
http://www.aimspress.com/journal/Math

AIMS Mathematics, 7(9): 15904–15916.
DOI: 10.3934/math.2022870
Received: 29 December 2021
Revised: 29 May 2022
Accepted: 21 June 2022
Published: 28 June 2022

Research article

The growth of entire solutions of certain nonlinear differential-difference
equations

Wenjie Hao and Qingcai Zhang*

School of Mathematics, Renmin University of China, Beijing 100872, China

* Correspondence: Email: zhangqcrd@163.com.

Abstract: This paper is concerned with entire solutions of nonlinear differential-difference equations.
We will characterize the growth of entire solutions for two classes of nonlinear differential-difference
equations. Our results will contribute to the generalization and completion of some results obtained
recently. The results are explained by various examples and remarks.

Keywords: nonlinear differential-difference equations; entire solutions; order; Nevanlinna theory
Mathematics Subject Classification: 39A10, 30D35, 39B32

1. Introduction

Throughout this paper, the word “meromorphic” means meromorphic in the complex plane C.
Assuming the reader is familiar with the elementary Nevanlinna theory, we will adopt the standard
notations associated with the theory, such as the characteristic function T (r, f ), the counting function
of the poles N(r, f ), and the proximity function m(r, f ). For standard terms and symbols of
Nevanlinna theory, one can refer to [3, 12]. We denote by S (r, f ) any quantity satisfying
S (r, f ) = o(T (r, f )) as r tends to infinity outside a possible exceptional set of finite logarithmic
measure. In addition, the order ρ( f ), the hyper order ρ2( f ) of a meromorphic function f are defined in
turn as follows:

ρ ( f ) = lim sup
r→∞

log T (r, f )
log r

, ρ2 ( f ) = lim sup
r→∞

log log T (r, f )
log r

.

In the past two decades, Nevanlinna theory has been used to study solvability and the existence of
entire or meromorphic solutions of differential or difference equations in complex domains (see [8, 9,
16, 18]). In this paper, we consider general differential-difference equations, which can be traced back
to 1962.
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In [3], Clunie gave a proof for the result of an(z)( f (z) + c)n = b(z)eng(z) provided from

an(z) f n(z) + an−1(z) f n−1(z) + · · · + a0(z) = b(z)eng(z) (an(z) . 0), (1.1)

where f and g are entire functions, and ai(i = 0, 1, ..., n) and b, c are small functions of f . In [5],
Hayman considered the following nonlinear differential equation:

f n(z) + Qd(z, f ) = g(z), (1.2)

where f and g are nonconstant meromorphic functions, Qd(z, f ) denotes a differential polynomial in
f of degree d with coefficients being small functions and d ≤ n − 1 in (1.2). And he got that if
N(r, f ) + N(r, 1

g ) = S (r, f ), then g(z) = ( f (z) + γ)n, where γ is meromorphic and a small function of
f (z). From above we also have N(r, g) + N(r, 1

g ) = S (r, f ). Further, if f has finite order, then g(z) is of
the form b(z)eβ(z), where β is a polynomial.

In [15], Yang and Laine investigated finite order entire solutions f (z) of nonlinear differential-
difference equations of the form

f n(z) + L(z, f ) = h(z), (1.3)

where L(z, f ) is a linear differential-difference polynomial in f with coefficients being small functions,
h(z) is meromorphic, and n ≥ 2 is an integer. In particular, it is known that the equation f 2(z) +

q(z) f (z + 1) = P(z), where P(z), q(z) are polynomials, has no transcendental entire solutions of finite
order. In [13], Wen et al. considered the finite order entire solutions f of the nonlinear difference
equation

f n(z) + q(z)eQ(z) f (z + c) = P(z), (1.4)

where P(z), q(z), and Q(z) are polynomials, Q(z) is not a constant, and n ≥ 2 is an integer. In [11],
Remark 1 (a), Liu showed that every meromorphic solution f of (1.4) is entire with the help of idea that
appeared in Naftalevich [12]. Motivated by (1.4) and some results (see [10]), Chen et al. [2] discussed
the following nonlinear differential-difference equation:

f n(z) + ω f n−1(z) f ′(z) + q(z)eQ(z) f (z + c) = u(z)ev(z), (1.5)

where n is a positive integer, q . 0, Q, u, and v are nonconstant polynomials, and c , 0 and ω are
constants. They proved the following result.

