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Abstract: The traditional mean-variance portfolio optimization models in practice have suffered from
complexity and heavy computation loads in the process of selecting the best assets for constructing
a portfolio. If not, they are considerably departed from the theoretically optimized values. In this
work, we develop the optimized portfolio investment strategy in which only one asset substitution
occurs when re-balancing a portfolio. To do this, we briefly look into a quadratically constrained
quadratic programming (QCQP), which has been well-studied for the non-negative solution. Based
on the quadratic programming, an efficient scheme is presented for solving the large-scale inverse
problem. We more precisely update the rank of an inverse matrix, so that the optimal solution can be
easily and quickly obtained by our proposed scheme.

Various numerical and practical experiments are presented to demonstrate the validity and
reliability of our scheme. Our empirical application to the U.S. and South Korea stock markets is
tested and highlighted. Moreover, comparisons of a random allocation strategy and our proposed
scheme reveal the better performance in the lower risks and higher expected returns obtained by our
scheme.

Keywords: market portfolio; low-rank update; portfolio optimization; asset substitution problem;
covariance matrix
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1. Introduction

Modern portfolio theory is about determining how to distribute capital among available assets such
that risk-averse investors can construct portfolios to relatively lower risk for a given expected return.
In the work of Markowitz in 1952, variance was used as a measure of risk, which gave rise to the
mean-variance portfolio optimization model. Although other mean-risk models have been proposed
and studied in the finance literature, the mean-variance model continues to be the core of modern

http://www.aimspress.com/journal/Math
http://dx.doi.org/10.3934/math.2022869


15882

portfolio theory and it is still popular in finance [1–4].
Portfolio optimization has been widely used in the problem of portfolio selection. There is a large

literature of numerical methods or algorithms for solving the portfolio selection problem to maximize
profitability of a portfolio. The efficient model selection strategy to forecast stock returns is developed
in [7], and using mean variance portfolio selection models in [8]. Still, portfolio optimization faces
daunting challenges. The efficient portfolio where a fully diversified set of assets has the least possible
risk for a given expected return can be hardly obtained since it often contains certain extreme positive or
negative weights [9]. In many practical cases mixed integer linear programming is required to weight
portfolio allocation [10], as well as tree-based genetic algorithm and optimized solution discussed
in [11]. The stochastic volatility market models are often used for finding the optimal portfolio
selection [12], and the authors in [13] argued on optimal portfolio choice.

Most existing investment strategies are far more sophisticated than simply choosing weights. In our
model, we assume that short-selling is prohibited in the stock market, i.e., the market does not allow
for unrestricted short-selling. This implies that some weights of assets cannot be negative. However,
finding the optimal weights from the market assets is extremely hard with weights’ non-negativity
and unity constraints. Since our interesting in this paper is to develop a numerical scheme rather
than numerical solvability, we simply normalize the investor’s sum of portfolio weights to be 1 that
involving the non-negativity constraint [5, 6] and reference therein.

The static Markowitz portfolio optimization that gives asset allocation under the desired expected
return with minimum variance. Indeed, market data changes frequently as time marches on. However,
the static Markowitz portfolio optimization is no longer to account for the dynamic market changes.
Thus, the static Markowitz portfolio optimization is needed to maintain its property: low-risk and high-
return by updating covariance matrix Σ. Our contribution of this work is to efficiently update covariance
matrix Σ for finding the optimal portfolio weights daily subject to the nonnegative constraint, x ≥ 0.
We assume that a portfolio consists of fixed assets, i.e. merely one asset replacement occurs to find the
best portfolio under the given low-risk and high-return conditions.

An investment portfolio is a set of well-diversified assets owned by an institution or individual.
Optimized portfolios can be constructed by applying mathematical programming to weight each
portfolio asset. We assume that an institution or individual needs to know how to efficiently determine
asset allocation.

The aim of this paper is to develop an efficient numerical scheme for finding a solution when
one asset is replaced by new one among the rest of assets. Our main concern is to consider the
symmetric rank-two update for solving the inverse problem. The rank-two update is based on the
ShermanMorrison formulas [14] for rank-one modified matrix. The two steps of Sherman-Morrison
formulas relate the inverse of a matrix after a small rank-two perturbation to the inverse of covariance
matrix when one asset is substituted in the portfolio. Together with our proposed scheme, we can have
the optimal portfolio weight where the optimized portfolios are constrained to have the non-negative
weights and sum equals one.

In general, our proposed scheme for updating Σ is applicable to the all type of time series data. Our
dynamic portfolio optimization allows for minutely, hourly, daily, weekly or monthly asset allocation
maintenance, but we only consider daily stock closing prices in light of limits on available market
data. As time goes by, we update the covariance matrix Σ, in other words, we replace one asset
in a portfolio with one of the reference set, which induces the rank-two modification M to Σ, i.e.,

AIMS Mathematics Volume 7, Issue 9, 15881–15903.



15883

Σ̈ = Σ + M. The main purpose of this work is not to consider the temporal derivative of Markowitz
portfolio formulation, but to present the efficient way for updating covariance matrix Σ in more practical
settings because financial dataset is dynamic.

The rest of the paper is organized as follows. We begin our discussion to consider the non-negative
quadratic programming in Section 2. Section 3 is devoted to reformulating the inverse quadratic
programming problem. We develop a symmetric rank-two update scheme for non-negative quadratic
programming. We detail our proposed scheme in Section 5. Last, numerical tests are performed to
validate the efficiency of the proposed algorithm in Section 6. Conclusion and discussion of this work
are presented in Section 7.

