
1 + λx−βL(n)

)−θ n∏
i=1

x−(β+1)
L(i)

(
1 + λx−βL(i)

)−1
. (7)
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The logarithm of the likelihood function may then be written as

`(λ, θ, β|x) = n log λ + n log β + n log θ − θ log
(
1 + λx−βL(n)

)
− (β + 1)

n∑
i=1

log xL(i)

−

n∑
i=1

log
(
1 + λx−βL(i)

)
. (8)

The estimators λ̂, θ̂ and β̂ of the parameters λ, θ, and β, respectively, can be then obtained as the solution
likelihood equations

∂`(λ, θ, β|x)
∂λ

=
n
λ
−

θx−βL(n)

1 + λx−βL(n)

−

n∑
i=1

x−βL(i)

1 + λx−βL(i)

= 0, (9)

∂`(λ, θ, β|x)
∂β

=
n
β

+
θλx−βL(n) ln xL(n)

1 + λx−βL(n)

−

n∑
i=1

log xL(i) +

n∑
i=1

x−βL(i) ln xL(i)

1 + λx−βL(i)

= 0, (10)

and
∂`(λ, θ, β|x)

∂θ
=

n
θ
− log

(
1 + λx−βL(n)

)
= 0. (11)

Since (9)–(11) cannot be solved analytically for λ̂, θ̂ and β̂, some numerical methods such as
Newton-Raphson method must be employed to obtain the desired MLEs in such situations. Once we
get desired MLEs of λ, θ and β using the invariant property of MLEs, for given mission time t, the
MLEs of r (t) and h (t) can be obtained after replacing λ, θ and β by λ̂, θ̂ and β̂ as

r̂(t) = 1 −
(
1 + λ̂t−β̂

)−θ̂
, ĥ(t) =

λ̂θ̂β̂t−(β̂+1)
(
1 + λ̂t−β̂

)−(θ̂+1)

1 −
(
1 + λ̂t−β̂

)−θ̂ , t > 0. (12)

2.1. Asymptotic confidence intervals

From the log-likelihood function `(λ, θ, β|x) in (8), we have

∂2`(λ, θ, β|x)
∂λ2 = −

n
λ2 +

θ
(
x−βL(n)

)2(
1 + λx−βL(n)

)2 +

n∑
i=1

(
x−βL(i)

)2(
1 + λx−βL(i)

)2 , (13)

∂2`(λ, θ, β|x)
∂λ∂θ

=
∂2`(λ, θ, β|x)

∂θ∂λ
= −

x−βL(n)

1 + λx−βL(n)

, (14)

∂2`(λ, θ, β|x)
∂λ∂β

=
∂2`(λ, θ, β|x)

∂β∂λ
=
θx−βL(n) ln xL(n)

[(
1 + λx−βL(n)

)
− λx−βL(n)

]
(
1 + λx−βL(n)

)2

+

n∑
i=1

x−βL(i) ln xL(i)

[(
1 + λx−βL(i)

)
− λx−βL(i)

]
(
1 + λx−βL(i)

)2 , (15)
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∂2`(λ, θ, β|x)
∂β2 = −

n
β2 +

θλ
(
x−βL(n)

)2 (
ln xL(n)

)2
[
λx−βL(n) −

(
1 + λx−βL(n)

)]
(
1 + λx−βL(n)

)2

+

n∑
i=1

x−βL(i)
(
ln xL(i)

)2
[
λx−βL(i) −

(
1 + λx−βL(i)

)]
(
1 + λx−βL(i)

)2 , (16)

∂2`(λ, θ, β|x)
∂β∂θ

=
∂2`(λ, θ, β|x)

∂θ∂β
=
λx−βL(n) ln xL(n)

1 + λx−βL(n)

,
∂2`(λ, θ, β|x)

∂θ2 = −
n
θ2 . (17)

The Fisher information matrix I (λ, θ, β) is then obtained by taking expectation of negative
Eqs (13)–(17). Based on some mild regularity conditions,

(
λ̂, θ̂, β̂

)
is approximately bivariate normal

with mean (λ, θ, β) and covariance matrix I−1 (λ, θ, β). Practically, we usually estimate I−1 (λ, θ, β)
by I−1

(
λ̂, θ̂, β̂

)
. Moreover, a simpler and equally valid procedure is to use the approximation

(
λ̂, θ̂, β̂

)
∼ N

(
(λ, θ, β) , I−1

◦

(
λ̂, θ̂, β̂

))
,

where

I◦
(
λ̂, θ̂, β̂

)
=


−
∂2`(λ,θ,β|x)

∂λ2 −
∂2`(λ,θ,β|x)

∂λ∂θ
−
∂2`(λ,θ,β|x)

∂λ∂β

−
∂2`(λ,θ,β|x)

∂θ∂λ
−
∂2`(λ,θ,β|x)

∂θ2 −
∂2`(λ,θ,β|x)

∂θ∂β

−
∂2`(λ,θ,β|x)

∂β∂λ
−
∂2`(λ,θ,β|x)

∂β∂θ
−
∂2`(λ,θ,β|x)

∂β2


(λ̂,θ̂,β̂)

.