Theorem A. Let n be an integer satisfying n ≥ 3 for ω , 0 and n ≥ 2 for ω = 0. Suppose f is
a transcendental entire solution of finite order of (1.5). Then, every solution f satisfies one of the
following:

(1) ρ( f ) < deg v = deg Q and f (z) = Ce−z/ω, where C is a constant.
(2) ρ( f ) = deg Q ≥ deg v.

Remark 1.1. Li [6] proved that this result still holds for n = 2, ω , 0.

It is natural to ask what happens if the higher-order differential is included in dominant term on
the left-hand side of (1.5)? In this paper, we consider this problem. We need some notations to state
the following results. Suppose that p is a positive integer and c ∈ C ∪ {∞}. We use Np)(r, 1/( f −
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c)) (N(p(r, 1/( f − c))) to denote the counting function of zeros of f − c, whose multiplicities are less
than or equal to p (greater than or equal to p). Define

δ(c, f ) = 1 − lim sup
r→∞

N(r, 1/( f − c))
T (r, f )

,

δp)(c, f ) = 1 − lim sup
r→∞

Np)(r, 1/( f − c))
T (r, f )

.

Specifically, if the dominant term f n(z)+ω f n−1(z) f ′(z) is replaced by b f n(z)+a f n−1(z) f (k)(z) in (1.5),
we obtain the following Theorem 1.2.

Theorem 1.2. Let n ≥ 3 and k ≥ 1 be integers, c , 0, a, and b be constants, and (a, b) , (0, 0), q, Q,
u, and v be nonconstant polynomials. Suppose that the nonlinear differential-difference equation

b f n(z) + a f n−1(z) f (k)(z) + q(z)eQ(z) f (z + c) = u(z)ev(z) (1.6)

satisfies b f n(z) + a f n−1(z) f (k)(z) . 0 and admits a transcendental entire solution of finite order f (z)
with δ1)(0, f ) > 0. Then ρ( f ) = deg Q ≥ deg v.

Remark 1.3. Obviously, the condition b f n(z) + a f n−1(z) f (k)(z) . 0 in Theorem 1.2 is necessary.
Otherwise, we can obtain the form of the solution directly. In particular, from the proof of Theorem
A, it can be seen that the reason for conclusion (1) is f n(z) + ω f n−1(z) f ′(z) ≡ 0. Now, we provide an
example to illustrate the necessity of the condition.

Example 1.4 ( [2, Example 1.5]). The function f (z) = 2e−z is a transcendental entire solution of the
differential-difference equation

f 3(z) + f 2(z) f ′(z) + zez2+z+1 f (z + 1) = 2zez2
.

By Example 1.4, we can observe that f 3(z) + f 2(z) f ′(z) ≡ 0, and the solution f (z) is not consistent
with the conclusion of Theorem 1.2.

Remark 1.5. (a) If only q(z) ≡ 0 in Eq (1.6), then Eq (1.6) can be rewritten to the form b f n(z) +

a f n−1(z) f (k)(z) = u(z)ev(z). Obviously, deg v ≤ ρ( f ). If deg v < ρ( f ), Eq (1.6) can be also rewritten
to b f n(z) + a f n−1(z) f (k)(z) = u1(z), where T (r, u1(z)) = S (r, f ). Thus, N

(
r, 1

f

)
= S (r, f ) for n ≥ 2.

By Lemma 2.1 in Section 2, we have m(r, 1
f ) = S (r, f ). Thus, T (r, f ) = T

(
r, 1

f

)
+ O(1) = S (r, f ), a

contradiction. Therefore, ρ( f ) = deg v.