2. Mathematical formulation

The main purpose in portfolio theory is to produce the lowest possible risk for any given level
of expected return. More specifically, we look for a collection of the weights. Let us consider that
one portfolio comprises n risky assets. Let xi be the proportion of a portfolio in asset i such that
1 −

∑n
i xi = 0. We denote the weight vector by x = (x1 · · · xn)T . The return on the portfolio with no

risk-free asset, rp is then defined by rp = xT r, where r = (r1 · · · rn)T is an n × 1 vector of returns on the
n risky assets. Here, we define µ = E(r), and Σ := var(r) is an n × n non-singular variance-covariance
matrix of r. Since the return on the risky assets is uncertain, so is the return on the portfolio, and
it could be evaluated by the expected value E(rp) = xTE(r) = xTµ, and its variance is calculated by
var(rp) = σ2

p = xT Σx. The matrix Σ is assumed to be positive definite, and it has n positive eigenvalues
0 < λ1 ≤ . . . ≤ λn. We use the notation Symn(R) to denote the set of symmetric n × n and positive
definite matrices. With given the return r, let us find x to minimize the portfolio’s risk.

We consider the inequality constrained quadratic programming problem. The objective of
minimizing the variance of a portfolio is given as

arg min
x

xT Σx subject to xTµ = E(rp), ‖x‖1 = 1, and 0 ≤ xi, for i = 1, . . . , n.

The formation requires the weight x that minimizes variance subject to the inequality of expected return
E(rp) and non-negativity constraint. Each weight value x̂i = xi/‖x‖1 is then normalized so as to comply
with the budget constraint Σn

i=1 x̂i = 1. Minimizing x̂T Σx̂ with inequality and equality constraints can
be handled by

arg min
x̂

1
2

x̂T Σx̂ subject to x̂ ≥ 0 and x̂Tµ = E(rp).

For sake of simplicity throughout the paper, we deal with a quadratically constrained quadratic problem
(QCQP). We refer to [16, 17] for more details. The quadratic Lagrangian is given by

L(x, y, z) =
1
2

xT Σx + yT (Px − b) − zT x, (2.1)

where b = (rp 1)T ∈ R2×1 and

P =

(
r
1

)
=

(
r1 r2 · · · rn−1 rn

1 1 · · · 1 1

)
∈ R2×n.
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Here, the two parameters y ∈ R2×1, z ∈ Rn×1 control the relation between the minimization xT Σx and
constraints x ≥ 0. Let us state the KKT conditions for (2.1) as follows

−Σx + PT y + z = 0, Px = b, and XZ1 = (1/ρ) · 1,

where 1 = (1 · · · 1)T ∈ Rn×1, b = (rp 1)T ∈ R2×1, X = diag(x) ∈ Rn×n, Z = diag(z) ∈ Rn×n,

P =

(
r
1

)
=

(
r1 r2 · · · rn−1 rn

1 1 · · · 1 1

)
∈ R2×n,

and the parameter 1/ρ is set to a small positive number. As ρ → ∞, i.e a small positive value 1/ρ,
x converges toward the optimal solution of the QCQP. A penalty parameter ρ approximately enforces
complementary slackness, which prevents x from becoming negative. Linear equations for the Newton-
Raphson method give that 

Σ PT −In×n

P 02×2 02×n

Z 0n×2 X



xs

ys

zs

 =


−Σx − PT y + z

b − Px
(1/ρ) · 1 − XZ1

 , (2.2)

where In×n is the n× n identity matrix whose elements along the diagonal are all 1s, and 0m×n ∈ R
m×n is

a null matrix all of whose entries are zero. Let us define the (n + 2) × (n + 2) matrix

X0 :=
(
02×2 02×n

0n×2 X

)
,

and we set L = (P Z)T and U = (PT − In×n). With block matrices X0, L, U, the matrix A can be
expressed by

A =


Σ PT −In×n

P 02×2 02×n

Z 0n×2 X

 =

(
Σ U
L X0

)
.

Since the submatrix X0 is singular when x has zero weighted assets, we use a non-singular submatrix
Σ to find M−1. Thus, the inversion of block matrices can be calculated by

A−1 =

(
Σ U
L X0

)−1

=

(
Σ−1 + Σ−1U(X0 − LΣ−1U)−1LΣ−1 −Σ−1U(X0 − LΣ−1U)−1

−(X0 − LΣ−1U)−1LΣ−1 (X0 − LΣ−1U)−1

)
.

The Newton-Raphson method then proceeds iteratively from an initial point xs(0), ys(0), zs(0) through
a sequence of points determined from the search directions described above the solution of linear
equations (2.2):

xk+1 = xk + αxs,

yk+1 = yk + αys,

zk+1 = zk + αzs.
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3. Two eigenvalues and eigenvectors by one asset substitution

We investigate the effect of one asset replacement for our portfolio, which is a set of n financial
assets. For the asset index 1 ≤ i ≤ n and the number of total unit times l, e.g. n assets and l days, let
us first define the following l × 1 vectors Ri = (r1,i, . . . , rk,i, . . . , rl,i)T containing unit time’s the asset
returns, where rk,i represents the return of i-th asset on k-th day. The i-th asset’s mean return in the
portfolio is also defined as µRi := E(Ri). Next, we construct the variancecovariance (or covariance)
matrix Σ. (We refer to Appendix for constructing the variancecovariance Σ.) Given Σ with n assets, we
now assume that i-th asset is replaced with another asset. This induces that Ri is replaced with Ri∗ . The
variance-covariance matrix Σ̈ by the replacement of i-th asset in Σ can be expressed by matrix addition
of the rank two matrix M = σ1uuT + σ2vvT , so we can write that

Σ̈ = Σ + M = Σ +



m1,i
...

m1,i · · ·mi,i · · · mn,i
...

mn,i


= Σ + σ1uuT + σ2vvT .

Here, σ1, σ2 are eigenvalues of M and u, v are corresponding eigenvectors of M. The elements of
matrix M are computed by m j,i = cov(R j,Ri∗) − cov(R j,Ri). That is, we obtain m j,i by

m j,i =
1

l − 1

l∑
k=1

(rk, j − µR j)[(rk,i∗ − rk,i) − (µRi∗ − µRi)].

Indeed, the symmetric matrix M has a rank of 2, and it has one positive eigenvalue σ1 > 0 and one
negative eigenvalue σ2 < 0. To see that, we solve the below system by elimination:

(M − λI)w =



−λ m1,i

−λ
...

m1,i · · · mi,i − λ · · · mn,i
... −λ

mn,i −λ





w1
...

wi
...

wn


= 0.