ACIs for λ, θ and β can be obtained by to be bivariate normal distributed with mean (λ, θ, β) and
variance-covariance matrix I−1

◦ (λ, θ, β). Therefore, the 100(1 − γ)% ACIs for λ, θ and β, respectively,
are

λ̂ ∓ zγ/2
√

Λ11, θ̂ ∓ zγ/2
√

Λ22, β̂ ∓ zγ/2
√

Λ33, (18)

where Λ11, Λ22 and Λ33 are the elements on the main diagonal of the variance-covariance matrix
I−1
◦ (λ, θ, β), and zγ/2 is the percentile of the standard normal distribution with right-tail probability
γ/2.

In order to find the approximate estimates of the variance of r (t) and h (t), we use the delta method,
see Agresti [18]. Assume that G1 = (∂r(t)

∂λ
, ∂r(t)

∂θ
, ∂r(t)
∂β

) and G2 = (∂h(t)
∂λ
, ∂h(t)

∂θ
, ∂h(t)

∂β
), where ∂r(t)

∂λ
, ∂r(t)

∂θ
, ∂r(t)

∂β
,

∂h(t)
∂λ
, ∂h(t)

∂θ
, and ∂h(t)

∂β
are the first partial derivatives of r(t) and h(t) with respect to the parameters λ, θ and

β, respectively. The approximate asymptotic variances of r̂(t) and ĥ(t) are given by

Var (r̂(t)) '
[
GT

1 I−1
◦

(
λ̂, θ̂, β̂

)
G1

]
(λ̂,θ̂,β̂) and Var

(
ĥ(t)

)
'

[
GT

2 I−1
◦

(
λ̂, θ̂, β̂

)
G2

]
(λ̂,θ̂,β̂) ,

where and GT
i is the transpose of Gi , i = 1, 2. Thus, the (1 − γ)100% ACIs for r̂(t) and ĥ(t) can be

written as

r̂(t) ∓ zγ/2
√

Var (r̂(t)) and ĥ(t) ∓ zγ/2
√

Var
(
ĥ(t)

)
. (19)
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3. Prior information and Bayesian estimation

Besides being an accurate analysis and not easy to handle mathematically, the use of the Bayesian
method allows the incorporation of previous knowledge of the parameters through informative prior
densities. In the Bayesian approach, the information referring to the model parameters is obtained
through posterior marginal distributions. In this section, two Bayesian inference procedures (Lindley’s
approximation and MCMC technique) are proposed to estimate the parameters λ, θ and β as well as the
reliability r(t) and hazard rate h(t) functions. For estimating these quantities, we assume mainly both
SE and LINEX loss functions. However, any other loss function can be easily implemented. From
the perspective of frequentist, a natural choice for the prior distributions of λ, θ and β would be to
assume that the three quantities are independent gamma distributions G(a1, b1),G(a2, b2) and G(a3, b3)
respectively, where ai and bi, i = 1, 2, 3 reflect the knowledge of prior about (λ, θ, β) and they are
assumed to be known and nonnegative hyper-parameters. Further, the joint prior distribution can be
written as

g(λ, θ, β) ∝ λa1−1θa2−1βa3−1 exp {−(b1λ + b2θ + b3β)} , λ > 0, θ > 0, β > 0. (20)

Subsequently, via Bayes’ theorem across combining the likelihood function given (7) with the joint
prior given in (20), the joint posterior density function of λ, θ and β can be written as follows

g∗(α, β, λ|x) ∝ λn+a1−1θn+a2−1βn+a3−1 exp
{
−b1λ − b3β − θ

[
b2 + log

(
1 + λx−βL(n)

)]}
×

n∏
i=1

x−(β+1)
L(i)

(
1 + λx−βL(i)

)−1
. (21)

Thus, the conditional posterior densities of λ, θ and β can be computed and written, respectively, as

g∗1(λ|θ, β, x) ∝ λn+a1−1 exp
{
−b1λ − θ log

(
1 + λx−βL(n)

)} n∏
i=1

(
1 + λx−βL(i)

)−1
, (22)

g∗2(θ|λ, β, x) ∝ θn+a2−1 exp
{
−θ

[
b2 + log

(
1 + λx−βL(n)

)]}
, (23)

and

g∗3(β|θ, λ, x) ∝ βn+a3−1 exp
{
−b3β − θ log

(
1 + λx−βL(n)

)} n∏
i=1

x−(β+1)
L(i)

(
1 + λx−βL(i)

)−1
. (24)

Therefore, for any function, say u (λ, θ, β) , the Bayes estimates under SE and LINEX loss functions
can be written as

E
[
u (λ, θ, β) |x

]
=

∫ ∞
0

∫ ∞
0

∫ ∞
0 u(λ,θ,β)L(λ,θ,β|x)g(λ,θ,β)dλdθdβ∫ ∞

0

∫ ∞
0

∫ ∞
0 L(λ,θ,β|x)g(λ,θ,β)dλdθdβ

,

E
[
e−cu(λ,θ,β)|x

]
=

∫ ∞
0

∫ ∞
0

∫ ∞
0 e−cu(λ,θ,β)L(λ,θ,β|x)g(λ,θ,β)dλdθdβ∫ ∞

0

∫ ∞
0

∫ ∞
0 L(λ,θ,β|x)g(λ,θ,β)dλdθdβ

.