(b) If Q(z) ≡ C with q(z), u(z), v(z) . 0 in Eq (1.6), where C is a constant, then Eq (1.6) can be
rewritten to

b f n(z) + a f n−1(z) f (k)(z) + q1(z) f (z + c) = u(z)ev(z),

where T (r, q1(z)) = S (r, f ). Obviously, deg v ≤ ρ( f ). If deg v < ρ( f ), Eq (1.6) can be rewritten to

b f n(z) + a f n−1(z) f (k)(z) f + q(z) f (z + c) = u2(z),

where T (r, u2(z)) = S (r, f ). From the proof of Lemma 2.7 in Section 2, we have deg v = ρ( f ).
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Remark 1.6. Let us recall the definition of an exponential polynomial of the form

f (z) = P1(z)eQ1(z) + · · · + Pk(z)eQk(z), (1.7)

where P j(z) and Q j(z)( j = 1, ..., k) are polynomials. Denote

Γ = {eα(z) : α(z) is a noncontant polynomial}.

The condition “δ1)(0, f ) > 0” due to an idea that appeared in [7]. Obviously, if a solution f (z) belongs
to Γ, then δ1)(0, f ) = 1 > 0. Therefore, if solutions f (z) of Eq (1.6) belong to Γ, we can eliminate the
condition “δ1)(0, f ) > 0” in Theorem 1.2.

Next, we give an example to illustrate the existence of the solution in Theorem 1.2.

Example 1.7. The function f (z) = ez is a transcendental entire solution of the differential-difference
equation

f 3(z) + f 2(z) f ′′(z) + ze2z−1 f (z + 1) = (2 + z)e3z.

By Example 1.7, we can observe that for

b f n(z) + a f n−1(z) f (k)(z) = f 3(z) + f 2(z) f ′(z) . 0,

where n = 3, k = 2, δ1)(0, f ) = 1, ρ( f ) = deg Q = deg v is consistent with the conclusion of
Theorem 1.2.

In [2], Chen et al. also considered the entire solutions with finite order to the following differential-
difference equation:

f n(z) + ω f n−1(z) f ′(z) + q(z)eQ(z) f (z + c) = p1eλz + p2e−λz, (1.8)

where n is an integer, c, λ, p1, and p2 are nonzero constants and ω is a constant, and q . 0, Q are
polynomials such that Q is not a constant. They proved the following result.

Theorem B. If f (z) is a transcendental entire solution with finite order to (1.8), then the following
conclusions hold:

(1) If n ≥ 4 for ω , 0 and n ≥ 3 for ω = 0, then every solution f (z) satisfies ρ( f ) = deg Q = 1.
(2) If n ≥ 1 and f (z) is a solution to (1.8) which belongs to Γ, then

f (z) = eλz/n+B, Q(z) = −
n + 1

n
λz + b

or
f (z) = e−λz/n+B, Q(z) =

n + 1
n

λz + b,

where b, B ∈ C.

Remark 1.8. We can find the prototype of (1.8) in many places (see [1,14,18]). If n ≥ 3 and ω = 0 in
Theorem B, we also can obtain the conclusions (1) and (2) by Chen et al. [1].

If f n(z) + ω f n−1(z) f ′(z) be substituted by b f n(z) + a f n−1(z) f (k)(z) in Theorem B, we can obtain the
following theorem.
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Theorem 1.9. Let n ≥ 3, k ≥ 1 be integers, c , 0, p1 , 0, p2 , 0, a, b, λ , 0 be constants with
(a, b) , (0, 0), q, Q be nonconstant polynomials. Suppose that the nonlinear differential-difference
equation

b f n(z) + a f n−1(z) f (k)(z) + q(z)eQ(z) f (z + c) = p1eλz + p2e−λz (1.9)

satisfies b f n(z) + a f n−1(z) f (k)(z) . 0 and admits a transcendental entire solution of finite order f (z)
with δ1)(0, f ) > 0. Then ρ( f ) = deg Q = 1.

Remark 1.10. In Theorem 1.9, by adding the condition δ1)(0, f ) > 0, we prove that the conclusion (1)
is still true when n = 3, ω , 0 in Theorem B. However, if a solution f belongs to Γ, then δ1)(0, f ) = 1 >
0. Therefore, if solutions f (z) of Eq (1.9) belong to Γ, we can eliminate the condition “δ1)(0, f ) > 0”
in Theorem 1.9.