This readily leads to the quadratic equation

λ2 − mi,iλ −

 n∑
j=1

m2
j,i − m2

i,i

 = 0.

It implies that M has two different eigenvalues σ1 , σ2 and σ1σ2 < 0. Furthermore, we can express
the eigenvalues explicitly as

σ{1,2} =
1
2

mi,i ±

√√
4

n∑
j=1

m2
j,i − 3m2

i,i

 =
1
2

(
mi,i

)
± Ri, (3.1)
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where we define the distance Ri from the center mi,i/2 to the eigenvalues σ{1,2} by

Ri =
1
2

√√
4

n∑
j=1

m2
j,i − 3m2

i,i.

Since mi,i < 2Ri, we know that σ1 > 0, σ2 < 0. Letting wi = σ1 or wi = σ2 and normalizing by

β1 := (m2
1,i + · · · + m2

i−1,i + σ2
1 + m2

i+1,i · · · + m2
n,i)

1/2,

β2 := (m2
1,i + · · · + m2

i−1,i + σ2
2 + m2

i+1,i · · · + m2
n,i)

1/2,

we have the corresponding eigenvectors for σ1 and σ2:

u j =

σ1/β1 if j = i

m j,i/β1 otherwise,
and v j =

σ2/β2 if j = i

m j,i/β2 otherwise.

Moreover, we set the i-th column of matrix M by m := (m1,i, . . . ,mn,i)T and α := ‖m‖∞. From (3.1),
the two eigenvalues σ1 and σ2 follow that

σ2 <
1
2

mi,i < σ1 ≤
α

2

[
1 + (4n − 3)1/2

]
.

As for the two eigenvalues, the difference and sum of σ1 and σ2 are respectively given by

|σ1 − σ2| ≤ (4n − 3)1/2α and σ1 + σ2 = mi,i.

In addition, we denote the eigenvector corresponding to the smallest eigenvalues of Σ by w. Then,
the relation between two eigenvectors u, v and w has

σ1(wT u)2 ≥ −σ2(wT v)2,

due to the condition of semi-positive definite matrix Σ̈. It also implies that |wT u| ≥ |wT v| and |σ2| > |σ1|

if mi,i < 0.

4. Inverse update with a symmetric rank two matrix

Let us define Σ̇ := Σ + σ1uuT , Σ̈ := Σ̇ + σ2vvT . Suppose that we have a linear system Σ̈x = b,
where Σ̈ ∈ Rn×n is nonsingular and nonzero b ∈ Rn. The solution x ∈ Rn of the linear system Σ̈x = b is
calculated as follows. We set ξ = vT x, so that Σ̈x = Σ̇x + (σ2ξ)v. With Σ̇, n× n identity matrix I, and ξ,
we rewrite the linear system as lower and upper triangular submatrices:(

Σ̇ σ2v
vT −1

) (
x
ξ

)
=

(
I 0

vT Σ̇−1 1

) (
Σ̇ σ2v
0T −1 − σ2vT Σ̇−1v

) (
x
ξ

)
=

(
b
0

)
.

Since each triangular submatrix is nonsingular, this amounts to solve the linear system

x = Σ̇−1(b − σ2ξv) and ξ =
vT Σ̇−1b

1 + σ2vT Σ̇−1v
.
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It implies that

Σ̈−1b = x = Σ̇−1
(
I −

σ2vvT Σ̇−1

1 + σ2vT Σ̇−1v

)
b.

Hence, the inverse of symmetric rank one and two updates respectively can be written by

Σ̇−1 = Σ−1 −
σ1Σ

−1uuT Σ−1

1 + σ1uT Σ−1u
, and Σ̈−1 = Σ̇−1 −

σ2Σ̇
−1vvT Σ̇−1

1 + σ2vT Σ̇−1v
. (4.1)

To find the solution x in the system (Σ+σ1uuT +σ2vvT )x = b, we multiply each of the above equations
(4.1) by the vectors b and v:

Σ̈−1b = Σ̇−1b −
σ2Σ̇

−1vvT Σ̇−1b
1 + σ2vT Σ̇−1v

, Σ̇−1v = Σ−1v −
σ1Σ

−1uuT Σ−1v
1 + σ1uT Σ−1u

and Σ̇−1b = Σ−1b −
σ1Σ

−1uuT Σ−1b
1 + σ1uT Σ−1u

.

If we respectively denote Σ−1u and Σ̇−1v by p and q, it simply follows that

Σ̈−1b = Σ−1b −
σ1 ppT b

1 + σ1uT p
−

σ2qqT b
1 + σ2vT q

. (4.2)

Next, we observe the characterization of rank two perturbation for Σ. The distance of the two
matrices are computed by the operator norm, which is defined by

‖A‖op = max
‖x‖2=1

‖Ax‖2 for A ∈ Symn(R).

We write the operator norm of Σ̇, and give the following estimation:

‖Σ̇−1‖op =

∥∥∥∥∥∥
[
In×n −

σ1

1 + σ1uT Σ−1u

(
Σ−1uuT

)]
Σ−1

∥∥∥∥∥∥
op

≤

∥∥∥∥[In×n − σ1

(
Σ−1uuT

)]
Σ−1

∥∥∥∥
op

≤
1
λ1

Cσ1,λ1 ,

where Cσ1,λ1 is defined by

Cσ1,λ1 =

1 − σ1
λ1

if σ1 ≤ λ1
σ1
λ1
− 1 otherwise.

From p = Σ−1u and q = Σ̇−1v and Cσ1,λ1 , we also write the operator norm of two matrices, as follows

‖ppT ‖op = ‖Σ−1uuT Σ−1‖op ≤ λ
−2
1 and ‖qqT ‖op = ‖Σ̇−1vvT Σ̇−1‖op ≤ C2

σ1,λ1
.