 . (25)

There is a difficulty to compute (25) analytically. Therefore, we propose to approximate it by using
both Lindley’s approximation and MCMC technique with Metropolis-Hasting algorithm within Gibbs
sampler, to obtain the Bayes estimates of λ, θ, β, r(t) and h(t).
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3.1. Lindley’s approximation

There are various methods to approximate the ratio of integrals of the above form, may be the
simplest one is Lindley approximation method, which was introduced by Lindley [19] to approximate
the Bayes estimates into a form containing no integrals. This method has been used with various
lifetime distributions by several authors for instance, Singh et al. [20], Ying and Gui [21], Ramin and
Kohansal [22]. Briefly, it can be described as follows: If the sample size is sufficiently large, according
to Lindley [19], any ratio of the integral of the form

I(x) = E[u (λ, θ, β) |x] =

∫
(λ,θ,β) u (λ, θ, β) e`(λ,θ,β)+ρ(λ,θ,β)d (λ, θ, β)∫

(λ,θ,β) e`(λ,θ,β)+ρ(λ,θ,β)d (λ, θ, β)
, (26)

where u (λ, θ, β) is the function of λ, θ and β only, ` (λ, θ, β) is the log-likelihood function and
ρ (λ, θ, β) = log g(λ, θ, β). Hence, I(x) can be estimated as

I (x) = u
(
λ̂, θ̂, β̂

)
+

(
ûλa1 + ûθa2 + ûβa3 + a4 + a5

)
+

1
2

[
A

(
ûλσ̂λλ + ûθσ̂λθ + ûβσ̂λβ

)
+B

(
ûλσ̂θλ + ûθσ̂θθ + ûβσ̂θβ

)
+ C

(
ûλσ̂βλ + ûθσ̂βθ + ûβσ̂ββ

)]
, (27)

where λ̂, θ̂,and β̂ are the MLEs of λ, θ and β respectively, and

ai = ρ̂λσ̂iλ + ρ̂θσ̂iθ + ρ̂βσ̂iβ for i = 1, 2, 3,
a4 = ûλθσ̂λθ + ûλβσ̂λβ + ûθβσ̂θβ ,
a5 = 1

2

(
ûλλσ̂λλ + ûθθσ̂θθ + ûββσ̂ββ

)
,

 , (28)

A = σ̂λλ
ˆ̀
λλλ + 2σ̂λθ

ˆ̀
λθλ + 2σ̂λβ

ˆ̀
λβλ + 2σ̂θβ

ˆ̀
θβλ + σ̂θθ

ˆ̀
θθλ + σ̂ββ

ˆ̀
ββλ

B = σ̂λλ
ˆ̀
λλθ + 2σ̂λθ

ˆ̀
λθθ + 2σ̂λβ

ˆ̀
λβθ + 2σ̂θβ

ˆ̀
θβθ + σ̂θθ

ˆ̀
θθθ + σ̂ββ

ˆ̀
ββθ

C = σ̂λλ
ˆ̀
λλβ + 2σ̂λθ

ˆ̀
λθβ + 2σ̂λβ

ˆ̀
λββ + 2σ̂θβ

ˆ̀
θββ + σ̂θθ

ˆ̀
θθβ + σ̂ββ

ˆ̀
βββ

 , (29)

ρi =
∂ρ

∂φi
, ui =

∂u (φ1, φ2, φ3)
∂φi

, ui j =
∂u (φ1, φ2, φ3)

∂φi∂φ j
, `i j =

∂` (φ1, φ2, φ3)
∂φi∂φ j

, `i jl =
∂` (φ1, φ2, φ3)
∂φi∂φ j∂φl

, (30)

where φ1 = λ, φ2 = θ, φ3 = β, i, j, l = 1, 2, 3 and σi j is (i, j) th elements of the matrix Î−1
◦

(
λ̂, θ̂, β̂

)
in

Subsection (2.1).

σ̂i j =

 −1
Îi j
, i = j

0, i , j
, for i, j = 1, 2, 3.

From (20), ρ(λ, θ, β) can be written as

ρ(λ, θ, β) = log g(λ, θ, β)
= (a1 − 1) log λ + (a2 − 1) log θ + (a3 − 1) log β − (b1λ + b2θ + b3β).