Remark 1.11. (a) If p1eλz + p2e−λz ≡ C in Eq (1.9), where C is a constant, then we can obtain ρ( f ) =

deg Q by Lemma 2.7 in Section 2. Thus, we default to p1eλz + p2e−λz . 0 in Theorem 1.9. If either p1

or p2 is equal to zero, then Theorem 1.9 is equivalent to Theorem 1.2.

(b) If q(z) ≡ C1 or Q(z) ≡ C2 in Eq (1.9), where C1,C2 are constants, then we can see that ρ( f ) = 1
directly from Eq (1.9).

(c) If q(z) is not a constant, Q(z) ≡ C, n = 3, when a = 0 in Eq (1.9), where C is a constant, then we
obtain that the equation does not have any transcendental entire solution of finite order by [14, 18].

Next, we give an example to illustrate the existence of the solution in Theorem 1.9.

Example 1.12. The function f (z) = ez is a solution of the differential-difference equation

f 3(z) + f 2(z) f ′′(z) +
1
2

e−4z f (z + log 2) = 2e3z + e−3z.

By Example 1.12, we can observe that n = 3 and k = 2, a = b = 1, p1 = 2, p2 = 1, λ = 3,
δ1)(0, f ) = 1. Thus, the conclusion ρ( f ) = deg Q = 1 is consistent with the conclusion of Theorem 1.9.

2. Preliminary lemmas

Lemma 2.1 ( [17, Theorem 1.22]). Let f be a meromorphic function and let k ∈ N. Then

m
(
r,

f (k)(z)
f (z)

)
= S (r, f ),

where S (r, f ) = O(log T (r, f ) + log r) (r → ∞, r < E,mesE < ∞).

Lemma 2.2 ( [4, Theorem 5.1]). Let f be a nonconstant meromorphic function, ε > 0, c ∈ C. If
ρ2( f ) < 1, then

m
(
r,

f (z + c)
f (z)

)
= o

(
T (r, f )
r1−ρ2−ε

)
,

(r → ∞, r < E,mesE < ∞).
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Lemma 2.3 ( [15, Lemma 2.2]). Let f be a transcendental meromorphic solution of finite order ρ of a
difference equation of the form

H(z, f )P(z, f ) = Q(z, f ),

where H(z, f ), P(z, f ), and Q(z, f ) are difference polynomials in f such that the total degree of Q(z, f )
is less than or equal to that of H(z, f ). If H(z, f ) contains just one term of maximal total degree, then
for any ε > 0,

m(r, P(z, f )) = O(rρ−1+ε) + S (r, f ),

possibly outside of an exceptional set of finite logarithmic measure.

The following result is a Clunie-type lemma [3] for the differential-difference polynomials of a
meromorphic function f . It can be proved by applying Lemma 2.3 with a similar reasoning as in [16].
It is stated as follows.

Proposition 2.4. If in the above lemma H(z, f ) = f n, then a similar conclusion holds if P(z, f ),Q(z, f )
are differential-difference polynomials in f .

Lemma 2.5 ( [7, Lemma 2.4]). Let Q(z, f ) be a differential polynomial in f of degree d with small
functions of f as coefficients. Then, we have m(r,Q) ≤ dm(r, f ) + S (r, f ).

Lemma 2.6 ( [17, Theorem 1.51]). Suppose that f1, f2, . . . , fn (n ≥ 2) are meromorphic functions and
g1, g2, . . . , gn are entire functions satisfying the following conditions:

(1)
∑n

j=1 f jeg j ≡ 0;

(2) g j − gk are not constant for 1 ≤ j < k ≤ n;

(3) T (r, f j) = o(T (r, egh−gk)) (r → ∞, r < E,mesE < ∞), 1 ≤ j ≤ n, 1 ≤ h < k ≤ n. Then, f j ≡ 0,
j = 1, . . . , n.