Therefore, the difference between two matrices Σ̈−1 and Σ−1 can be measured by∥∥∥Σ̈−1 − Σ−1
∥∥∥

op
=

∥∥∥∥∥∥ σ1 ppT

1 + σ1uT p
+

σ2qqT

1 + σ2vT q

∥∥∥∥∥∥
op

≤

(
σ1

1 + σ1uT p

) ∥∥∥ppT
∥∥∥

op
+

∣∣∣∣∣ σ2

1 + σ2vT q

∣∣∣∣∣ ∥∥∥qqT
∥∥∥

op

≤

(
σ1

1 + σ1/λn

) ∥∥∥ppT
∥∥∥

op
+

∣∣∣∣∣ σ2

1 + σ2/(λn + σ1)

∣∣∣∣∣ ∥∥∥qqT
∥∥∥

op

≤

(
σ1

1 + σ1/λn

)
λ−2

1 +

∣∣∣∣∣ σ2

1 + σ2/(λn + σ1)

∣∣∣∣∣Cσ1,λ1 .

Note that the second inequality follows from ‖Σ̇‖op ≤ λn + σ1.
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5. Covariance inversion scheme for portfolios’ one asset substitution

We now assume that an investor daily renews portfolio proportions as weights by replacing the
poorest performing one asset with a new asset. Mathematically, short selling helps the market to find
the fair value of stocks, however we constrain all the weights in the portfolio to be non-negative as
mentioned in Section 2. Our scheme allows only portfolio weight vector x ≥ 0 that minimizes variance
subject to meeting the target return rp. Note that even our portfolio weight vector x obtained from
our scheme meets the target return rp, it does not guarantee the optimal solution or it is possible to
have another weight vector that achieves rp due to the non-negativity constraint. In this work, we aim
to focus on the efficient computation by using the rank two update. Meanwhile, note that the unique
global solvability of optimal problem is beyond the scope of this paper.

Our work mainly concerns about how to develop an efficient scheme when replacing a low-
performing asset to improve overall portfolio’s performance. Based on the classical quadratic
programming, we can create a non-negative portfolio weight vector x ≥ 0. Furthermore, our proposed
scheme finds the lowest performance asset and then replaces it with the new one for improving
portfolio’s performance.

The data we use in this paper is stock prices of KOSPI and NASDAQ from 2020 to 2021. Let S D

denote the historical return data for D unit times. A unit time length can be a second, a minute, an hour,
or a day. In these simulations, we select the total D days of historical return data to create a covariance
matrix Σ. Also, we let PS be a set of selected assets and a set of reference assets PR. The framework
for our proposed portfolio optimization is given specifically as follows:

Investment strategy by replacing an existing portfolio’s asset for one period of performance
evaluation.

1: Input: historical data S D, selected assets PS and reference assets PR, target return rp

2: Define : D:= total days, ns:= number of selected assets, nr:= number of reference assets
3: For d = 1 to D

Rp ← set of initial selected assets for D days
Σ← covariance matrix of Rp

µp ← expected values of Rp

4: Do Algorithm 2
Input: covariance matrix Σ, target return rp, expected values of initial selected assets µp

Output: non-negative weight vector x1 ≥ 0
risk1← xT

1 Σx1

5: For i = 1 to nr

R∗i ← return of i-th reference asset
µ∗i ← E(R∗i )

6: For j = 1 to ns { j-th selected asset}
µ∗p ← µp

µ∗p( j)← µ∗i
7: Do Algorithm 3

Input: inverse of covariance matrix Σ−1, return of initial selected assets Rp, return of an asset
to be replaced R∗i , return of j-th selected asset R j

Output: inverse of rank two update matrix Σ̈−1, rank two update matrix Σ̈
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8: Do Algorithm 2
Input: rank two update matrix Σ̈, inverse of rank two update matrix Σ̈−1, target return rp,

expected values of selected assets µ∗p
Output: non-negative weight vector x2 ≥ 0

risk2← xT
2 Σ̈x2

9: If risk2 < risk1
risk1← risk2
record← (i, j)

10: End if
11: End for
12: End for

Rp ← Portfolio with asset j replaced by asset i in Rp

13: End for
14: Output : optimal portfolio with non-negative weight vector x∗ ≥ 0

Together with a vector v ∈ Rn, the operator diag(v) gives us an n×n square diagonal matrix with the
elements of vector v on the main diagonal. The optimal non-negative weight vector in the given assets

1: Input: Non-singular covariance matrix Σ, inverse of covariance matrix Σ−1, target return rp,
expected values of n-selected assets µ = {µ1, µ2, . . . , µn}

2: Define: n:= number of selected assets, nt := number of iterations, η := 0.95

3: Initialize: P←
(
µ1 µ2 · · · µn

1 1 · · · 1

)
, b←

(
rp 1

)T
, x← 1n×1, y←

(
1 1

)T
, z← 1n×1,

U ←
(
PT −In×n

)
4: For i = 1 to nt do

X ← diag(x), Z ← diag(z), L←
(
P
Z

)
X0 ←

(
02×2 02×n

0n×2 X

)
Minv ← (X0 − LΣ−1U)−1

M1 ← Σ−1 + Σ−1UMinvLΣ−1, M2 ← −Σ−1UMinv,
M3 ← −MinvLΣ−1, M4 ← Minv

Ainv ←

(
M1 M2

M3 M4

)

xs

ys

zs

← Ainv


−Σx − PT y + z

b − Px
−XZ1n×1


5: x1 ← x, z1 ← z
6: For i = 1 to n do
7: If x(i, 1) < 0

x(i, 1)← 0
8: End if
9: If z(i, 1) < 0

z(i, 1)← 0
10: End if
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11: If xs(i, 1) > 0)
xN(i, 1)← −103, x1(i, 1)← 1

12: Else
xN(i, 1)← x(i, 1)