Hence, we get
ρ̂λ =

∂ log g(λ,θ,β)
∂λ

∣∣∣
(λ,θ,β)=(λ̂,θ̂,β̂) =

(a1−1)
λ̂
− b1

ρ̂θ =
∂ log g(λ,θ,β)

∂θ

∣∣∣
(λ,θ,β)=(λ̂,θ̂,β̂) =

(a2−1)
θ̂
− b2

ρ̂β =
∂ log g(λ,θ,β)

∂β

∣∣∣∣
(λ,θ,β)=(λ̂,θ̂,β̂)

=
(a3−1)
β̂
− b3

 . (31)
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Now, under SE and LINEX loss function, the approximate Bayes estimators λ are given by

λ̂BS = E(λ|x)

= λ̂ +
(
ûλa1 + ûθa2 + ûβa3 + a4 + a5

)
+

1
2

[
A

(
ûλσ̂λλ + ûθσ̂λθ + ûβσ̂λβ

)
+B

(
ûλσ̂θλ + ûθσ̂θθ + ûβσ̂θβ

)
+ C

(
ûλσ̂βλ + ûθσ̂βθ + ûβσ̂ββ

)]
, (32)

and

λ̂BL =
−1
c

log E(ecλ|x)

=
−1
c

log{ecλ̂ +
(
ûλa1 + ûθa2 + ûβa3 + a4 + a5

)
+

1
2

[
A

(
ûλσ̂λλ + ûθσ̂λθ + ûβσ̂λβ

)
+B

(
ûλσ̂θλ + ûθσ̂θθ + ûβσ̂θβ

)
+ C

(
ûλσ̂βλ + ûθσ̂βθ + ûβσ̂ββ

)]
}. (33)

Similarly, we can obtain the approximate Bayes estimators of θ, β, r(t) and h(t).

3.2. MCMC technique

It is known that there are several procedures of MCMC technique available in which samples are
generated from the conditional posterior densities. One of the simplest MCMC procedures is the Gibbs
sampling procedure. Another procedure is considered the Metropolis-Hastings (M-H) algorithm and
later extended by Hastings [23]. A more general procedure of MCMC procedures which we will use is
considered the M-H within Gibbs sampling. Gibbs sampler is required to decompose the joint posterior
distribution into full conditional distributions for each parameter and then sample from them. Since,
g∗2(θ|λ, β, x) follows gamma

[
n + a2, b2 + log

(
1 + λx−βL(n)

)]
, it is quite simple to generate samples of θ

from g∗2(θ|λ, β, x) by implementing any gamma generating routine. In addition, the conditional posterior
densities g∗1(λ|θ, β, x) and g∗3(β|θ, λ, x) can’t be reduced analytically to well-known distributions. So,
according to Tierney [24] M-H algorithm within Gibbs sampling with normal proposal distribution is
used to conduct the MCMC methodology. The hybrid M-H algorithm and Gibbs sampler works as
follows:

(1) Use the MLEs as the initial value, denoted by λ̂(0), θ̂(0)and β̂(0).
(2) Set j = 1.
(3) Generate θ( j) from Gamma

(
n + a2, b2 + log

(
1 + λx−βL(n)

))
.

(4) Using M-H algorithm, generate λ( j) and β( j) from g∗1(λ( j−1)|θ( j), β( j−1), x), and g∗3(β( j−1)|θ( j), λ( j−1), x),
respectively, with the normal distributions N

(
λ( j−1),Λ11

)
and N

(
β( j−1),Λ33

)
.

(a) Generate λ∗ from N
(
λ( j−1),Λ11

)
and β∗ from N

(
β( j−1),Λ33

)
.

(b) Evaluate the acceptance probabilities

Ωλ = min
[
1,

g∗1(λ∗|θ( j), β( j−1), x)
g∗1(λ( j−1)|θ( j), β( j−1), x)

]
,

Ωβ = min
[
1,

g∗3(β∗|θ( j), λ( j), x)
g∗3(β( j−1)|θ( j), λ( j), , x)

]
,
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(c) Generate a ρ1 and ρ2 from a Uniform [0, 1] distribution.
(d) If ρ1 < Ωλ accept the proposal and set λ∗ = λ( j), else set λ( j) = λ( j−1).
(e) If ρ2 < Ωβ accept the proposal and set β∗ = β( j), else set β( j) = β( j−1).

(5) Compute r (t) and h (t) as

r( j) (t) = 1 −
(
1 + λ( j)t−β

( j))−θ( j)

, t > 0,

h( j) (t) =
λ( j)θ( j)β( j)t−(β

( j)+1)
(
1 + λ( j)t−β

( j)
)−(θ( j)+1)

1 −
(
1 + λ( j)t−β( j)

)−θ( j) , t > 0.

(6) Set j = j + 1.
(7) Repeat Steps (3)−(6) M times. The first M0 simulated varieties are ignored to remove the affection

of the selection of initial value and to guarantee the convergence. Then the selected sample are
λ( j), θ( j), β( j), r

( j)
(t) and h

( j)
(t), j = M0 + 1, ...,M, for sufficiently large M, forms an approximate

posterior sample which can be used to develop the Bayesian inference.
(8) Under SE and LINEX Loss functions the approximate Bayes estimate of η (where η = λ, θ, β,

r (t) and h (t)) can be obtained by

η̂BS =
1

M − M0

M∑
j=M0+1

η( j),

η̂BL =
−1
c

log

 1
M − M0

M∑
j=M0+1

e−cη( j)

 , c , 0,

where M0 is the burn-in period and η( j) = λ( j), θ( j), β( j), r( j) (t) and h( j) (t).
(9) To compute the CRIs of η, order

{
ηM0+1, ηM0+2, . . . , ηM

}
as

{
η[1], η[2], . . . , η[M−M0]

}
. Then, the

(1 − γ) 100% CRIs of η can be given by[
η(M−M0)( γ2 ), η(M−M0)(1− γ2 )

]
.