Lemma 2.7. Let n ≥ 3, k ≥ 1 be integers, c , 0, a, b be constants with (a, b) , (0, 0), q(z) . 0,
Q(z) . 0 be polynomials, and u(z) be a small function of f (z). Suppose that the nonlinear differential-
difference equation

b f n(z) + a f n−1 f (k)(z) + q(z)eQ(z) f (z + c) = u(z) (2.1)

satisfies b f n(z) + a f n−1(z) f (k)(z) . 0 and admits a transcendental entire solution of finite order f (z).
Then ρ( f ) = deg Q.

Proof. Set f (z + c) = fc. From Lemmas 2.1 and 2.2, we see that

T (r, eQ) = m(r, eQ) = m
(
r,

u − b f n − a f n−1 f (k)

q fc

)
≤ m

(
r,

1
q fc

)
+ m(r, u) + m(r, b f n + a f n−1 f (k)) + O(1)

≤ m
(
r,

f
q fc

)
+ m

(
r,

1
f

)
+ nT (r, f ) + S (r, f )

≤ (n + 1)T (r, f ) + S (r, f ). (2.2)
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Thus, we deduce that deg Q ≤ ρ( f ). If deg Q < ρ( f ), then T (r, eQ) = S (r, f ). Equation (2.1) can be
written as

f n−1(b f + a f (k)) = u(z) + q1(z) fc, (2.3)

where T (r, q1) = S (r, f ). Since n ≥ 3, from Proposition 2.4, that m(r, b f + a f (k)) = S (r, f ), m(r, b f 2 +

a f f (k)) = S (r, f ). Furthermore, we note that f is entire; thus, T (r, b f + a f (k)) = S (r, f ), and T (r, b f 2 +

a f f (k)) = S (r, f ). By b f n + a f n−1 f (k) . 0, we conclude that

T (r, f ) ≤ T (r, b f 2 + a f f (k)) + T
(
r,

1
b f + a f (k)

)
= S (r, f ),

which is absurd. Hence, ρ( f ) = deg Q.
This completes the proof of Lemma 2.7.

3. Proof of Theorem 1.2

Suppose that f is a transcendental entire solution of finite order of Eq (1.6) with δ1)(0, f ) > 0. Set
f (z + c) = fc. Lemmas 2.1 and 2.2 indicate that

T (r, eQ) = m(r, eQ) = m
(
r,

uev − b f n − a f n−1 f (k)

q fc

)
≤ m

(
r,

1
q fc

)
+ m(r, uev) + m(r, b f n + a f n−1 f (k)) + O(1)

≤ m
(
r,

f
q fc

)
+ m

(
r,

1
f

)
+ nT (r, f ) + T (r, ev) + S (r, ev)

≤ (n + 1)T (r, f ) + S (r, f ) + T (r, ev) + S (r, ev). (3.1)

We consider the following three cases.

Case 1. If ρ( f ) < deg v, then we obtain from (3.1) that T (r, eQ) ≤ T (r, ev) + S (r, ev). Thus, deg Q ≤
deg v. We shall show that deg Q = deg v. By Lemmas 2.1 and 2.2, we have

T (r, ev) = m(r, ev) = m
(
r,

qeQ fc + b f n + a f n−1 f (k)

u

)
≤ m(r, q fc) + m(r, eQ) + m(r, b f n + a f n−1 f (k)) + S (r, f )

≤ m
(
r,

q fc

f

)
+ m(r, f ) + T (r, eQ) + nT (r, f ) + S (r, f )

≤ (n + 1)T (r, f ) + S (r, f ) + T (r, eQ) + S (r, ev)
≤ T (r, eQ) + S (r, ev).

Thus, we deduce that deg Q = deg v, and ρ( f ) < deg Q.
By differentiating both sides of Eq (1.6), we have

bn f n−1 f ′ + a(n − 1) f n−2 f ′ f (k) + a f n−1 f (k+1) + (q′ fc + q f ′c + q fcQ′)eQ = (u′ + uv′)ev. (3.2)

From (1.6) and (3.2), we have
A2eQ = A1,
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where

A1 =b(u′ + uv′) f n + a(u′ + uv′) f n−1 f (k) − bnu f n−1 f ′

− a(n − 1)u f n−2 f ′ f (k) − au f n−1 f (k+1),

A2 =u(q′ fc + q f ′c + q fcQ′) − q(u′ + uv′) fc.