13: End if
14: If zs(i, 1) > 0)

zN(i, 1)← −103, z1(i, 1)← 1
15: Else

zN(i, 1)← z
16: End if

αx ← min{x1(1, 1)/xN(1, 1), . . . , x1(n, 1)/xN(n, 1)}
αz ← min{z1(1, 1)/zN(1, 1), . . . , z1(n, 1)/zN(n, 1)}
π← xT z/n, πs ← (x + αxxs)T (z + αzzs)/n, τ← (π/πs)3
dx

dy

dz

← Ainv


−Σx − PT y + z

b − Px
−XZ1n×1 + diag(xs)diag(zs)1n×1 + τπ1n×1


α← min{1, ηαx, ηαz}, x← x + αdx, y← y + αdy, z← z + αdz

17: End for
18: Output : non-negative weight vector x ≥ 0

Rank two update for the inverse of covariance matrix
1: Input: inverse of covariance matrix Σ−1, return of j-selected assets R j, return of an asset to be

replaced R∗i , return of i-th selected asset Ri

2: Define : n := number of selected assets
3: For j = 1 to n do

m j,i ← cov(R j,R∗i ) − cov(R j,Ri)
Σ( j, i)← cov(R j,R∗i ), Σ(i, j)← cov(R j,R∗i )

4: End for
Σ̈← Σ

σ1 ←
1
2

(
mi,i +

√
4
∑n

j=1 m2
j,i − 3m2

i,i

)
, σ2 ←

1
2

(
mi,i −

√
4
∑n

j=1 m2
j,i − 3m2

i,i

)
β1 ← (m2

1,i + · · · + m2
i−1,i + σ2

1 + m2
i+1,i · · · + m2

n,i)
1/2

β2 ← (m2
1,i + · · · + m2

i−1,i + σ2
2 + m2

i+1,i · · · + m2
n,i)

1/2

5: For j = 1 to n do
6: If j = i

u( j, 1)← σ1/β1, v( j, 1)← σ2/β2

7: Else
u( j, 1)← m j,i/β1, v( j, 1)← m j,i/β2

8: End if
9: End for

Σ̇−1 ← Σ−1 − (σ1Σ
−1uuT Σ−1)/(1 + σ1uT Σ−1u)

Σ̈−1 ← Σ̇−1 − (σ2Σ̇
−1vvT Σ̇−1)/(1 + σ2vT Σ̇−1v)

10: Output : inverse of rank two update matrix Σ̈−1, rank two update matrix Σ̈
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6. Numerical tests

In this section, we present the validity of the proposed method by evaluating the two different data
sets, which are Monte-Carlo sampling data and real data. First, the simulation generates the stock
prices denoted by S i(t) for 1 ≤ i ≤ n and 0 ≤ t, where S i(t) is the i-th index at time t. The stock price
process is being driven by the geometric Brownian motion. We compare with volatilities and returns
measured by our proposed investment scheme and random investment scheme. Second, the numerical
simulations are also performed with real data from the KOSPI and NASDAQ. To apply our proposed
model, we have used data related to both bullish and bearish markets in KOSPI and NASDAQ.

The portfolio’s return profits by the proposed method overall outperform the top 30% best
performing results of portfolios which are randomly selected. In the both setting of Monte-Carlo
simulations and real data tests, our proposed model shows that consistently low risk and tends to have
higher return. Each test by Monte-Carlo sampling is different with varying levels of risks. We increase
the number of samples and volatilities as well in these simulations. Next, we demonstrate our proposed
model’s volatilities and returns on real data to see the robustness of our model. Remark that we use the
historical volatilities, but implied volatilities can be used as in [15].

6.1. Monte-Carlo simulations

We generate the random path of i-th stock price S i using geometric Brownian motion dS i = rS idt +

σiS i dWi, so that Ito calculus gives us

S i(t) = S i(0) exp
((

r −
1
2
σ2

i

)
t + σiWi(t)

)
in which each Wi(t) is normally distributed with zero mean and variance at t [18]. In this subsection,
we generate 200 random assets using the geometric Brownian motion process, and present the validity
of the proposed method using these random assets.
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(c)
Figure 1. Ten random stock price paths are generated by geometric Brownian motion.

Figure 1 represents the 10 random paths generated by the standard Brownian motion process.
Figures 1(a), (b), and (c) each shows its paths when σi is 0.05, 0.35 and 0.5 with S i(0) = 1. In
this way, we increase the number of random paths 200 and 500 for large scale simulations.

6.1.1. Large scale simulation with random paths

As we stated above, our proposed scheme can produce the optimal solution more efficiently and
easier. Large scale empirical studies on the total 200 and 500 assets are performed to see the robustness

AIMS Mathematics Volume 7, Issue 9, 15881–15903.



15892

of our scheme. We construct one portfolio, which consists of a set of 30, 50, and 75 assets, then the
rest of assets is called the reference assets. Daily updating the portfolio by replacing one asset with
one of the other assets, i.e., reference assets. Each asset class follows random walk generated by
geometric Brownian motion. Also, the target return is set to 0.02 when the optimal volatility portfolio
is constructed using QCQP method. Figure 2 represents the risk measured by σp

2. The risk σp
2 is
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Figure 2. Daily risk by our daily-one-asset replacement scheme simulated with a random
path.

calculated day by day, and the graph of σp
2 is plotted. Figures 2(a), (b), and (c), the first row, are

the results of 200 paths simulations generated by the Brownian motion process when σ is given 0.35.
Figures 2(d), (e), and (f), the second row, are the results of 500 paths simulations by the Brownian
motion process when σ is given 0.35. The third row, (g), (h), and (i) are the results of 200 paths
simulations by the Brownian motion process when σ is given 0.5, and the fourth row (j), (k), and (l)
are the results of 500 paths simulations by the Brownian motion process when σ is given 0.5. Also, the
first column of Figure 2 shows the results of simulations with 30 assets. Likewise the second column
of Figure 2 is the results of one portfolio having 50 selected assets. The last column Figure 2 is the
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results of simulations having of 75 selected assets.