4. Simulation study and comparisons

In this section, through a simulation study using R language, we compare the performances of the
MLEs and Bayes estimates of the unknown parameters as well as reliability and hazard rate functions
of the DD under SE and LINEX loss functions proposed in the previous sections. Here, we consider
the simulation results in the case of (λ, θ, β) = (3.2, 5.9, 1.75). Then, the true values of r (t) and h (t) at
time t = 1.3 are computed to be 0, 963895 and 0, 234171, respectively. The performance of estimators
is evaluated in terms of mean squared error (MSE) which computed as

MS E =
1
N

N∑
k=1

($̂(k)
i −$i)2,N = 1000, i = 1, 2, ..., 5,

where $1 = λ, $2 = θ, $3 = β, $4 = r(t) and $5 = h(t) for the point estimates (MLE, Lindley,
MCMC), also average lengths (ALs) and coverage probability (CPs), which computed as the number
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of CIs that covered the true values divided by 1000, for interval estimates (ACIs and CRIs). Bayes
estimates and the highest posterior density CRIs are computed based on M = 12000 MCMC samples
and discard the first values M0 = 2000 as burn-in. In addition, we assume the informative gamma
priors for λ, θ and β that is, when the hyper-parameters are ai = 1.3 and bi = 2.2, i = 1, 2, 3.
Moreover, 95% CRIs were computed for each simulated sample. In our study, we consider different
sample sizes n = 5, 7, 9, 12, 15, 18, 20, 23 and 25. The gamma distribution was chosen as prior
distributions of the parameters because it is the most appropriate one that matches the maximum
likelihood function. Moreover, they are from the same family. The evidence for this is that two of the
full conditional posterior distributions of the parameters resulted in a gamma distribution, which
proves the validity of the chose. In addition, choosing another prior distribution or dependent prior
will increase the complexity and difficulty of mathematical equations. Gamma distribution is one of
the rich distributions, as when changing its parameters (hyper-parameters), we get new data with new
information, so it is the focus of attention of most statisticians. Gamma distribution is flexible model
with any values of hyper-parameters. A special case: When all hyper-parameters of gamma
distribution are zero, we obtain Jaffrey prior. The results of means, MSEs, ALs and CPs of estimates
are displayed in Tables 1–5.

Table 1. Means estimates of λ (first row) with their MSEs (second row) and ALs (first row)
for 95% ACIs and CRIs of λ with their CPs (second row).
n MLE Lindley MCMC

ALs S E LINEX S E LINEX ALs
c = −2 c = 2 c = −2 c = 2

5 3.3114 4.2564 3.2687 3.1475 3.2456 3.1457 3.0147 3.2001 3.9452
0.0754 0.938 0.0715 0.0726 0.0699 0.0684 0.0689 0.0655 0.941

7 3.1547 4.0452 3.3124 3.1479 2.9988 2.9945 3.0145 2.9997 3.7658
0.0721 0.939 0.0694 0.0696 0.0673 0.0668 0.0670 0.0622 0.947

9 3.2568 3.8779 2.9745 3.0145 2.9968 3.1245 3.0897 3.0368 3.6877
0.0667 0.939 0.0645 0.0639 0.0617 0.0610 0.0599 0.0574 0.952

12 3.3110 3.5674 3.0124 3.1478 3.2010 2.9997 3.1457 3.1278 3.3947
0.0635 0.945 0.0628 0.0629 0.0609 0.0593 0.0595 0.0551 0.958

15 3.4789 3.2458 3.2478 2.9965 3.0124 3.1457 3.1211 3.2001 3.1547
0.0576 0.951 0.0556 0.0555 0.0539 0.0528 0.0521 0.0503 0.962

18 2.9999 2.9847 3.1245 2.9984 3.2658 3.2547 3.3142 3.2874 2.8845
0.0514 0.949 0.0497 0.0492 0.0465 0.0457 0.0449 0.0425 0.959

20 3.1978 2.8759 3.1847 3.0988 3.1598 2.9987 3.0567 3.0696 2.5546
0.0425 0.952 0.0419 0.0407 0.0388 0.0374 0.0368 0.0347 0.961

23 3.2457 2.5588 3.2581 3.3146 2.9478 3.0126 3.2145 3.1897 2.2665
0.0339 0.949 0.0305 0.0298 0.0267 0.0258 0.0249 0.0229 0.965

25 3.1457 2.3691 3.1879 3.0457 2.9968 3.0458 3.1254 3.2045 1.9974
0.0215 0.955 0.0197 0.0191 0.0176 0.0168 0.0157 0.0126 0.967
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Table 2. Means estimates of θ (first row) with their MSEs (second row) and ALs (first row)
for 95% ACIs and CRIs of θ with their CPs (second row).
n MLE Lindley MCMC