We discuss two subcases in the following:

Case 1 (i). If A2 . 0, then we obtain eQ = A1
A2

. Noting that ρ( f ) < deg Q, we obtain T (r, f ) = S (r, eQ),
and T (r, A j) = S (r, eQ), j = 1, 2. Thus, T (r, eQ) ≤ S (r, eQ), which yields a contradiction.

Case 1 (ii). If A2 ≡ 0, then we have

q′

q
+

f ′c
fc

+ Q′ =
u′

u
+ v′.

By integrating, we obtain fc = t1
q(z)u(z)ev(z)−Q(z), where t1 is a nonzero constant.

If t1 = 1, then q fc = uev−Q. We substitute this expression back into (1.6), and we obtain b f n +

a f n−1 f (k) ≡ 0, a contradiction to the assumption that b f n + a f n−1 f (k) . 0.
If t1 , 1, then we have f (z) = g1(z)ew1(z) with

g1(z) =
t1

q(z − c)
, w1(z) = v(z − c) − Q(z − c).

Then, we substitute this expression back into (1.6), it is not hard to see that

(bgn
1 + agn−1

1 L)enw1 = (1 − t1)uev,

where L is a polynomial in g1, g′1, g
′′
1 , ..., g

(k)
1 ,w

′
1,w

′′
1 , ...,w

(k)
1 , so that deg w1 = deg v, which is a

contradiction to deg w1 = ρ( f ) < deg v.

Case 2. If ρ( f ) > deg v, then T (r, ev) = S (r, f ). By Lemma 2.7, we conclude that deg v < deg Q = ρ( f ).

Case 3. If ρ( f ) = deg v, from (3.1), we have deg Q ≤ ρ( f ). Now, we claim that deg Q = ρ( f ). Suppose
that deg Q < ρ( f ). Denote D = q(z)eQ(z); then, T (r,D) = S (r, f ). By (1.6), we obtain

b f n + a f n−1 f (k) + D fc = uev. (3.3)

Differentiating both sides of (3.3), we have

bn f n−1 f ′ + a(n − 1) f n−2 f ′ f (k) + a f n−1 f (k+1) + D′ fc + D f ′c = (u′ + uv′)ev. (3.4)

By eliminating ev, from (1.6) and (3.4), we have

f n−2ϕ = D′u fc + Du f ′c − D(u′ + uv′) fc, (3.5)

where
ϕ = b(u′ + uv′) f 2 + a(u′ + uv′) f f (k) − bnu f f ′ − a(n − 1)u f ′ f (k) − au f f (k+1). (3.6)

Since n ≥ 3, it follows from Proposition 2.4 that we have m(r, ϕ) = S (r, f ). By combining with the fact
that f is entire, we obtain T (r, ϕ) = S (r, f ).
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If ϕ . 0, then from (3.6), we obtain

1
f 2 =

1
ϕ

(
b(u′ + uv′) + a(u′ + uv′)

f (k)

f
− bnu

f ′

f
f (k)

f
− a(n − 1)u

f ′

f
f (k)

f
− au

f (k+1)

f

)
.

By Lemmas 2.1 and 2.5, we have

2m
(
r,

1
f

)
≤ T (r, ϕ) + S (r, f ) = S (r, f ).

On the other hand, if z0 is a multiple zero of f which is not a zero or pole of u and v, then it follows
from (3.6) that z0 be a zero of ϕ. Thus,

N(2

(
r,

1
f

)
≤ 2N

(
r,

1
ϕ

)
+ S (r, f ) = S (r, f ),

T (r, f ) = T
(
r,

1
f

)
+ S (r, f ) = m

(
r,

1
f

)
+ N

(
r,

1
f

)
+ S (r, f ) = N1)

(
r,

1
f

)
+ S (r, f ),

which contradicts the assumption that δ1)(0, f ) > 0.
If ϕ ≡ 0, then from (3.5), we have

q′

q
+

f ′c
fc

+ Q′ =
u′

u
+ v′.

By integrating, we obtain fc = t2
q u(z)ev−Q, where t2 is a nonzero constant.