6.1.2. Portfolio comparison in random paths

We provide a comparison of ‘daily risk by our proposed daily-one asset replacement scheme and
‘daily plot by randomly selecting assets scheme. Each test is compared using 100 random stock prices
artificially generated using the geometric Brownian motion. The number of selected assets is 30.
In our daily-one asset replacement method, we randomly select 30 of 100 assets to form an initial
portfolio allocation, and then each one asset is replaced by one of the reference 70 assets to improve
the portfolio’s performance with a minimum risk. i.e., update the portfolio weight daily for finding
optimal volatility. In the comparison, ‘portfolio by randomly selecting one asset scheme in which
initially 30 assets are randomly selected from 100 assets, and then everyday the portfolio weight is
updated to be minimum risk using QCQP method. The random simulation was repeatedly performed
10,000 times, and the results of ‘portfolio by randomly selecting one asset scheme in Figure 3 were the
top 30% highest return portfolio, which is the 3, 000 portfolios of total 10, 000 portfolios.

The first row of Figures 3 (a), (b), and (c) are the comparisons when the target return rp is 0.03, and
the second and third rows are the comparisons when the target return rp are 0.05 and 0.07, respectively.
Also, the results of first column (a), (d), and (g) were simulated with 100 random paths with a given
constant σ = 0.5, and the second and third columns’ results were simulated with 100 random paths
and given σ = 1.0, 1.5.
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Figure 3. Risk comparison simulation of ‘daily risk by our daily-one asset replacement
scheme and ‘daily plot by randomly selecting assets schemes using 100 random paths
generated by the geometric Brownian motion.
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6.2. Practical examples

We present a variety of practical examples for reporting proposed portfolio performance. The results
imply that our proposed optimization scheme has the robustness and stability. In the following, we
use real data which are KOSPI and NASDAQ in 2020 and 2021 to compute the optimal portfolio
weights. Two different scenarios, bearish and bullish markets are illustrated to describe how the
proposed portfolio better perform with respect to risk and return.

6.2.1. Risk evolutions in 2020

One of the major events in 2020 is the stock market crash caused by the COVID-19. It was a sudden
global event that the corona-virus pandemic strongly affected South Korea in June, as well. The fear of
the corona-virus diseases caused KOSPI to drop below 2000. Rapidly increased volatility in the stock
market also influenced in our tests. However, the crash caused a short-lived bear market and does last
only a short time.
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Figure 4. Risk comparison simulation of ‘daily risk by our daily-one asset replacement
scheme and ‘daily plot by randomly selecting assets scheme using 100 KOSPI stock assets
in the bearish market 2020.
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Figure 4 represents the volatility or risk measured by σp
2. Data of σ2

p are based on the daily returns
from February 28, 2020 to February 19th and 2021. The first 6 month data were evaluated, and proceed
the evaluation on every previous 6 months. As a result, from August 24th, 2020 to February 19th, 2021,
the risk was calculated by replacing one asset every day. The risk σp

2 of ‘proposed portfolio volatility’
is calculated and updated day by day. Meanwhile, the risk comparison of ‘random portfolio volatility’
is the average of the top 30% of 100 tests on random portfolios. In this simulation, 100 KOSPI stock
assets in the bearish market 2020 was used. The first row of Figures 4, (a), (b), and (c) show a risk
comparison when the target return is 0.03, and the second, third and fourth rows are risk comparisons
for a given target returns 0.05, 0.07, 0.15, respectively. Also, the first column (a), (d), (g), and (j) are
risk comparisons of simulations, corresponding to the portfolio consisted of 5 assets, and the second
and third columns are risk comparisons of simulations when the number of portfolio assets are 30
and 50, respectively. Even though the risk σp

2 from random simulations is the result of the top 30%
performance, the volatility of the proposed portfolio generated by our daily-one asset replacement
method is much lower. Thus, our scheme gave more stable investments.
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Figure 5. Cumulative returns are illustrated for comparison of proposed scheme and
randomly selecting assets scheme. We use 100 KOSPI stock assets in the bearish market
2020.
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Remark that tests illustrated in (b), (c), and (e) contain a sudden surge of stock prices, and it happens
during a pandemic due to the panic. The portfolios’ profits by the proposed scheme overall outperform
in risk and return, i.e., it produces the lower risks and higher returns.

6.2.2. Cumulative return in 2020

Previously, we have seen that the risk of our portfolios is always lower when we use the data of
2020. Likewise, we also verify that the risk of our portfolio is not only lower but also returns by our
scheme are relatively higher. Throughout simulations, each test was conducted with daily return data
in 2020, and the expected return was calculated over the past 6 months.

Figure 5 represents the cumulative returns measured by rc. The cumulative return rc of our proposed
portfolio is calculated and updated day by day. For a comparative study, cumulative return of random
portfolios is calculated as the average of top 30 percent of total 100 tests. The first to fourth rows
show the evolutions of cumulative return over 6 months in the second half of 2020. The graph of target
returns rp = {3%, 5%, 7%, 15%}, are drawn in upper and lower rows. The first to third columns are
the 5, 30, and 50 number of assets, respectively. The data of 100 KOSPI assets are daily returns from
February 28th, 2020 to February 19th, 2021. Each the daily return from August 24th, 2020 to February
19th, 2021 was calculated, and then the cumulative return was plotted.

As the number of assets in the portfolio increased, the gap between ‘return of random portfolio’ and
‘return of proposed portfolio’ tended to decrease, and the gap in two graphs increases with 5 assets
portfolio. When we applied our method to constructing one portfolio, which has a size of 5, i.e., it
showed the greatest difference. Also, ‘return of random portfolio’ and ‘return of proposed portfolio’
followed the similar tendency to each other, but in general, it was verified that cumulative return of
‘proposed portfolio’ was superior.

6.2.3. Risk evolutions in 2021

In the simulation of Figure 4, we used stock market’s return data in 2020. The risk of proposed
portfolio was lower than the top 30% of risk of random portfolios. The same risk comparison but
different market condition was considered. Stock market return data of 2021 is assumed to be bullish
market for simulations. In the same way as in the previous simulations, the volatility was evaluated
based on every past 6 months, and then the risk was estimated by replacing the poorest performing one
asset on everyday from December 22nd, 2020 to June 25th, 2021.