ALs S E LINEX S E LINEX ALs
c = −2 c = 2 c = −2 c = 2

5 6.1454 8.3335 6.1245 6.2014 6.1689 6.1445 6.2134 5.9987 7.4568
0.1247 0.945 0.1186 0.1175 0.1055 0.1023 0.1014 0.0998 0.949

7 6.2145 7.9451 6.2457 6.2479 5.8479 5.9974 6.1102 6.1058 7.1639
0.1064 0.951 0.1032 0.1021 0.0974 0.0968 0.0961 0.0943 0.956

9 6.1892 6.8654 6.1003 6.1450 5.9984 6.2354 6.1020 5.9989 6.3547
0.0989 0.948 0.0975 0.0969 0.0948 0.0931 0.0926 0.0911 0.961

12 5.9999 6.2457 6.1002 6.1109 5.9476 6.1120 6.2001 6.1036 5.8411
0.0812 0.954 0.0806 0.0795 0.0776 0.0769 0.0758 0.0724 0.958

15 6.1369 5.6774 6.2457 6.1582 6.1894 5.8997 6.1457 6.0236 4.9876
0.0786 0.939 0.0775 0.0763 0.0751 0.0748 0.0739 0.0699 0.951

18 6.0258 5.1462 6.1457 6.0458 6.1243 6.0587 6.1245 6.0039 4.4698
0.0743 0.948 0.0725 0.0714 0.0697 0.0691 0.0687 0.0663 0.963

20 6.1001 4.7695 6.0457 6.1212 6.0124 6.2100 6.1239 6.0358 3.9974
0.0672 0.951 0.0653 0.0647 0.0624 0.0620 0.0618 0.0586 0.957

23 6.0989 4.3588 6.1258 6.0847 5.9978 6.1245 6.0845 5.9778 3.7656
0.0553 0.953 0.0534 0.0527 0.0499 0.0492 0.0487 0.0452 0.959

25 6.0002 4.1235 6.1024 6.0647 6.0006 6.1354 6.0874 6.0110 3.4657
0.0422 0.958 0.0413 0.0405 0.0387 0.0381 0.0375 0.0329 0.962

Table 3. Means estimates of β (first row) with their MSEs (second row) and ALs
(first row) for 95% ACIs and CRIs of β with their CPs (second row).
n MLE Lindley MCMC

ALs S E LINEX S E LINEX ALs
c = −2 c = 2 c = −2 c = 2

5 1.9124 2.4314 1.8475 1.9562 1.8989 1.8974 1.9974 1.6987 2.1099
0.0312 0.947 0.0297 0.0278 0.0256 0.0249 0.0241 0.0222 0.954

7 2.0132 1.9947 1.9564 1.8794 1.7658 1.8122 1.9445 1.7458 1.9547
0.0286 0.949 0.0269 0.0254 0.0236 0.0231 0.0233 0.0198 0.961

9 1.8456 1.9648 1.7452 1.9325 1.6452 1.9745 1.6999 1.7421 1.8945
0.0259 0.945 0.0238 0.0229 0.0197 0.0195 0.0189 0.0175 0.958

12 1.7564 1.9044 1.6952 1.8475 1.6994 1.7569 1.8002 1.7236 1.8263
0.0226 0.952 0.0215 0.0208 0.0179 0.0172 0.0169 0.0149 0.952

15 1.8452 1.8362 1.8023 1.7459 1.7256 1.7320 1.8001 1.7136 1.7956
0.0198 0.951 0.0185 0.0181 0.0165 0.0160 0.0152 0.0128 0.963

18 1.7938 1.7639 1.6945 1.7365 1.7214 1.6998 1.7412 1.7365 1.5547
0.0166 0.949 0.0158 0.0147 0.0125 0.0119 0.0120 0.0108 0.961

20 1.7422 1.5345 1.7695 1.7469 1.6947 1.6879 1.7189 1.7511 1.2636
0.0125 0.953 0.0113 0.0105 0.0099 0.0097 0.0096 0.0091 0.959

23 1.8001 1.3458 1.7598 1.7423 1.7124 1.6978 1.8011 1.7433 1.1009
0.0105 0.958 0.0098 0.0093 0.0085 0.0083 0.0081 0.0077 0.962

25 1.7542 1.1258 1.8451 1.8001 1.7645 1.7423 1.8022 1.7449 1.0658
0.0092 0.961 0.0087 0.0085 0.0081 0.0079 0.0078 0.0072 0.964
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Table 4. Means estimates of r (t) (first row) with their MSEs (second row) and ALs
(first row) for 95% ACIs and CRIs of r (t) with their CPs (second row).
n MLE Lindley MCMC

ALs S E LINEX S E LINEX ALs
c = −2 c = 2 c = −2 c = 2

5 0.9865 0.4325 0.9745 0.9877 0.9687 0.9547 0.96359 0.9584 0.4155
0.0065 0.939 0.0061 0.0061 0.0057 0.0056 0.0055 0.0052 0.954