If t2 = 1, then q fc = uev−Q. We substitute this expression back into (1.6), and we obtain b f n +

a f n−1 f (k) ≡ 0, which is a contradiction to the assumption that b f n + a f n−1 f (k) . 0.
If t2 , 1, then we have f (z) = g2(z)ew2(z) with

g2(z) =
t2

q(z − c)
,

w2(z) = v(z − c) − Q(z − c).

Then, substituting this expression back into (1.6), we obtain

(bgn
2 + agn−1

2 S )enw2 = (1 − t2)uev,

where S is a polynomial in g2, g′2, g
′′
2 , ..., g

(k)
2 ,w

′
2,w

′′
2 , ...,w

(k)
2 . By Lemma 2.6, we can obtain t2 = 1,

which yields a contradiction.
This completes the proof of Theorem 1.2.

4. Proof of Theorem 1.9

Suppose that f is a transcendental entire solution of finite order of Eq (1.9) with δ1)(0, f ) > 0. Set

f (z + c) = fc, P(z) = p1eλz + p2e−λz . C,

AIMS Mathematics Volume 7, Issue 9, 15904–15916.
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then ρ(P) = 1. From Lemmas 2.1 and 2.2, we can deduce that

T (r, eQ) = m(r, eQ) = m
(
r,

P − b f n − a f n−1 f (k)

q fc

)
≤ m

(
r,

1
q fc

)
+ m(r, P) + m(r, b f n + a f n−1 f (k)) + O(1)

≤ m
(
r,

f
q fc

)
+ m

(
r,

1
f

)
+ nT (r, f ) + T (r, p) + O(1)

≤ (n + 1)T (r, f ) + S (r, f ) + T (r, P). (4.1)

We consider the following three cases.

Case 1. If ρ( f ) < 1, from (4.1), we obtain T (r, eQ) ≤ T (r, P) + S (r, P), deg Q ≤ 1. Recall that
deg Q ≥ 1. Thus, deg Q = 1. Let Q = mz + n, m , 0, and n be constants. In this case, Eq (1.9) can be
written as

b f n + a f n−1 f (k) + q(z)emz+n f (z + c) = p1eλz + p2e−λz. (4.2)

By differentiating both sides of Eq (4.2), we have

nb f n−1 f ′ + (n − 1)a f n−2 f ′ f (k) + a f n−1 f (k+1)

+ (q′ fc + q f ′c + mq fc)emz+n = λp1eλz − λp2e−λz. (4.3)

Eliminating e−λz from (4.2) and (4.3) yields

bλ f n + aλ f n−1 f (k) + nb f n−1 f ′ + (n − 1)a f n−2 f ′ f (k) + a f n−1 f (k+1)

+ (qλ fc + q′ fc + q f ′c + mq fc)emz+n = 2λp1eλz. (4.4)

By differentiating both sides of Eq (4.4), we obtain

bλn f n−1 f ′ + aλ(n − 1) f n−2 f ′ f (k) + aλ f n−1 f (k+1) + n(n − 1)b f n−2( f ′)2 + nb f n−1 f ′′

+ (n − 1)(n − 2)a f n−3( f ′)2 f (k) + (n − 1)a f n−2 f ′′ f (k)

+ 2(n − 1)a f n−2 f ′ f (k+1) + a f n−1 f (k+2) + (A′ + mA)emz+n = 2λ2 p1eλz, (4.5)

where A = qλ fc + q′ fc + q f ′c + mq fc. Eliminating eλz from (4.4) and (4.5) yields

bλ2 f n + aλ2 f n−1 f (k) + nbλ f n−1 f ′ + (n − 1)aλ f n−2 f ′ f (k) + aλ f n−1 f (k+1)

− bλn f n−1 f ′ − aλ(n − 1) f n−2 f ′ f (k) − aλ f n−1 f (k+1) − n(n − 1)b f n−2( f ′)2

− nb f n−1 f ′′ − (n − 1)(n − 2)a f n−3( f ′)2 f (k) − (n − 1)a f n−2 f ′′ f (k)

− 2(n − 1)a f n−2 f ′ f (k+1) − a f n−1 f (k+2) + (Aλ − A′ − mA)emz+n = 0.