Figure 6 represents the risk measured by σp
2. The risk σp

2 of ‘proposed portfolio volatility’ is
calculated and updated day by day. The risk comparison of ‘random portfolio volatility’ is the average
of the top 30% of 100 tests on the random portfolio’s weights. In this simulation, 100 KOSPI stock
assets in the bullish market 2021 were used. The first row of Figures 6, (a), (b), and (c) show a risk
comparison when the target return is 0.03, and the second, third and fourth rows are risk comparisons
for a given target returns 0.05, 0.07, 0.15. Also, the first column (a), (d), (g), and (j) are illustrated
for the risk comparison. The simulations are conducted for the portfolio consisted of 5 assets, and the
second and third columns are risk comparisons when the portfolio assets are 30 and 50, respectively.
Even though random simulation is the result of the top 30%, the volatility of the proposed portfolio
generated by our daily-one asset replacement method is lower.

The difference between ‘random portfolio volatility’ and ‘proposed portfolio volatility’ was
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Figure 6. In the bullish market 2021, risks are measured for comparison between simulations
of daily risk by our daily-one asset replacement scheme and daily plot by randomly selecting
assets scheme. Both tests use 100 KOSPI stock assets. The 100 KOSPI assets in this
simulation are used for calculating the daily returns from June 25th, 2020 to June 25th, 2021.

significantly different in first column than in third column. Thus, the smaller the number of portfolio’s
assets, the gap between proposed and 30% random portfolios is greater. In addition, although the
tendency of two portfolio risks tends to be similar, the ‘proposed portfolio volatility’ is always low as
seen in the risk simulation of Figure 4.

6.2.4. Cumulative return in 2021

In the previous Figure 5, we examined how the cumulative return was different when target return
and portfolio size were fixed differently. We now observe the changes of ‘return of random portfolios’
and ‘return of proposed portfolios’ using 2021 KOSPI. KOSPI assets’ return data for one year from
June 25th, 2020 to June 25th, 2021 were used. The cumulative returns from December 22nd, 2020 to
June 25th, 2021 were shown. They are evaluated on each day based on the previous 6 months of one
year of data.
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Figure 7 represents the cumulative return measured by rc. The cumulative return of proposed
portfolios rc is updated by replacing one asset in portfolio with one of the reference asset set. For
a comparison of proposed portfolio’s return, the cumulative return is calculated by the average of the
best of top 30% of 100 random portfolios cumulative returns. The first column are graphs of portfolios
consisted of 5 assets, the second and third columns are graphs of portfolios of 30 and 50 assets. Also,
the first row are graphs of the optimal portfolio when the target return is fixed at 0.03, and the second,
third, and fourth rows are graphs of the optimal portfolio calculated by fixing the target return at 0.05,
0.07, and 0.15, respectively.
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Figure 7. Cumulative return comparison simulation of daily risk by our daily-one asset
replacement scheme and daily plot by randomly selecting assets scheme using 100 KOSPI
stock assets in the bullish market 2021.

Although we confirmed that the cumulative return of proposed portfolio as seen in Figure 5 would
be high, the performance with 2021 KOSPI data did not show us significant differences between two
portfolio schemes. However, comparing with the average over 30% top-performing random portfolios
in Figure 7, we see that the cumulative return of portfolio by our scheme maintains consistency in
return. In other words, the portfolio by our scheme is applicable to make a profit more safely.
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6.2.5. NASDAQ and KOSPI

In the following simulation, we consider a 5-asset portfolio. A set of the total assets contains
100 KOSPI assets and 100 NASDAQ assets, i.e., we consider 200 assets in this simulation, and the
each asset is denoted by {k1, . . . , k100, n1, . . . , n100}. The initial portfolio set consists of 5 assets:
{p1, p2, p3, p4, p5}, which are 5 KOSPI assets, and we replace one asset in portfolio with one of
the reference assets daily. Everyday a portfolio is updated to a new portfolio that optimizes risk by
replacing one asset. From March 20th 2020 to March 9th 2021, over the 230 days held in the market
were calculated and evaluated in units of 115 days, forming one portfolio with the optimal risk every
day for a total of 115 days.
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Figure 8. (a), (b), and (c) are daily risk by our daily-one-asset replacement scheme when
the target return is rp = 0.05, 0.1, 0.15. (d), (e), and (f) are daily cumulative return by our
daily-one-asset replacement scheme when the target return is 0.05, 0.1 and 0.15.

This simulation, which includes the KOSPI market and the NASDAQ market, has daily returns
from March 20th, 2020 to March 9th, 2021. In both the first and second rows, data for one year was
calculated in units of 6 months, and represents the risk variations and cumulative return from September
14th and 2020 to March 20th and 2020, respectively. Figure 8 represents the risk and cumulative return
measured by σ2

p, rc. The cumulative return rc is daily calculated on each business day. In the above
simulations, when the target return is 0.05, the assets and weights of portfolio on the last day measured
by P115 and x115 are:

P115 = {n69, k99, k56, k30, k100}, x115 = (0.5014, 0.1850, 0.1281, 0, 0.1855)T .

When the target return is given by rp = 0.1, P and x are as follows.

P115 = {k99, k5, n69, k54, n38}, x115 = (0.1638, 0.0841, 0.5396, 0.0821, 0.1304)T .

Also, P and x are composed as follows for a given target return rp = 0.15.

P115 = {n69, k67, k100, k99, n142}, x115 = (0.5513, 0.0935, 0.1704, 0.1847, 0)T .
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Thus, a risk averse investor with a target return of 0.05, an investor with a target return of 0.1, and a
risk tolerance with a target return of 0.15 all started with portfolio of {k1, k2, k3, k4, k5}. However, As
an asset in portfolio changes daily, investors have different portfolios depending on their investment
propensity.