7 0.9963 0.4136 0.9876 0.9911 0.9689 0.9584 0.9741 0.9711 0.3847
0.0062 0.948 0.0059 0.0058 0.0056 0.0054 0.0053 0.0049 0.949

9 0.9687 0.3965 0.9587 0.9522 0.9713 0.9573 0.9505 0.9619 0.3684
0.0058 0.949 0.0055 0.0054 0.0051 0.0049 0.0049 0.0044 0.956

12 0.9764 0.3577 0.9745 0.9612 0.9589 0.9645 0.9781 0.9587 0.3365
0.0054 0.951 0.0051 0.0050 0.0048 0.0047 0.0046 0.0041 0.961

15 0.9846 0.3248 0.9589 0.9611 0.9745 0.9639 0.9745 0.9599 0.3157
0.0049 0.948 0.0047 0.0046 0.0044 0.0043 0.0042 0.0038 0.959

18 0.9645 0.2984 0.9587 0.9642 0.9639 0.9587 0.9647 0.9711 0.2769
0.0043 0.956 0.0041 0.0041 0.0038 0.0037 0.0037 0.0034 0.962

20 0.9746 0.2569 0.9589 0.9645 0.9678 0.9784 0.9642 0.9599 0.2168
0.0039 0.952 0.0037 0.0038 0.0036 0.0035 0.0034 0.0029 0.958

23 0.9599 0.2268 0.9641 0.9522 0.9517 0.9625 0.9589 0.9602 0.1987
0.0036 0.954 0.0034 0.0035 0.0033 0.0032 0.0031 0.0026 0.963

25 0.9615 0.1899 0.9658 0.9647 0.9578 0.9678 0.9565 0.9584 0.1634
0.0032 0.959 0.0031 0.0029 0.0027 0.0026 0.0025 0.0021 0.965

Table 5. Means estimates of h (t) (first row) with their MSEs (second row) and ALs
(first row) for 95% ACIs and CRIs of h (t) with their CPs (second row).
n MLE Lindley MCMC

ALs S E LINEX S E LINEX ALs
c = −2 c = 2 c = −2 c = 2

5 0.2547 0.3145 0.2478 0.2412 0.2369 0.2456 0.2514 0.2399 0.2834
0.0027 0.951 0.0025 0.0023 0.0021 0.0019 0.0019 0.0017 0.959

7 0.2345 0.2965 0.2547 0.2311 0.2245 0.2199 0.2236 0.2147 0.2563
0.0025 0.947 0.0023 0.0022 0.0019 0.0017 0.0016 0.0014 0.954

9 0.2456 0.2463 0.2235 0.2344 0.2469 0.2399 0.2147 0.2187 0.2134
0.0022 0.945 0.0021 0.0021 0.0017 0.0016 0.0015 0.0012 0.956

12 0.2364 0.2184 0.2145 0.2287 0.2345 0.2289 0.2198 0.2301 0.1966
0.0020 0.955 0.0018 0.0017 0.0015 0.0014 0.0014 0.0011 0.961

15 0.2258 0.1875 0.2391 0.2457 0.2589 0.2469 0.2231 0.2189 0.1644
0.0017 0.951 0.0016 0.0015 0.0013 0.0012 0.0013 0.0010 0.964

18 0.2541 0.1563 0.2236 0.2647 0.2345 0.2239 0.2199 0.2311 0.1367
0.0014 0.948 0.0013 0.0013 0.0011 0.0010 0.0012 0.0009 0.959

20 0.2475 0.1359 0.2345 0.2265 0.2274 0.2189 0.2314 0.2188 0.1199
0.0012 0.951 0.0011 0.0010 0.0009 0.0008 0.0008 0.0007 0.958

23 0.2451 0.1187 0.2514 0.2244 0.2314 0.2174 0.2314 0.2296 0.1098
0.0011 0.957 0.0010 0.0009 0.0008 0.0007 0.0006 0.0005 0.963

25 0.2399 0.1059 0.2246 0.2187 0.2236 0.2378 0.2198 0.2298 0.0978
0.0009 0.959 0.0008 0.0008 0.0007 0.0006 0.005 0.0004 0.966
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From the results in Tables 1–5, we observe the following:

(1) It is clear that from all Tables, as sample size n increases, the MSEs and average interval lengths
decrease, also Bayes estimates are performed better than the MLEs of λ, θ, β, r (t) and h (t) in
terms of MSEs and average interval lengths, as expected.

(2) Bayes estimates under MCMC technique perform better than Bayes estimates under Lindley
approximation in the sense of having smaller MSEs.

(3) Bayes estimates under Lindley approximation perform better than MLEs in the sense of having
smaller MSEs.

(4) Bayes estimates under LINEX loss function perform better than Bayes estimates under SE loss
function in the sense of having smaller MSEs.

(5) Bayes estimate under LINEX with c = 2 provides better estimates for λ, θ, β, r (t) and h (t)
because of having the smallest MSEs.

(6) Bayes estimates under LINEX for the choice c = 2 are performed better than their estimates for
the choice c = −2 in the sense of having smaller MSEs.