Note that when ρ( f ) < 1 and m , 0, we have Aλ − A′ − mA ≡ 0. If λ , m, by integration, we see
that there exists constant C1 , 0 such that A = C1e(λ−m)z. Thus, ρ(A) = 1. Since ρ(A) = ρ( f ) < 1,
we obtain a contradiction. If λ = m, then A′ ≡ 0. By integration, we see that there exists constant
C2 , 0 such that qλ fc + q′ fc + q f ′c + mq fc = 2λq fc + (q fc)′ = C2. Solving this equation, we obtain
q fc = −C2

2λe−4λz + C3e−2λz, where C3 is a constant. Thus, we have ρ( fc) = ρ( f ) = 1, a contradiction.
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Case 2. If ρ( f ) > 1, then T (r, P) = S (r, f ). Rewrite (4.3) as

nb f n−1 f ′ + (n − 1)a f n−2 f ′ f (k) + a f n−1 f (k+1) + HeQ = P′, (4.6)

where H = q′ fc + q f ′c + Q′q fc. Eliminating eQ from (1.9) and (4.6) yields

f n−2φ = PH − P′q fc,

where
φ = bH f 2 + aH f f (k) − nbq f f ′ fc − (n − 1)aq f ′ f (k) fc − aq f f (k+1) fc. (4.7)

We discuss two subcases in the following:

Case 2 (i). If φ ≡ 0, then PH − P′q fc = Pq′ fc + Pq f ′c + PQ′q fc − P′q fc ≡ 0. This gives that

q′

q
+

f ′c
fc

+ Q′ =
P′

P
.

By integration, we see that there exists a constant C4 , 0 such that q fc = C4PeQ. Thus,

f (z) =
C4P(z − c)eQ(z−c)

q(z − c)
= g(z)ew(z),

where g(z) =
P(z−c)
q(z−c) , w(z) = Q(z − c). Then, substituting this expression back into (1.9), we obtain

(bgn + agn−1Y)enw + C4Pe2Q = P,

where Y is a polynomial in g, g′, g′′, ..., g(k),w′,w′′, ...,w(k). By Lemma 2.6, we can obtain P ≡ 0, which
yields a contradiction.

Case 2 (ii). If φ . 0, it follows from Propositions 2.4 and n ≥ 3 that m(r, φ) = S (r, f ). By combining
with the fact N(r, f ) = S (r. f ), we have T (r, φ) = S (r, f ). From (4.7), we have

1
f 3 =

1
φ

(
bH

f
+

aH
f

f (k)

f
−

nbq f ′

f
fc

f
−

(n − 1)aq f ′

f
fc

f
f (k)

f
−

aq f (k+1)

f
fc

f

)
,

where H
f = q′ fc

f + q f ′c
f + qQ′ fc

f . By Lemma 2.1 and Lemma 2.5, we have

3m
(
r,

1
f

)
≤ T (r, φ) + S (r, f ) = S (r, f ).

On the other hand, if z0 is a multiple zero of f which is not a zero or pole of q and Q, then it follows
from (4.7) that z0 is a zero of φ. Hence,

N(2

(
r,

1
f

)
≤ 2N

(
r,

1
φ

)
+ S (r, f ) = S (r, f ),

T (r, f ) = T
(
r,

1
f

)
+ S (r, f ) = m

(
r,

1
f

)
+ N

(
r,

1
f

)
+ S (r, f ) = N1)

(
r,

1
f

)
+ S (r, f ),

which contradicts the assumption that δ1)(0, f ) > 0.

Case 3. If ρ( f ) = 1, from (4.1), we obtain deg Q ≤ 1. Recall that deg Q ≥ 1. Thus, ρ( f ) = deg Q = 1.
This completes the proof of Theorem 1.9.
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5. Conclusions

In this paper, we have described the growth of entire solutions for certain nonlinear
differential-difference equations. Clunie lemma plays a key role in the proof. Our results generalize
and complement some results obtained by Chen et al. and references therein. In addition, we have
given specific examples and remarks to illustrate our results.
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