6.2.6. The efficient frontier

A risk averse investor chooses to preserve capital over the potential for a higher than average return.
Modern portfolio theory assumes that investors are risk averse, meaning that they prefer the minimum
volatility portfolio for a given target return. In this simulation, the minimum risks for each target return
given in the KOSPI market, NASDAQ market, and the combined market are shown. The graph as seen
in Figure 9 is known as the efficient frontier. In the efficient frontier, portfolio corresponding to each
point in the curve is called the minimum variation portfolio. It is possible to create different portfolio
in the area above the efficient frontier. However, the risk of the other portfolios is greater than the risk
of the minimum variance portfolio for the same target return, so no one invests in portfolio, which
belongs to the area above the efficient frontier.
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Figure 9. The efficient frontier.

Figure 9 represents the efficient frontiers of portfolios, which consist of randomly chosen assets and
proposed portfolios by using our method. The graph shows the risk of efficient portfolio σp

2 for target
return rp, we can confirm that the risk of portfolio made through our method is always lower than the
risk of portfolio made from top 30% random portfolio. Figure 9(a) shows the effective frontier using
the KOSPI market data of 2020, also Figure 9(b) implies the effective frontier using the KOSPI market
data of 2021, and last Figure 9(c) shows the effective frontier analyzed by the KOSPI market and the
NASDAQ market data from 2020 to 2021.

6.2.7. Black swan event

In the previous simulations, it was confirmed that the risk of daily update portfolio was lower than
that of the randomly constructed portfolio. In this simulation, we observe how to affect the returns
when unexpected, “Black Swan”, event occurs. We compare the daily updated portfolio and portfolio
that has not been updated. Noting not updated portfolio implies that all asset weights are fixed and
portfolio maintenance is not available in an unexpected occasion.

There is no doubt that COVID-19 was a “Black Swan” in financial markets. One of the first
countries to be affected by COVID-19 was Republic of Korea, where the first confirmed case was
reported on January 20th, 2020, detected at Incheon International Airport. After fears of the COVID-
19 caused the KOSPI to fall below more than 1000 points for the first time in ten years. As shown in
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Figure 10. First day, Jan. 20th, 2020, COVID-19 one confirmed case up to three months
afterward, proposed portfolio’s returns and no maintenance portfolio’s returns are compared.

Figure 10, unexpected event lowers the most of portfolio’s returns. Even though COVID-19 confirmed
cases increased as return by proposed scheme fell, our returns overrun the graph of no update scheme’s
return.

7. Conclusions

Portfolio optimization is a cornerstone of financial theory and practice. However, it is still not
easy to allocate assets in a portfolio. Furthermore, we do not allow any negative weight value on
the allocations. i.e., the optimized portfolio weights are to be found without short positions. The
optimized weights should be re-balanced due to the stock fluctuations. In this paper, we developed
the efficiently updating scheme for the optimized portfolio. Given the difficulties of re-calculating
a large-scale covariance matrix, our proposed scheme simply performed rank-2 modification of the
matrix.

Based on Markowiz’s portfolio theory, we assume that investors are risk averse. In other words,
investors choose the portfolio with the lowest risk when portfolios with the same expected return are
provided. Also, there is a trade-off between expected return and risk, and investors take different risks
according to their investment propensity. Therefore, in this paper, we have dealt with various the target
returns, and all simulation results have shown that the risks of our proposed portfolio are always low.

The year 2020 indeed, has turned out to be quite impressive for most stock markets. All major
economic indices have declined, and reached their lowest levels in recent periods. The lowest indicators
were caused by economic effects of the COVID19 pandemic crisis, however, most simulation results
by our proposed scheme outperformed the average of the top 30% of tests on random portfolios, in
both KOSPI and NASDAQ markets. On the other hand, the year 2021 has had the upward tendency,
due to the Bank of Korea’s quantitative easing, and economic revival by COVID-19 vaccination, and
so on. These economic boosts put the KOSPI and NASDAQ indices in bullish market.

The main contribution of this work is to build and update (or maintain) the optimal portfolio weights
daily subject to the nonnegative constraint, x ≥ 0. We assume that portfolio consists of fixed assets,
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i.e. merely asset replacement occurs to find the best portfolio under the given low-risk and high-return
conditions. Our dynamic portfolio optimization allows for minutely, hourly, daily, weekly or monthly
maintenance, but we only consider daily stock closing prices in light of limits on available market data.
Furthermore, we obtain a profitable portfolio by adjusting one of assets and renewing the portfolio as
time goes by. Therefore, we plan on efficiently solving the dynamic portfolio selection problem.

Numerical tests have shown to have high validity for the portfolio optimization using Monte-
Carlo simulation and empirical application on the stock prices of KOSPI and NASDAQ. We also
demonstrated the robustness of our proposed scheme with a large number of assets. We applied our
proposed scheme to KOSPI and NASDAQ markets, and considered the returns and risks in bearish and
bullish periods. These finding illustrated the validity of our proposed portfolio scheme.
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Appendix: Mathematical definition and more detailed explanation

We assume that n financial assets are available. For the asset index 1 ≤ i ≤ n and the number
of total unit times l, e.g. n assets and l days, let us first define the following l × 1 vectors Ri =

(r1,i, . . . , rk,i, . . . , rl,i)T containing unit time’s the asset returns, where rk,i represents the return of i-th
asset on k-th day. The i-th asset’s mean return in the portfolio is also defined as µRi := E(Ri). Together
with with R1, R2, . . . ,Rn, we build the variancecovariance (or covariance) matrix Σ:

Σ =


var(R1) cov(R1,R2) · · · cov(R1,Rn)

cov(R2,R1) var(R2) · · · cov(R2,Rn)
...

...
. . .

...

cov(Rn,R1) cov(Rn,R2) · · · var(Rn)

 .
The two vectors u, v in section 3 are orthogonal and it is readily confirmed as follows:

uT v =
1

β1β2
(m2

1,i + · · · + m2
i−1,i + σ1σ2 + m2

i+1,i · · · + m2
n,i)

=
1

β1β2

m2
1,i + · · · + m2

i−1,i +
1
4

m2
i,i − 4

n∑
j=1

m2
j,i + 3m2

i,i

 + m2
i+1,i · · · + m2

n,i

 = 0.
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