(7) Both MLE and Bayesian methods have very close estimates and their ACIs have quite high
CPs (around 0.95). Also, the Bayesian CRIs have the highest CPs.

(8) In general, we can conclude that the best estimation method is the Bayes method under MCMC
technique with LINEX loss function, especially if the prior information about the problem under
study is available.

5. Applications

To illustrate the inferential procedures developed in the preceding sections. we use the data set from
Almongy [25], see Table 6. A complete sample from the data represents a COVID-19 data belonging
to the Netherlands of 30 days, which recorded from 31 March to 30 April 2020. This data formed of
rough mortality rate. The data are as follows

Table 6. The mortality rate of COVID-19.

14.918 10.656 12.274 10.289 10.832 7.099 5.928 13.211 7.968 7.584
5.555 6.027 4.097 3.611 4.960 7.498 6.940 5.307 5.048 2.857
2.254 5.431 4.462 3.883 3.461 3.647 1.974 1.273 1.416 4.235

For the goodness of fit test, we compute the Kolmogorov-Smirnov (K-S) distance. It was found
that the K-S is 0.072956 and the associated p-value is 0.9936. Therefore, according to the p-value we
can say that the DD fits quite well to the above data. Empirical, Q − Q and P − P plots are shown in
Figure 1, which clear that the DD fits the data very well. Table 7 lists the lower record values from the
observed data.
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Figure 1. Graphical fitting of the DD.

Table 7. The lower record values for the real data.

XL(1) XL(2) XL(3) XL(4) XL(5) XL(6)

14.918 10.656 10.289 7.099 5.928 5.555
XL(7) XL(8) XL(9) XL(10) XL(11) XL(12)

4.097 3.611 2.857 2.254 1.974 1.273

Based on these 12 lower record values, the MLEs and ACIs for λ, θ, β, r (10) and h (10) are
computed to be as in Tables 6 and 7. Moreover, to compute the Bayesian estimates under Lindley’s
approximation and MCMC technique, the prior distributions of the parameters λ, θ and β are needed
to specify. Since we do not have any prior information available, we assume that the non-informative
gamma priors for λ, θ and β that is, when the hyperparameters are ai = 0.0001 and bi = 0.0001,
i = 1, 2, 3. Under MCMC technique, the posterior analysis was done across combining M-H
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algorithm within Gibbs sampler. To conduct the MCMC algorithm, which was described in
Subsection 3.2, the initial values for the parameters λ, θ and β were taken to be their MLEs. In
addition, we run the chain for 12000 times and discard the first 2000 values as ‘burn-in’ to avoid the
effect of the initial values (starting point). The Bayesian estimates as well as 95% CRIs for λ, θ, β,
r (10) and h (10) are presented in Tables 8 and 9.

Table 8. Point estimations of λ, θ, β, r (t) and h (t).

Parameter MLE Lindley MCMC
S E LINEX S E LINEX

c = −2 c = 2 c = −2 c = 2
λ 229.025 223.147 224.532 219.967 218.365 217.542 214.658
θ 2.4484 2.4786 2.5123 2.3954 2.3457 2.3369 2.2987
β 2.3128 2.2567 2.3014 2.2111 2.2014 2.2155 2.1996

r (t) 0.8402 0.8246 0.8257 0.8365 0.8154 0.8022 0.8001
h (t) 0.0568 0.05432 0.0554 0.05311 0.05278 0.05266 0.0499

Table 9. 95% confidence intervals of λ, θ, β, r (t) and h (t).

Parameter ACIs CRIs
Interval Length Interval Length

λ (140.557,317.493) 176,937 (137.647,298.346) 160.699
θ (2.2190,2.6779) 0.4589 (2.1012,2.5113) 0.4101
β (1.6068,3.0187) 1.4119 (1.9231,3.1631) 1.2400

r (t) (0.4962,1.1842) 0.6880 (0.5359,0.9998) 0.4639
h (t) (0.0000,0.1672) 0.1672 (0.0073,0.1378) 0.1305

6. Conclusions

In this paper, we have estimated the reliability and hazard rate functions of the Dagum distribution
based record statistics. To get the best estimators for this purpose, the maximum likelihood and Bayes
estimations methods have been utilized. The MLEs and the asymptotic confidence intervals based
on the observed Fisher information matrix have been discussed. For Bayesian estimation approach,
we assume the gamma priors for the unknown parameters and provide the Bayes estimators under
the assumptions of SE and LINEX loss functions. Since the Bayes estimates cannot be obtained in
explicit form, we have applied both Lindley’s approximation and MCMC technique with Metropolis–
Hasting algorithm within Gibbs sampler to compute the approximate Bayes estimates and constructed
the credible intervals. The performance of the proposed techniques has been compared via a Monte
Carlo simulation study with different sample sizes n. It was found that if we have no prior information
on the unknown parameters, then it is always better to use the MLEs rather than the Bayes estimators,
because the Bayes estimators are computationally more expensive. Finally, for illustrative purpose, the
details have been explained using a real-life data set of COVID-19 mortality rates.
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